sched_rt.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_SMP
  6. static inline int rt_overloaded(struct rq *rq)
  7. {
  8. return atomic_read(&rq->rd->rto_count);
  9. }
  10. static inline void rt_set_overload(struct rq *rq)
  11. {
  12. if (!rq->online)
  13. return;
  14. cpu_set(rq->cpu, rq->rd->rto_mask);
  15. /*
  16. * Make sure the mask is visible before we set
  17. * the overload count. That is checked to determine
  18. * if we should look at the mask. It would be a shame
  19. * if we looked at the mask, but the mask was not
  20. * updated yet.
  21. */
  22. wmb();
  23. atomic_inc(&rq->rd->rto_count);
  24. }
  25. static inline void rt_clear_overload(struct rq *rq)
  26. {
  27. if (!rq->online)
  28. return;
  29. /* the order here really doesn't matter */
  30. atomic_dec(&rq->rd->rto_count);
  31. cpu_clear(rq->cpu, rq->rd->rto_mask);
  32. }
  33. static void update_rt_migration(struct rq *rq)
  34. {
  35. if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
  36. if (!rq->rt.overloaded) {
  37. rt_set_overload(rq);
  38. rq->rt.overloaded = 1;
  39. }
  40. } else if (rq->rt.overloaded) {
  41. rt_clear_overload(rq);
  42. rq->rt.overloaded = 0;
  43. }
  44. }
  45. #endif /* CONFIG_SMP */
  46. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  47. {
  48. return container_of(rt_se, struct task_struct, rt);
  49. }
  50. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  51. {
  52. return !list_empty(&rt_se->run_list);
  53. }
  54. #ifdef CONFIG_RT_GROUP_SCHED
  55. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  56. {
  57. if (!rt_rq->tg)
  58. return RUNTIME_INF;
  59. return rt_rq->rt_runtime;
  60. }
  61. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  62. {
  63. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  64. }
  65. #define for_each_leaf_rt_rq(rt_rq, rq) \
  66. list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  67. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  68. {
  69. return rt_rq->rq;
  70. }
  71. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  72. {
  73. return rt_se->rt_rq;
  74. }
  75. #define for_each_sched_rt_entity(rt_se) \
  76. for (; rt_se; rt_se = rt_se->parent)
  77. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  78. {
  79. return rt_se->my_q;
  80. }
  81. static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
  82. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  83. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  84. {
  85. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  86. if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
  87. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  88. enqueue_rt_entity(rt_se);
  89. if (rt_rq->highest_prio < curr->prio)
  90. resched_task(curr);
  91. }
  92. }
  93. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  94. {
  95. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  96. if (rt_se && on_rt_rq(rt_se))
  97. dequeue_rt_entity(rt_se);
  98. }
  99. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  100. {
  101. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  102. }
  103. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  104. {
  105. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  106. struct task_struct *p;
  107. if (rt_rq)
  108. return !!rt_rq->rt_nr_boosted;
  109. p = rt_task_of(rt_se);
  110. return p->prio != p->normal_prio;
  111. }
  112. #ifdef CONFIG_SMP
  113. static inline cpumask_t sched_rt_period_mask(void)
  114. {
  115. return cpu_rq(smp_processor_id())->rd->span;
  116. }
  117. #else
  118. static inline cpumask_t sched_rt_period_mask(void)
  119. {
  120. return cpu_online_map;
  121. }
  122. #endif
  123. static inline
  124. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  125. {
  126. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  127. }
  128. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  129. {
  130. return &rt_rq->tg->rt_bandwidth;
  131. }
  132. #else /* !CONFIG_RT_GROUP_SCHED */
  133. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  134. {
  135. return rt_rq->rt_runtime;
  136. }
  137. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  138. {
  139. return ktime_to_ns(def_rt_bandwidth.rt_period);
  140. }
  141. #define for_each_leaf_rt_rq(rt_rq, rq) \
  142. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  143. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  144. {
  145. return container_of(rt_rq, struct rq, rt);
  146. }
  147. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  148. {
  149. struct task_struct *p = rt_task_of(rt_se);
  150. struct rq *rq = task_rq(p);
  151. return &rq->rt;
  152. }
  153. #define for_each_sched_rt_entity(rt_se) \
  154. for (; rt_se; rt_se = NULL)
  155. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  156. {
  157. return NULL;
  158. }
  159. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  160. {
  161. if (rt_rq->rt_nr_running)
  162. resched_task(rq_of_rt_rq(rt_rq)->curr);
  163. }
  164. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  165. {
  166. }
  167. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  168. {
  169. return rt_rq->rt_throttled;
  170. }
  171. static inline cpumask_t sched_rt_period_mask(void)
  172. {
  173. return cpu_online_map;
  174. }
  175. static inline
  176. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  177. {
  178. return &cpu_rq(cpu)->rt;
  179. }
  180. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  181. {
  182. return &def_rt_bandwidth;
  183. }
  184. #endif /* CONFIG_RT_GROUP_SCHED */
  185. #ifdef CONFIG_SMP
  186. static int do_balance_runtime(struct rt_rq *rt_rq)
  187. {
  188. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  189. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  190. int i, weight, more = 0;
