cpuset.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/module.h>
  39. #include <linux/mount.h>
  40. #include <linux/namei.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/proc_fs.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/sched.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/security.h>
  47. #include <linux/slab.h>
  48. #include <linux/spinlock.h>
  49. #include <linux/stat.h>
  50. #include <linux/string.h>
  51. #include <linux/time.h>
  52. #include <linux/backing-dev.h>
  53. #include <linux/sort.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/atomic.h>
  56. #include <linux/mutex.h>
  57. #include <linux/workqueue.h>
  58. #include <linux/cgroup.h>
  59. /*
  60. * Tracks how many cpusets are currently defined in system.
  61. * When there is only one cpuset (the root cpuset) we can
  62. * short circuit some hooks.
  63. */
  64. int number_of_cpusets __read_mostly;
  65. /* Forward declare cgroup structures */
  66. struct cgroup_subsys cpuset_subsys;
  67. struct cpuset;
  68. /* See "Frequency meter" comments, below. */
  69. struct fmeter {
  70. int cnt; /* unprocessed events count */
  71. int val; /* most recent output value */
  72. time_t time; /* clock (secs) when val computed */
  73. spinlock_t lock; /* guards read or write of above */
  74. };
  75. struct cpuset {
  76. struct cgroup_subsys_state css;
  77. unsigned long flags; /* "unsigned long" so bitops work */
  78. cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  79. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  80. struct cpuset *parent; /* my parent */
  81. /*
  82. * Copy of global cpuset_mems_generation as of the most
  83. * recent time this cpuset changed its mems_allowed.
  84. */
  85. int mems_generation;
  86. struct fmeter fmeter; /* memory_pressure filter */
  87. /* partition number for rebuild_sched_domains() */
  88. int pn;
  89. /* for custom sched domain */
  90. int relax_domain_level;
  91. /* used for walking a cpuset heirarchy */
  92. struct list_head stack_list;
  93. };
  94. /* Retrieve the cpuset for a cgroup */
  95. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  96. {
  97. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  98. struct cpuset, css);
  99. }
  100. /* Retrieve the cpuset for a task */
  101. static inline struct cpuset *task_cs(struct task_struct *task)
  102. {
  103. return container_of(task_subsys_state(task, cpuset_subsys_id),
  104. struct cpuset, css);
  105. }
  106. struct cpuset_hotplug_scanner {
  107. struct cgroup_scanner scan;
  108. struct cgroup *to;
  109. };
  110. /* bits in struct cpuset flags field */
  111. typedef enum {
  112. CS_CPU_EXCLUSIVE,
  113. CS_MEM_EXCLUSIVE,
  114. CS_MEM_HARDWALL,
  115. CS_MEMORY_MIGRATE,
  116. CS_SCHED_LOAD_BALANCE,
  117. CS_SPREAD_PAGE,
  118. CS_SPREAD_SLAB,
  119. } cpuset_flagbits_t;
  120. /* convenient tests for these bits */
  121. static inline int is_cpu_exclusive(const struct cpuset *cs)
  122. {
  123. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  124. }
  125. static inline int is_mem_exclusive(const struct cpuset *cs)
  126. {
  127. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  128. }
  129. static inline int is_mem_hardwall(const struct cpuset *cs)
  130. {
  131. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  132. }
  133. static inline int is_sched_load_balance(const struct cpuset *cs)
  134. {
  135. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  136. }
  137. static inline int is_memory_migrate(const struct cpuset *cs)
  138. {
  139. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  140. }
  141. static inline int is_spread_page(const struct cpuset *cs)
  142. {
  143. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  144. }
  145. static inline int is_spread_slab(const struct cpuset *cs)
  146. {
  147. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  148. }
  149. /*
  150. * Increment this integer everytime any cpuset changes its
  151. * mems_allowed value. Users of cpusets can track this generation
  152. * number, and avoid having to lock and reload mems_allowed unless
  153. * the cpuset they're using changes generation.
  154. *
  155. * A single, global generation is needed because cpuset_attach_task() could
  156. * reattach a task to a different cpuset, which must not have its
  157. * generation numbers aliased with those of that tasks previous cpuset.
  158. *
  159. * Generations are needed for mems_allowed because one task cannot
  160. * modify another's memory placement. So we must enable every task,
  161. * on every visit to __alloc_pages(), to efficiently check whether
  162. * its current->cpuset->mems_allowed has changed, requiring an update
  163. * of its current->mems_allowed.
  164. *
  165. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  166. * there is no need to mark it atomic.
  167. */
  168. static int cpuset_mems_generation;
  169. static struct cpuset top_cpuset = {
  170. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  171. .cpus_allowed = CPU_MASK_ALL,
  172. .mems_allowed = NODE_MASK_ALL,
  173. };
  174. /*
  175. * There are two global mutexes guarding cpuset structures. The first
  176. * is the main control groups cgroup_mutex, accessed via
  177. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  178. * callback_mutex, below. They can nest. It is ok to first take
  179. * cgroup_mutex, then nest callback_mutex. We also require taking
  180. * task_lock() when dereferencing a task's cpuset pointer. See "The
  181. * task_lock() exception", at the end of this comment.
  182. *
  183. * A task must hold both mutexes to modify cpusets. If a task
  184. * holds cgroup_mutex, then it blocks others wanting that mutex,
  185. * ensuring that it is the only task able to also acquire callback_mutex
  186. * and be able to modify cpusets. It can perform various checks on
  187. * the cpuset structure first, knowing nothing will change. It can
  188. * also allocate memory while just holding cgroup_mutex. While it is
  189. * performing these checks, various callback routines can briefly
  190. * acquire callback_mutex to query cpusets. Once it is ready to make
  191. * the changes, it takes callback_mutex, blocking everyone else.
  192. *
  193. * Calls to the kernel memory allocator can not be made while holding
  194. * callback_mutex, as that would risk double tripping on callback_mutex
  195. * from one of the callbacks into the cpuset code from within
  196. * __alloc_pages().
  197. *
  198. * If a task is only holding callback_mutex, then it has read-only
  199. * access to cpusets.
  200. *
  201. * The task_struct fields mems_allowed and mems_generation may only
  202. * be accessed in the context of that task, so require no locks.
  203. *
  204. * The cpuset_common_file_read() handlers only hold callback_mutex across
  205. * small pieces of code, such as when reading out possibly multi-word
  206. * cpumasks and nodemasks.
  207. *
  208. * Accessing a task's cpuset should be done in accordance with the
  209. * guidelines for accessing subsystem state in kernel/cgroup.c
  210. */
  211. static DEFINE_MUTEX(callback_mutex);
  212. /*
  213. * This is ugly, but preserves the userspace API for existing cpuset
  214. * users. If someone tries to mount the "cpuset" filesystem, we
  215. * silently switch it to mount "cgroup" instead
  216. */
  217. static int cpuset_get_sb(struct file_system_type *fs_type,
  218. int flags, const char *unused_dev_name,
  219. void *data, struct vfsmount *mnt)
  220. {
  221. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  222. int ret = -ENODEV;
  223. if (cgroup_fs) {
  224. char mountopts[] =
  225. "cpuset,noprefix,"
  226. "release_agent=/sbin/cpuset_release_agent";
  227. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  228. unused_dev_name, mountopts, mnt);
  229. put_filesystem(cgroup_fs);
  230. }
  231. return ret;
  232. }
  233. static struct file_system_type cpuset_fs_type = {
  234. .name = "cpuset",
  235. .get_sb = cpuset_get_sb,
  236. };
  237. /*
  238. * Return in *pmask the portion of a cpusets's cpus_allowed that
  239. * are online. If none are online, walk up the cpuset hierarchy
  240. * until we find one that does have some online cpus. If we get
  241. * all the way to the top and still haven't found any online cpus,
  242. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  243. * task, return cpu_online_map.
  244. *
  245. * One way or another, we guarantee to return some non-empty subset
  246. * of cpu_online_map.
  247. *
  248. * Call with callback_mutex held.
  249. */
  250. static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
  251. {
  252. while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
  253. cs = cs->parent;
  254. if (cs)
  255. cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
  256. else
  257. *pmask = cpu_online_map;
  258. BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
  259. }
  260. /*
  261. * Return in *pmask the portion of a cpusets's mems_allowed that
  262. * are online, with memory. If none are online with memory, walk
  263. * up the cpuset hierarchy until we find one that does have some
  264. * online mems. If we get all the way to the top and still haven't
  265. * found any online mems, return node_states[N_HIGH_MEMORY].
  266. *
  267. * One way or another, we guarantee to return some non-empty subset
  268. * of node_states[N_HIGH_MEMORY].
  269. *
  270. * Call with callback_mutex held.
  271. */
  272. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  273. {
  274. while (cs && !nodes_intersects(cs->mems_allowed,
  275. node_states[N_HIGH_MEMORY]))
  276. cs = cs->parent;
  277. if (cs)
  278. nodes_and(*pmask, cs->mems_allowed,
  279. node_states[N_HIGH_MEMORY]);
  280. else
  281. *pmask = node_states[N_HIGH_MEMORY];
  282. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  283. }
  284. /**
  285. * cpuset_update_task_memory_state - update task memory placement
  286. *
  287. * If the current tasks cpusets mems_allowed changed behind our
  288. * backs, update current->mems_allowed, mems_generation and task NUMA
  289. * mempolicy to the new value.
  290. *
  291. * Task mempolicy is updated by rebinding it relative to the
  292. * current->cpuset if a task has its memory placement changed.
  293. * Do not call this routine if in_interrupt().
  294. *
  295. * Call without callback_mutex or task_lock() held. May be
  296. * called with or without cgroup_mutex held. Thanks in part to
  297. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  298. * be NULL. This routine also might acquire callback_mutex during
  299. * call.
  300. *
  301. * Reading current->cpuset->mems_generation doesn't need task_lock
  302. * to guard the current->cpuset derefence, because it is guarded
  303. * from concurrent freeing of current->cpuset using RCU.
