slub.c 126 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <linux/memcontrol.h>
  34. #include <trace/events/kmem.h>
  35. #include "internal.h"
  36. /*
  37. * Lock order:
  38. * 1. slab_mutex (Global Mutex)
  39. * 2. node->list_lock
  40. * 3. slab_lock(page) (Only on some arches and for debugging)
  41. *
  42. * slab_mutex
  43. *
  44. * The role of the slab_mutex is to protect the list of all the slabs
  45. * and to synchronize major metadata changes to slab cache structures.
  46. *
  47. * The slab_lock is only used for debugging and on arches that do not
  48. * have the ability to do a cmpxchg_double. It only protects the second
  49. * double word in the page struct. Meaning
  50. * A. page->freelist -> List of object free in a page
  51. * B. page->counters -> Counters of objects
  52. * C. page->frozen -> frozen state
  53. *
  54. * If a slab is frozen then it is exempt from list management. It is not
  55. * on any list. The processor that froze the slab is the one who can
  56. * perform list operations on the page. Other processors may put objects
  57. * onto the freelist but the processor that froze the slab is the only
  58. * one that can retrieve the objects from the page's freelist.
  59. *
  60. * The list_lock protects the partial and full list on each node and
  61. * the partial slab counter. If taken then no new slabs may be added or
  62. * removed from the lists nor make the number of partial slabs be modified.
  63. * (Note that the total number of slabs is an atomic value that may be
  64. * modified without taking the list lock).
  65. *
  66. * The list_lock is a centralized lock and thus we avoid taking it as
  67. * much as possible. As long as SLUB does not have to handle partial
  68. * slabs, operations can continue without any centralized lock. F.e.
  69. * allocating a long series of objects that fill up slabs does not require
  70. * the list lock.
  71. * Interrupts are disabled during allocation and deallocation in order to
  72. * make the slab allocator safe to use in the context of an irq. In addition
  73. * interrupts are disabled to ensure that the processor does not change
  74. * while handling per_cpu slabs, due to kernel preemption.
  75. *
  76. * SLUB assigns one slab for allocation to each processor.
  77. * Allocations only occur from these slabs called cpu slabs.
  78. *
  79. * Slabs with free elements are kept on a partial list and during regular
  80. * operations no list for full slabs is used. If an object in a full slab is
  81. * freed then the slab will show up again on the partial lists.
  82. * We track full slabs for debugging purposes though because otherwise we
  83. * cannot scan all objects.
  84. *
  85. * Slabs are freed when they become empty. Teardown and setup is
  86. * minimal so we rely on the page allocators per cpu caches for
  87. * fast frees and allocs.
  88. *
  89. * Overloading of page flags that are otherwise used for LRU management.
  90. *
  91. * PageActive The slab is frozen and exempt from list processing.
  92. * This means that the slab is dedicated to a purpose
  93. * such as satisfying allocations for a specific
  94. * processor. Objects may be freed in the slab while
  95. * it is frozen but slab_free will then skip the usual
  96. * list operations. It is up to the processor holding
  97. * the slab to integrate the slab into the slab lists
  98. * when the slab is no longer needed.
  99. *
  100. * One use of this flag is to mark slabs that are
  101. * used for allocations. Then such a slab becomes a cpu
  102. * slab. The cpu slab may be equipped with an additional
  103. * freelist that allows lockless access to
  104. * free objects in addition to the regular freelist
  105. * that requires the slab lock.
  106. *
  107. * PageError Slab requires special handling due to debug
  108. * options set. This moves slab handling out of
  109. * the fast path and disables lockless freelists.
  110. */
  111. static inline int kmem_cache_debug(struct kmem_cache *s)
  112. {
  113. #ifdef CONFIG_SLUB_DEBUG
  114. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  115. #else
  116. return 0;
  117. #endif
  118. }
  119. /*
  120. * Issues still to be resolved:
  121. *
  122. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  123. *
  124. * - Variable sizing of the per node arrays
  125. */
  126. /* Enable to test recovery from slab corruption on boot */
  127. #undef SLUB_RESILIENCY_TEST
  128. /* Enable to log cmpxchg failures */
  129. #undef SLUB_DEBUG_CMPXCHG
  130. /*
  131. * Mininum number of partial slabs. These will be left on the partial
  132. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  133. */
  134. #define MIN_PARTIAL 5
  135. /*
  136. * Maximum number of desirable partial slabs.