  191. u64 rt_period;
  192. weight = cpus_weight(rd->span);
  193. spin_lock(&rt_b->rt_runtime_lock);
  194. rt_period = ktime_to_ns(rt_b->rt_period);
  195. for_each_cpu_mask_nr(i, rd->span) {
  196. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  197. s64 diff;
  198. if (iter == rt_rq)
  199. continue;
  200. spin_lock(&iter->rt_runtime_lock);
  201. if (iter->rt_runtime == RUNTIME_INF)
  202. goto next;
  203. diff = iter->rt_runtime - iter->rt_time;
  204. if (diff > 0) {
  205. diff = div_u64((u64)diff, weight);
  206. if (rt_rq->rt_runtime + diff > rt_period)
  207. diff = rt_period - rt_rq->rt_runtime;
  208. iter->rt_runtime -= diff;
  209. rt_rq->rt_runtime += diff;
  210. more = 1;
  211. if (rt_rq->rt_runtime == rt_period) {
  212. spin_unlock(&iter->rt_runtime_lock);
  213. break;
  214. }
  215. }
  216. next:
  217. spin_unlock(&iter->rt_runtime_lock);
  218. }
  219. spin_unlock(&rt_b->rt_runtime_lock);
  220. return more;
  221. }
  222. static void __disable_runtime(struct rq *rq)
  223. {
  224. struct root_domain *rd = rq->rd;
  225. struct rt_rq *rt_rq;
  226. if (unlikely(!scheduler_running))
  227. return;
  228. for_each_leaf_rt_rq(rt_rq, rq) {
  229. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  230. s64 want;
  231. int i;
  232. spin_lock(&rt_b->rt_runtime_lock);
  233. spin_lock(&rt_rq->rt_runtime_lock);
  234. if (rt_rq->rt_runtime == RUNTIME_INF ||
  235. rt_rq->rt_runtime == rt_b->rt_runtime)
  236. goto balanced;
  237. spin_unlock(&rt_rq->rt_runtime_lock);
  238. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  239. for_each_cpu_mask(i, rd->span) {
  240. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  241. s64 diff;
  242. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  243. continue;
  244. spin_lock(&iter->rt_runtime_lock);
  245. if (want > 0) {
  246. diff = min_t(s64, iter->rt_runtime, want);
  247. iter->rt_runtime -= diff;
  248. want -= diff;
  249. } else {
  250. iter->rt_runtime -= want;
  251. want -= want;
  252. }
  253. spin_unlock(&iter->rt_runtime_lock);
  254. if (!want)
  255. break;
  256. }
  257. spin_lock(&rt_rq->rt_runtime_lock);
  258. BUG_ON(want);
  259. balanced:
  260. rt_rq->rt_runtime = RUNTIME_INF;
  261. spin_unlock(&rt_rq->rt_runtime_lock);
  262. spin_unlock(&rt_b->rt_runtime_lock);
  263. }
  264. }
  265. static void disable_runtime(struct rq *rq)
  266. {
  267. unsigned long flags;
  268. spin_lock_irqsave(&rq->lock, flags);
  269. __disable_runtime(rq);
  270. spin_unlock_irqrestore(&rq->lock, flags);
  271. }
  272. static void __enable_runtime(struct rq *rq)
  273. {
  274. struct rt_rq *rt_rq;
  275. if (unlikely(!scheduler_running))
  276. return;
  277. for_each_leaf_rt_rq(rt_rq, rq) {
  278. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  279. spin_lock(&rt_b->rt_runtime_lock);
  280. spin_lock(&rt_rq->rt_runtime_lock);
  281. rt_rq->rt_runtime = rt_b->rt_runtime;
  282. rt_rq->rt_time = 0;
  283. spin_unlock(&rt_rq->rt_runtime_lock);
  284. spin_unlock(&rt_b->rt_runtime_lock);
  285. }
  286. }
  287. static void enable_runtime(struct rq *rq)
  288. {
  289. unsigned long flags;
  290. spin_lock_irqsave(&rq->lock, flags);
  291. __enable_runtime(rq);
  292. spin_unlock_irqrestore(&rq->lock, flags);
  293. }
  294. static int balance_runtime(struct rt_rq *rt_rq)
  295. {
  296. int more = 0;
  297. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  298. spin_unlock(&rt_rq->rt_runtime_lock);
  299. more = do_balance_runtime(rt_rq);
  300. spin_lock(&rt_rq->rt_runtime_lock);
  301. }
  302. return more;
  303. }
  304. #else /* !CONFIG_SMP */
  305. static inline int balance_runtime(struct rt_rq *rt_rq)
  306. {
  307. return 0;
  308. }
  309. #endif /* CONFIG_SMP */
  310. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  311. {
  312. int i, idle = 1;
  313. cpumask_t span;
  314. if (rt_b->rt_runtime == RUNTIME_INF)
  315. return 1;
  316. span = sched_rt_period_mask();
  317. for_each_cpu_mask(i, span) {
  318. int enqueue = 0;
  319. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  320. struct rq *rq = rq_of_rt_rq(rt_rq);
  321. spin_lock(&rq->lock);
  322. if (rt_rq->rt_time) {
  323. u64 runtime;
  324. spin_lock(&rt_rq->rt_runtime_lock);
  325. if (rt_rq->rt_throttled)
  326. balance_runtime(rt_rq);
  327. runtime = rt_rq->rt_runtime;
  328. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  329. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  330. rt_rq->rt_throttled = 0;
  331. enqueue = 1;
  332. }
  333. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  334. idle = 0;
  335. spin_unlock(&rt_rq->rt_runtime_lock);
  336. } else if (rt_rq->rt_nr_running)
  337. idle = 0;
  338. if (enqueue)
  339. sched_rt_rq_enqueue(rt_rq);
  340. spin_unlock(&rq->lock);
  341. }
  342. return idle;
  343. }
  344. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  345. {
  346. #ifdef CONFIG_RT_GROUP_SCHED
  347. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  348. if (rt_rq)
  349. return rt_rq->highest_prio;
  350. #endif
  351. return rt_task_of(rt_se)->prio;
  352. }
  353. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  354. {
  355. u64 runtime = sched_rt_runtime(rt_rq);
  356. if (rt_rq->rt_throttled)
  357. return rt_rq_throttled(rt_rq);
  358. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  359. return 0;
  360. balance_runtime(rt_rq);
  361. runtime = sched_rt_runtime(rt_rq);
  362. if (runtime == RUNTIME_INF)
  363. return 0;
  364. if (rt_rq->rt_time > runtime) {
  365. rt_rq->rt_throttled = 1;
  366. if (rt_rq_throttled(rt_rq)) {
  367. sched_rt_rq_dequeue(rt_rq);
  368. return 1;
  369. }
  370. }
  371. return 0;
  372. }
  373. /*
  374. * Update the current task's runtime statistics. Skip current tasks that
  375. * are not in our scheduling class.