  304. *
  305. * The rcu_dereference() is technically probably not needed,
  306. * as I don't actually mind if I see a new cpuset pointer but
  307. * an old value of mems_generation. However this really only
  308. * matters on alpha systems using cpusets heavily. If I dropped
  309. * that rcu_dereference(), it would save them a memory barrier.
  310. * For all other arch's, rcu_dereference is a no-op anyway, and for
  311. * alpha systems not using cpusets, another planned optimization,
  312. * avoiding the rcu critical section for tasks in the root cpuset
  313. * which is statically allocated, so can't vanish, will make this
  314. * irrelevant. Better to use RCU as intended, than to engage in
  315. * some cute trick to save a memory barrier that is impossible to
  316. * test, for alpha systems using cpusets heavily, which might not
  317. * even exist.
  318. *
  319. * This routine is needed to update the per-task mems_allowed data,
  320. * within the tasks context, when it is trying to allocate memory
  321. * (in various mm/mempolicy.c routines) and notices that some other
  322. * task has been modifying its cpuset.
  323. */
  324. void cpuset_update_task_memory_state(void)
  325. {
  326. int my_cpusets_mem_gen;
  327. struct task_struct *tsk = current;
  328. struct cpuset *cs;
  329. if (task_cs(tsk) == &top_cpuset) {
  330. /* Don't need rcu for top_cpuset. It's never freed. */
  331. my_cpusets_mem_gen = top_cpuset.mems_generation;
  332. } else {
  333. rcu_read_lock();
  334. my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
  335. rcu_read_unlock();
  336. }
  337. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  338. mutex_lock(&callback_mutex);
  339. task_lock(tsk);
  340. cs = task_cs(tsk); /* Maybe changed when task not locked */
  341. guarantee_online_mems(cs, &tsk->mems_allowed);
  342. tsk->cpuset_mems_generation = cs->mems_generation;
  343. if (is_spread_page(cs))
  344. tsk->flags |= PF_SPREAD_PAGE;
  345. else
  346. tsk->flags &= ~PF_SPREAD_PAGE;
  347. if (is_spread_slab(cs))
  348. tsk->flags |= PF_SPREAD_SLAB;
  349. else
  350. tsk->flags &= ~PF_SPREAD_SLAB;
  351. task_unlock(tsk);
  352. mutex_unlock(&callback_mutex);
  353. mpol_rebind_task(tsk, &tsk->mems_allowed);
  354. }
  355. }
  356. /*
  357. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  358. *
  359. * One cpuset is a subset of another if all its allowed CPUs and
  360. * Memory Nodes are a subset of the other, and its exclusive flags
  361. * are only set if the other's are set. Call holding cgroup_mutex.
  362. */
  363. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  364. {
  365. return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
  366. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  367. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  368. is_mem_exclusive(p) <= is_mem_exclusive(q);
  369. }
  370. /*
  371. * validate_change() - Used to validate that any proposed cpuset change
  372. * follows the structural rules for cpusets.
  373. *
  374. * If we replaced the flag and mask values of the current cpuset
  375. * (cur) with those values in the trial cpuset (trial), would
  376. * our various subset and exclusive rules still be valid? Presumes
  377. * cgroup_mutex held.
  378. *
  379. * 'cur' is the address of an actual, in-use cpuset. Operations
  380. * such as list traversal that depend on the actual address of the
  381. * cpuset in the list must use cur below, not trial.
  382. *
  383. * 'trial' is the address of bulk structure copy of cur, with
  384. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  385. * or flags changed to new, trial values.
  386. *
  387. * Return 0 if valid, -errno if not.
  388. */
  389. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  390. {
  391. struct cgroup *cont;
  392. struct cpuset *c, *par;
  393. /* Each of our child cpusets must be a subset of us */
  394. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  395. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  396. return -EBUSY;
  397. }
  398. /* Remaining checks don't apply to root cpuset */
  399. if (cur == &top_cpuset)
  400. return 0;
  401. par = cur->parent;
  402. /* We must be a subset of our parent cpuset */
  403. if (!is_cpuset_subset(trial, par))
  404. return -EACCES;
  405. /*
  406. * If either I or some sibling (!= me) is exclusive, we can't
  407. * overlap
  408. */
  409. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  410. c = cgroup_cs(cont);
  411. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  412. c != cur &&
  413. cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
  414. return -EINVAL;
  415. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  416. c != cur &&
  417. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  418. return -EINVAL;
  419. }
  420. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  421. if (cgroup_task_count(cur->css.cgroup)) {
  422. if (cpus_empty(trial->cpus_allowed) ||
  423. nodes_empty(trial->mems_allowed)) {
  424. return -ENOSPC;
  425. }
  426. }
  427. return 0;
  428. }
  429. /*
  430. * Helper routine for generate_sched_domains().
  431. * Do cpusets a, b have overlapping cpus_allowed masks?
  432. */
  433. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  434. {
  435. return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
  436. }
  437. static void
  438. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  439. {
  440. if (dattr->relax_domain_level < c->relax_domain_level)
  441. dattr->relax_domain_level = c->relax_domain_level;
  442. return;
  443. }
  444. static void
  445. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  446. {
  447. LIST_HEAD(q);
  448. list_add(&c->stack_list, &q);
  449. while (!list_empty(&q)) {
  450. struct cpuset *cp;
  451. struct cgroup *cont;
  452. struct cpuset *child;
  453. cp = list_first_entry(&q, struct cpuset, stack_list);
  454. list_del(q.next);
  455. if (cpus_empty(cp->cpus_allowed))
  456. continue;
  457. if (is_sched_load_balance(cp))
  458. update_domain_attr(dattr, cp);
  459. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  460. child = cgroup_cs(cont);
  461. list_add_tail(&child->stack_list, &q);
  462. }
  463. }
  464. }
  465. /*
  466. * generate_sched_domains()
  467. *
  468. * This function builds a partial partition of the systems CPUs
  469. * A 'partial partition' is a set of non-overlapping subsets whose
  470. * union is a subset of that set.
  471. * The output of this function needs to be passed to kernel/sched.c
  472. * partition_sched_domains() routine, which will rebuild the scheduler's
  473. * load balancing domains (sched domains) as specified by that partial
  474. * partition.
  475. *
  476. * See "What is sched_load_balance" in Documentation/cpusets.txt
  477. * for a background explanation of this.
  478. *
  479. * Does not return errors, on the theory that the callers of this
  480. * routine would rather not worry about failures to rebuild sched
  481. * domains when operating in the severe memory shortage situations
  482. * that could cause allocation failures below.
  483. *
  484. * Must be called with cgroup_lock held.
  485. *
  486. * The three key local variables below are:
  487. * q - a linked-list queue of cpuset pointers, used to implement a
  488. * top-down scan of all cpusets. This scan loads a pointer
  489. * to each cpuset marked is_sched_load_balance into the
  490. * array 'csa'. For our purposes, rebuilding the schedulers
  491. * sched domains, we can ignore !is_sched_load_balance cpusets.
  492. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  493. * that need to be load balanced, for convenient iterative
  494. * access by the subsequent code that finds the best partition,
  495. * i.e the set of domains (subsets) of CPUs such that the
  496. * cpus_allowed of every cpuset marked is_sched_load_balance
  497. * is a subset of one of these domains, while there are as
  498. * many such domains as possible, each as small as possible.
  499. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  500. * the kernel/sched.c routine partition_sched_domains() in a
  501. * convenient format, that can be easily compared to the prior
  502. * value to determine what partition elements (sched domains)
  503. * were changed (added or removed.)
  504. *
  505. * Finding the best partition (set of domains):
  506. * The triple nested loops below over i, j, k scan over the
  507. * load balanced cpusets (using the array of cpuset pointers in
  508. * csa[]) looking for pairs of cpusets that have overlapping
  509. * cpus_allowed, but which don't have the same 'pn' partition
  510. * number and gives them in the same partition number. It keeps
  511. * looping on the 'restart' label until it can no longer find
  512. * any such pairs.
  513. *
  514. * The union of the cpus_allowed masks from the set of
  515. * all cpusets having the same 'pn' value then form the one
  516. * element of the partition (one sched domain) to be passed to
  517. * partition_sched_domains().
  518. */
  519. static int generate_sched_domains(cpumask_t **domains,
  520. struct sched_domain_attr **attributes)
  521. {
  522. LIST_HEAD(q); /* queue of cpusets to be scanned */
  523. struct cpuset *cp; /* scans q */
  524. struct cpuset **csa; /* array of all cpuset ptrs */
  525. int csn; /* how many cpuset ptrs in csa so far */
  526. int i, j, k; /* indices for partition finding loops */
  527. cpumask_t *doms; /* resulting partition; i.e. sched domains */
  528. struct sched_domain_attr *dattr; /* attributes for custom domains */
  529. int ndoms; /* number of sched domains in result */
  530. int nslot; /* next empty doms[] cpumask_t slot */
  531. ndoms = 0;
  532. doms = NULL;
  533. dattr = NULL;
  534. csa = NULL;
  535. /* Special case for the 99% of systems with one, full, sched domain */
  536. if (is_sched_load_balance(&top_cpuset)) {
  537. doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  538. if (!doms)
  539. goto done;
  540. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  541. if (dattr) {
  542. *dattr = SD_ATTR_INIT;
  543. update_domain_attr_tree(dattr, &top_cpuset);
  544. }
  545. *doms = top_cpuset.cpus_allowed;
  546. ndoms = 1;
  547. goto done;
  548. }
  549. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  550. if (!csa)
  551. goto done;
  552. csn = 0;
  553. list_add(&top_cpuset.stack_list, &q);
  554. while (!list_empty(&q)) {
  555. struct cgroup *cont;
  556. struct cpuset *child; /* scans child cpusets of cp */
  557. cp = list_first_entry(&q, struct cpuset, stack_list);
  558. list_del(q.next);
  559. if (cpus_empty(cp->cpus_allowed))
  560. continue;
  561. /*
  562. * All child cpusets contain a subset of the parent's cpus, so
  563. * just skip them, and then we call update_domain_attr_tree()
  564. * to calc relax_domain_level of the corresponding sched
  565. * domain.