  137. * The existence of more partial slabs makes kmem_cache_shrink
  138. * sort the partial list by the number of objects in the.
  139. */
  140. #define MAX_PARTIAL 10
  141. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  142. SLAB_POISON | SLAB_STORE_USER)
  143. /*
  144. * Debugging flags that require metadata to be stored in the slab. These get
  145. * disabled when slub_debug=O is used and a cache's min order increases with
  146. * metadata.
  147. */
  148. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  149. /*
  150. * Set of flags that will prevent slab merging
  151. */
  152. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  153. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  154. SLAB_FAILSLAB)
  155. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  156. SLAB_CACHE_DMA | SLAB_NOTRACK)
  157. #define OO_SHIFT 16
  158. #define OO_MASK ((1 << OO_SHIFT) - 1)
  159. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  160. /* Internal SLUB flags */
  161. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  162. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  163. #ifdef CONFIG_SMP
  164. static struct notifier_block slab_notifier;
  165. #endif
  166. /*
  167. * Tracking user of a slab.
  168. */
  169. #define TRACK_ADDRS_COUNT 16
  170. struct track {
  171. unsigned long addr; /* Called from address */
  172. #ifdef CONFIG_STACKTRACE
  173. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  174. #endif
  175. int cpu; /* Was running on cpu */
  176. int pid; /* Pid context */
  177. unsigned long when; /* When did the operation occur */
  178. };
  179. enum track_item { TRACK_ALLOC, TRACK_FREE };
  180. #ifdef CONFIG_SYSFS
  181. static int sysfs_slab_add(struct kmem_cache *);
  182. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  183. static void sysfs_slab_remove(struct kmem_cache *);
  184. #else
  185. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  186. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  187. { return 0; }
  188. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  189. #endif
  190. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  191. {
  192. #ifdef CONFIG_SLUB_STATS
  193. __this_cpu_inc(s->cpu_slab->stat[si]);
  194. #endif
  195. }
  196. /********************************************************************
  197. * Core slab cache functions
  198. *******************************************************************/
  199. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  200. {
  201. return s->node[node];
  202. }
  203. /* Verify that a pointer has an address that is valid within a slab page */
  204. static inline int check_valid_pointer(struct kmem_cache *s,
  205. struct page *page, const void *object)
  206. {
  207. void *base;
  208. if (!object)
  209. return 1;
  210. base = page_address(page);
  211. if (object < base || object >= base + page->objects * s->size ||
  212. (object - base) % s->size) {
  213. return 0;
  214. }
  215. return 1;
  216. }
  217. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  218. {
  219. return *(void **)(object + s->offset);
  220. }
  221. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  222. {
  223. prefetch(object + s->offset);
  224. }
  225. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  226. {
  227. void *p;
  228. #ifdef CONFIG_DEBUG_PAGEALLOC
  229. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  230. #else
  231. p = get_freepointer(s, object);
  232. #endif
  233. return p;
  234. }
  235. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  236. {
  237. *(void **)(object + s->offset) = fp;
  238. }
  239. /* Loop over all objects in a slab */
  240. #define for_each_object(__p, __s, __addr, __objects) \
  241. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  242. __p += (__s)->size)
  243. /* Determine object index from a given position */
  244. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  245. {
  246. return (p - addr) / s->size;
  247. }
  248. static inline size_t slab_ksize(const struct kmem_cache *s)
  249. {
  250. #ifdef CONFIG_SLUB_DEBUG
  251. /*
  252. * Debugging requires use of the padding between object
  253. * and whatever may come after it.
  254. */
  255. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  256. return s->object_size;
  257. #endif
  258. /*
  259. * If we have the need to store the freelist pointer
  260. * back there or track user information then we can
  261. * only use the space before that information.
