mmzone.h 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <generated/bounds.h>
  17. #include <asm/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coelesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. #define MIGRATE_UNMOVABLE 0
  34. #define MIGRATE_RECLAIMABLE 1
  35. #define MIGRATE_MOVABLE 2
  36. #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
  37. #define MIGRATE_RESERVE 3
  38. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  39. #define MIGRATE_TYPES 5
  40. #define for_each_migratetype_order(order, type) \
  41. for (order = 0; order < MAX_ORDER; order++) \
  42. for (type = 0; type < MIGRATE_TYPES; type++)
  43. extern int page_group_by_mobility_disabled;
  44. static inline int get_pageblock_migratetype(struct page *page)
  45. {
  46. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  47. }
  48. struct free_area {
  49. struct list_head free_list[MIGRATE_TYPES];
  50. unsigned long nr_free;
  51. };
  52. struct pglist_data;
  53. /*
  54. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  55. * So add a wild amount of padding here to ensure that they fall into separate
  56. * cachelines. There are very few zone structures in the machine, so space
  57. * consumption is not a concern here.
  58. */
  59. #if defined(CONFIG_SMP)
  60. struct zone_padding {
  61. char x[0];
  62. } ____cacheline_internodealigned_in_smp;
  63. #define ZONE_PADDING(name) struct zone_padding name;
  64. #else
  65. #define ZONE_PADDING(name)
  66. #endif
  67. enum zone_stat_item {
  68. /* First 128 byte cacheline (assuming 64 bit words) */
  69. NR_FREE_PAGES,
  70. NR_LRU_BASE,
  71. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  72. NR_ACTIVE_ANON, /* " " " " " */
  73. NR_INACTIVE_FILE, /* " " " " " */
  74. NR_ACTIVE_FILE, /* " " " " " */
  75. NR_UNEVICTABLE, /* " " " " " */
  76. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  77. NR_ANON_PAGES, /* Mapped anonymous pages */
  78. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  79. only modified from process context */
  80. NR_FILE_PAGES,
  81. NR_FILE_DIRTY,
  82. NR_WRITEBACK,
  83. NR_SLAB_RECLAIMABLE,
  84. NR_SLAB_UNRECLAIMABLE,
  85. NR_PAGETABLE, /* used for pagetables */
  86. NR_KERNEL_STACK,
  87. /* Second 128 byte cacheline */
  88. NR_UNSTABLE_NFS, /* NFS unstable pages */
  89. NR_BOUNCE,
  90. NR_VMSCAN_WRITE,
  91. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  92. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  93. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  94. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  95. #ifdef CONFIG_NUMA
  96. NUMA_HIT, /* allocated in intended node */
  97. NUMA_MISS, /* allocated in non intended node */
  98. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  99. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  100. NUMA_LOCAL, /* allocation from local node */
  101. NUMA_OTHER, /* allocation from other node */
  102. #endif
  103. NR_VM_ZONE_STAT_ITEMS };
  104. /*
  105. * We do arithmetic on the LRU lists in various places in the code,
  106. * so it is important to keep the active lists LRU_ACTIVE higher in
  107. * the array than the corresponding inactive lists, and to keep
  108. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  109. *
  110. * This has to be kept in sync with the statistics in zone_stat_item
  111. * above and the descriptions in vmstat_text in mm/vmstat.c
  112. */
  113. #define LRU_BASE 0
  114. #define LRU_ACTIVE 1
  115. #define LRU_FILE 2
  116. enum lru_list {
  117. LRU_INACTIVE_ANON = LRU_BASE,
  118. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  119. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  120. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  121. LRU_UNEVICTABLE,
  122. NR_LRU_LISTS
  123. };
  124. #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
  125. #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
  126. static inline int is_file_lru(enum lru_list l)
  127. {
  128. return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
  129. }
  130. static inline int is_active_lru(enum lru_list l)
  131. {
  132. return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
  133. }
  134. static inline int is_unevictable_lru(enum lru_list l)
  135. {
  136. return (l == LRU_UNEVICTABLE);
  137. }
  138. enum zone_watermarks {
  139. WMARK_MIN,
  140. WMARK_LOW,
  141. WMARK_HIGH,
  142. NR_WMARK
  143. };
  144. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  145. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  146. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  147. struct per_cpu_pages {
  148. int count; /* number of pages in the list */
  149. int high; /* high watermark, emptying needed */
  150. int batch; /* chunk size for buddy add/remove */
  151. /* Lists of pages, one per migrate type stored on the pcp-lists */
  152. struct list_head lists[MIGRATE_PCPTYPES];
  153. };
  154. struct per_cpu_pageset {
  155. struct per_cpu_pages pcp;
  156. #ifdef CONFIG_NUMA
  157. s8 expire;
  158. #endif
  159. #ifdef CONFIG_SMP
  160. s8 stat_threshold;
  161. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  162. #endif
  163. };
  164. #endif /* !__GENERATING_BOUNDS.H */
  165. enum zone_type {
  166. #ifdef CONFIG_ZONE_DMA
  167. /*
  168. * ZONE_DMA is used when there are devices that are not able
  169. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  170. * carve out the portion of memory that is needed for these devices.
