x2apic_uv_x.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV APIC functions (note: not an Intel compatible APIC)
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/threads.h>
  12. #include <linux/cpu.h>
  13. #include <linux/cpumask.h>
  14. #include <linux/string.h>
  15. #include <linux/ctype.h>
  16. #include <linux/init.h>
  17. #include <linux/sched.h>
  18. #include <linux/module.h>
  19. #include <linux/hardirq.h>
  20. #include <linux/timer.h>
  21. #include <linux/proc_fs.h>
  22. #include <asm/current.h>
  23. #include <asm/smp.h>
  24. #include <asm/apic.h>
  25. #include <asm/ipi.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/uv/uv.h>
  28. #include <asm/uv/uv_mmrs.h>
  29. #include <asm/uv/uv_hub.h>
  30. #include <asm/uv/bios.h>
  31. DEFINE_PER_CPU(int, x2apic_extra_bits);
  32. static enum uv_system_type uv_system_type;
  33. static int uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
  34. {
  35. if (!strcmp(oem_id, "SGI")) {
  36. if (!strcmp(oem_table_id, "UVL"))
  37. uv_system_type = UV_LEGACY_APIC;
  38. else if (!strcmp(oem_table_id, "UVX"))
  39. uv_system_type = UV_X2APIC;
  40. else if (!strcmp(oem_table_id, "UVH")) {
  41. uv_system_type = UV_NON_UNIQUE_APIC;
  42. return 1;
  43. }
  44. }
  45. return 0;
  46. }
  47. enum uv_system_type get_uv_system_type(void)
  48. {
  49. return uv_system_type;
  50. }
  51. int is_uv_system(void)
  52. {
  53. return uv_system_type != UV_NONE;
  54. }
  55. EXPORT_SYMBOL_GPL(is_uv_system);
  56. DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  57. EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);
  58. struct uv_blade_info *uv_blade_info;
  59. EXPORT_SYMBOL_GPL(uv_blade_info);
  60. short *uv_node_to_blade;
  61. EXPORT_SYMBOL_GPL(uv_node_to_blade);
  62. short *uv_cpu_to_blade;
  63. EXPORT_SYMBOL_GPL(uv_cpu_to_blade);
  64. short uv_possible_blades;
  65. EXPORT_SYMBOL_GPL(uv_possible_blades);
  66. unsigned long sn_rtc_cycles_per_second;
  67. EXPORT_SYMBOL(sn_rtc_cycles_per_second);
  68. /* Start with all IRQs pointing to boot CPU. IRQ balancing will shift them. */
  69. static const struct cpumask *uv_target_cpus(void)
  70. {
  71. return cpumask_of(0);
  72. }
  73. static void uv_vector_allocation_domain(int cpu, struct cpumask *retmask)
  74. {
  75. cpumask_clear(retmask);
  76. cpumask_set_cpu(cpu, retmask);
  77. }
  78. static int uv_wakeup_secondary(int phys_apicid, unsigned long start_rip)
  79. {
  80. unsigned long val;
  81. int pnode;
  82. pnode = uv_apicid_to_pnode(phys_apicid);
  83. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  84. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  85. ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  86. APIC_DM_INIT;
  87. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  88. mdelay(10);
  89. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  90. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  91. ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  92. APIC_DM_STARTUP;
  93. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  94. atomic_set(&init_deasserted, 1);
  95. return 0;
  96. }
  97. static void uv_send_IPI_one(int cpu, int vector)
  98. {
  99. unsigned long val, apicid;
  100. int pnode;
  101. apicid = per_cpu(x86_cpu_to_apicid, cpu);
  102. pnode = uv_apicid_to_pnode(apicid);
  103. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  104. (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  105. (vector << UVH_IPI_INT_VECTOR_SHFT);
  106. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  107. }
  108. static void uv_send_IPI_mask(const struct cpumask *mask, int vector)
  109. {
  110. unsigned int cpu;
  111. for_each_cpu(cpu, mask)
  112. uv_send_IPI_one(cpu, vector);
  113. }
  114. static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector)
  115. {
  116. unsigned int this_cpu = smp_processor_id();
  117. unsigned int cpu;
  118. for_each_cpu(cpu, mask) {
  119. if (cpu != this_cpu)
  120. uv_send_IPI_one(cpu, vector);
  121. }
  122. }
  123. static void uv_send_IPI_allbutself(int vector)
  124. {
  125. unsigned int this_cpu = smp_processor_id();
  126. unsigned int cpu;
  127. for_each_online_cpu(cpu) {
  128. if (cpu != this_cpu)
  129. uv_send_IPI_one(cpu, vector);
  130. }
  131. }
  132. static void uv_send_IPI_all(int vector)
  133. {
  134. uv_send_IPI_mask(cpu_online_mask, vector);
  135. }
  136. static int uv_apic_id_registered(void)
  137. {
  138. return 1;
  139. }
  140. static void uv_init_apic_ldr(void)
  141. {
  142. }
  143. static unsigned int uv_cpu_mask_to_apicid(const struct cpumask *cpumask)
  144. {
  145. /*
  146. * We're using fixed IRQ delivery, can only return one phys APIC ID.
