time.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/security.h>
  35. #include <linux/fs.h>
  36. #include <linux/module.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/unistd.h>
  39. /*
  40. * The timezone where the local system is located. Used as a default by some
  41. * programs who obtain this value by using gettimeofday.
  42. */
  43. struct timezone sys_tz;
  44. EXPORT_SYMBOL(sys_tz);
  45. #ifdef __ARCH_WANT_SYS_TIME
  46. /*
  47. * sys_time() can be implemented in user-level using
  48. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  49. * why not move it into the appropriate arch directory (for those
  50. * architectures that need it).
  51. */
  52. asmlinkage long sys_time(time_t __user * tloc)
  53. {
  54. /*
  55. * We read xtime.tv_sec atomically - it's updated
  56. * atomically by update_wall_time(), so no need to
  57. * even read-lock the xtime seqlock:
  58. */
  59. time_t i = xtime.tv_sec;
  60. smp_rmb(); /* sys_time() results are coherent */
  61. if (tloc) {
  62. if (put_user(i, tloc))
  63. i = -EFAULT;
  64. }
  65. return i;
  66. }
  67. /*
  68. * sys_stime() can be implemented in user-level using
  69. * sys_settimeofday(). Is this for backwards compatibility? If so,
  70. * why not move it into the appropriate arch directory (for those
  71. * architectures that need it).
  72. */
  73. asmlinkage long sys_stime(time_t __user *tptr)
  74. {
  75. struct timespec tv;
  76. int err;
  77. if (get_user(tv.tv_sec, tptr))
  78. return -EFAULT;
  79. tv.tv_nsec = 0;
  80. err = security_settime(&tv, NULL);
  81. if (err)
  82. return err;
  83. do_settimeofday(&tv);
  84. return 0;
  85. }
  86. #endif /* __ARCH_WANT_SYS_TIME */
  87. asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
  88. {
  89. if (likely(tv != NULL)) {
  90. struct timeval ktv;
  91. do_gettimeofday(&ktv);
  92. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  93. return -EFAULT;
  94. }
  95. if (unlikely(tz != NULL)) {
  96. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  97. return -EFAULT;
  98. }
  99. return 0;
  100. }
  101. /*
  102. * Adjust the time obtained from the CMOS to be UTC time instead of
  103. * local time.
  104. *
  105. * This is ugly, but preferable to the alternatives. Otherwise we
  106. * would either need to write a program to do it in /etc/rc (and risk
  107. * confusion if the program gets run more than once; it would also be
  108. * hard to make the program warp the clock precisely n hours) or
  109. * compile in the timezone information into the kernel. Bad, bad....
  110. *
  111. * - TYT, 1992-01-01
  112. *
  113. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  114. * as real UNIX machines always do it. This avoids all headaches about
  115. * daylight saving times and warping kernel clocks.
  116. */
  117. static inline void warp_clock(void)
  118. {
  119. write_seqlock_irq(&xtime_lock);
  120. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  121. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  122. write_sequnlock_irq(&xtime_lock);
  123. clock_was_set();
  124. }
  125. /*
  126. * In case for some reason the CMOS clock has not already been running
  127. * in UTC, but in some local time: The first time we set the timezone,
  128. * we will warp the clock so that it is ticking UTC time instead of
  129. * local time. Presumably, if someone is setting the timezone then we
  130. * are running in an environment where the programs understand about
  131. * timezones. This should be done at boot time in the /etc/rc script,
  132. * as soon as possible, so that the clock can be set right. Otherwise,
  133. * various programs will get confused when the clock gets warped.
  134. */
  135. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  136. {
  137. static int firsttime = 1;
  138. int error = 0;
  139. if (tv && !timespec_valid(tv))
  140. return -EINVAL;
  141. error = security_settime(tv, tz);
  142. if (error)
  143. return error;
  144. if (tz) {
  145. /* SMP safe, global irq locking makes it work. */
  146. sys_tz = *tz;
  147. if (firsttime) {
  148. firsttime = 0;
  149. if (!tv)
  150. warp_clock();
  151. }
  152. }
  153. if (tv)
  154. {
  155. /* SMP safe, again the code in arch/foo/time.c should
  156. * globally block out interrupts when it runs.