  262. */
  263. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  264. return s->inuse;
  265. /*
  266. * Else we can use all the padding etc for the allocation
  267. */
  268. return s->size;
  269. }
  270. static inline int order_objects(int order, unsigned long size, int reserved)
  271. {
  272. return ((PAGE_SIZE << order) - reserved) / size;
  273. }
  274. static inline struct kmem_cache_order_objects oo_make(int order,
  275. unsigned long size, int reserved)
  276. {
  277. struct kmem_cache_order_objects x = {
  278. (order << OO_SHIFT) + order_objects(order, size, reserved)
  279. };
  280. return x;
  281. }
  282. static inline int oo_order(struct kmem_cache_order_objects x)
  283. {
  284. return x.x >> OO_SHIFT;
  285. }
  286. static inline int oo_objects(struct kmem_cache_order_objects x)
  287. {
  288. return x.x & OO_MASK;
  289. }
  290. /*
  291. * Per slab locking using the pagelock
  292. */
  293. static __always_inline void slab_lock(struct page *page)
  294. {
  295. bit_spin_lock(PG_locked, &page->flags);
  296. }
  297. static __always_inline void slab_unlock(struct page *page)
  298. {
  299. __bit_spin_unlock(PG_locked, &page->flags);
  300. }
  301. /* Interrupts must be disabled (for the fallback code to work right) */
  302. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  303. void *freelist_old, unsigned long counters_old,
  304. void *freelist_new, unsigned long counters_new,
  305. const char *n)
  306. {
  307. VM_BUG_ON(!irqs_disabled());
  308. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  309. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  310. if (s->flags & __CMPXCHG_DOUBLE) {
  311. if (cmpxchg_double(&page->freelist, &page->counters,
  312. freelist_old, counters_old,
  313. freelist_new, counters_new))
  314. return 1;
  315. } else
  316. #endif
  317. {
  318. slab_lock(page);
  319. if (page->freelist == freelist_old && page->counters == counters_old) {
  320. page->freelist = freelist_new;
  321. page->counters = counters_new;
  322. slab_unlock(page);
  323. return 1;
  324. }
  325. slab_unlock(page);
  326. }
  327. cpu_relax();
  328. stat(s, CMPXCHG_DOUBLE_FAIL);
  329. #ifdef SLUB_DEBUG_CMPXCHG
  330. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  331. #endif
  332. return 0;
  333. }
  334. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  335. void *freelist_old, unsigned long counters_old,
  336. void *freelist_new, unsigned long counters_new,
  337. const char *n)
  338. {
  339. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  340. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  341. if (s->flags & __CMPXCHG_DOUBLE) {
  342. if (cmpxchg_double(&page->freelist, &page->counters,
  343. freelist_old, counters_old,
  344. freelist_new, counters_new))
  345. return 1;
  346. } else
  347. #endif
  348. {
  349. unsigned long flags;
  350. local_irq_save(flags);
  351. slab_lock(page);
  352. if (page->freelist == freelist_old && page->counters == counters_old) {
  353. page->freelist = freelist_new;
  354. page->counters = counters_new;
  355. slab_unlock(page);
  356. local_irq_restore(flags);
  357. return 1;
  358. }
  359. slab_unlock(page);
  360. local_irq_restore(flags);
  361. }
  362. cpu_relax();
  363. stat(s, CMPXCHG_DOUBLE_FAIL);
  364. #ifdef SLUB_DEBUG_CMPXCHG
  365. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  366. #endif
  367. return 0;
  368. }
  369. #ifdef CONFIG_SLUB_DEBUG
  370. /*
  371. * Determine a map of object in use on a page.
  372. *
  373. * Node listlock must be held to guarantee that the page does
  374. * not vanish from under us.