  376. */
  377. static void update_curr_rt(struct rq *rq)
  378. {
  379. struct task_struct *curr = rq->curr;
  380. struct sched_rt_entity *rt_se = &curr->rt;
  381. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  382. u64 delta_exec;
  383. if (!task_has_rt_policy(curr))
  384. return;
  385. delta_exec = rq->clock - curr->se.exec_start;
  386. if (unlikely((s64)delta_exec < 0))
  387. delta_exec = 0;
  388. schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
  389. curr->se.sum_exec_runtime += delta_exec;
  390. curr->se.exec_start = rq->clock;
  391. cpuacct_charge(curr, delta_exec);
  392. for_each_sched_rt_entity(rt_se) {
  393. rt_rq = rt_rq_of_se(rt_se);
  394. spin_lock(&rt_rq->rt_runtime_lock);
  395. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  396. rt_rq->rt_time += delta_exec;
  397. if (sched_rt_runtime_exceeded(rt_rq))
  398. resched_task(curr);
  399. }
  400. spin_unlock(&rt_rq->rt_runtime_lock);
  401. }
  402. }
  403. static inline
  404. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  405. {
  406. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  407. rt_rq->rt_nr_running++;
  408. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  409. if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
  410. #ifdef CONFIG_SMP
  411. struct rq *rq = rq_of_rt_rq(rt_rq);
  412. #endif
  413. rt_rq->highest_prio = rt_se_prio(rt_se);
  414. #ifdef CONFIG_SMP
  415. if (rq->online)
  416. cpupri_set(&rq->rd->cpupri, rq->cpu,
  417. rt_se_prio(rt_se));
  418. #endif
  419. }
  420. #endif
  421. #ifdef CONFIG_SMP
  422. if (rt_se->nr_cpus_allowed > 1) {
  423. struct rq *rq = rq_of_rt_rq(rt_rq);
  424. rq->rt.rt_nr_migratory++;
  425. }
  426. update_rt_migration(rq_of_rt_rq(rt_rq));
  427. #endif
  428. #ifdef CONFIG_RT_GROUP_SCHED
  429. if (rt_se_boosted(rt_se))
  430. rt_rq->rt_nr_boosted++;
  431. if (rt_rq->tg)
  432. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  433. #else
  434. start_rt_bandwidth(&def_rt_bandwidth);
  435. #endif
  436. }
  437. static inline
  438. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  439. {
  440. #ifdef CONFIG_SMP
  441. int highest_prio = rt_rq->highest_prio;
  442. #endif
  443. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  444. WARN_ON(!rt_rq->rt_nr_running);
  445. rt_rq->rt_nr_running--;
  446. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  447. if (rt_rq->rt_nr_running) {
  448. struct rt_prio_array *array;
  449. WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
  450. if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
  451. /* recalculate */
  452. array = &rt_rq->active;
  453. rt_rq->highest_prio =
  454. sched_find_first_bit(array->bitmap);
  455. } /* otherwise leave rq->highest prio alone */
  456. } else
  457. rt_rq->highest_prio = MAX_RT_PRIO;
  458. #endif
  459. #ifdef CONFIG_SMP
  460. if (rt_se->nr_cpus_allowed > 1) {
  461. struct rq *rq = rq_of_rt_rq(rt_rq);
  462. rq->rt.rt_nr_migratory--;
  463. }
  464. if (rt_rq->highest_prio != highest_prio) {
  465. struct rq *rq = rq_of_rt_rq(rt_rq);
  466. if (rq->online)
  467. cpupri_set(&rq->rd->cpupri, rq->cpu,
  468. rt_rq->highest_prio);
  469. }
  470. update_rt_migration(rq_of_rt_rq(rt_rq));
  471. #endif /* CONFIG_SMP */
  472. #ifdef CONFIG_RT_GROUP_SCHED
  473. if (rt_se_boosted(rt_se))
  474. rt_rq->rt_nr_boosted--;
  475. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  476. #endif
  477. }
  478. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
  479. {
  480. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  481. struct rt_prio_array *array = &rt_rq->active;
  482. struct rt_rq *group_rq = group_rt_rq(rt_se);
  483. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  484. /*
  485. * Don't enqueue the group if its throttled, or when empty.