  157. */
  158. return do_settimeofday(tv);
  159. }
  160. return 0;
  161. }
  162. asmlinkage long sys_settimeofday(struct timeval __user *tv,
  163. struct timezone __user *tz)
  164. {
  165. struct timeval user_tv;
  166. struct timespec new_ts;
  167. struct timezone new_tz;
  168. if (tv) {
  169. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  170. return -EFAULT;
  171. new_ts.tv_sec = user_tv.tv_sec;
  172. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  173. }
  174. if (tz) {
  175. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  176. return -EFAULT;
  177. }
  178. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  179. }
  180. asmlinkage long sys_adjtimex(struct timex __user *txc_p)
  181. {
  182. struct timex txc; /* Local copy of parameter */
  183. int ret;
  184. /* Copy the user data space into the kernel copy
  185. * structure. But bear in mind that the structures
  186. * may change
  187. */
  188. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  189. return -EFAULT;
  190. ret = do_adjtimex(&txc);
  191. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  192. }
  193. inline struct timespec current_kernel_time(void)
  194. {
  195. struct timespec now;
  196. unsigned long seq;
  197. do {
  198. seq = read_seqbegin(&xtime_lock);
  199. now = xtime;
  200. } while (read_seqretry(&xtime_lock, seq));
  201. return now;
  202. }
  203. EXPORT_SYMBOL(current_kernel_time);
  204. /**
  205. * current_fs_time - Return FS time
  206. * @sb: Superblock.
  207. *
  208. * Return the current time truncated to the time granularity supported by
  209. * the fs.
  210. */
  211. struct timespec current_fs_time(struct super_block *sb)
  212. {
  213. struct timespec now = current_kernel_time();
  214. return timespec_trunc(now, sb->s_time_gran);
  215. }
  216. EXPORT_SYMBOL(current_fs_time);
  217. /*
  218. * Convert jiffies to milliseconds and back.
  219. *
  220. * Avoid unnecessary multiplications/divisions in the
  221. * two most common HZ cases:
  222. */
  223. unsigned int inline jiffies_to_msecs(const unsigned long j)
  224. {
  225. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  226. return (MSEC_PER_SEC / HZ) * j;
  227. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  228. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  229. #else
  230. return (j * MSEC_PER_SEC) / HZ;
  231. #endif
  232. }
  233. EXPORT_SYMBOL(jiffies_to_msecs);
  234. unsigned int inline jiffies_to_usecs(const unsigned long j)
  235. {
  236. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  237. return (USEC_PER_SEC / HZ) * j;
  238. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  239. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  240. #else
  241. return (j * USEC_PER_SEC) / HZ;
  242. #endif
  243. }
  244. EXPORT_SYMBOL(jiffies_to_usecs);
  245. /**
  246. * timespec_trunc - Truncate timespec to a granularity
  247. * @t: Timespec
  248. * @gran: Granularity in ns.
  249. *
  250. * Truncate a timespec to a granularity. gran must be smaller than a second.
  251. * Always rounds down.
  252. *
  253. * This function should be only used for timestamps returned by
  254. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  255. * it doesn't handle the better resolution of the later.
  256. */
  257. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  258. {
  259. /*
  260. * Division is pretty slow so avoid it for common cases.
  261. * Currently current_kernel_time() never returns better than
  262. * jiffies resolution. Exploit that.
  263. */
  264. if (gran <= jiffies_to_usecs(1) * 1000) {
  265. /* nothing */
  266. } else if (gran == 1000000000) {
  267. t.tv_nsec = 0;
  268. } else {
  269. t.tv_nsec -= t.tv_nsec % gran;
  270. }
  271. return t;
  272. }
  273. EXPORT_SYMBOL(timespec_trunc);
  274. #ifndef CONFIG_GENERIC_TIME
  275. /*
  276. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  277. * and therefore only yields usec accuracy
  278. */
  279. void getnstimeofday(struct timespec *tv)
  280. {
  281. struct timeval x;
  282. do_gettimeofday(&x);
  283. tv->tv_sec = x.tv_sec;
  284. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  285. }
  286. EXPORT_SYMBOL_GPL(getnstimeofday);
  287. #endif
  288. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  289. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  290. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  291. *
  292. * [For the Julian calendar (which was used in Russia before 1917,
  293. * Britain & colonies before 1752, anywhere else before 1582,
  294. * and is still in use by some communities) leave out the
  295. * -year/100+year/400 terms, and add 10.]
  296. *
  297. * This algorithm was first published by Gauss (I think).
  298. *
  299. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  300. * machines were long is 32-bit! (However, as time_t is signed, we
  301. * will already get problems at other places on 2038-01-19 03:14:08)
  302. */
  303. unsigned long
  304. mktime(const unsigned int year0, const unsigned int mon0,
  305. const unsigned int day, const unsigned int hour,
  306. const unsigned int min, const unsigned int sec)
  307. {
  308. unsigned int mon = mon0, year = year0;
  309. /* 1..12 -> 11,12,1..10 */
  310. if (0 >= (int) (mon -= 2)) {
  311. mon += 12; /* Puts Feb last since it has leap day */
  312. year -= 1;
  313. }
  314. return ((((unsigned long)
  315. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  316. year*365 - 719499
  317. )*24 + hour /* now have hours */
  318. )*60 + min /* now have minutes */
  319. )*60 + sec; /* finally seconds */
  320. }
  321. EXPORT_SYMBOL(mktime);
  322. /**
  323. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  324. *
  325. * @ts: pointer to timespec variable to be set
  326. * @sec: seconds to set
  327. * @nsec: nanoseconds to set
  328. *
  329. * Set seconds and nanoseconds field of a timespec variable and
  330. * normalize to the timespec storage format
  331. *
  332. * Note: The tv_nsec part is always in the range of
  333. * 0 <= tv_nsec < NSEC_PER_SEC
  334. * For negative values only the tv_sec field is negative !