  566. */
  567. if (is_sched_load_balance(cp)) {
  568. csa[csn++] = cp;
  569. continue;
  570. }
  571. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  572. child = cgroup_cs(cont);
  573. list_add_tail(&child->stack_list, &q);
  574. }
  575. }
  576. for (i = 0; i < csn; i++)
  577. csa[i]->pn = i;
  578. ndoms = csn;
  579. restart:
  580. /* Find the best partition (set of sched domains) */
  581. for (i = 0; i < csn; i++) {
  582. struct cpuset *a = csa[i];
  583. int apn = a->pn;
  584. for (j = 0; j < csn; j++) {
  585. struct cpuset *b = csa[j];
  586. int bpn = b->pn;
  587. if (apn != bpn && cpusets_overlap(a, b)) {
  588. for (k = 0; k < csn; k++) {
  589. struct cpuset *c = csa[k];
  590. if (c->pn == bpn)
  591. c->pn = apn;
  592. }
  593. ndoms--; /* one less element */
  594. goto restart;
  595. }
  596. }
  597. }
  598. /*
  599. * Now we know how many domains to create.
  600. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  601. */
  602. doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
  603. if (!doms) {
  604. ndoms = 0;
  605. goto done;
  606. }
  607. /*
  608. * The rest of the code, including the scheduler, can deal with
  609. * dattr==NULL case. No need to abort if alloc fails.
  610. */
  611. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  612. for (nslot = 0, i = 0; i < csn; i++) {
  613. struct cpuset *a = csa[i];
  614. cpumask_t *dp;
  615. int apn = a->pn;
  616. if (apn < 0) {
  617. /* Skip completed partitions */
  618. continue;
  619. }
  620. dp = doms + nslot;
  621. if (nslot == ndoms) {
  622. static int warnings = 10;
  623. if (warnings) {
  624. printk(KERN_WARNING
  625. "rebuild_sched_domains confused:"
  626. " nslot %d, ndoms %d, csn %d, i %d,"
  627. " apn %d\n",
  628. nslot, ndoms, csn, i, apn);
  629. warnings--;
  630. }
  631. continue;
  632. }
  633. cpus_clear(*dp);
  634. if (dattr)
  635. *(dattr + nslot) = SD_ATTR_INIT;
  636. for (j = i; j < csn; j++) {
  637. struct cpuset *b = csa[j];
  638. if (apn == b->pn) {
  639. cpus_or(*dp, *dp, b->cpus_allowed);
  640. if (dattr)
  641. update_domain_attr_tree(dattr + nslot, b);
  642. /* Done with this partition */
  643. b->pn = -1;
  644. }
  645. }
  646. nslot++;
  647. }
  648. BUG_ON(nslot != ndoms);
  649. done:
  650. kfree(csa);
  651. *domains = doms;
  652. *attributes = dattr;
  653. return ndoms;
  654. }
  655. /*
  656. * Rebuild scheduler domains.
  657. *
  658. * Call with neither cgroup_mutex held nor within get_online_cpus().
  659. * Takes both cgroup_mutex and get_online_cpus().
  660. *
  661. * Cannot be directly called from cpuset code handling changes
  662. * to the cpuset pseudo-filesystem, because it cannot be called
  663. * from code that already holds cgroup_mutex.
  664. */
  665. static void do_rebuild_sched_domains(struct work_struct *unused)
  666. {
  667. struct sched_domain_attr *attr;
  668. cpumask_t *doms;
  669. int ndoms;
  670. get_online_cpus();
  671. /* Generate domain masks and attrs */
  672. cgroup_lock();
  673. ndoms = generate_sched_domains(&doms, &attr);
  674. cgroup_unlock();
  675. /* Have scheduler rebuild the domains */
  676. partition_sched_domains(ndoms, doms, attr);
  677. put_online_cpus();
  678. }
  679. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  680. /*
  681. * Rebuild scheduler domains, asynchronously via workqueue.
  682. *
  683. * If the flag 'sched_load_balance' of any cpuset with non-empty
  684. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  685. * which has that flag enabled, or if any cpuset with a non-empty
  686. * 'cpus' is removed, then call this routine to rebuild the
  687. * scheduler's dynamic sched domains.
  688. *
  689. * The rebuild_sched_domains() and partition_sched_domains()
  690. * routines must nest cgroup_lock() inside get_online_cpus(),
  691. * but such cpuset changes as these must nest that locking the
  692. * other way, holding cgroup_lock() for much of the code.
  693. *
  694. * So in order to avoid an ABBA deadlock, the cpuset code handling
  695. * these user changes delegates the actual sched domain rebuilding
  696. * to a separate workqueue thread, which ends up processing the
  697. * above do_rebuild_sched_domains() function.
  698. */
  699. static void async_rebuild_sched_domains(void)
  700. {
  701. schedule_work(&rebuild_sched_domains_work);
  702. }
  703. /*
  704. * Accomplishes the same scheduler domain rebuild as the above
  705. * async_rebuild_sched_domains(), however it directly calls the
  706. * rebuild routine synchronously rather than calling it via an
  707. * asynchronous work thread.
  708. *
  709. * This can only be called from code that is not holding
  710. * cgroup_mutex (not nested in a cgroup_lock() call.)
  711. */
  712. void rebuild_sched_domains(void)
  713. {
  714. do_rebuild_sched_domains(NULL);
  715. }
  716. /**
  717. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  718. * @tsk: task to test
  719. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  720. *
  721. * Call with cgroup_mutex held. May take callback_mutex during call.
  722. * Called for each task in a cgroup by cgroup_scan_tasks().
  723. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  724. * words, if its mask is not equal to its cpuset's mask).
  725. */
  726. static int cpuset_test_cpumask(struct task_struct *tsk,
  727. struct cgroup_scanner *scan)
  728. {
  729. return !cpus_equal(tsk->cpus_allowed,
  730. (cgroup_cs(scan->cg))->cpus_allowed);
  731. }
  732. /**
  733. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  734. * @tsk: task to test
  735. * @scan: struct cgroup_scanner containing the cgroup of the task
  736. *
  737. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  738. * cpus_allowed mask needs to be changed.
  739. *
  740. * We don't need to re-check for the cgroup/cpuset membership, since we're
  741. * holding cgroup_lock() at this point.
  742. */
  743. static void cpuset_change_cpumask(struct task_struct *tsk,
  744. struct cgroup_scanner *scan)
  745. {
  746. set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
  747. }
  748. /**
  749. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  750. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  751. *
  752. * Called with cgroup_mutex held
  753. *
  754. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  755. * calling callback functions for each.
  756. *
  757. * Return 0 if successful, -errno if not.
  758. */
  759. static int update_tasks_cpumask(struct cpuset *cs)
  760. {
  761. struct cgroup_scanner scan;
  762. struct ptr_heap heap;
  763. int retval;
  764. /*
  765. * cgroup_scan_tasks() will initialize heap->gt for us.
  766. * heap_init() is still needed here for we should not change
  767. * cs->cpus_allowed when heap_init() fails.
  768. */
  769. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  770. if (retval)
  771. return retval;
  772. scan.cg = cs->css.cgroup;
  773. scan.test_task = cpuset_test_cpumask;
  774. scan.process_task = cpuset_change_cpumask;
  775. scan.heap = &heap;
  776. retval = cgroup_scan_tasks(&scan);
  777. heap_free(&heap);
  778. return retval;
  779. }
  780. /**
  781. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  782. * @cs: the cpuset to consider
  783. * @buf: buffer of cpu numbers written to this cpuset
  784. */
  785. static int update_cpumask(struct cpuset *cs, const char *buf)
  786. {
  787. struct cpuset trialcs;
  788. int retval;
  789. int is_load_balanced;
  790. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  791. if (cs == &top_cpuset)
  792. return -EACCES;
  793. trialcs = *cs;
  794. /*
  795. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  796. * Since cpulist_parse() fails on an empty mask, we special case
  797. * that parsing. The validate_change() call ensures that cpusets
  798. * with tasks have cpus.
  799. */
  800. if (!*buf) {
  801. cpus_clear(trialcs.cpus_allowed);
  802. } else {
  803. retval = cpulist_parse(buf, trialcs.cpus_allowed);
  804. if (retval < 0)
  805. return retval;
  806. if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
  807. return -EINVAL;
  808. }
  809. retval = validate_change(cs, &trialcs);
  810. if (retval < 0)
  811. return retval;
  812. /* Nothing to do if the cpus didn't change */
  813. if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
  814. return 0;
  815. is_load_balanced = is_sched_load_balance(&trialcs);
  816. mutex_lock(&callback_mutex);
  817. cs->cpus_allowed = trialcs.cpus_allowed;
  818. mutex_unlock(&callback_mutex);
  819. /*
  820. * Scan tasks in the cpuset, and update the cpumasks of any
  821. * that need an update.
  822. */
  823. retval = update_tasks_cpumask(cs);
  824. if (retval < 0)
  825. return retval;
  826. if (is_load_balanced)
  827. async_rebuild_sched_domains();
  828. return 0;
  829. }
  830. /*
  831. * cpuset_migrate_mm
  832. *
  833. * Migrate memory region from one set of nodes to another.
  834. *
  835. * Temporarilly set tasks mems_allowed to target nodes of migration,
  836. * so that the migration code can allocate pages on these nodes.
  837. *
  838. * Call holding cgroup_mutex, so current's cpuset won't change
  839. * during this call, as manage_mutex holds off any cpuset_attach()
  840. * calls. Therefore we don't need to take task_lock around the
  841. * call to guarantee_online_mems(), as we know no one is changing
  842. * our task's cpuset.