  147. * May as well be the first.
  148. */
  149. int cpu = cpumask_first(cpumask);
  150. if ((unsigned)cpu < nr_cpu_ids)
  151. return per_cpu(x86_cpu_to_apicid, cpu);
  152. else
  153. return BAD_APICID;
  154. }
  155. static unsigned int
  156. uv_cpu_mask_to_apicid_and(const struct cpumask *cpumask,
  157. const struct cpumask *andmask)
  158. {
  159. int cpu;
  160. /*
  161. * We're using fixed IRQ delivery, can only return one phys APIC ID.
  162. * May as well be the first.
  163. */
  164. for_each_cpu_and(cpu, cpumask, andmask) {
  165. if (cpumask_test_cpu(cpu, cpu_online_mask))
  166. break;
  167. }
  168. if (cpu < nr_cpu_ids)
  169. return per_cpu(x86_cpu_to_apicid, cpu);
  170. return BAD_APICID;
  171. }
  172. static unsigned int x2apic_get_apic_id(unsigned long x)
  173. {
  174. unsigned int id;
  175. WARN_ON(preemptible() && num_online_cpus() > 1);
  176. id = x | __get_cpu_var(x2apic_extra_bits);
  177. return id;
  178. }
  179. static unsigned long set_apic_id(unsigned int id)
  180. {
  181. unsigned long x;
  182. /* maskout x2apic_extra_bits ? */
  183. x = id;
  184. return x;
  185. }
  186. static unsigned int uv_read_apic_id(void)
  187. {
  188. return x2apic_get_apic_id(apic_read(APIC_ID));
  189. }
  190. static int uv_phys_pkg_id(int initial_apicid, int index_msb)
  191. {
  192. return uv_read_apic_id() >> index_msb;
  193. }
  194. static void uv_send_IPI_self(int vector)
  195. {
  196. apic_write(APIC_SELF_IPI, vector);
  197. }
  198. struct apic apic_x2apic_uv_x = {
  199. .name = "UV large system",
  200. .probe = NULL,
  201. .acpi_madt_oem_check = uv_acpi_madt_oem_check,
  202. .apic_id_registered = uv_apic_id_registered,
  203. .irq_delivery_mode = dest_Fixed,
  204. .irq_dest_mode = 1, /* logical */
  205. .target_cpus = uv_target_cpus,
  206. .disable_esr = 0,
  207. .dest_logical = APIC_DEST_LOGICAL,
  208. .check_apicid_used = NULL,
  209. .check_apicid_present = NULL,
  210. .vector_allocation_domain = uv_vector_allocation_domain,
  211. .init_apic_ldr = uv_init_apic_ldr,
  212. .ioapic_phys_id_map = NULL,
  213. .setup_apic_routing = NULL,
  214. .multi_timer_check = NULL,
  215. .apicid_to_node = NULL,
  216. .cpu_to_logical_apicid = NULL,
  217. .cpu_present_to_apicid = default_cpu_present_to_apicid,
  218. .apicid_to_cpu_present = NULL,
  219. .setup_portio_remap = NULL,
  220. .check_phys_apicid_present = default_check_phys_apicid_present,
  221. .enable_apic_mode = NULL,
  222. .phys_pkg_id = uv_phys_pkg_id,
  223. .mps_oem_check = NULL,
  224. .get_apic_id = x2apic_get_apic_id,
  225. .set_apic_id = set_apic_id,
  226. .apic_id_mask = 0xFFFFFFFFu,
  227. .cpu_mask_to_apicid = uv_cpu_mask_to_apicid,
  228. .cpu_mask_to_apicid_and = uv_cpu_mask_to_apicid_and,
  229. .send_IPI_mask = uv_send_IPI_mask,
  230. .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself,
  231. .send_IPI_allbutself = uv_send_IPI_allbutself,
  232. .send_IPI_all = uv_send_IPI_all,
  233. .send_IPI_self = uv_send_IPI_self,
  234. .wakeup_secondary_cpu = uv_wakeup_secondary,
  235. .trampoline_phys_low = DEFAULT_TRAMPOLINE_PHYS_LOW,
  236. .trampoline_phys_high = DEFAULT_TRAMPOLINE_PHYS_HIGH,
  237. .wait_for_init_deassert = NULL,
  238. .smp_callin_clear_local_apic = NULL,
  239. .inquire_remote_apic = NULL,
  240. .read = native_apic_msr_read,
  241. .write = native_apic_msr_write,
  242. .icr_read = native_x2apic_icr_read,
  243. .icr_write = native_x2apic_icr_write,