  335. */
  336. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  337. {
  338. while (nsec >= NSEC_PER_SEC) {
  339. nsec -= NSEC_PER_SEC;
  340. ++sec;
  341. }
  342. while (nsec < 0) {
  343. nsec += NSEC_PER_SEC;
  344. --sec;
  345. }
  346. ts->tv_sec = sec;
  347. ts->tv_nsec = nsec;
  348. }
  349. /**
  350. * ns_to_timespec - Convert nanoseconds to timespec
  351. * @nsec: the nanoseconds value to be converted
  352. *
  353. * Returns the timespec representation of the nsec parameter.
  354. */
  355. struct timespec ns_to_timespec(const s64 nsec)
  356. {
  357. struct timespec ts;
  358. if (!nsec)
  359. return (struct timespec) {0, 0};
  360. ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
  361. if (unlikely(nsec < 0))
  362. set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
  363. return ts;
  364. }
  365. EXPORT_SYMBOL(ns_to_timespec);
  366. /**
  367. * ns_to_timeval - Convert nanoseconds to timeval
  368. * @nsec: the nanoseconds value to be converted
  369. *
  370. * Returns the timeval representation of the nsec parameter.
  371. */
  372. struct timeval ns_to_timeval(const s64 nsec)
  373. {
  374. struct timespec ts = ns_to_timespec(nsec);
  375. struct timeval tv;
  376. tv.tv_sec = ts.tv_sec;
  377. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  378. return tv;
  379. }
  380. EXPORT_SYMBOL(ns_to_timeval);
  381. /*
  382. * When we convert to jiffies then we interpret incoming values
  383. * the following way:
  384. *
  385. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  386. *
  387. * - 'too large' values [that would result in larger than
  388. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  389. *
  390. * - all other values are converted to jiffies by either multiplying
  391. * the input value by a factor or dividing it with a factor
  392. *
  393. * We must also be careful about 32-bit overflows.
  394. */
  395. unsigned long msecs_to_jiffies(const unsigned int m)
  396. {
  397. /*
  398. * Negative value, means infinite timeout:
  399. */
  400. if ((int)m < 0)
  401. return MAX_JIFFY_OFFSET;
  402. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  403. /*
  404. * HZ is equal to or smaller than 1000, and 1000 is a nice
  405. * round multiple of HZ, divide with the factor between them,
  406. * but round upwards:
  407. */
  408. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  409. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  410. /*
  411. * HZ is larger than 1000, and HZ is a nice round multiple of
  412. * 1000 - simply multiply with the factor between them.
  413. *
  414. * But first make sure the multiplication result cannot
  415. * overflow:
  416. */
  417. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  418. return MAX_JIFFY_OFFSET;
  419. return m * (HZ / MSEC_PER_SEC);
  420. #else
  421. /*
  422. * Generic case - multiply, round and divide. But first
  423. * check that if we are doing a net multiplication, that
  424. * we wouldnt overflow:
  425. */
  426. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  427. return MAX_JIFFY_OFFSET;
  428. return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
  429. #endif
  430. }
  431. EXPORT_SYMBOL(msecs_to_jiffies);
  432. unsigned long usecs_to_jiffies(const unsigned int u)
  433. {
  434. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  435. return MAX_JIFFY_OFFSET;
  436. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  437. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  438. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  439. return u * (HZ / USEC_PER_SEC);
  440. #else
  441. return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
  442. #endif
  443. }
  444. EXPORT_SYMBOL(usecs_to_jiffies);
  445. /*
  446. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  447. * that a remainder subtract here would not do the right thing as the
  448. * resolution values don't fall on second boundries. I.e. the line:
  449. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  450. *
  451. * Rather, we just shift the bits off the right.
  452. *
  453. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  454. * value to a scaled second value.
  455. */
  456. unsigned long
  457. timespec_to_jiffies(const struct timespec *value)
  458. {
  459. unsigned long sec = value->tv_sec;
  460. long nsec = value->tv_nsec + TICK_NSEC - 1;
  461. if (sec >= MAX_SEC_IN_JIFFIES){
  462. sec = MAX_SEC_IN_JIFFIES;
  463. nsec = 0;
  464. }
  465. return (((u64)sec * SEC_CONVERSION) +
  466. (((u64)nsec * NSEC_CONVERSION) >>
  467. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  468. }
  469. EXPORT_SYMBOL(timespec_to_jiffies);
  470. void
  471. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  472. {
  473. /*
  474. * Convert jiffies to nanoseconds and separate with
  475. * one divide.