  843. *
  844. * Hold callback_mutex around the two modifications of our tasks
  845. * mems_allowed to synchronize with cpuset_mems_allowed().
  846. *
  847. * While the mm_struct we are migrating is typically from some
  848. * other task, the task_struct mems_allowed that we are hacking
  849. * is for our current task, which must allocate new pages for that
  850. * migrating memory region.
  851. *
  852. * We call cpuset_update_task_memory_state() before hacking
  853. * our tasks mems_allowed, so that we are assured of being in
  854. * sync with our tasks cpuset, and in particular, callbacks to
  855. * cpuset_update_task_memory_state() from nested page allocations
  856. * won't see any mismatch of our cpuset and task mems_generation
  857. * values, so won't overwrite our hacked tasks mems_allowed
  858. * nodemask.
  859. */
  860. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  861. const nodemask_t *to)
  862. {
  863. struct task_struct *tsk = current;
  864. cpuset_update_task_memory_state();
  865. mutex_lock(&callback_mutex);
  866. tsk->mems_allowed = *to;
  867. mutex_unlock(&callback_mutex);
  868. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  869. mutex_lock(&callback_mutex);
  870. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  871. mutex_unlock(&callback_mutex);
  872. }
  873. static void *cpuset_being_rebound;
  874. /**
  875. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  876. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  877. * @oldmem: old mems_allowed of cpuset cs
  878. *
  879. * Called with cgroup_mutex held
  880. * Return 0 if successful, -errno if not.
  881. */
  882. static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
  883. {
  884. struct task_struct *p;
  885. struct mm_struct **mmarray;
  886. int i, n, ntasks;
  887. int migrate;
  888. int fudge;
  889. struct cgroup_iter it;
  890. int retval;
  891. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  892. fudge = 10; /* spare mmarray[] slots */
  893. fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
  894. retval = -ENOMEM;
  895. /*
  896. * Allocate mmarray[] to hold mm reference for each task
  897. * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
  898. * tasklist_lock. We could use GFP_ATOMIC, but with a
  899. * few more lines of code, we can retry until we get a big
  900. * enough mmarray[] w/o using GFP_ATOMIC.
  901. */
  902. while (1) {
  903. ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
  904. ntasks += fudge;
  905. mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
  906. if (!mmarray)
  907. goto done;
  908. read_lock(&tasklist_lock); /* block fork */
  909. if (cgroup_task_count(cs->css.cgroup) <= ntasks)
  910. break; /* got enough */
  911. read_unlock(&tasklist_lock); /* try again */
  912. kfree(mmarray);
  913. }
  914. n = 0;
  915. /* Load up mmarray[] with mm reference for each task in cpuset. */
  916. cgroup_iter_start(cs->css.cgroup, &it);
  917. while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
  918. struct mm_struct *mm;
  919. if (n >= ntasks) {
  920. printk(KERN_WARNING
  921. "Cpuset mempolicy rebind incomplete.\n");
  922. break;
  923. }
  924. mm = get_task_mm(p);
  925. if (!mm)
  926. continue;
  927. mmarray[n++] = mm;
  928. }
  929. cgroup_iter_end(cs->css.cgroup, &it);
  930. read_unlock(&tasklist_lock);
  931. /*
  932. * Now that we've dropped the tasklist spinlock, we can
  933. * rebind the vma mempolicies of each mm in mmarray[] to their
  934. * new cpuset, and release that mm. The mpol_rebind_mm()
  935. * call takes mmap_sem, which we couldn't take while holding
  936. * tasklist_lock. Forks can happen again now - the mpol_dup()
  937. * cpuset_being_rebound check will catch such forks, and rebind
  938. * their vma mempolicies too. Because we still hold the global
  939. * cgroup_mutex, we know that no other rebind effort will
  940. * be contending for the global variable cpuset_being_rebound.
  941. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  942. * is idempotent. Also migrate pages in each mm to new nodes.
  943. */
  944. migrate = is_memory_migrate(cs);
  945. for (i = 0; i < n; i++) {
  946. struct mm_struct *mm = mmarray[i];
  947. mpol_rebind_mm(mm, &cs->mems_allowed);
  948. if (migrate)
  949. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  950. mmput(mm);
  951. }
  952. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  953. kfree(mmarray);
  954. cpuset_being_rebound = NULL;
  955. retval = 0;
  956. done:
  957. return retval;
  958. }
  959. /*
  960. * Handle user request to change the 'mems' memory placement
  961. * of a cpuset. Needs to validate the request, update the
  962. * cpusets mems_allowed and mems_generation, and for each
  963. * task in the cpuset, rebind any vma mempolicies and if
  964. * the cpuset is marked 'memory_migrate', migrate the tasks
  965. * pages to the new memory.
  966. *
  967. * Call with cgroup_mutex held. May take callback_mutex during call.
  968. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  969. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  970. * their mempolicies to the cpusets new mems_allowed.
  971. */
  972. static int update_nodemask(struct cpuset *cs, const char *buf)
  973. {
  974. struct cpuset trialcs;
  975. nodemask_t oldmem;
  976. int retval;
  977. /*
  978. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  979. * it's read-only
  980. */
  981. if (cs == &top_cpuset)
  982. return -EACCES;
  983. trialcs = *cs;
  984. /*
  985. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  986. * Since nodelist_parse() fails on an empty mask, we special case
  987. * that parsing. The validate_change() call ensures that cpusets
  988. * with tasks have memory.
  989. */
  990. if (!*buf) {
  991. nodes_clear(trialcs.mems_allowed);
  992. } else {
  993. retval = nodelist_parse(buf, trialcs.mems_allowed);
  994. if (retval < 0)
  995. goto done;
  996. if (!nodes_subset(trialcs.mems_allowed,
  997. node_states[N_HIGH_MEMORY]))
  998. return -EINVAL;
  999. }
  1000. oldmem = cs->mems_allowed;
  1001. if (nodes_equal(oldmem, trialcs.mems_allowed)) {
  1002. retval = 0; /* Too easy - nothing to do */
  1003. goto done;
  1004. }
  1005. retval = validate_change(cs, &trialcs);
  1006. if (retval < 0)
  1007. goto done;
  1008. mutex_lock(&callback_mutex);
  1009. cs->mems_allowed = trialcs.mems_allowed;
  1010. cs->mems_generation = cpuset_mems_generation++;
  1011. mutex_unlock(&callback_mutex);
  1012. retval = update_tasks_nodemask(cs, &oldmem);
  1013. done:
  1014. return retval;
  1015. }
  1016. int current_cpuset_is_being_rebound(void)
  1017. {
  1018. return task_cs(current) == cpuset_being_rebound;
  1019. }
  1020. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1021. {
  1022. if (val < -1 || val >= SD_LV_MAX)
  1023. return -EINVAL;
  1024. if (val != cs->relax_domain_level) {
  1025. cs->relax_domain_level = val;
  1026. if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
  1027. async_rebuild_sched_domains();
  1028. }
  1029. return 0;
  1030. }
  1031. /*
  1032. * update_flag - read a 0 or a 1 in a file and update associated flag
  1033. * bit: the bit to update (see cpuset_flagbits_t)
  1034. * cs: the cpuset to update
  1035. * turning_on: whether the flag is being set or cleared
  1036. *
  1037. * Call with cgroup_mutex held.
  1038. */
  1039. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1040. int turning_on)
  1041. {
  1042. struct cpuset trialcs;
  1043. int err;
  1044. int cpus_nonempty, balance_flag_changed;
  1045. trialcs = *cs;
  1046. if (turning_on)
  1047. set_bit(bit, &trialcs.flags);
  1048. else
  1049. clear_bit(bit, &trialcs.flags);
  1050. err = validate_change(cs, &trialcs);
  1051. if (err < 0)
  1052. return err;
  1053. cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
  1054. balance_flag_changed = (is_sched_load_balance(cs) !=
  1055. is_sched_load_balance(&trialcs));
  1056. mutex_lock(&callback_mutex);
  1057. cs->flags = trialcs.flags;
  1058. mutex_unlock(&callback_mutex);
  1059. if (cpus_nonempty && balance_flag_changed)
  1060. async_rebuild_sched_domains();
  1061. return 0;
  1062. }
  1063. /*
  1064. * Frequency meter - How fast is some event occurring?
  1065. *
  1066. * These routines manage a digitally filtered, constant time based,
  1067. * event frequency meter. There are four routines:
  1068. * fmeter_init() - initialize a frequency meter.
  1069. * fmeter_markevent() - called each time the event happens.
  1070. * fmeter_getrate() - returns the recent rate of such events.
  1071. * fmeter_update() - internal routine used to update fmeter.
  1072. *
  1073. * A common data structure is passed to each of these routines,
  1074. * which is used to keep track of the state required to manage the
  1075. * frequency meter and its digital filter.
  1076. *
  1077. * The filter works on the number of events marked per unit time.
  1078. * The filter is single-pole low-pass recursive (IIR). The time unit
  1079. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1080. * simulate 3 decimal digits of precision (multiplied by 1000).
  1081. *
  1082. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1083. * has a half-life of 10 seconds, meaning that if the events quit
  1084. * happening, then the rate returned from the fmeter_getrate()
  1085. * will be cut in half each 10 seconds, until it converges to zero.
  1086. *
  1087. * It is not worth doing a real infinitely recursive filter. If more
  1088. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1089. * just compute FM_MAXTICKS ticks worth, by which point the level
  1090. * will be stable.
  1091. *
  1092. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1093. * arithmetic overflow in the fmeter_update() routine.
  1094. *
  1095. * Given the simple 32 bit integer arithmetic used, this meter works
  1096. * best for reporting rates between one per millisecond (msec) and
  1097. * one per 32 (approx) seconds. At constant rates faster than one
  1098. * per msec it maxes out at values just under 1,000,000. At constant
  1099. * rates between one per msec, and one per second it will stabilize
  1100. * to a value N*1000, where N is the rate of events per second.