  171. * The range is arch specific.
  172. *
  173. * Some examples
  174. *
  175. * Architecture Limit
  176. * ---------------------------
  177. * parisc, ia64, sparc <4G
  178. * s390 <2G
  179. * arm Various
  180. * alpha Unlimited or 0-16MB.
  181. *
  182. * i386, x86_64 and multiple other arches
  183. * <16M.
  184. */
  185. ZONE_DMA,
  186. #endif
  187. #ifdef CONFIG_ZONE_DMA32
  188. /*
  189. * x86_64 needs two ZONE_DMAs because it supports devices that are
  190. * only able to do DMA to the lower 16M but also 32 bit devices that
  191. * can only do DMA areas below 4G.
  192. */
  193. ZONE_DMA32,
  194. #endif
  195. /*
  196. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  197. * performed on pages in ZONE_NORMAL if the DMA devices support
  198. * transfers to all addressable memory.
  199. */
  200. ZONE_NORMAL,
  201. #ifdef CONFIG_HIGHMEM
  202. /*
  203. * A memory area that is only addressable by the kernel through
  204. * mapping portions into its own address space. This is for example
  205. * used by i386 to allow the kernel to address the memory beyond
  206. * 900MB. The kernel will set up special mappings (page
  207. * table entries on i386) for each page that the kernel needs to
  208. * access.
  209. */
  210. ZONE_HIGHMEM,
  211. #endif
  212. ZONE_MOVABLE,
  213. __MAX_NR_ZONES
  214. };
  215. #ifndef __GENERATING_BOUNDS_H
  216. /*
  217. * When a memory allocation must conform to specific limitations (such
  218. * as being suitable for DMA) the caller will pass in hints to the
  219. * allocator in the gfp_mask, in the zone modifier bits. These bits
  220. * are used to select a priority ordered list of memory zones which
  221. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  222. */
  223. #if MAX_NR_ZONES < 2
  224. #define ZONES_SHIFT 0
  225. #elif MAX_NR_ZONES <= 2
  226. #define ZONES_SHIFT 1
  227. #elif MAX_NR_ZONES <= 4
  228. #define ZONES_SHIFT 2
  229. #else
  230. #error ZONES_SHIFT -- too many zones configured adjust calculation
  231. #endif
  232. struct zone_reclaim_stat {
  233. /*
  234. * The pageout code in vmscan.c keeps track of how many of the
  235. * mem/swap backed and file backed pages are refeferenced.
  236. * The higher the rotated/scanned ratio, the more valuable
  237. * that cache is.
  238. *
  239. * The anon LRU stats live in [0], file LRU stats in [1]
  240. */
  241. unsigned long recent_rotated[2];
  242. unsigned long recent_scanned[2];
  243. /*
  244. * accumulated for batching
  245. */
  246. unsigned long nr_saved_scan[NR_LRU_LISTS];
  247. };
  248. struct zone {
  249. /* Fields commonly accessed by the page allocator */
  250. /* zone watermarks, access with *_wmark_pages(zone) macros */
  251. unsigned long watermark[NR_WMARK];
  252. /*
  253. * We don't know if the memory that we're going to allocate will be freeable
  254. * or/and it will be released eventually, so to avoid totally wasting several
  255. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  256. * to run OOM on the lower zones despite there's tons of freeable ram
  257. * on the higher zones). This array is recalculated at runtime if the
  258. * sysctl_lowmem_reserve_ratio sysctl changes.