  375. */
  376. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  377. {
  378. void *p;
  379. void *addr = page_address(page);
  380. for (p = page->freelist; p; p = get_freepointer(s, p))
  381. set_bit(slab_index(p, s, addr), map);
  382. }
  383. /*
  384. * Debug settings:
  385. */
  386. #ifdef CONFIG_SLUB_DEBUG_ON
  387. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  388. #else
  389. static int slub_debug;
  390. #endif
  391. static char *slub_debug_slabs;
  392. static int disable_higher_order_debug;
  393. /*
  394. * Object debugging
  395. */
  396. static void print_section(char *text, u8 *addr, unsigned int length)
  397. {
  398. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  399. length, 1);
  400. }
  401. static struct track *get_track(struct kmem_cache *s, void *object,
  402. enum track_item alloc)
  403. {
  404. struct track *p;
  405. if (s->offset)
  406. p = object + s->offset + sizeof(void *);
  407. else
  408. p = object + s->inuse;
  409. return p + alloc;
  410. }
  411. static void set_track(struct kmem_cache *s, void *object,
  412. enum track_item alloc, unsigned long addr)
  413. {
  414. struct track *p = get_track(s, object, alloc);
  415. if (addr) {
  416. #ifdef CONFIG_STACKTRACE
  417. struct stack_trace trace;
  418. int i;
  419. trace.nr_entries = 0;
  420. trace.max_entries = TRACK_ADDRS_COUNT;
  421. trace.entries = p->addrs;
  422. trace.skip = 3;
  423. save_stack_trace(&trace);
  424. /* See rant in lockdep.c */
  425. if (trace.nr_entries != 0 &&
  426. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  427. trace.nr_entries--;
  428. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  429. p->addrs[i] = 0;
  430. #endif
  431. p->addr = addr;
  432. p->cpu = smp_processor_id();
  433. p->pid = current->pid;
  434. p->when = jiffies;
  435. } else
  436. memset(p, 0, sizeof(struct track));
  437. }
  438. static void init_tracking(struct kmem_cache *s, void *object)
  439. {
  440. if (!(s->flags & SLAB_STORE_USER))
  441. return;
  442. set_track(s, object, TRACK_FREE, 0UL);
  443. set_track(s, object, TRACK_ALLOC, 0UL);
  444. }
  445. static void print_track(const char *s, struct track *t)
  446. {
  447. if (!t->addr)
  448. return;
  449. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  450. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  451. #ifdef CONFIG_STACKTRACE
  452. {
  453. int i;
  454. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  455. if (t->addrs[i])
  456. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  457. else
  458. break;
  459. }
  460. #endif
  461. }
  462. static void print_tracking(struct kmem_cache *s, void *object)
  463. {
  464. if (!(s->flags & SLAB_STORE_USER))
  465. return;
  466. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  467. print_track("Freed", get_track(s, object, TRACK_FREE));
  468. }
  469. static void print_page_info(struct page *page)
  470. {
  471. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  472. page, page->objects, page->inuse, page->freelist, page->flags);
  473. }
  474. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  475. {
  476. va_list args;
  477. char buf[100];
  478. va_start(args, fmt);
  479. vsnprintf(buf, sizeof(buf), fmt, args);
  480. va_end(args);
  481. printk(KERN_ERR "========================================"
  482. "=====================================\n");
  483. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  484. printk(KERN_ERR "----------------------------------------"
  485. "-------------------------------------\n\n");
  486. add_taint(TAINT_BAD_PAGE);
  487. }
  488. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  489. {
  490. va_list args;
  491. char buf[100];
  492. va_start(args, fmt);
  493. vsnprintf(buf, sizeof(buf), fmt, args);
  494. va_end(args);
  495. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  496. }
  497. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  498. {
  499. unsigned int off; /* Offset of last byte */
  500. u8 *addr = page_address(page);
  501. print_tracking(s, p);
  502. print_page_info(page);
  503. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  504. p, p - addr, get_freepointer(s, p));
  505. if (p > addr + 16)
  506. print_section("Bytes b4 ", p - 16, 16);
  507. print_section("Object ", p, min_t(unsigned long, s->object_size,
  508. PAGE_SIZE));
  509. if (s->flags & SLAB_RED_ZONE)
  510. print_section("Redzone ", p + s->object_size,
  511. s->inuse - s->object_size);
  512. if (s->offset)
  513. off = s->offset + sizeof(void *);
  514. else
  515. off = s->inuse;
  516. if (s->flags & SLAB_STORE_USER)
  517. off += 2 * sizeof(struct track);
  518. if (off != s->size)
  519. /* Beginning of the filler is the free pointer */
  520. print_section("Padding ", p + off, s->size - off);
  521. dump_stack();
  522. }
  523. static void object_err(struct kmem_cache *s, struct page *page,
  524. u8 *object, char *reason)
  525. {
  526. slab_bug(s, "%s", reason);
  527. print_trailer(s, page, object);
  528. }
  529. static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