  1101. * At constant rates between one per second and one per 32 seconds,
  1102. * it will be choppy, moving up on the seconds that have an event,
  1103. * and then decaying until the next event. At rates slower than
  1104. * about one in 32 seconds, it decays all the way back to zero between
  1105. * each event.
  1106. */
  1107. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1108. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1109. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1110. #define FM_SCALE 1000 /* faux fixed point scale */
  1111. /* Initialize a frequency meter */
  1112. static void fmeter_init(struct fmeter *fmp)
  1113. {
  1114. fmp->cnt = 0;
  1115. fmp->val = 0;
  1116. fmp->time = 0;
  1117. spin_lock_init(&fmp->lock);
  1118. }
  1119. /* Internal meter update - process cnt events and update value */
  1120. static void fmeter_update(struct fmeter *fmp)
  1121. {
  1122. time_t now = get_seconds();
  1123. time_t ticks = now - fmp->time;
  1124. if (ticks == 0)
  1125. return;
  1126. ticks = min(FM_MAXTICKS, ticks);
  1127. while (ticks-- > 0)
  1128. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1129. fmp->time = now;
  1130. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1131. fmp->cnt = 0;
  1132. }
  1133. /* Process any previous ticks, then bump cnt by one (times scale). */
  1134. static void fmeter_markevent(struct fmeter *fmp)
  1135. {
  1136. spin_lock(&fmp->lock);
  1137. fmeter_update(fmp);
  1138. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1139. spin_unlock(&fmp->lock);
  1140. }
  1141. /* Process any previous ticks, then return current value. */
  1142. static int fmeter_getrate(struct fmeter *fmp)
  1143. {
  1144. int val;
  1145. spin_lock(&fmp->lock);
  1146. fmeter_update(fmp);
  1147. val = fmp->val;
  1148. spin_unlock(&fmp->lock);
  1149. return val;
  1150. }
  1151. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1152. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1153. struct cgroup *cont, struct task_struct *tsk)
  1154. {
  1155. struct cpuset *cs = cgroup_cs(cont);
  1156. if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1157. return -ENOSPC;
  1158. if (tsk->flags & PF_THREAD_BOUND) {
  1159. cpumask_t mask;
  1160. mutex_lock(&callback_mutex);
  1161. mask = cs->cpus_allowed;
  1162. mutex_unlock(&callback_mutex);
  1163. if (!cpus_equal(tsk->cpus_allowed, mask))
  1164. return -EINVAL;
  1165. }
  1166. return security_task_setscheduler(tsk, 0, NULL);
  1167. }
  1168. static void cpuset_attach(struct cgroup_subsys *ss,
  1169. struct cgroup *cont, struct cgroup *oldcont,
  1170. struct task_struct *tsk)
  1171. {
  1172. cpumask_t cpus;
  1173. nodemask_t from, to;
  1174. struct mm_struct *mm;
  1175. struct cpuset *cs = cgroup_cs(cont);
  1176. struct cpuset *oldcs = cgroup_cs(oldcont);
  1177. int err;
  1178. mutex_lock(&callback_mutex);
  1179. guarantee_online_cpus(cs, &cpus);
  1180. err = set_cpus_allowed_ptr(tsk, &cpus);
  1181. mutex_unlock(&callback_mutex);
  1182. if (err)
  1183. return;
  1184. from = oldcs->mems_allowed;
  1185. to = cs->mems_allowed;
  1186. mm = get_task_mm(tsk);
  1187. if (mm) {
  1188. mpol_rebind_mm(mm, &to);
  1189. if (is_memory_migrate(cs))
  1190. cpuset_migrate_mm(mm, &from, &to);
  1191. mmput(mm);
  1192. }
  1193. }
  1194. /* The various types of files and directories in a cpuset file system */
  1195. typedef enum {
  1196. FILE_MEMORY_MIGRATE,
  1197. FILE_CPULIST,
  1198. FILE_MEMLIST,
  1199. FILE_CPU_EXCLUSIVE,
  1200. FILE_MEM_EXCLUSIVE,
  1201. FILE_MEM_HARDWALL,
  1202. FILE_SCHED_LOAD_BALANCE,
  1203. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1204. FILE_MEMORY_PRESSURE_ENABLED,
  1205. FILE_MEMORY_PRESSURE,
  1206. FILE_SPREAD_PAGE,
  1207. FILE_SPREAD_SLAB,
  1208. } cpuset_filetype_t;
  1209. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1210. {
  1211. int retval = 0;
  1212. struct cpuset *cs = cgroup_cs(cgrp);
  1213. cpuset_filetype_t type = cft->private;
  1214. if (!cgroup_lock_live_group(cgrp))
  1215. return -ENODEV;
  1216. switch (type) {
  1217. case FILE_CPU_EXCLUSIVE:
  1218. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1219. break;
  1220. case FILE_MEM_EXCLUSIVE:
  1221. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1222. break;
  1223. case FILE_MEM_HARDWALL:
  1224. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1225. break;
  1226. case FILE_SCHED_LOAD_BALANCE:
  1227. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1228. break;
  1229. case FILE_MEMORY_MIGRATE:
  1230. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1231. break;
  1232. case FILE_MEMORY_PRESSURE_ENABLED:
  1233. cpuset_memory_pressure_enabled = !!val;
  1234. break;
  1235. case FILE_MEMORY_PRESSURE:
  1236. retval = -EACCES;
  1237. break;
  1238. case FILE_SPREAD_PAGE:
  1239. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1240. cs->mems_generation = cpuset_mems_generation++;
  1241. break;
  1242. case FILE_SPREAD_SLAB:
  1243. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1244. cs->mems_generation = cpuset_mems_generation++;
  1245. break;
  1246. default:
  1247. retval = -EINVAL;
  1248. break;
  1249. }
  1250. cgroup_unlock();
  1251. return retval;
  1252. }
  1253. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1254. {
  1255. int retval = 0;
  1256. struct cpuset *cs = cgroup_cs(cgrp);
  1257. cpuset_filetype_t type = cft->private;
  1258. if (!cgroup_lock_live_group(cgrp))
  1259. return -ENODEV;
  1260. switch (type) {
  1261. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1262. retval = update_relax_domain_level(cs, val);
  1263. break;
  1264. default:
  1265. retval = -EINVAL;
  1266. break;
  1267. }
  1268. cgroup_unlock();
  1269. return retval;
  1270. }
  1271. /*
  1272. * Common handling for a write to a "cpus" or "mems" file.
  1273. */
  1274. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1275. const char *buf)
  1276. {
  1277. int retval = 0;
  1278. if (!cgroup_lock_live_group(cgrp))
  1279. return -ENODEV;
  1280. switch (cft->private) {
  1281. case FILE_CPULIST:
  1282. retval = update_cpumask(cgroup_cs(cgrp), buf);
  1283. break;
  1284. case FILE_MEMLIST:
  1285. retval = update_nodemask(cgroup_cs(cgrp), buf);
  1286. break;
  1287. default:
  1288. retval = -EINVAL;
  1289. break;
  1290. }
  1291. cgroup_unlock();
  1292. return retval;
  1293. }
  1294. /*
  1295. * These ascii lists should be read in a single call, by using a user
  1296. * buffer large enough to hold the entire map. If read in smaller
  1297. * chunks, there is no guarantee of atomicity. Since the display format
  1298. * used, list of ranges of sequential numbers, is variable length,
  1299. * and since these maps can change value dynamically, one could read
  1300. * gibberish by doing partial reads while a list was changing.
  1301. * A single large read to a buffer that crosses a page boundary is
  1302. * ok, because the result being copied to user land is not recomputed
  1303. * across a page fault.