  244. .wait_icr_idle = native_x2apic_wait_icr_idle,
  245. .safe_wait_icr_idle = native_safe_x2apic_wait_icr_idle,
  246. };
  247. static __cpuinit void set_x2apic_extra_bits(int pnode)
  248. {
  249. __get_cpu_var(x2apic_extra_bits) = (pnode << 6);
  250. }
  251. /*
  252. * Called on boot cpu.
  253. */
  254. static __init int boot_pnode_to_blade(int pnode)
  255. {
  256. int blade;
  257. for (blade = 0; blade < uv_num_possible_blades(); blade++)
  258. if (pnode == uv_blade_info[blade].pnode)
  259. return blade;
  260. BUG();
  261. }
  262. struct redir_addr {
  263. unsigned long redirect;
  264. unsigned long alias;
  265. };
  266. #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
  267. static __initdata struct redir_addr redir_addrs[] = {
  268. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_SI_ALIAS0_OVERLAY_CONFIG},
  269. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_SI_ALIAS1_OVERLAY_CONFIG},
  270. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_SI_ALIAS2_OVERLAY_CONFIG},
  271. };
  272. static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
  273. {
  274. union uvh_si_alias0_overlay_config_u alias;
  275. union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
  276. int i;
  277. for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
  278. alias.v = uv_read_local_mmr(redir_addrs[i].alias);
  279. if (alias.s.base == 0) {
  280. *size = (1UL << alias.s.m_alias);
  281. redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
  282. *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
  283. return;
  284. }
  285. }
  286. BUG();
  287. }
  288. static __init void map_low_mmrs(void)
  289. {
  290. init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
  291. init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
  292. }
  293. enum map_type {map_wb, map_uc};
  294. static __init void map_high(char *id, unsigned long base, int shift,
  295. int max_pnode, enum map_type map_type)
  296. {
  297. unsigned long bytes, paddr;
  298. paddr = base << shift;
  299. bytes = (1UL << shift) * (max_pnode + 1);
  300. printk(KERN_INFO "UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr,
  301. paddr + bytes);
  302. if (map_type == map_uc)
  303. init_extra_mapping_uc(paddr, bytes);
  304. else
  305. init_extra_mapping_wb(paddr, bytes);
  306. }
  307. static __init void map_gru_high(int max_pnode)
  308. {
  309. union uvh_rh_gam_gru_overlay_config_mmr_u gru;
  310. int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
  311. gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
  312. if (gru.s.enable)
  313. map_high("GRU", gru.s.base, shift, max_pnode, map_wb);
  314. }
  315. static __init void map_config_high(int max_pnode)
  316. {
  317. union uvh_rh_gam_cfg_overlay_config_mmr_u cfg;
  318. int shift = UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR_BASE_SHFT;
  319. cfg.v = uv_read_local_mmr(UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR);
  320. if (cfg.s.enable)
  321. map_high("CONFIG", cfg.s.base, shift, max_pnode, map_uc);
  322. }
  323. static __init void map_mmr_high(int max_pnode)
  324. {
  325. union uvh_rh_gam_mmr_overlay_config_mmr_u mmr;
  326. int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT;
  327. mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR);
  328. if (mmr.s.enable)
  329. map_high("MMR", mmr.s.base, shift, max_pnode, map_uc);
  330. }