  259. */
  260. unsigned long lowmem_reserve[MAX_NR_ZONES];
  261. #ifdef CONFIG_NUMA
  262. int node;
  263. /*
  264. * zone reclaim becomes active if more unmapped pages exist.
  265. */
  266. unsigned long min_unmapped_pages;
  267. unsigned long min_slab_pages;
  268. #endif
  269. struct per_cpu_pageset __percpu *pageset;
  270. /*
  271. * free areas of different sizes
  272. */
  273. spinlock_t lock;
  274. int all_unreclaimable; /* All pages pinned */
  275. #ifdef CONFIG_MEMORY_HOTPLUG
  276. /* see spanned/present_pages for more description */
  277. seqlock_t span_seqlock;
  278. #endif
  279. struct free_area free_area[MAX_ORDER];
  280. #ifndef CONFIG_SPARSEMEM
  281. /*
  282. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  283. * In SPARSEMEM, this map is stored in struct mem_section
  284. */
  285. unsigned long *pageblock_flags;
  286. #endif /* CONFIG_SPARSEMEM */
  287. #ifdef CONFIG_COMPACTION
  288. /*
  289. * On compaction failure, 1<<compact_defer_shift compactions
  290. * are skipped before trying again. The number attempted since
  291. * last failure is tracked with compact_considered.
  292. */
  293. unsigned int compact_considered;
  294. unsigned int compact_defer_shift;
  295. #endif
  296. ZONE_PADDING(_pad1_)
  297. /* Fields commonly accessed by the page reclaim scanner */
  298. spinlock_t lru_lock;
  299. struct zone_lru {
  300. struct list_head list;
  301. } lru[NR_LRU_LISTS];
  302. struct zone_reclaim_stat reclaim_stat;
  303. unsigned long pages_scanned; /* since last reclaim */
  304. unsigned long flags; /* zone flags, see below */
  305. /* Zone statistics */
  306. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  307. /*
  308. * prev_priority holds the scanning priority for this zone. It is
  309. * defined as the scanning priority at which we achieved our reclaim
  310. * target at the previous try_to_free_pages() or balance_pgdat()
  311. * invocation.
  312. *
  313. * We use prev_priority as a measure of how much stress page reclaim is
  314. * under - it drives the swappiness decision: whether to unmap mapped
  315. * pages.
  316. *
  317. * Access to both this field is quite racy even on uniprocessor. But
  318. * it is expected to average out OK.
  319. */
  320. int prev_priority;
  321. /*
  322. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  323. * this zone's LRU. Maintained by the pageout code.
  324. */
  325. unsigned int inactive_ratio;
  326. ZONE_PADDING(_pad2_)
  327. /* Rarely used or read-mostly fields */
  328. /*
  329. * wait_table -- the array holding the hash table
  330. * wait_table_hash_nr_entries -- the size of the hash table array
  331. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  332. *
  333. * The purpose of all these is to keep track of the people
  334. * waiting for a page to become available and make them
  335. * runnable again when possible. The trouble is that this
  336. * consumes a lot of space, especially when so few things
  337. * wait on pages at a given time. So instead of using
  338. * per-page waitqueues, we use a waitqueue hash table.
  339. *
  340. * The bucket discipline is to sleep on the same queue when
  341. * colliding and wake all in that wait queue when removing.
  342. * When something wakes, it must check to be sure its page is
  343. * truly available, a la thundering herd. The cost of a
  344. * collision is great, but given the expected load of the
  345. * table, they should be so rare as to be outweighed by the
  346. * benefits from the saved space.
  347. *
  348. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  349. * primary users of these fields, and in mm/page_alloc.c
  350. * free_area_init_core() performs the initialization of them.
  351. */
  352. wait_queue_head_t * wait_table;
  353. unsigned long wait_table_hash_nr_entries;
  354. unsigned long wait_table_bits;
  355. /*
  356. * Discontig memory support fields.
  357. */
  358. struct pglist_data *zone_pgdat;
  359. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  360. unsigned long zone_start_pfn;
  361. /*
  362. * zone_start_pfn, spanned_pages and present_pages are all
  363. * protected by span_seqlock. It is a seqlock because it has
  364. * to be read outside of zone->lock, and it is done in the main
  365. * allocator path. But, it is written quite infrequently.