  1304. */
  1305. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1306. {
  1307. cpumask_t mask;
  1308. mutex_lock(&callback_mutex);
  1309. mask = cs->cpus_allowed;
  1310. mutex_unlock(&callback_mutex);
  1311. return cpulist_scnprintf(page, PAGE_SIZE, mask);
  1312. }
  1313. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1314. {
  1315. nodemask_t mask;
  1316. mutex_lock(&callback_mutex);
  1317. mask = cs->mems_allowed;
  1318. mutex_unlock(&callback_mutex);
  1319. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1320. }
  1321. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1322. struct cftype *cft,
  1323. struct file *file,
  1324. char __user *buf,
  1325. size_t nbytes, loff_t *ppos)
  1326. {
  1327. struct cpuset *cs = cgroup_cs(cont);
  1328. cpuset_filetype_t type = cft->private;
  1329. char *page;
  1330. ssize_t retval = 0;
  1331. char *s;
  1332. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1333. return -ENOMEM;
  1334. s = page;
  1335. switch (type) {
  1336. case FILE_CPULIST:
  1337. s += cpuset_sprintf_cpulist(s, cs);
  1338. break;
  1339. case FILE_MEMLIST:
  1340. s += cpuset_sprintf_memlist(s, cs);
  1341. break;
  1342. default:
  1343. retval = -EINVAL;
  1344. goto out;
  1345. }
  1346. *s++ = '\n';
  1347. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1348. out:
  1349. free_page((unsigned long)page);
  1350. return retval;
  1351. }
  1352. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1353. {
  1354. struct cpuset *cs = cgroup_cs(cont);
  1355. cpuset_filetype_t type = cft->private;
  1356. switch (type) {
  1357. case FILE_CPU_EXCLUSIVE:
  1358. return is_cpu_exclusive(cs);
  1359. case FILE_MEM_EXCLUSIVE:
  1360. return is_mem_exclusive(cs);
  1361. case FILE_MEM_HARDWALL:
  1362. return is_mem_hardwall(cs);
  1363. case FILE_SCHED_LOAD_BALANCE:
  1364. return is_sched_load_balance(cs);
  1365. case FILE_MEMORY_MIGRATE:
  1366. return is_memory_migrate(cs);
  1367. case FILE_MEMORY_PRESSURE_ENABLED:
  1368. return cpuset_memory_pressure_enabled;
  1369. case FILE_MEMORY_PRESSURE:
  1370. return fmeter_getrate(&cs->fmeter);
  1371. case FILE_SPREAD_PAGE:
  1372. return is_spread_page(cs);
  1373. case FILE_SPREAD_SLAB:
  1374. return is_spread_slab(cs);
  1375. default:
  1376. BUG();
  1377. }
  1378. /* Unreachable but makes gcc happy */
  1379. return 0;
  1380. }
  1381. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1382. {
  1383. struct cpuset *cs = cgroup_cs(cont);
  1384. cpuset_filetype_t type = cft->private;
  1385. switch (type) {
  1386. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1387. return cs->relax_domain_level;
  1388. default:
  1389. BUG();
  1390. }
  1391. /* Unrechable but makes gcc happy */
  1392. return 0;
  1393. }
  1394. /*
  1395. * for the common functions, 'private' gives the type of file
  1396. */
  1397. static struct cftype files[] = {
  1398. {
  1399. .name = "cpus",
  1400. .read = cpuset_common_file_read,
  1401. .write_string = cpuset_write_resmask,
  1402. .max_write_len = (100U + 6 * NR_CPUS),
  1403. .private = FILE_CPULIST,
  1404. },
  1405. {
  1406. .name = "mems",
  1407. .read = cpuset_common_file_read,
  1408. .write_string = cpuset_write_resmask,
  1409. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1410. .private = FILE_MEMLIST,
  1411. },
  1412. {
  1413. .name = "cpu_exclusive",
  1414. .read_u64 = cpuset_read_u64,
  1415. .write_u64 = cpuset_write_u64,
  1416. .private = FILE_CPU_EXCLUSIVE,
  1417. },
  1418. {
  1419. .name = "mem_exclusive",
  1420. .read_u64 = cpuset_read_u64,
  1421. .write_u64 = cpuset_write_u64,
  1422. .private = FILE_MEM_EXCLUSIVE,
  1423. },
  1424. {
  1425. .name = "mem_hardwall",
  1426. .read_u64 = cpuset_read_u64,
  1427. .write_u64 = cpuset_write_u64,
  1428. .private = FILE_MEM_HARDWALL,
  1429. },
  1430. {
  1431. .name = "sched_load_balance",
  1432. .read_u64 = cpuset_read_u64,
  1433. .write_u64 = cpuset_write_u64,
  1434. .private = FILE_SCHED_LOAD_BALANCE,
  1435. },
  1436. {
  1437. .name = "sched_relax_domain_level",
  1438. .read_s64 = cpuset_read_s64,
  1439. .write_s64 = cpuset_write_s64,
  1440. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1441. },
  1442. {
  1443. .name = "memory_migrate",
  1444. .read_u64 = cpuset_read_u64,
  1445. .write_u64 = cpuset_write_u64,
  1446. .private = FILE_MEMORY_MIGRATE,
  1447. },
  1448. {
  1449. .name = "memory_pressure",
  1450. .read_u64 = cpuset_read_u64,
  1451. .write_u64 = cpuset_write_u64,
  1452. .private = FILE_MEMORY_PRESSURE,
  1453. },
  1454. {
  1455. .name = "memory_spread_page",
  1456. .read_u64 = cpuset_read_u64,
  1457. .write_u64 = cpuset_write_u64,
  1458. .private = FILE_SPREAD_PAGE,
  1459. },
  1460. {
  1461. .name = "memory_spread_slab",
  1462. .read_u64 = cpuset_read_u64,
  1463. .write_u64 = cpuset_write_u64,
  1464. .private = FILE_SPREAD_SLAB,
  1465. },
  1466. };
  1467. static struct cftype cft_memory_pressure_enabled = {
  1468. .name = "memory_pressure_enabled",
  1469. .read_u64 = cpuset_read_u64,
  1470. .write_u64 = cpuset_write_u64,
  1471. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1472. };
  1473. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1474. {
  1475. int err;
  1476. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1477. if (err)
  1478. return err;
  1479. /* memory_pressure_enabled is in root cpuset only */
  1480. if (!cont->parent)
  1481. err = cgroup_add_file(cont, ss,
  1482. &cft_memory_pressure_enabled);
  1483. return err;
  1484. }
  1485. /*
  1486. * post_clone() is called at the end of cgroup_clone().
  1487. * 'cgroup' was just created automatically as a result of
  1488. * a cgroup_clone(), and the current task is about to
  1489. * be moved into 'cgroup'.
  1490. *
  1491. * Currently we refuse to set up the cgroup - thereby
  1492. * refusing the task to be entered, and as a result refusing
  1493. * the sys_unshare() or clone() which initiated it - if any
  1494. * sibling cpusets have exclusive cpus or mem.
  1495. *
  1496. * If this becomes a problem for some users who wish to
  1497. * allow that scenario, then cpuset_post_clone() could be
  1498. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1499. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1500. * held.
  1501. */
  1502. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1503. struct cgroup *cgroup)
  1504. {
  1505. struct cgroup *parent, *child;
  1506. struct cpuset *cs, *parent_cs;
  1507. parent = cgroup->parent;
  1508. list_for_each_entry(child, &parent->children, sibling) {
  1509. cs = cgroup_cs(child);
  1510. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1511. return;
  1512. }
  1513. cs = cgroup_cs(cgroup);
  1514. parent_cs = cgroup_cs(parent);
  1515. cs->mems_allowed = parent_cs->mems_allowed;
  1516. cs->cpus_allowed = parent_cs->cpus_allowed;
  1517. return;
  1518. }
  1519. /*
  1520. * cpuset_create - create a cpuset
  1521. * ss: cpuset cgroup subsystem
  1522. * cont: control group that the new cpuset will be part of
  1523. */
  1524. static struct cgroup_subsys_state *cpuset_create(
  1525. struct cgroup_subsys *ss,
  1526. struct cgroup *cont)
  1527. {
  1528. struct cpuset *cs;
  1529. struct cpuset *parent;
  1530. if (!cont->parent) {
  1531. /* This is early initialization for the top cgroup */
  1532. top_cpuset.mems_generation = cpuset_mems_generation++;
  1533. return &top_cpuset.css;
  1534. }
  1535. parent = cgroup_cs(cont->parent);
  1536. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1537. if (!cs)
  1538. return ERR_PTR(-ENOMEM);
  1539. cpuset_update_task_memory_state();
  1540. cs->flags = 0;
  1541. if (is_spread_page(parent))
  1542. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1543. if (is_spread_slab(parent))
  1544. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1545. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1546. cpus_clear(cs->cpus_allowed);
  1547. nodes_clear(cs->mems_allowed);
  1548. cs->mems_generation = cpuset_mems_generation++;
  1549. fmeter_init(&cs->fmeter);
  1550. cs->relax_domain_level = -1;
  1551. cs->parent = parent;
  1552. number_of_cpusets++;
  1553. return &cs->css ;
  1554. }
  1555. /*
  1556. * If the cpuset being removed has its flag 'sched_load_balance'
  1557. * enabled, then simulate turning sched_load_balance off, which
  1558. * will call async_rebuild_sched_domains().
  1559. */
  1560. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1561. {
  1562. struct cpuset *cs = cgroup_cs(cont);
  1563. cpuset_update_task_memory_state();
  1564. if (is_sched_load_balance(cs))
  1565. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1566. number_of_cpusets--;
  1567. kfree(cs);
  1568. }
  1569. struct cgroup_subsys cpuset_subsys = {
  1570. .name = "cpuset",
  1571. .create = cpuset_create,
  1572. .destroy = cpuset_destroy,
  1573. .can_attach = cpuset_can_attach,
  1574. .attach = cpuset_attach,
  1575. .populate = cpuset_populate,
  1576. .post_clone = cpuset_post_clone,
  1577. .subsys_id = cpuset_subsys_id,
  1578. .early_init = 1,
  1579. };
  1580. /*
  1581. * cpuset_init_early - just enough so that the calls to
  1582. * cpuset_update_task_memory_state() in early init code
  1583. * are harmless.
  1584. */
  1585. int __init cpuset_init_early(void)
  1586. {
  1587. top_cpuset.mems_generation = cpuset_mems_generation++;
  1588. return 0;
  1589. }
  1590. /**
  1591. * cpuset_init - initialize cpusets at system boot
  1592. *
  1593. * Description: Initialize top_cpuset and the cpuset internal file system,
  1594. **/
  1595. int __init cpuset_init(void)
  1596. {
  1597. int err = 0;
  1598. cpus_setall(top_cpuset.cpus_allowed);
  1599. nodes_setall(top_cpuset.mems_allowed);
  1600. fmeter_init(&top_cpuset.fmeter);
  1601. top_cpuset.mems_generation = cpuset_mems_generation++;
  1602. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1603. top_cpuset.relax_domain_level = -1;
  1604. err = register_filesystem(&cpuset_fs_type);
  1605. if (err < 0)
  1606. return err;
  1607. number_of_cpusets = 1;
  1608. return 0;
  1609. }
  1610. /**
  1611. * cpuset_do_move_task - move a given task to another cpuset
  1612. * @tsk: pointer to task_struct the task to move
  1613. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1614. *
  1615. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1616. * Return nonzero to stop the walk through the tasks.
  1617. */
  1618. static void cpuset_do_move_task(struct task_struct *tsk,
  1619. struct cgroup_scanner *scan)
  1620. {
  1621. struct cpuset_hotplug_scanner *chsp;
  1622. chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
  1623. cgroup_attach_task(chsp->to, tsk);
  1624. }
  1625. /**
  1626. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1627. * @from: cpuset in which the tasks currently reside
  1628. * @to: cpuset to which the tasks will be moved
  1629. *
  1630. * Called with cgroup_mutex held
  1631. * callback_mutex must not be held, as cpuset_attach() will take it.