  486. * The latter is a consequence of the former when a child group
  487. * get throttled and the current group doesn't have any other
  488. * active members.
  489. */
  490. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  491. return;
  492. list_add_tail(&rt_se->run_list, queue);
  493. __set_bit(rt_se_prio(rt_se), array->bitmap);
  494. inc_rt_tasks(rt_se, rt_rq);
  495. }
  496. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  497. {
  498. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  499. struct rt_prio_array *array = &rt_rq->active;
  500. list_del_init(&rt_se->run_list);
  501. if (list_empty(array->queue + rt_se_prio(rt_se)))
  502. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  503. dec_rt_tasks(rt_se, rt_rq);
  504. }
  505. /*
  506. * Because the prio of an upper entry depends on the lower
  507. * entries, we must remove entries top - down.
  508. */
  509. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  510. {
  511. struct sched_rt_entity *back = NULL;
  512. for_each_sched_rt_entity(rt_se) {
  513. rt_se->back = back;
  514. back = rt_se;
  515. }
  516. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  517. if (on_rt_rq(rt_se))
  518. __dequeue_rt_entity(rt_se);
  519. }
  520. }
  521. static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
  522. {
  523. dequeue_rt_stack(rt_se);
  524. for_each_sched_rt_entity(rt_se)
  525. __enqueue_rt_entity(rt_se);
  526. }
  527. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  528. {
  529. dequeue_rt_stack(rt_se);
  530. for_each_sched_rt_entity(rt_se) {
  531. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  532. if (rt_rq && rt_rq->rt_nr_running)
  533. __enqueue_rt_entity(rt_se);
  534. }
  535. }
  536. /*
  537. * Adding/removing a task to/from a priority array:
  538. */
  539. static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
  540. {
  541. struct sched_rt_entity *rt_se = &p->rt;
  542. if (wakeup)
  543. rt_se->timeout = 0;
  544. enqueue_rt_entity(rt_se);
  545. inc_cpu_load(rq, p->se.load.weight);
  546. }
  547. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
  548. {
  549. struct sched_rt_entity *rt_se = &p->rt;
  550. update_curr_rt(rq);
  551. dequeue_rt_entity(rt_se);
  552. dec_cpu_load(rq, p->se.load.weight);
  553. }
  554. /*
  555. * Put task to the end of the run list without the overhead of dequeue
  556. * followed by enqueue.
  557. */
  558. static void
  559. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  560. {
  561. if (on_rt_rq(rt_se)) {
  562. struct rt_prio_array *array = &rt_rq->active;
  563. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  564. if (head)
  565. list_move(&rt_se->run_list, queue);
  566. else
  567. list_move_tail(&rt_se->run_list, queue);
  568. }
  569. }
  570. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  571. {
  572. struct sched_rt_entity *rt_se = &p->rt;
  573. struct rt_rq *rt_rq;
  574. for_each_sched_rt_entity(rt_se) {
  575. rt_rq = rt_rq_of_se(rt_se);
  576. requeue_rt_entity(rt_rq, rt_se, head);
  577. }
  578. }
  579. static void yield_task_rt(struct rq *rq)
  580. {
  581. requeue_task_rt(rq, rq->curr, 0);
  582. }
  583. #ifdef CONFIG_SMP
  584. static int find_lowest_rq(struct task_struct *task);
  585. static int select_task_rq_rt(struct task_struct *p, int sync)
  586. {
  587. struct rq *rq = task_rq(p);
  588. /*
  589. * If the current task is an RT task, then
  590. * try to see if we can wake this RT task up on another
  591. * runqueue. Otherwise simply start this RT task
  592. * on its current runqueue.
  593. *
  594. * We want to avoid overloading runqueues. Even if
  595. * the RT task is of higher priority than the current RT task.
  596. * RT tasks behave differently than other tasks. If
  597. * one gets preempted, we try to push it off to another queue.
  598. * So trying to keep a preempting RT task on the same
  599. * cache hot CPU will force the running RT task to
  600. * a cold CPU. So we waste all the cache for the lower
  601. * RT task in hopes of saving some of a RT task
  602. * that is just being woken and probably will have
  603. * cold cache anyway.
  604. */
  605. if (unlikely(rt_task(rq->curr)) &&
  606. (p->rt.nr_cpus_allowed > 1)) {
  607. int cpu = find_lowest_rq(p);
  608. return (cpu == -1) ? task_cpu(p) : cpu;
  609. }
  610. /*
  611. * Otherwise, just let it ride on the affined RQ and the
  612. * post-schedule router will push the preempted task away
  613. */
  614. return task_cpu(p);
  615. }
  616. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  617. {
  618. cpumask_t mask;
  619. if (rq->curr->rt.nr_cpus_allowed == 1)
  620. return;
  621. if (p->rt.nr_cpus_allowed != 1
  622. && cpupri_find(&rq->rd->cpupri, p, &mask))
  623. return;
  624. if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
  625. return;
  626. /*
  627. * There appears to be other cpus that can accept
  628. * current and none to run 'p', so lets reschedule
  629. * to try and push current away:
  630. */
  631. requeue_task_rt(rq, p, 1);
  632. resched_task(rq->curr);
  633. }
  634. #endif /* CONFIG_SMP */
  635. /*
  636. * Preempt the current task with a newly woken task if needed:
  637. */
  638. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
  639. {
  640. if (p->prio < rq->curr->prio) {
  641. resched_task(rq->curr);
  642. return;
  643. }
  644. #ifdef CONFIG_SMP
  645. /*
  646. * If:
  647. *
  648. * - the newly woken task is of equal priority to the current task
  649. * - the newly woken task is non-migratable while current is migratable
  650. * - current will be preempted on the next reschedule
  651. *
  652. * we should check to see if current can readily move to a different
  653. * cpu. If so, we will reschedule to allow the push logic to try
  654. * to move current somewhere else, making room for our non-migratable
  655. * task.