  366. *
  367. * The lock is declared along with zone->lock because it is
  368. * frequently read in proximity to zone->lock. It's good to
  369. * give them a chance of being in the same cacheline.
  370. */
  371. unsigned long spanned_pages; /* total size, including holes */
  372. unsigned long present_pages; /* amount of memory (excluding holes) */
  373. /*
  374. * rarely used fields:
  375. */
  376. const char *name;
  377. } ____cacheline_internodealigned_in_smp;
  378. typedef enum {
  379. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  380. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  381. } zone_flags_t;
  382. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  383. {
  384. set_bit(flag, &zone->flags);
  385. }
  386. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  387. {
  388. return test_and_set_bit(flag, &zone->flags);
  389. }
  390. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  391. {
  392. clear_bit(flag, &zone->flags);
  393. }
  394. static inline int zone_is_reclaim_locked(const struct zone *zone)
  395. {
  396. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  397. }
  398. static inline int zone_is_oom_locked(const struct zone *zone)
  399. {
  400. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  401. }
  402. /*
  403. * The "priority" of VM scanning is how much of the queues we will scan in one
  404. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  405. * queues ("queue_length >> 12") during an aging round.
  406. */
  407. #define DEF_PRIORITY 12
  408. /* Maximum number of zones on a zonelist */
  409. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  410. #ifdef CONFIG_NUMA
  411. /*
  412. * The NUMA zonelists are doubled becausse we need zonelists that restrict the
  413. * allocations to a single node for GFP_THISNODE.
  414. *
  415. * [0] : Zonelist with fallback
  416. * [1] : No fallback (GFP_THISNODE)
  417. */
  418. #define MAX_ZONELISTS 2
  419. /*
  420. * We cache key information from each zonelist for smaller cache
  421. * footprint when scanning for free pages in get_page_from_freelist().
  422. *
  423. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  424. * up short of free memory since the last time (last_fullzone_zap)
  425. * we zero'd fullzones.
  426. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  427. * id, so that we can efficiently evaluate whether that node is
  428. * set in the current tasks mems_allowed.
  429. *
  430. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  431. * indexed by a zones offset in the zonelist zones[] array.
  432. *
  433. * The get_page_from_freelist() routine does two scans. During the
  434. * first scan, we skip zones whose corresponding bit in 'fullzones'
  435. * is set or whose corresponding node in current->mems_allowed (which
  436. * comes from cpusets) is not set. During the second scan, we bypass
  437. * this zonelist_cache, to ensure we look methodically at each zone.
  438. *
  439. * Once per second, we zero out (zap) fullzones, forcing us to
  440. * reconsider nodes that might have regained more free memory.
  441. * The field last_full_zap is the time we last zapped fullzones.
  442. *
  443. * This mechanism reduces the amount of time we waste repeatedly
  444. * reexaming zones for free memory when they just came up low on
  445. * memory momentarilly ago.
  446. *
  447. * The zonelist_cache struct members logically belong in struct
  448. * zonelist. However, the mempolicy zonelists constructed for
  449. * MPOL_BIND are intentionally variable length (and usually much
  450. * shorter). A general purpose mechanism for handling structs with
  451. * multiple variable length members is more mechanism than we want
  452. * here. We resort to some special case hackery instead.
  453. *
  454. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  455. * part because they are shorter), so we put the fixed length stuff
  456. * at the front of the zonelist struct, ending in a variable length
  457. * zones[], as is needed by MPOL_BIND.
  458. *
  459. * Then we put the optional zonelist cache on the end of the zonelist
  460. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  461. * the fixed length portion at the front of the struct. This pointer
  462. * both enables us to find the zonelist cache, and in the case of
  463. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  464. * to know that the zonelist cache is not there.
  465. *
  466. * The end result is that struct zonelists come in two flavors:
  467. * 1) The full, fixed length version, shown below, and
  468. * 2) The custom zonelists for MPOL_BIND.
  469. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  470. *
  471. * Even though there may be multiple CPU cores on a node modifying
  472. * fullzones or last_full_zap in the same zonelist_cache at the same
  473. * time, we don't lock it. This is just hint data - if it is wrong now
  474. * and then, the allocator will still function, perhaps a bit slower.