  1632. *
  1633. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1634. * calling callback functions for each.
  1635. */
  1636. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1637. {
  1638. struct cpuset_hotplug_scanner scan;
  1639. scan.scan.cg = from->css.cgroup;
  1640. scan.scan.test_task = NULL; /* select all tasks in cgroup */
  1641. scan.scan.process_task = cpuset_do_move_task;
  1642. scan.scan.heap = NULL;
  1643. scan.to = to->css.cgroup;
  1644. if (cgroup_scan_tasks(&scan.scan))
  1645. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1646. "cgroup_scan_tasks failed\n");
  1647. }
  1648. /*
  1649. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1650. * or memory nodes, we need to walk over the cpuset hierarchy,
  1651. * removing that CPU or node from all cpusets. If this removes the
  1652. * last CPU or node from a cpuset, then move the tasks in the empty
  1653. * cpuset to its next-highest non-empty parent.
  1654. *
  1655. * Called with cgroup_mutex held
  1656. * callback_mutex must not be held, as cpuset_attach() will take it.
  1657. */
  1658. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1659. {
  1660. struct cpuset *parent;
  1661. /*
  1662. * The cgroup's css_sets list is in use if there are tasks
  1663. * in the cpuset; the list is empty if there are none;
  1664. * the cs->css.refcnt seems always 0.
  1665. */
  1666. if (list_empty(&cs->css.cgroup->css_sets))
  1667. return;
  1668. /*
  1669. * Find its next-highest non-empty parent, (top cpuset
  1670. * has online cpus, so can't be empty).
  1671. */
  1672. parent = cs->parent;
  1673. while (cpus_empty(parent->cpus_allowed) ||
  1674. nodes_empty(parent->mems_allowed))
  1675. parent = parent->parent;
  1676. move_member_tasks_to_cpuset(cs, parent);
  1677. }
  1678. /*
  1679. * Walk the specified cpuset subtree and look for empty cpusets.
  1680. * The tasks of such cpuset must be moved to a parent cpuset.
  1681. *
  1682. * Called with cgroup_mutex held. We take callback_mutex to modify
  1683. * cpus_allowed and mems_allowed.
  1684. *
  1685. * This walk processes the tree from top to bottom, completing one layer
  1686. * before dropping down to the next. It always processes a node before
  1687. * any of its children.
  1688. *
  1689. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1690. * that has tasks along with an empty 'mems'. But if we did see such
  1691. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1692. */
  1693. static void scan_for_empty_cpusets(const struct cpuset *root)
  1694. {
  1695. LIST_HEAD(queue);
  1696. struct cpuset *cp; /* scans cpusets being updated */
  1697. struct cpuset *child; /* scans child cpusets of cp */
  1698. struct cgroup *cont;
  1699. nodemask_t oldmems;
  1700. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1701. while (!list_empty(&queue)) {
  1702. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1703. list_del(queue.next);
  1704. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1705. child = cgroup_cs(cont);
  1706. list_add_tail(&child->stack_list, &queue);
  1707. }
  1708. /* Continue past cpusets with all cpus, mems online */
  1709. if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
  1710. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1711. continue;
  1712. oldmems = cp->mems_allowed;
  1713. /* Remove offline cpus and mems from this cpuset. */
  1714. mutex_lock(&callback_mutex);
  1715. cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
  1716. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1717. node_states[N_HIGH_MEMORY]);
  1718. mutex_unlock(&callback_mutex);
  1719. /* Move tasks from the empty cpuset to a parent */
  1720. if (cpus_empty(cp->cpus_allowed) ||
  1721. nodes_empty(cp->mems_allowed))
  1722. remove_tasks_in_empty_cpuset(cp);
  1723. else {
  1724. update_tasks_cpumask(cp);
  1725. update_tasks_nodemask(cp, &oldmems);
  1726. }
  1727. }
  1728. }
  1729. /*
  1730. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1731. * period. This is necessary in order to make cpusets transparent
  1732. * (of no affect) on systems that are actively using CPU hotplug
  1733. * but making no active use of cpusets.
  1734. *
  1735. * This routine ensures that top_cpuset.cpus_allowed tracks
  1736. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1737. *
  1738. * Called within get_online_cpus(). Needs to call cgroup_lock()
  1739. * before calling generate_sched_domains().
  1740. */
  1741. static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
  1742. unsigned long phase, void *unused_cpu)
  1743. {
  1744. struct sched_domain_attr *attr;
  1745. cpumask_t *doms;
  1746. int ndoms;
  1747. switch (phase) {
  1748. case CPU_ONLINE:
  1749. case CPU_ONLINE_FROZEN:
  1750. case CPU_DEAD:
  1751. case CPU_DEAD_FROZEN:
  1752. break;
  1753. default:
  1754. return NOTIFY_DONE;
  1755. }
  1756. cgroup_lock();
  1757. top_cpuset.cpus_allowed = cpu_online_map;
  1758. scan_for_empty_cpusets(&top_cpuset);
  1759. ndoms = generate_sched_domains(&doms, &attr);
  1760. cgroup_unlock();
  1761. /* Have scheduler rebuild the domains */
  1762. partition_sched_domains(ndoms, doms, attr);
  1763. return NOTIFY_OK;
  1764. }
  1765. #ifdef CONFIG_MEMORY_HOTPLUG
  1766. /*
  1767. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1768. * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
  1769. * See also the previous routine cpuset_track_online_cpus().
  1770. */
  1771. void cpuset_track_online_nodes(void)
  1772. {
  1773. cgroup_lock();
  1774. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1775. scan_for_empty_cpusets(&top_cpuset);
  1776. cgroup_unlock();
  1777. }
  1778. #endif
  1779. /**
  1780. * cpuset_init_smp - initialize cpus_allowed
  1781. *
  1782. * Description: Finish top cpuset after cpu, node maps are initialized
  1783. **/
  1784. void __init cpuset_init_smp(void)
  1785. {
  1786. top_cpuset.cpus_allowed = cpu_online_map;
  1787. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1788. hotcpu_notifier(cpuset_track_online_cpus, 0);
  1789. }
  1790. /**
  1791. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1792. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1793. * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
  1794. *
  1795. * Description: Returns the cpumask_t cpus_allowed of the cpuset
  1796. * attached to the specified @tsk. Guaranteed to return some non-empty
  1797. * subset of cpu_online_map, even if this means going outside the
  1798. * tasks cpuset.
  1799. **/
  1800. void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
  1801. {
  1802. mutex_lock(&callback_mutex);
  1803. cpuset_cpus_allowed_locked(tsk, pmask);
  1804. mutex_unlock(&callback_mutex);
  1805. }
  1806. /**
  1807. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1808. * Must be called with callback_mutex held.
  1809. **/
  1810. void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
  1811. {
  1812. task_lock(tsk);
  1813. guarantee_online_cpus(task_cs(tsk), pmask);
  1814. task_unlock(tsk);
  1815. }
  1816. void cpuset_init_current_mems_allowed(void)
  1817. {
  1818. nodes_setall(current->mems_allowed);
  1819. }
  1820. /**
  1821. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1822. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1823. *
  1824. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1825. * attached to the specified @tsk. Guaranteed to return some non-empty
  1826. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1827. * tasks cpuset.
  1828. **/
  1829. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1830. {
  1831. nodemask_t mask;
  1832. mutex_lock(&callback_mutex);
  1833. task_lock(tsk);
  1834. guarantee_online_mems(task_cs(tsk), &mask);
  1835. task_unlock(tsk);
  1836. mutex_unlock(&callback_mutex);
  1837. return mask;
  1838. }
  1839. /**
  1840. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1841. * @nodemask: the nodemask to be checked
  1842. *
  1843. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1844. */
  1845. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1846. {
  1847. return nodes_intersects(*nodemask, current->mems_allowed);
  1848. }
  1849. /*
  1850. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1851. * mem_hardwall ancestor to the specified cpuset. Call holding
  1852. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1853. * (an unusual configuration), then returns the root cpuset.
  1854. */
  1855. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1856. {
  1857. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1858. cs = cs->parent;
  1859. return cs;
  1860. }
  1861. /**
  1862. * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
  1863. * @z: is this zone on an allowed node?
  1864. * @gfp_mask: memory allocation flags
  1865. *
  1866. * If we're in interrupt, yes, we can always allocate. If
  1867. * __GFP_THISNODE is set, yes, we can always allocate. If zone
  1868. * z's node is in our tasks mems_allowed, yes. If it's not a
  1869. * __GFP_HARDWALL request and this zone's nodes is in the nearest
  1870. * hardwalled cpuset ancestor to this tasks cpuset, yes.
  1871. * If the task has been OOM killed and has access to memory reserves
  1872. * as specified by the TIF_MEMDIE flag, yes.
  1873. * Otherwise, no.
  1874. *
  1875. * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
  1876. * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
  1877. * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
  1878. * from an enclosing cpuset.
  1879. *
  1880. * cpuset_zone_allowed_hardwall() only handles the simpler case of
  1881. * hardwall cpusets, and never sleeps.
  1882. *
  1883. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1884. * by forcibly using a zonelist starting at a specified node, and by
  1885. * (in get_page_from_freelist()) refusing to consider the zones for
  1886. * any node on the zonelist except the first. By the time any such
  1887. * calls get to this routine, we should just shut up and say 'yes'.
  1888. *
  1889. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1890. * and do not allow allocations outside the current tasks cpuset
  1891. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1892. * GFP_KERNEL allocations are not so marked, so can escape to the
  1893. * nearest enclosing hardwalled ancestor cpuset.
  1894. *
  1895. * Scanning up parent cpusets requires callback_mutex. The
  1896. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1897. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1898. * current tasks mems_allowed came up empty on the first pass over
  1899. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1900. * cpuset are short of memory, might require taking the callback_mutex
  1901. * mutex.