  656. */
  657. if (p->prio == rq->curr->prio && !need_resched())
  658. check_preempt_equal_prio(rq, p);
  659. #endif
  660. }
  661. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  662. struct rt_rq *rt_rq)
  663. {
  664. struct rt_prio_array *array = &rt_rq->active;
  665. struct sched_rt_entity *next = NULL;
  666. struct list_head *queue;
  667. int idx;
  668. idx = sched_find_first_bit(array->bitmap);
  669. BUG_ON(idx >= MAX_RT_PRIO);
  670. queue = array->queue + idx;
  671. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  672. return next;
  673. }
  674. static struct task_struct *pick_next_task_rt(struct rq *rq)
  675. {
  676. struct sched_rt_entity *rt_se;
  677. struct task_struct *p;
  678. struct rt_rq *rt_rq;
  679. rt_rq = &rq->rt;
  680. if (unlikely(!rt_rq->rt_nr_running))
  681. return NULL;
  682. if (rt_rq_throttled(rt_rq))
  683. return NULL;
  684. do {
  685. rt_se = pick_next_rt_entity(rq, rt_rq);
  686. BUG_ON(!rt_se);
  687. rt_rq = group_rt_rq(rt_se);
  688. } while (rt_rq);
  689. p = rt_task_of(rt_se);
  690. p->se.exec_start = rq->clock;
  691. return p;
  692. }
  693. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  694. {
  695. update_curr_rt(rq);
  696. p->se.exec_start = 0;
  697. }
  698. #ifdef CONFIG_SMP
  699. /* Only try algorithms three times */
  700. #define RT_MAX_TRIES 3
  701. static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
  702. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
  703. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  704. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  705. {
  706. if (!task_running(rq, p) &&
  707. (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
  708. (p->rt.nr_cpus_allowed > 1))
  709. return 1;
  710. return 0;
  711. }
  712. /* Return the second highest RT task, NULL otherwise */
  713. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  714. {
  715. struct task_struct *next = NULL;
  716. struct sched_rt_entity *rt_se;
  717. struct rt_prio_array *array;
  718. struct rt_rq *rt_rq;
  719. int idx;
  720. for_each_leaf_rt_rq(rt_rq, rq) {
  721. array = &rt_rq->active;
  722. idx = sched_find_first_bit(array->bitmap);
  723. next_idx:
  724. if (idx >= MAX_RT_PRIO)
  725. continue;
  726. if (next && next->prio < idx)
  727. continue;
  728. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  729. struct task_struct *p = rt_task_of(rt_se);
  730. if (pick_rt_task(rq, p, cpu)) {
  731. next = p;
  732. break;
  733. }
  734. }
  735. if (!next) {
  736. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  737. goto next_idx;
  738. }
  739. }
  740. return next;
  741. }
  742. static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
  743. static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
  744. {
  745. int first;
  746. /* "this_cpu" is cheaper to preempt than a remote processor */
  747. if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
  748. return this_cpu;
  749. first = first_cpu(*mask);
  750. if (first != NR_CPUS)
  751. return first;
  752. return -1;
  753. }
  754. static int find_lowest_rq(struct task_struct *task)
  755. {
  756. struct sched_domain *sd;
  757. cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
  758. int this_cpu = smp_processor_id();
  759. int cpu = task_cpu(task);
  760. if (task->rt.nr_cpus_allowed == 1)
  761. return -1; /* No other targets possible */
  762. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  763. return -1; /* No targets found */
  764. /*
  765. * Only consider CPUs that are usable for migration.
  766. * I guess we might want to change cpupri_find() to ignore those
  767. * in the first place.
  768. */
  769. cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
  770. /*
  771. * At this point we have built a mask of cpus representing the
  772. * lowest priority tasks in the system. Now we want to elect
  773. * the best one based on our affinity and topology.
  774. *
  775. * We prioritize the last cpu that the task executed on since
  776. * it is most likely cache-hot in that location.
  777. */
  778. if (cpu_isset(cpu, *lowest_mask))
  779. return cpu;
  780. /*
  781. * Otherwise, we consult the sched_domains span maps to figure
  782. * out which cpu is logically closest to our hot cache data.
  783. */
  784. if (this_cpu == cpu)
  785. this_cpu = -1; /* Skip this_cpu opt if the same */
  786. for_each_domain(cpu, sd) {
  787. if (sd->flags & SD_WAKE_AFFINE) {
  788. cpumask_t domain_mask;
  789. int best_cpu;
  790. cpus_and(domain_mask, sd->span, *lowest_mask);
  791. best_cpu = pick_optimal_cpu(this_cpu,
  792. &domain_mask);
  793. if (best_cpu != -1)
  794. return best_cpu;
  795. }
  796. }
  797. /*
  798. * And finally, if there were no matches within the domains
  799. * just give the caller *something* to work with from the compatible
  800. * locations.