  475. */
  476. struct zonelist_cache {
  477. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  478. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  479. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  480. };
  481. #else
  482. #define MAX_ZONELISTS 1
  483. struct zonelist_cache;
  484. #endif
  485. /*
  486. * This struct contains information about a zone in a zonelist. It is stored
  487. * here to avoid dereferences into large structures and lookups of tables
  488. */
  489. struct zoneref {
  490. struct zone *zone; /* Pointer to actual zone */
  491. int zone_idx; /* zone_idx(zoneref->zone) */
  492. };
  493. /*
  494. * One allocation request operates on a zonelist. A zonelist
  495. * is a list of zones, the first one is the 'goal' of the
  496. * allocation, the other zones are fallback zones, in decreasing
  497. * priority.
  498. *
  499. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  500. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  501. * *
  502. * To speed the reading of the zonelist, the zonerefs contain the zone index
  503. * of the entry being read. Helper functions to access information given
  504. * a struct zoneref are
  505. *
  506. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  507. * zonelist_zone_idx() - Return the index of the zone for an entry
  508. * zonelist_node_idx() - Return the index of the node for an entry
  509. */
  510. struct zonelist {
  511. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  512. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  513. #ifdef CONFIG_NUMA
  514. struct zonelist_cache zlcache; // optional ...
  515. #endif
  516. };
  517. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  518. struct node_active_region {
  519. unsigned long start_pfn;
  520. unsigned long end_pfn;
  521. int nid;
  522. };
  523. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  524. #ifndef CONFIG_DISCONTIGMEM
  525. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  526. extern struct page *mem_map;
  527. #endif
  528. /*
  529. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  530. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  531. * zone denotes.
  532. *
  533. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  534. * it's memory layout.
  535. *
  536. * Memory statistics and page replacement data structures are maintained on a
  537. * per-zone basis.
  538. */
  539. struct bootmem_data;
  540. typedef struct pglist_data {
  541. struct zone node_zones[MAX_NR_ZONES];
  542. struct zonelist node_zonelists[MAX_ZONELISTS];
  543. int nr_zones;
  544. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  545. struct page *node_mem_map;
  546. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  547. struct page_cgroup *node_page_cgroup;
  548. #endif
  549. #endif
  550. #ifndef CONFIG_NO_BOOTMEM
  551. struct bootmem_data *bdata;
  552. #endif
  553. #ifdef CONFIG_MEMORY_HOTPLUG
  554. /*
  555. * Must be held any time you expect node_start_pfn, node_present_pages
  556. * or node_spanned_pages stay constant. Holding this will also
  557. * guarantee that any pfn_valid() stays that way.
  558. *
  559. * Nests above zone->lock and zone->size_seqlock.
  560. */
  561. spinlock_t node_size_lock;
  562. #endif
  563. unsigned long node_start_pfn;
  564. unsigned long node_present_pages; /* total number of physical pages */
  565. unsigned long node_spanned_pages; /* total size of physical page
  566. range, including holes */
  567. int node_id;
  568. wait_queue_head_t kswapd_wait;
  569. struct task_struct *kswapd;
  570. int kswapd_max_order;
  571. } pg_data_t;
  572. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  573. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  574. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  575. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  576. #else
  577. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  578. #endif
  579. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  580. #include <linux/memory_hotplug.h>
  581. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  582. unsigned long *free);
  583. void build_all_zonelists(void *data);
  584. void wakeup_kswapd(struct zone *zone, int order);
  585. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  586. int classzone_idx, int alloc_flags);
  587. enum memmap_context {
  588. MEMMAP_EARLY,
  589. MEMMAP_HOTPLUG,
  590. };
  591. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  592. unsigned long size,
  593. enum memmap_context context);
  594. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  595. void memory_present(int nid, unsigned long start, unsigned long end);
  596. #else
  597. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  598. #endif
  599. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  600. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  601. #endif
  602. /*
  603. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  604. */
  605. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  606. static inline int populated_zone(struct zone *zone)
  607. {
  608. return (!!zone->present_pages);
  609. }
  610. extern int movable_zone;