  530. {
  531. va_list args;
  532. char buf[100];
  533. va_start(args, fmt);
  534. vsnprintf(buf, sizeof(buf), fmt, args);
  535. va_end(args);
  536. slab_bug(s, "%s", buf);
  537. print_page_info(page);
  538. dump_stack();
  539. }
  540. static void init_object(struct kmem_cache *s, void *object, u8 val)
  541. {
  542. u8 *p = object;
  543. if (s->flags & __OBJECT_POISON) {
  544. memset(p, POISON_FREE, s->object_size - 1);
  545. p[s->object_size - 1] = POISON_END;
  546. }
  547. if (s->flags & SLAB_RED_ZONE)
  548. memset(p + s->object_size, val, s->inuse - s->object_size);
  549. }
  550. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  551. void *from, void *to)
  552. {
  553. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  554. memset(from, data, to - from);
  555. }
  556. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  557. u8 *object, char *what,
  558. u8 *start, unsigned int value, unsigned int bytes)
  559. {
  560. u8 *fault;
  561. u8 *end;
  562. fault = memchr_inv(start, value, bytes);
  563. if (!fault)
  564. return 1;
  565. end = start + bytes;
  566. while (end > fault && end[-1] == value)
  567. end--;
  568. slab_bug(s, "%s overwritten", what);
  569. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  570. fault, end - 1, fault[0], value);
  571. print_trailer(s, page, object);
  572. restore_bytes(s, what, value, fault, end);
  573. return 0;
  574. }
  575. /*
  576. * Object layout:
  577. *
  578. * object address
  579. * Bytes of the object to be managed.
  580. * If the freepointer may overlay the object then the free
  581. * pointer is the first word of the object.
  582. *
  583. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  584. * 0xa5 (POISON_END)
  585. *
  586. * object + s->object_size
  587. * Padding to reach word boundary. This is also used for Redzoning.
  588. * Padding is extended by another word if Redzoning is enabled and
  589. * object_size == inuse.
  590. *
  591. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  592. * 0xcc (RED_ACTIVE) for objects in use.
  593. *
  594. * object + s->inuse
  595. * Meta data starts here.
  596. *
  597. * A. Free pointer (if we cannot overwrite object on free)
  598. * B. Tracking data for SLAB_STORE_USER
  599. * C. Padding to reach required alignment boundary or at mininum
  600. * one word if debugging is on to be able to detect writes
  601. * before the word boundary.
  602. *
  603. * Padding is done using 0x5a (POISON_INUSE)
  604. *
  605. * object + s->size
  606. * Nothing is used beyond s->size.
  607. *
  608. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  609. * ignored. And therefore no slab options that rely on these boundaries
  610. * may be used with merged slabcaches.
  611. */
  612. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  613. {
  614. unsigned long off = s->inuse; /* The end of info */
  615. if (s->offset)
  616. /* Freepointer is placed after the object. */
  617. off += sizeof(void *);
  618. if (s->flags & SLAB_STORE_USER)
  619. /* We also have user information there */
  620. off += 2 * sizeof(struct track);
  621. if (s->size == off)
  622. return 1;
  623. return check_bytes_and_report(s, page, p, "Object padding",
  624. p + off, POISON_INUSE, s->size - off);
  625. }
  626. /* Check the pad bytes at the end of a slab page */
  627. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  628. {
  629. u8 *start;
  630. u8 *fault;
  631. u8 *end;
  632. int length;
  633. int remainder;
  634. if (!(s->flags & SLAB_POISON))
  635. return 1;
  636. start = page_address(page);
  637. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  638. end = start + length;
  639. remainder = length % s->size;
  640. if (!remainder)
  641. return 1;
  642. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  643. if (!fault)
  644. return 1;
  645. while (end > fault && end[-1] == POISON_INUSE)
  646. end--;
  647. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  648. print_section("Padding ", end - remainder, remainder);
  649. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  650. return 0;
  651. }
  652. static int check_object(struct kmem_cache *s, struct page *page,
  653. void *object, u8 val)
  654. {
  655. u8 *p = object;
  656. u8 *endobject = object + s->object_size;
  657. if (s->flags & SLAB_RED_ZONE) {
  658. if (!check_bytes_and_report(s, page, object, "Redzone",
  659. endobject, val, s->inuse - s->object_size))
  660. return 0;
  661. } else {
  662. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  663. check_bytes_and_report(s, page, p, "Alignment padding",
  664. endobject, POISON_INUSE, s->inuse - s->object_size);
  665. }
  666. }
  667. if (s->flags & SLAB_POISON) {
  668. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  669. (!check_bytes_and_report(s, page, p, "Poison", p,
  670. POISON_FREE, s->object_size - 1) ||
  671. !check_bytes_and_report(s, page, p, "Poison",
  672. p + s->object_size - 1, POISON_END, 1)))
  673. return 0;
  674. /*
  675. * check_pad_bytes cleans up on its own.