  331. static __init void map_mmioh_high(int max_pnode)
  332. {
  333. union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
  334. int shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
  335. mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
  336. if (mmioh.s.enable)
  337. map_high("MMIOH", mmioh.s.base, shift, max_pnode, map_uc);
  338. }
  339. static __init void uv_rtc_init(void)
  340. {
  341. long status;
  342. u64 ticks_per_sec;
  343. status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK,
  344. &ticks_per_sec);
  345. if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
  346. printk(KERN_WARNING
  347. "unable to determine platform RTC clock frequency, "
  348. "guessing.\n");
  349. /* BIOS gives wrong value for clock freq. so guess */
  350. sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
  351. } else
  352. sn_rtc_cycles_per_second = ticks_per_sec;
  353. }
  354. /*
  355. * percpu heartbeat timer
  356. */
  357. static void uv_heartbeat(unsigned long ignored)
  358. {
  359. struct timer_list *timer = &uv_hub_info->scir.timer;
  360. unsigned char bits = uv_hub_info->scir.state;
  361. /* flip heartbeat bit */
  362. bits ^= SCIR_CPU_HEARTBEAT;
  363. /* is this cpu idle? */
  364. if (idle_cpu(raw_smp_processor_id()))
  365. bits &= ~SCIR_CPU_ACTIVITY;
  366. else
  367. bits |= SCIR_CPU_ACTIVITY;
  368. /* update system controller interface reg */
  369. uv_set_scir_bits(bits);
  370. /* enable next timer period */
  371. mod_timer(timer, jiffies + SCIR_CPU_HB_INTERVAL);
  372. }
  373. static void __cpuinit uv_heartbeat_enable(int cpu)
  374. {
  375. if (!uv_cpu_hub_info(cpu)->scir.enabled) {
  376. struct timer_list *timer = &uv_cpu_hub_info(cpu)->scir.timer;
  377. uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY);
  378. setup_timer(timer, uv_heartbeat, cpu);
  379. timer->expires = jiffies + SCIR_CPU_HB_INTERVAL;
  380. add_timer_on(timer, cpu);
  381. uv_cpu_hub_info(cpu)->scir.enabled = 1;
  382. }
  383. /* check boot cpu */
  384. if (!uv_cpu_hub_info(0)->scir.enabled)
  385. uv_heartbeat_enable(0);
  386. }
  387. #ifdef CONFIG_HOTPLUG_CPU
  388. static void __cpuinit uv_heartbeat_disable(int cpu)
  389. {
  390. if (uv_cpu_hub_info(cpu)->scir.enabled) {
  391. uv_cpu_hub_info(cpu)->scir.enabled = 0;
  392. del_timer(&uv_cpu_hub_info(cpu)->scir.timer);
  393. }
  394. uv_set_cpu_scir_bits(cpu, 0xff);
  395. }
  396. /*
  397. * cpu hotplug notifier
  398. */
  399. static __cpuinit int uv_scir_cpu_notify(struct notifier_block *self,
  400. unsigned long action, void *hcpu)
  401. {
  402. long cpu = (long)hcpu;
  403. switch (action) {
  404. case CPU_ONLINE:
  405. uv_heartbeat_enable(cpu);
  406. break;
  407. case CPU_DOWN_PREPARE:
  408. uv_heartbeat_disable(cpu);
  409. break;
  410. default:
  411. break;
  412. }
  413. return NOTIFY_OK;
  414. }
  415. static __init void uv_scir_register_cpu_notifier(void)
  416. {
  417. hotcpu_notifier(uv_scir_cpu_notify, 0);
  418. }
  419. #else /* !CONFIG_HOTPLUG_CPU */
  420. static __init void uv_scir_register_cpu_notifier(void)
  421. {
  422. }
  423. static __init int uv_init_heartbeat(void)
  424. {
  425. int cpu;
  426. if (is_uv_system())
  427. for_each_online_cpu(cpu)
  428. uv_heartbeat_enable(cpu);
  429. return 0;
  430. }
  431. late_initcall(uv_init_heartbeat);
  432. #endif /* !CONFIG_HOTPLUG_CPU */
  433. /*
  434. * Called on each cpu to initialize the per_cpu UV data area.