  611. static inline int zone_movable_is_highmem(void)
  612. {
  613. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  614. return movable_zone == ZONE_HIGHMEM;
  615. #else
  616. return 0;
  617. #endif
  618. }
  619. static inline int is_highmem_idx(enum zone_type idx)
  620. {
  621. #ifdef CONFIG_HIGHMEM
  622. return (idx == ZONE_HIGHMEM ||
  623. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  624. #else
  625. return 0;
  626. #endif
  627. }
  628. static inline int is_normal_idx(enum zone_type idx)
  629. {
  630. return (idx == ZONE_NORMAL);
  631. }
  632. /**
  633. * is_highmem - helper function to quickly check if a struct zone is a
  634. * highmem zone or not. This is an attempt to keep references
  635. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  636. * @zone - pointer to struct zone variable
  637. */
  638. static inline int is_highmem(struct zone *zone)
  639. {
  640. #ifdef CONFIG_HIGHMEM
  641. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  642. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  643. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  644. zone_movable_is_highmem());
  645. #else
  646. return 0;
  647. #endif
  648. }
  649. static inline int is_normal(struct zone *zone)
  650. {
  651. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  652. }
  653. static inline int is_dma32(struct zone *zone)
  654. {
  655. #ifdef CONFIG_ZONE_DMA32
  656. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  657. #else
  658. return 0;
  659. #endif
  660. }
  661. static inline int is_dma(struct zone *zone)
  662. {
  663. #ifdef CONFIG_ZONE_DMA
  664. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  665. #else
  666. return 0;
  667. #endif
  668. }
  669. /* These two functions are used to setup the per zone pages min values */
  670. struct ctl_table;
  671. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  672. void __user *, size_t *, loff_t *);
  673. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  674. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  675. void __user *, size_t *, loff_t *);
  676. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  677. void __user *, size_t *, loff_t *);
  678. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  679. void __user *, size_t *, loff_t *);
  680. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  681. void __user *, size_t *, loff_t *);
  682. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  683. void __user *, size_t *, loff_t *);
  684. extern char numa_zonelist_order[];
  685. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  686. #ifndef CONFIG_NEED_MULTIPLE_NODES
  687. extern struct pglist_data contig_page_data;
  688. #define NODE_DATA(nid) (&contig_page_data)
  689. #define NODE_MEM_MAP(nid) mem_map
  690. #else /* CONFIG_NEED_MULTIPLE_NODES */
  691. #include <asm/mmzone.h>
  692. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  693. extern struct pglist_data *first_online_pgdat(void);
  694. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  695. extern struct zone *next_zone(struct zone *zone);
  696. /**
  697. * for_each_online_pgdat - helper macro to iterate over all online nodes
  698. * @pgdat - pointer to a pg_data_t variable
  699. */
  700. #define for_each_online_pgdat(pgdat) \
  701. for (pgdat = first_online_pgdat(); \
  702. pgdat; \
  703. pgdat = next_online_pgdat(pgdat))
  704. /**
  705. * for_each_zone - helper macro to iterate over all memory zones
  706. * @zone - pointer to struct zone variable
  707. *
  708. * The user only needs to declare the zone variable, for_each_zone
  709. * fills it in.
  710. */
  711. #define for_each_zone(zone) \
  712. for (zone = (first_online_pgdat())->node_zones; \
  713. zone; \
  714. zone = next_zone(zone))
  715. #define for_each_populated_zone(zone) \
  716. for (zone = (first_online_pgdat())->node_zones; \
  717. zone; \
  718. zone = next_zone(zone)) \
  719. if (!populated_zone(zone)) \
  720. ; /* do nothing */ \
  721. else
  722. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  723. {
  724. return zoneref->zone;
  725. }
  726. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  727. {
  728. return zoneref->zone_idx;
  729. }
  730. static inline int zonelist_node_idx(struct zoneref *zoneref)
  731. {
  732. #ifdef CONFIG_NUMA
  733. /* zone_to_nid not available in this context */
  734. return zoneref->zone->node;
  735. #else
  736. return 0;
  737. #endif /* CONFIG_NUMA */
  738. }
  739. /**
  740. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  741. * @z - The cursor used as a starting point for the search
  742. * @highest_zoneidx - The zone index of the highest zone to return
  743. * @nodes - An optional nodemask to filter the zonelist with
  744. * @zone - The first suitable zone found is returned via this parameter
  745. *
  746. * This function returns the next zone at or below a given zone index that is
  747. * within the allowed nodemask using a cursor as the starting point for the
  748. * search. The zoneref returned is a cursor that represents the current zone
  749. * being examined. It should be advanced by one before calling
  750. * next_zones_zonelist again.