  676. */
  677. check_pad_bytes(s, page, p);
  678. }
  679. if (!s->offset && val == SLUB_RED_ACTIVE)
  680. /*
  681. * Object and freepointer overlap. Cannot check
  682. * freepointer while object is allocated.
  683. */
  684. return 1;
  685. /* Check free pointer validity */
  686. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  687. object_err(s, page, p, "Freepointer corrupt");
  688. /*
  689. * No choice but to zap it and thus lose the remainder
  690. * of the free objects in this slab. May cause
  691. * another error because the object count is now wrong.
  692. */
  693. set_freepointer(s, p, NULL);
  694. return 0;
  695. }
  696. return 1;
  697. }
  698. static int check_slab(struct kmem_cache *s, struct page *page)
  699. {
  700. int maxobj;
  701. VM_BUG_ON(!irqs_disabled());
  702. if (!PageSlab(page)) {
  703. slab_err(s, page, "Not a valid slab page");
  704. return 0;
  705. }
  706. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  707. if (page->objects > maxobj) {
  708. slab_err(s, page, "objects %u > max %u",
  709. s->name, page->objects, maxobj);
  710. return 0;
  711. }
  712. if (page->inuse > page->objects) {
  713. slab_err(s, page, "inuse %u > max %u",
  714. s->name, page->inuse, page->objects);
  715. return 0;
  716. }
  717. /* Slab_pad_check fixes things up after itself */
  718. slab_pad_check(s, page);
  719. return 1;
  720. }
  721. /*
  722. * Determine if a certain object on a page is on the freelist. Must hold the
  723. * slab lock to guarantee that the chains are in a consistent state.
  724. */
  725. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  726. {
  727. int nr = 0;
  728. void *fp;
  729. void *object = NULL;
  730. unsigned long max_objects;
  731. fp = page->freelist;
  732. while (fp && nr <= page->objects) {
  733. if (fp == search)
  734. return 1;
  735. if (!check_valid_pointer(s, page, fp)) {
  736. if (object) {
  737. object_err(s, page, object,
  738. "Freechain corrupt");
  739. set_freepointer(s, object, NULL);
  740. break;
  741. } else {
  742. slab_err(s, page, "Freepointer corrupt");
  743. page->freelist = NULL;
  744. page->inuse = page->objects;
  745. slab_fix(s, "Freelist cleared");
  746. return 0;
  747. }
  748. break;
  749. }
  750. object = fp;
  751. fp = get_freepointer(s, object);
  752. nr++;
  753. }
  754. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  755. if (max_objects > MAX_OBJS_PER_PAGE)
  756. max_objects = MAX_OBJS_PER_PAGE;
  757. if (page->objects != max_objects) {
  758. slab_err(s, page, "Wrong number of objects. Found %d but "
  759. "should be %d", page->objects, max_objects);
  760. page->objects = max_objects;
  761. slab_fix(s, "Number of objects adjusted.");
  762. }
  763. if (page->inuse != page->objects - nr) {
  764. slab_err(s, page, "Wrong object count. Counter is %d but "
  765. "counted were %d", page->inuse, page->objects - nr);
  766. page->inuse = page->objects - nr;
  767. slab_fix(s, "Object count adjusted.");
  768. }
  769. return search == NULL;
  770. }
  771. static void trace(struct kmem_cache *s, struct page *page, void *object,
  772. int alloc)
  773. {
  774. if (s->flags & SLAB_TRACE) {
  775. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  776. s->name,
  777. alloc ? "alloc" : "free",
  778. object, page->inuse,
  779. page->freelist);
  780. if (!alloc)
  781. print_section("Object ", (void *)object, s->object_size);
  782. dump_stack();
  783. }
  784. }
  785. /*
  786. * Hooks for other subsystems that check memory allocations. In a typical
  787. * production configuration these hooks all should produce no code at all.