  801. */
  802. return pick_optimal_cpu(this_cpu, lowest_mask);
  803. }
  804. /* Will lock the rq it finds */
  805. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  806. {
  807. struct rq *lowest_rq = NULL;
  808. int tries;
  809. int cpu;
  810. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  811. cpu = find_lowest_rq(task);
  812. if ((cpu == -1) || (cpu == rq->cpu))
  813. break;
  814. lowest_rq = cpu_rq(cpu);
  815. /* if the prio of this runqueue changed, try again */
  816. if (double_lock_balance(rq, lowest_rq)) {
  817. /*
  818. * We had to unlock the run queue. In
  819. * the mean time, task could have
  820. * migrated already or had its affinity changed.
  821. * Also make sure that it wasn't scheduled on its rq.
  822. */
  823. if (unlikely(task_rq(task) != rq ||
  824. !cpu_isset(lowest_rq->cpu,
  825. task->cpus_allowed) ||
  826. task_running(rq, task) ||
  827. !task->se.on_rq)) {
  828. spin_unlock(&lowest_rq->lock);
  829. lowest_rq = NULL;
  830. break;
  831. }
  832. }
  833. /* If this rq is still suitable use it. */
  834. if (lowest_rq->rt.highest_prio > task->prio)
  835. break;
  836. /* try again */
  837. double_unlock_balance(rq, lowest_rq);
  838. lowest_rq = NULL;
  839. }
  840. return lowest_rq;
  841. }
  842. /*
  843. * If the current CPU has more than one RT task, see if the non
  844. * running task can migrate over to a CPU that is running a task
  845. * of lesser priority.
  846. */
  847. static int push_rt_task(struct rq *rq)
  848. {
  849. struct task_struct *next_task;
  850. struct rq *lowest_rq;
  851. int ret = 0;
  852. int paranoid = RT_MAX_TRIES;
  853. if (!rq->rt.overloaded)
  854. return 0;
  855. next_task = pick_next_highest_task_rt(rq, -1);
  856. if (!next_task)
  857. return 0;
  858. retry:
  859. if (unlikely(next_task == rq->curr)) {
  860. WARN_ON(1);
  861. return 0;
  862. }
  863. /*
  864. * It's possible that the next_task slipped in of
  865. * higher priority than current. If that's the case
  866. * just reschedule current.
  867. */
  868. if (unlikely(next_task->prio < rq->curr->prio)) {
  869. resched_task(rq->curr);
  870. return 0;
  871. }
  872. /* We might release rq lock */
  873. get_task_struct(next_task);
  874. /* find_lock_lowest_rq locks the rq if found */
  875. lowest_rq = find_lock_lowest_rq(next_task, rq);
  876. if (!lowest_rq) {
  877. struct task_struct *task;
  878. /*
  879. * find lock_lowest_rq releases rq->lock
  880. * so it is possible that next_task has changed.
  881. * If it has, then try again.
  882. */
  883. task = pick_next_highest_task_rt(rq, -1);
  884. if (unlikely(task != next_task) && task && paranoid--) {
  885. put_task_struct(next_task);
  886. next_task = task;
  887. goto retry;
  888. }
  889. goto out;
  890. }
  891. deactivate_task(rq, next_task, 0);
  892. set_task_cpu(next_task, lowest_rq->cpu);
  893. activate_task(lowest_rq, next_task, 0);
  894. resched_task(lowest_rq->curr);
  895. double_unlock_balance(rq, lowest_rq);
  896. ret = 1;
  897. out:
  898. put_task_struct(next_task);
  899. return ret;
  900. }
  901. /*
  902. * TODO: Currently we just use the second highest prio task on
  903. * the queue, and stop when it can't migrate (or there's
  904. * no more RT tasks). There may be a case where a lower
  905. * priority RT task has a different affinity than the
  906. * higher RT task. In this case the lower RT task could
  907. * possibly be able to migrate where as the higher priority
  908. * RT task could not. We currently ignore this issue.
  909. * Enhancements are welcome!
  910. */
  911. static void push_rt_tasks(struct rq *rq)
  912. {
  913. /* push_rt_task will return true if it moved an RT */
  914. while (push_rt_task(rq))
  915. ;
  916. }
  917. static int pull_rt_task(struct rq *this_rq)
  918. {
  919. int this_cpu = this_rq->cpu, ret = 0, cpu;
  920. struct task_struct *p, *next;
  921. struct rq *src_rq;
  922. if (likely(!rt_overloaded(this_rq)))
  923. return 0;
  924. next = pick_next_task_rt(this_rq);
  925. for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
  926. if (this_cpu == cpu)
  927. continue;
  928. src_rq = cpu_rq(cpu);
  929. /*
  930. * We can potentially drop this_rq's lock in
  931. * double_lock_balance, and another CPU could
  932. * steal our next task - hence we must cause
  933. * the caller to recalculate the next task
  934. * in that case:
  935. */
  936. if (double_lock_balance(this_rq, src_rq)) {
  937. struct task_struct *old_next = next;
  938. next = pick_next_task_rt(this_rq);
  939. if (next != old_next)
  940. ret = 1;
  941. }
  942. /*
  943. * Are there still pullable RT tasks?