  1902. *
  1903. * The first call here from mm/page_alloc:get_page_from_freelist()
  1904. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1905. * so no allocation on a node outside the cpuset is allowed (unless
  1906. * in interrupt, of course).
  1907. *
  1908. * The second pass through get_page_from_freelist() doesn't even call
  1909. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1910. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1911. * in alloc_flags. That logic and the checks below have the combined
  1912. * affect that:
  1913. * in_interrupt - any node ok (current task context irrelevant)
  1914. * GFP_ATOMIC - any node ok
  1915. * TIF_MEMDIE - any node ok
  1916. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1917. * GFP_USER - only nodes in current tasks mems allowed ok.
  1918. *
  1919. * Rule:
  1920. * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
  1921. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1922. * the code that might scan up ancestor cpusets and sleep.
  1923. */
  1924. int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
  1925. {
  1926. int node; /* node that zone z is on */
  1927. const struct cpuset *cs; /* current cpuset ancestors */
  1928. int allowed; /* is allocation in zone z allowed? */
  1929. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1930. return 1;
  1931. node = zone_to_nid(z);
  1932. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  1933. if (node_isset(node, current->mems_allowed))
  1934. return 1;
  1935. /*
  1936. * Allow tasks that have access to memory reserves because they have
  1937. * been OOM killed to get memory anywhere.
  1938. */
  1939. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1940. return 1;
  1941. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  1942. return 0;
  1943. if (current->flags & PF_EXITING) /* Let dying task have memory */
  1944. return 1;
  1945. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  1946. mutex_lock(&callback_mutex);
  1947. task_lock(current);
  1948. cs = nearest_hardwall_ancestor(task_cs(current));
  1949. task_unlock(current);
  1950. allowed = node_isset(node, cs->mems_allowed);
  1951. mutex_unlock(&callback_mutex);
  1952. return allowed;
  1953. }
  1954. /*
  1955. * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
  1956. * @z: is this zone on an allowed node?
  1957. * @gfp_mask: memory allocation flags
  1958. *
  1959. * If we're in interrupt, yes, we can always allocate.
  1960. * If __GFP_THISNODE is set, yes, we can always allocate. If zone
  1961. * z's node is in our tasks mems_allowed, yes. If the task has been
  1962. * OOM killed and has access to memory reserves as specified by the
  1963. * TIF_MEMDIE flag, yes. Otherwise, no.
  1964. *
  1965. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1966. * by forcibly using a zonelist starting at a specified node, and by
  1967. * (in get_page_from_freelist()) refusing to consider the zones for
  1968. * any node on the zonelist except the first. By the time any such
  1969. * calls get to this routine, we should just shut up and say 'yes'.
  1970. *
  1971. * Unlike the cpuset_zone_allowed_softwall() variant, above,
  1972. * this variant requires that the zone be in the current tasks
  1973. * mems_allowed or that we're in interrupt. It does not scan up the
  1974. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  1975. * It never sleeps.
  1976. */
  1977. int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
  1978. {
  1979. int node; /* node that zone z is on */
  1980. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1981. return 1;
  1982. node = zone_to_nid(z);
  1983. if (node_isset(node, current->mems_allowed))
  1984. return 1;
  1985. /*
  1986. * Allow tasks that have access to memory reserves because they have
  1987. * been OOM killed to get memory anywhere.
  1988. */
  1989. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1990. return 1;
  1991. return 0;
  1992. }
  1993. /**
  1994. * cpuset_lock - lock out any changes to cpuset structures
  1995. *
  1996. * The out of memory (oom) code needs to mutex_lock cpusets
  1997. * from being changed while it scans the tasklist looking for a
  1998. * task in an overlapping cpuset. Expose callback_mutex via this
  1999. * cpuset_lock() routine, so the oom code can lock it, before
  2000. * locking the task list. The tasklist_lock is a spinlock, so
  2001. * must be taken inside callback_mutex.
  2002. */
  2003. void cpuset_lock(void)
  2004. {
  2005. mutex_lock(&callback_mutex);
  2006. }
  2007. /**
  2008. * cpuset_unlock - release lock on cpuset changes
  2009. *
  2010. * Undo the lock taken in a previous cpuset_lock() call.
  2011. */
  2012. void cpuset_unlock(void)
  2013. {
  2014. mutex_unlock(&callback_mutex);
  2015. }
  2016. /**
  2017. * cpuset_mem_spread_node() - On which node to begin search for a page
  2018. *
  2019. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2020. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2021. * and if the memory allocation used cpuset_mem_spread_node()
  2022. * to determine on which node to start looking, as it will for
  2023. * certain page cache or slab cache pages such as used for file
  2024. * system buffers and inode caches, then instead of starting on the
  2025. * local node to look for a free page, rather spread the starting
  2026. * node around the tasks mems_allowed nodes.
  2027. *
  2028. * We don't have to worry about the returned node being offline
  2029. * because "it can't happen", and even if it did, it would be ok.
  2030. *
  2031. * The routines calling guarantee_online_mems() are careful to
  2032. * only set nodes in task->mems_allowed that are online. So it
  2033. * should not be possible for the following code to return an
  2034. * offline node. But if it did, that would be ok, as this routine
  2035. * is not returning the node where the allocation must be, only
  2036. * the node where the search should start. The zonelist passed to
  2037. * __alloc_pages() will include all nodes. If the slab allocator
  2038. * is passed an offline node, it will fall back to the local node.
  2039. * See kmem_cache_alloc_node().
  2040. */
  2041. int cpuset_mem_spread_node(void)
  2042. {
  2043. int node;
  2044. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  2045. if (node == MAX_NUMNODES)
  2046. node = first_node(current->mems_allowed);
  2047. current->cpuset_mem_spread_rotor = node;
  2048. return node;
  2049. }
  2050. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2051. /**
  2052. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2053. * @tsk1: pointer to task_struct of some task.
  2054. * @tsk2: pointer to task_struct of some other task.
  2055. *
  2056. * Description: Return true if @tsk1's mems_allowed intersects the
  2057. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2058. * one of the task's memory usage might impact the memory available
  2059. * to the other.
  2060. **/
  2061. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2062. const struct task_struct *tsk2)
  2063. {
  2064. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2065. }
  2066. /*
  2067. * Collection of memory_pressure is suppressed unless
  2068. * this flag is enabled by writing "1" to the special
  2069. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2070. */
  2071. int cpuset_memory_pressure_enabled __read_mostly;
  2072. /**
  2073. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2074. *
  2075. * Keep a running average of the rate of synchronous (direct)
  2076. * page reclaim efforts initiated by tasks in each cpuset.
  2077. *
  2078. * This represents the rate at which some task in the cpuset
  2079. * ran low on memory on all nodes it was allowed to use, and
  2080. * had to enter the kernels page reclaim code in an effort to
  2081. * create more free memory by tossing clean pages or swapping
  2082. * or writing dirty pages.
  2083. *
  2084. * Display to user space in the per-cpuset read-only file
  2085. * "memory_pressure". Value displayed is an integer
  2086. * representing the recent rate of entry into the synchronous
  2087. * (direct) page reclaim by any task attached to the cpuset.
  2088. **/
  2089. void __cpuset_memory_pressure_bump(void)
  2090. {
  2091. task_lock(current);
  2092. fmeter_markevent(&task_cs(current)->fmeter);
  2093. task_unlock(current);
  2094. }
  2095. #ifdef CONFIG_PROC_PID_CPUSET
  2096. /*
  2097. * proc_cpuset_show()
  2098. * - Print tasks cpuset path into seq_file.
  2099. * - Used for /proc/<pid>/cpuset.
  2100. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2101. * doesn't really matter if tsk->cpuset changes after we read it,
  2102. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2103. * anyway.
  2104. */
  2105. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2106. {
  2107. struct pid *pid;
  2108. struct task_struct *tsk;
  2109. char *buf;
  2110. struct cgroup_subsys_state *css;
  2111. int retval;
  2112. retval = -ENOMEM;
  2113. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2114. if (!buf)
  2115. goto out;
  2116. retval = -ESRCH;
  2117. pid = m->private;
  2118. tsk = get_pid_task(pid, PIDTYPE_PID);
  2119. if (!tsk)
  2120. goto out_free;
  2121. retval = -EINVAL;
  2122. cgroup_lock();
  2123. css = task_subsys_state(tsk, cpuset_subsys_id);
  2124. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2125. if (retval < 0)
  2126. goto out_unlock;
  2127. seq_puts(m, buf);
  2128. seq_putc(m, '\n');
  2129. out_unlock:
  2130. cgroup_unlock();
  2131. put_task_struct(tsk);
  2132. out_free:
  2133. kfree(buf);
  2134. out:
  2135. return retval;
  2136. }
  2137. static int cpuset_open(struct inode *inode, struct file *file)
  2138. {
  2139. struct pid *pid = PROC_I(inode)->pid;
  2140. return single_open(file, proc_cpuset_show, pid);
  2141. }
  2142. const struct file_operations proc_cpuset_operations = {
  2143. .open = cpuset_open,
  2144. .read = seq_read,
  2145. .llseek = seq_lseek,
  2146. .release = single_release,
  2147. };
  2148. #endif /* CONFIG_PROC_PID_CPUSET */
  2149. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2150. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2151. {
  2152. seq_printf(m, "Cpus_allowed:\t");
  2153. m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
  2154. task->cpus_allowed);
  2155. seq_printf(m, "\n");
  2156. seq_printf(m, "Cpus_allowed_list:\t");
  2157. m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
  2158. task->cpus_allowed);
  2159. seq_printf(m, "\n");
  2160. seq_printf(m, "Mems_allowed:\t");
  2161. m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
  2162. task->mems_allowed);
  2163. seq_printf(m, "\n");
  2164. seq_printf(m, "Mems_allowed_list:\t");
  2165. m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
  2166. task->mems_allowed);
  2167. seq_printf(m, "\n");
  2168. }