  788. */
  789. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  790. {
  791. flags &= gfp_allowed_mask;
  792. lockdep_trace_alloc(flags);
  793. might_sleep_if(flags & __GFP_WAIT);
  794. return should_failslab(s->object_size, flags, s->flags);
  795. }
  796. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  797. {
  798. flags &= gfp_allowed_mask;
  799. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  800. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  801. }
  802. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  803. {
  804. kmemleak_free_recursive(x, s->flags);
  805. /*
  806. * Trouble is that we may no longer disable interupts in the fast path
  807. * So in order to make the debug calls that expect irqs to be
  808. * disabled we need to disable interrupts temporarily.
  809. */
  810. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  811. {
  812. unsigned long flags;
  813. local_irq_save(flags);
  814. kmemcheck_slab_free(s, x, s->object_size);
  815. debug_check_no_locks_freed(x, s->object_size);
  816. local_irq_restore(flags);
  817. }
  818. #endif
  819. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  820. debug_check_no_obj_freed(x, s->object_size);
  821. }
  822. /*
  823. * Tracking of fully allocated slabs for debugging purposes.
  824. *
  825. * list_lock must be held.
  826. */
  827. static void add_full(struct kmem_cache *s,
  828. struct kmem_cache_node *n, struct page *page)
  829. {
  830. if (!(s->flags & SLAB_STORE_USER))
  831. return;
  832. list_add(&page->lru, &n->full);
  833. }
  834. /*
  835. * list_lock must be held.
  836. */
  837. static void remove_full(struct kmem_cache *s, struct page *page)
  838. {
  839. if (!(s->flags & SLAB_STORE_USER))
  840. return;
  841. list_del(&page->lru);
  842. }
  843. /* Tracking of the number of slabs for debugging purposes */
  844. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  845. {
  846. struct kmem_cache_node *n = get_node(s, node);
  847. return atomic_long_read(&n->nr_slabs);
  848. }
  849. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  850. {
  851. return atomic_long_read(&n->nr_slabs);
  852. }
  853. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  854. {
  855. struct kmem_cache_node *n = get_node(s, node);
  856. /*
  857. * May be called early in order to allocate a slab for the
  858. * kmem_cache_node structure. Solve the chicken-egg
  859. * dilemma by deferring the increment of the count during
  860. * bootstrap (see early_kmem_cache_node_alloc).
  861. */
  862. if (n) {
  863. atomic_long_inc(&n->nr_slabs);
  864. atomic_long_add(objects, &n->total_objects);
  865. }
  866. }
  867. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  868. {
  869. struct kmem_cache_node *n = get_node(s, node);
  870. atomic_long_dec(&n->nr_slabs);
  871. atomic_long_sub(objects, &n->total_objects);
  872. }
  873. /* Object debug checks for alloc/free paths */
  874. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  875. void *object)
  876. {
  877. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  878. return;
  879. init_object(s, object, SLUB_RED_INACTIVE);
  880. init_tracking(s, object);
  881. }
  882. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  883. void *object, unsigned long addr)
  884. {
  885. if (!check_slab(s, page))
  886. goto bad;
  887. if (!check_valid_pointer(s, page, object)) {
  888. object_err(s, page, object, "Freelist Pointer check fails");
  889. goto bad;
  890. }
  891. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  892. goto bad;
  893. /* Success perform special debug activities for allocs */
  894. if (s->flags & SLAB_STORE_USER)
  895. set_track(s, object, TRACK_ALLOC, addr);
  896. trace(s, page, object, 1);
  897. init_object(s, object, SLUB_RED_ACTIVE);
  898. return 1;
  899. bad:
  900. if (PageSlab(page)) {
  901. /*
  902. * If this is a slab page then lets do the best we can
  903. * to avoid issues in the future. Marking all objects
  904. * as used avoids touching the remaining objects.