  944. */
  945. if (src_rq->rt.rt_nr_running <= 1)
  946. goto skip;
  947. p = pick_next_highest_task_rt(src_rq, this_cpu);
  948. /*
  949. * Do we have an RT task that preempts
  950. * the to-be-scheduled task?
  951. */
  952. if (p && (!next || (p->prio < next->prio))) {
  953. WARN_ON(p == src_rq->curr);
  954. WARN_ON(!p->se.on_rq);
  955. /*
  956. * There's a chance that p is higher in priority
  957. * than what's currently running on its cpu.
  958. * This is just that p is wakeing up and hasn't
  959. * had a chance to schedule. We only pull
  960. * p if it is lower in priority than the
  961. * current task on the run queue or
  962. * this_rq next task is lower in prio than
  963. * the current task on that rq.
  964. */
  965. if (p->prio < src_rq->curr->prio ||
  966. (next && next->prio < src_rq->curr->prio))
  967. goto skip;
  968. ret = 1;
  969. deactivate_task(src_rq, p, 0);
  970. set_task_cpu(p, this_cpu);
  971. activate_task(this_rq, p, 0);
  972. /*
  973. * We continue with the search, just in
  974. * case there's an even higher prio task
  975. * in another runqueue. (low likelyhood
  976. * but possible)
  977. *
  978. * Update next so that we won't pick a task
  979. * on another cpu with a priority lower (or equal)
  980. * than the one we just picked.
  981. */
  982. next = p;
  983. }
  984. skip:
  985. double_unlock_balance(this_rq, src_rq);
  986. }
  987. return ret;
  988. }
  989. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  990. {
  991. /* Try to pull RT tasks here if we lower this rq's prio */
  992. if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
  993. pull_rt_task(rq);
  994. }
  995. static void post_schedule_rt(struct rq *rq)
  996. {
  997. /*
  998. * If we have more than one rt_task queued, then
  999. * see if we can push the other rt_tasks off to other CPUS.
  1000. * Note we may release the rq lock, and since
  1001. * the lock was owned by prev, we need to release it
  1002. * first via finish_lock_switch and then reaquire it here.
  1003. */
  1004. if (unlikely(rq->rt.overloaded)) {
  1005. spin_lock_irq(&rq->lock);
  1006. push_rt_tasks(rq);
  1007. spin_unlock_irq(&rq->lock);
  1008. }
  1009. }
  1010. /*
  1011. * If we are not running and we are not going to reschedule soon, we should
  1012. * try to push tasks away now
  1013. */
  1014. static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
  1015. {
  1016. if (!task_running(rq, p) &&
  1017. !test_tsk_need_resched(rq->curr) &&
  1018. rq->rt.overloaded)
  1019. push_rt_tasks(rq);
  1020. }
  1021. static unsigned long
  1022. load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1023. unsigned long max_load_move,
  1024. struct sched_domain *sd, enum cpu_idle_type idle,
  1025. int *all_pinned, int *this_best_prio)
  1026. {
  1027. /* don't touch RT tasks */
  1028. return 0;
  1029. }
  1030. static int
  1031. move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1032. struct sched_domain *sd, enum cpu_idle_type idle)
  1033. {
  1034. /* don't touch RT tasks */
  1035. return 0;
  1036. }
  1037. static void set_cpus_allowed_rt(struct task_struct *p,
  1038. const cpumask_t *new_mask)
  1039. {
  1040. int weight = cpus_weight(*new_mask);
  1041. BUG_ON(!rt_task(p));
  1042. /*
  1043. * Update the migration status of the RQ if we have an RT task
  1044. * which is running AND changing its weight value.
  1045. */
  1046. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1047. struct rq *rq = task_rq(p);
  1048. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1049. rq->rt.rt_nr_migratory++;
  1050. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1051. BUG_ON(!rq->rt.rt_nr_migratory);
  1052. rq->rt.rt_nr_migratory--;
  1053. }
  1054. update_rt_migration(rq);
  1055. }
  1056. p->cpus_allowed = *new_mask;
  1057. p->rt.nr_cpus_allowed = weight;
  1058. }
  1059. /* Assumes rq->lock is held */
  1060. static void rq_online_rt(struct rq *rq)
  1061. {
  1062. if (rq->rt.overloaded)
  1063. rt_set_overload(rq);
  1064. __enable_runtime(rq);
  1065. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
  1066. }
  1067. /* Assumes rq->lock is held */
  1068. static void rq_offline_rt(struct rq *rq)
  1069. {
  1070. if (rq->rt.overloaded)
  1071. rt_clear_overload(rq);
  1072. __disable_runtime(rq);
  1073. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1074. }
  1075. /*
  1076. * When switch from the rt queue, we bring ourselves to a position
  1077. * that we might want to pull RT tasks from other runqueues.
  1078. */
  1079. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  1080. int running)
  1081. {
  1082. /*
  1083. * If there are other RT tasks then we will reschedule
  1084. * and the scheduling of the other RT tasks will handle
  1085. * the balancing. But if we are the last RT task
  1086. * we may need to handle the pulling of RT tasks
  1087. * now.
  1088. */
  1089. if (!rq->rt.rt_nr_running)
  1090. pull_rt_task(rq);
  1091. }
  1092. #endif /* CONFIG_SMP */
  1093. /*
  1094. * When switching a task to RT, we may overload the runqueue
  1095. * with RT tasks. In this case we try to push them off to
  1096. * other runqueues.