  476. */
  477. u64 nsec = (u64)jiffies * TICK_NSEC;
  478. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
  479. }
  480. EXPORT_SYMBOL(jiffies_to_timespec);
  481. /* Same for "timeval"
  482. *
  483. * Well, almost. The problem here is that the real system resolution is
  484. * in nanoseconds and the value being converted is in micro seconds.
  485. * Also for some machines (those that use HZ = 1024, in-particular),
  486. * there is a LARGE error in the tick size in microseconds.
  487. * The solution we use is to do the rounding AFTER we convert the
  488. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  489. * Instruction wise, this should cost only an additional add with carry
  490. * instruction above the way it was done above.
  491. */
  492. unsigned long
  493. timeval_to_jiffies(const struct timeval *value)
  494. {
  495. unsigned long sec = value->tv_sec;
  496. long usec = value->tv_usec;
  497. if (sec >= MAX_SEC_IN_JIFFIES){
  498. sec = MAX_SEC_IN_JIFFIES;
  499. usec = 0;
  500. }
  501. return (((u64)sec * SEC_CONVERSION) +
  502. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  503. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  504. }
  505. EXPORT_SYMBOL(timeval_to_jiffies);
  506. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  507. {
  508. /*
  509. * Convert jiffies to nanoseconds and separate with
  510. * one divide.
  511. */
  512. u64 nsec = (u64)jiffies * TICK_NSEC;
  513. long tv_usec;
  514. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
  515. tv_usec /= NSEC_PER_USEC;
  516. value->tv_usec = tv_usec;
  517. }
  518. EXPORT_SYMBOL(jiffies_to_timeval);
  519. /*
  520. * Convert jiffies/jiffies_64 to clock_t and back.
  521. */
  522. clock_t jiffies_to_clock_t(long x)
  523. {
  524. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  525. return x / (HZ / USER_HZ);
  526. #else
  527. u64 tmp = (u64)x * TICK_NSEC;
  528. do_div(tmp, (NSEC_PER_SEC / USER_HZ));
  529. return (long)tmp;
  530. #endif
  531. }
  532. EXPORT_SYMBOL(jiffies_to_clock_t);
  533. unsigned long clock_t_to_jiffies(unsigned long x)
  534. {
  535. #if (HZ % USER_HZ)==0
  536. if (x >= ~0UL / (HZ / USER_HZ))
  537. return ~0UL;
  538. return x * (HZ / USER_HZ);
  539. #else
  540. u64 jif;
  541. /* Don't worry about loss of precision here .. */
  542. if (x >= ~0UL / HZ * USER_HZ)
  543. return ~0UL;
  544. /* .. but do try to contain it here */
  545. jif = x * (u64) HZ;
  546. do_div(jif, USER_HZ);
  547. return jif;
  548. #endif
  549. }
  550. EXPORT_SYMBOL(clock_t_to_jiffies);
  551. u64 jiffies_64_to_clock_t(u64 x)
  552. {
  553. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  554. do_div(x, HZ / USER_HZ);
  555. #else
  556. /*
  557. * There are better ways that don't overflow early,
  558. * but even this doesn't overflow in hundreds of years
  559. * in 64 bits, so..
  560. */
  561. x *= TICK_NSEC;
  562. do_div(x, (NSEC_PER_SEC / USER_HZ));
  563. #endif
  564. return x;
  565. }
  566. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  567. u64 nsec_to_clock_t(u64 x)
  568. {
  569. #if (NSEC_PER_SEC % USER_HZ) == 0
  570. do_div(x, (NSEC_PER_SEC / USER_HZ));
  571. #elif (USER_HZ % 512) == 0
  572. x *= USER_HZ/512;
  573. do_div(x, (NSEC_PER_SEC / 512));
  574. #else
  575. /*
  576. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  577. * overflow after 64.99 years.
  578. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  579. */
  580. x *= 9;
  581. do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
  582. USER_HZ));
  583. #endif
  584. return x;
  585. }
  586. #if (BITS_PER_LONG < 64)
  587. u64 get_jiffies_64(void)
  588. {
  589. unsigned long seq;
  590. u64 ret;
  591. do {
  592. seq = read_seqbegin(&xtime_lock);
  593. ret = jiffies_64;
  594. } while (read_seqretry(&xtime_lock, seq));
  595. return ret;
  596. }
  597. EXPORT_SYMBOL(get_jiffies_64);
  598. #endif
  599. EXPORT_SYMBOL(jiffies);