  751. */
  752. struct zoneref *next_zones_zonelist(struct zoneref *z,
  753. enum zone_type highest_zoneidx,
  754. nodemask_t *nodes,
  755. struct zone **zone);
  756. /**
  757. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  758. * @zonelist - The zonelist to search for a suitable zone
  759. * @highest_zoneidx - The zone index of the highest zone to return
  760. * @nodes - An optional nodemask to filter the zonelist with
  761. * @zone - The first suitable zone found is returned via this parameter
  762. *
  763. * This function returns the first zone at or below a given zone index that is
  764. * within the allowed nodemask. The zoneref returned is a cursor that can be
  765. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  766. * one before calling.
  767. */
  768. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  769. enum zone_type highest_zoneidx,
  770. nodemask_t *nodes,
  771. struct zone **zone)
  772. {
  773. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  774. zone);
  775. }
  776. /**
  777. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  778. * @zone - The current zone in the iterator
  779. * @z - The current pointer within zonelist->zones being iterated
  780. * @zlist - The zonelist being iterated
  781. * @highidx - The zone index of the highest zone to return
  782. * @nodemask - Nodemask allowed by the allocator
  783. *
  784. * This iterator iterates though all zones at or below a given zone index and
  785. * within a given nodemask
  786. */
  787. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  788. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  789. zone; \
  790. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  791. /**
  792. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  793. * @zone - The current zone in the iterator
  794. * @z - The current pointer within zonelist->zones being iterated
  795. * @zlist - The zonelist being iterated
  796. * @highidx - The zone index of the highest zone to return
  797. *
  798. * This iterator iterates though all zones at or below a given zone index.
  799. */
  800. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  801. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  802. #ifdef CONFIG_SPARSEMEM
  803. #include <asm/sparsemem.h>
  804. #endif
  805. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  806. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  807. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  808. {
  809. return 0;
  810. }
  811. #endif
  812. #ifdef CONFIG_FLATMEM
  813. #define pfn_to_nid(pfn) (0)
  814. #endif
  815. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  816. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  817. #ifdef CONFIG_SPARSEMEM
  818. /*
  819. * SECTION_SHIFT #bits space required to store a section #
  820. *
  821. * PA_SECTION_SHIFT physical address to/from section number
  822. * PFN_SECTION_SHIFT pfn to/from section number
  823. */
  824. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  825. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  826. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  827. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  828. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  829. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  830. #define SECTION_BLOCKFLAGS_BITS \
  831. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  832. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  833. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  834. #endif
  835. struct page;
  836. struct page_cgroup;
  837. struct mem_section {
  838. /*
  839. * This is, logically, a pointer to an array of struct
  840. * pages. However, it is stored with some other magic.
  841. * (see sparse.c::sparse_init_one_section())
  842. *
  843. * Additionally during early boot we encode node id of
  844. * the location of the section here to guide allocation.
  845. * (see sparse.c::memory_present())
  846. *
  847. * Making it a UL at least makes someone do a cast
  848. * before using it wrong.
  849. */
  850. unsigned long section_mem_map;
  851. /* See declaration of similar field in struct zone */
  852. unsigned long *pageblock_flags;
  853. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  854. /*
  855. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  856. * section. (see memcontrol.h/page_cgroup.h about this.)
  857. */
  858. struct page_cgroup *page_cgroup;
  859. unsigned long pad;
  860. #endif
  861. };
  862. #ifdef CONFIG_SPARSEMEM_EXTREME
  863. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  864. #else
  865. #define SECTIONS_PER_ROOT 1
  866. #endif
  867. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  868. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  869. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  870. #ifdef CONFIG_SPARSEMEM_EXTREME
  871. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  872. #else
  873. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  874. #endif
  875. static inline struct mem_section *__nr_to_section(unsigned long nr)
  876. {
  877. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  878. return NULL;
  879. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  880. }
  881. extern int __section_nr(struct mem_section* ms);
  882. extern unsigned long usemap_size(void);
  883. /*
  884. * We use the lower bits of the mem_map pointer to store
  885. * a little bit of information. There should be at least
  886. * 3 bits here due to 32-bit alignment.