  435. * ZZZ hotplug not supported yet
  436. */
  437. void __cpuinit uv_cpu_init(void)
  438. {
  439. /* CPU 0 initilization will be done via uv_system_init. */
  440. if (!uv_blade_info)
  441. return;
  442. uv_blade_info[uv_numa_blade_id()].nr_online_cpus++;
  443. if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
  444. set_x2apic_extra_bits(uv_hub_info->pnode);
  445. }
  446. void __init uv_system_init(void)
  447. {
  448. union uvh_si_addr_map_config_u m_n_config;
  449. union uvh_node_id_u node_id;
  450. unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
  451. int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
  452. int max_pnode = 0;
  453. unsigned long mmr_base, present;
  454. map_low_mmrs();
  455. m_n_config.v = uv_read_local_mmr(UVH_SI_ADDR_MAP_CONFIG);
  456. m_val = m_n_config.s.m_skt;
  457. n_val = m_n_config.s.n_skt;
  458. mmr_base =
  459. uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
  460. ~UV_MMR_ENABLE;
  461. printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base);
  462. for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++)
  463. uv_possible_blades +=
  464. hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
  465. printk(KERN_DEBUG "UV: Found %d blades\n", uv_num_possible_blades());
  466. bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades();
  467. uv_blade_info = kmalloc(bytes, GFP_KERNEL);
  468. get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);
  469. bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes();
  470. uv_node_to_blade = kmalloc(bytes, GFP_KERNEL);
  471. memset(uv_node_to_blade, 255, bytes);
  472. bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus();
  473. uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL);
  474. memset(uv_cpu_to_blade, 255, bytes);
  475. blade = 0;
  476. for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
  477. present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
  478. for (j = 0; j < 64; j++) {
  479. if (!test_bit(j, &present))
  480. continue;
  481. uv_blade_info[blade].pnode = (i * 64 + j);
  482. uv_blade_info[blade].nr_possible_cpus = 0;
  483. uv_blade_info[blade].nr_online_cpus = 0;
  484. blade++;
  485. }
  486. }
  487. node_id.v = uv_read_local_mmr(UVH_NODE_ID);
  488. gnode_upper = (((unsigned long)node_id.s.node_id) &
  489. ~((1 << n_val) - 1)) << m_val;
  490. uv_bios_init();
  491. uv_bios_get_sn_info(0, &uv_type, &sn_partition_id,
  492. &sn_coherency_id, &sn_region_size);
  493. uv_rtc_init();
  494. for_each_present_cpu(cpu) {
  495. nid = cpu_to_node(cpu);
  496. pnode = uv_apicid_to_pnode(per_cpu(x86_cpu_to_apicid, cpu));
  497. blade = boot_pnode_to_blade(pnode);
  498. lcpu = uv_blade_info[blade].nr_possible_cpus;
  499. uv_blade_info[blade].nr_possible_cpus++;
  500. uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
  501. uv_cpu_hub_info(cpu)->lowmem_remap_top = lowmem_redir_size;
  502. uv_cpu_hub_info(cpu)->m_val = m_val;
  503. uv_cpu_hub_info(cpu)->n_val = m_val;
  504. uv_cpu_hub_info(cpu)->numa_blade_id = blade;
  505. uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
  506. uv_cpu_hub_info(cpu)->pnode = pnode;
  507. uv_cpu_hub_info(cpu)->pnode_mask = (1 << n_val) - 1;
  508. uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
  509. uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
  510. uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
  511. uv_cpu_hub_info(cpu)->coherency_domain_number = sn_coherency_id;
  512. uv_cpu_hub_info(cpu)->scir.offset = SCIR_LOCAL_MMR_BASE + lcpu;
  513. uv_node_to_blade[nid] = blade;
  514. uv_cpu_to_blade[cpu] = blade;
  515. max_pnode = max(pnode, max_pnode);
  516. printk(KERN_DEBUG "UV: cpu %d, apicid 0x%x, pnode %d, nid %d, "
  517. "lcpu %d, blade %d\n",
  518. cpu, per_cpu(x86_cpu_to_apicid, cpu), pnode, nid,
  519. lcpu, blade);
  520. }
  521. map_gru_high(max_pnode);
  522. map_mmr_high(max_pnode);
  523. map_config_high(max_pnode);
  524. map_mmioh_high(max_pnode);
  525. uv_cpu_init();
  526. uv_scir_register_cpu_notifier();
  527. proc_mkdir("sgi_uv", NULL);
  528. }