  1097. */
  1098. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  1099. int running)
  1100. {
  1101. int check_resched = 1;
  1102. /*
  1103. * If we are already running, then there's nothing
  1104. * that needs to be done. But if we are not running
  1105. * we may need to preempt the current running task.
  1106. * If that current running task is also an RT task
  1107. * then see if we can move to another run queue.
  1108. */
  1109. if (!running) {
  1110. #ifdef CONFIG_SMP
  1111. if (rq->rt.overloaded && push_rt_task(rq) &&
  1112. /* Don't resched if we changed runqueues */
  1113. rq != task_rq(p))
  1114. check_resched = 0;
  1115. #endif /* CONFIG_SMP */
  1116. if (check_resched && p->prio < rq->curr->prio)
  1117. resched_task(rq->curr);
  1118. }
  1119. }
  1120. /*
  1121. * Priority of the task has changed. This may cause
  1122. * us to initiate a push or pull.
  1123. */
  1124. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1125. int oldprio, int running)
  1126. {
  1127. if (running) {
  1128. #ifdef CONFIG_SMP
  1129. /*
  1130. * If our priority decreases while running, we
  1131. * may need to pull tasks to this runqueue.
  1132. */
  1133. if (oldprio < p->prio)
  1134. pull_rt_task(rq);
  1135. /*
  1136. * If there's a higher priority task waiting to run
  1137. * then reschedule. Note, the above pull_rt_task
  1138. * can release the rq lock and p could migrate.
  1139. * Only reschedule if p is still on the same runqueue.
  1140. */
  1141. if (p->prio > rq->rt.highest_prio && rq->curr == p)
  1142. resched_task(p);
  1143. #else
  1144. /* For UP simply resched on drop of prio */
  1145. if (oldprio < p->prio)
  1146. resched_task(p);
  1147. #endif /* CONFIG_SMP */
  1148. } else {
  1149. /*
  1150. * This task is not running, but if it is
  1151. * greater than the current running task
  1152. * then reschedule.
  1153. */
  1154. if (p->prio < rq->curr->prio)
  1155. resched_task(rq->curr);
  1156. }
  1157. }
  1158. static void watchdog(struct rq *rq, struct task_struct *p)
  1159. {
  1160. unsigned long soft, hard;
  1161. if (!p->signal)
  1162. return;
  1163. soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
  1164. hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
  1165. if (soft != RLIM_INFINITY) {
  1166. unsigned long next;
  1167. p->rt.timeout++;
  1168. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1169. if (p->rt.timeout > next)
  1170. p->it_sched_expires = p->se.sum_exec_runtime;
  1171. }
  1172. }
  1173. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1174. {
  1175. update_curr_rt(rq);
  1176. watchdog(rq, p);
  1177. /*
  1178. * RR tasks need a special form of timeslice management.
  1179. * FIFO tasks have no timeslices.
  1180. */
  1181. if (p->policy != SCHED_RR)
  1182. return;
  1183. if (--p->rt.time_slice)
  1184. return;
  1185. p->rt.time_slice = DEF_TIMESLICE;
  1186. /*
  1187. * Requeue to the end of queue if we are not the only element
  1188. * on the queue:
  1189. */
  1190. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1191. requeue_task_rt(rq, p, 0);
  1192. set_tsk_need_resched(p);
  1193. }
  1194. }
  1195. static void set_curr_task_rt(struct rq *rq)
  1196. {
  1197. struct task_struct *p = rq->curr;
  1198. p->se.exec_start = rq->clock;
  1199. }
  1200. static const struct sched_class rt_sched_class = {
  1201. .next = &fair_sched_class,
  1202. .enqueue_task = enqueue_task_rt,
  1203. .dequeue_task = dequeue_task_rt,
  1204. .yield_task = yield_task_rt,
  1205. #ifdef CONFIG_SMP
  1206. .select_task_rq = select_task_rq_rt,
  1207. #endif /* CONFIG_SMP */
  1208. .check_preempt_curr = check_preempt_curr_rt,
  1209. .pick_next_task = pick_next_task_rt,
  1210. .put_prev_task = put_prev_task_rt,
  1211. #ifdef CONFIG_SMP
  1212. .load_balance = load_balance_rt,
  1213. .move_one_task = move_one_task_rt,
  1214. .set_cpus_allowed = set_cpus_allowed_rt,
  1215. .rq_online = rq_online_rt,
  1216. .rq_offline = rq_offline_rt,
  1217. .pre_schedule = pre_schedule_rt,
  1218. .post_schedule = post_schedule_rt,
  1219. .task_wake_up = task_wake_up_rt,
  1220. .switched_from = switched_from_rt,
  1221. #endif
  1222. .set_curr_task = set_curr_task_rt,
  1223. .task_tick = task_tick_rt,
  1224. .prio_changed = prio_changed_rt,
  1225. .switched_to = switched_to_rt,
  1226. };
  1227. #ifdef CONFIG_SCHED_DEBUG
  1228. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1229. static void print_rt_stats(struct seq_file *m, int cpu)
  1230. {
  1231. struct rt_rq *rt_rq;
  1232. rcu_read_lock();
  1233. for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
  1234. print_rt_rq(m, cpu, rt_rq);
  1235. rcu_read_unlock();
  1236. }
  1237. #endif /* CONFIG_SCHED_DEBUG */