  887. */
  888. #define SECTION_MARKED_PRESENT (1UL<<0)
  889. #define SECTION_HAS_MEM_MAP (1UL<<1)
  890. #define SECTION_MAP_LAST_BIT (1UL<<2)
  891. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  892. #define SECTION_NID_SHIFT 2
  893. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  894. {
  895. unsigned long map = section->section_mem_map;
  896. map &= SECTION_MAP_MASK;
  897. return (struct page *)map;
  898. }
  899. static inline int present_section(struct mem_section *section)
  900. {
  901. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  902. }
  903. static inline int present_section_nr(unsigned long nr)
  904. {
  905. return present_section(__nr_to_section(nr));
  906. }
  907. static inline int valid_section(struct mem_section *section)
  908. {
  909. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  910. }
  911. static inline int valid_section_nr(unsigned long nr)
  912. {
  913. return valid_section(__nr_to_section(nr));
  914. }
  915. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  916. {
  917. return __nr_to_section(pfn_to_section_nr(pfn));
  918. }
  919. static inline int pfn_valid(unsigned long pfn)
  920. {
  921. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  922. return 0;
  923. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  924. }
  925. static inline int pfn_present(unsigned long pfn)
  926. {
  927. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  928. return 0;
  929. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  930. }
  931. /*
  932. * These are _only_ used during initialisation, therefore they
  933. * can use __initdata ... They could have names to indicate
  934. * this restriction.
  935. */
  936. #ifdef CONFIG_NUMA
  937. #define pfn_to_nid(pfn) \
  938. ({ \
  939. unsigned long __pfn_to_nid_pfn = (pfn); \
  940. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  941. })
  942. #else
  943. #define pfn_to_nid(pfn) (0)
  944. #endif
  945. #define early_pfn_valid(pfn) pfn_valid(pfn)
  946. void sparse_init(void);
  947. #else
  948. #define sparse_init() do {} while (0)
  949. #define sparse_index_init(_sec, _nid) do {} while (0)
  950. #endif /* CONFIG_SPARSEMEM */
  951. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  952. bool early_pfn_in_nid(unsigned long pfn, int nid);
  953. #else
  954. #define early_pfn_in_nid(pfn, nid) (1)
  955. #endif
  956. #ifndef early_pfn_valid
  957. #define early_pfn_valid(pfn) (1)
  958. #endif
  959. void memory_present(int nid, unsigned long start, unsigned long end);
  960. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  961. /*
  962. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  963. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  964. * pfn_valid_within() should be used in this case; we optimise this away
  965. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  966. */
  967. #ifdef CONFIG_HOLES_IN_ZONE
  968. #define pfn_valid_within(pfn) pfn_valid(pfn)
  969. #else
  970. #define pfn_valid_within(pfn) (1)
  971. #endif
  972. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  973. /*
  974. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  975. * associated with it or not. In FLATMEM, it is expected that holes always
  976. * have valid memmap as long as there is valid PFNs either side of the hole.
  977. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  978. * entire section.
  979. *
  980. * However, an ARM, and maybe other embedded architectures in the future
  981. * free memmap backing holes to save memory on the assumption the memmap is
  982. * never used. The page_zone linkages are then broken even though pfn_valid()
  983. * returns true. A walker of the full memmap must then do this additional
  984. * check to ensure the memmap they are looking at is sane by making sure
  985. * the zone and PFN linkages are still valid. This is expensive, but walkers
  986. * of the full memmap are extremely rare.
  987. */
  988. int memmap_valid_within(unsigned long pfn,
  989. struct page *page, struct zone *zone);
  990. #else
  991. static inline int memmap_valid_within(unsigned long pfn,
  992. struct page *page, struct zone *zone)
  993. {
  994. return 1;
  995. }
  996. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  997. #endif /* !__GENERATING_BOUNDS.H */
  998. #endif /* !__ASSEMBLY__ */
  999. #endif /* _LINUX_MMZONE_H */