  905. */
  906. slab_fix(s, "Marking all objects used");
  907. page->inuse = page->objects;
  908. page->freelist = NULL;
  909. }
  910. return 0;
  911. }
  912. static noinline struct kmem_cache_node *free_debug_processing(
  913. struct kmem_cache *s, struct page *page, void *object,
  914. unsigned long addr, unsigned long *flags)
  915. {
  916. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  917. spin_lock_irqsave(&n->list_lock, *flags);
  918. slab_lock(page);
  919. if (!check_slab(s, page))
  920. goto fail;
  921. if (!check_valid_pointer(s, page, object)) {
  922. slab_err(s, page, "Invalid object pointer 0x%p", object);
  923. goto fail;
  924. }
  925. if (on_freelist(s, page, object)) {
  926. object_err(s, page, object, "Object already free");
  927. goto fail;
  928. }
  929. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  930. goto out;
  931. if (unlikely(s != page->slab_cache)) {
  932. if (!PageSlab(page)) {
  933. slab_err(s, page, "Attempt to free object(0x%p) "
  934. "outside of slab", object);
  935. } else if (!page->slab_cache) {
  936. printk(KERN_ERR
  937. "SLUB <none>: no slab for object 0x%p.\n",
  938. object);
  939. dump_stack();
  940. } else
  941. object_err(s, page, object,
  942. "page slab pointer corrupt.");
  943. goto fail;
  944. }
  945. if (s->flags & SLAB_STORE_USER)
  946. set_track(s, object, TRACK_FREE, addr);
  947. trace(s, page, object, 0);
  948. init_object(s, object, SLUB_RED_INACTIVE);
  949. out:
  950. slab_unlock(page);
  951. /*
  952. * Keep node_lock to preserve integrity
  953. * until the object is actually freed
  954. */
  955. return n;
  956. fail:
  957. slab_unlock(page);
  958. spin_unlock_irqrestore(&n->list_lock, *flags);
  959. slab_fix(s, "Object at 0x%p not freed", object);
  960. return NULL;
  961. }
  962. static int __init setup_slub_debug(char *str)
  963. {
  964. slub_debug = DEBUG_DEFAULT_FLAGS;
  965. if (*str++ != '=' || !*str)
  966. /*
  967. * No options specified. Switch on full debugging.
  968. */
  969. goto out;
  970. if (*str == ',')
  971. /*
  972. * No options but restriction on slabs. This means full
  973. * debugging for slabs matching a pattern.
  974. */
  975. goto check_slabs;
  976. if (tolower(*str) == 'o') {
  977. /*
  978. * Avoid enabling debugging on caches if its minimum order
  979. * would increase as a result.
  980. */
  981. disable_higher_order_debug = 1;
  982. goto out;
  983. }
  984. slub_debug = 0;
  985. if (*str == '-')
  986. /*
  987. * Switch off all debugging measures.
  988. */
  989. goto out;
  990. /*
  991. * Determine which debug features should be switched on
  992. */
  993. for (; *str && *str != ','; str++) {
  994. switch (tolower(*str)) {
  995. case 'f':
  996. slub_debug |= SLAB_DEBUG_FREE;
  997. break;
  998. case 'z':
  999. slub_debug |= SLAB_RED_ZONE;
  1000. break;
  1001. case 'p':
  1002. slub_debug |= SLAB_POISON;
  1003. break;
  1004. case 'u':
  1005. slub_debug |= SLAB_STORE_USER;
  1006. break;
  1007. case 't':
  1008. slub_debug |= SLAB_TRACE;
  1009. break;
  1010. case 'a':
  1011. slub_debug |= SLAB_FAILSLAB;
  1012. break;
  1013. default:
  1014. printk(KERN_ERR "slub_debug option '%c' "
  1015. "unknown. skipped\n", *str);
  1016. }
  1017. }
  1018. check_slabs:
  1019. if (*str == ',')
  1020. slub_debug_slabs = str + 1;
  1021. out:
  1022. return 1;
  1023. }
  1024. __setup("slub_debug", setup_slub_debug);
  1025. static unsigned long kmem_cache_flags(unsigned long object_size,
  1026. unsigned long flags, const char *name,
  1027. void (*ctor)(void *))
  1028. {
  1029. /*
  1030. * Enable debugging if selected on the kernel commandline.
  1031. */
  1032. if (slub_debug && (!slub_debug_slabs ||
  1033. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1034. flags |= slub_debug;
  1035. return flags;
  1036. }
  1037. #else
  1038. static inline void setup_object_debug(struct kmem_cache *s,
  1039. struct page *page, void *object) {}
  1040. static inline int alloc_debug_processing(struct kmem_cache *s,
  1041. struct page *page, void *object, unsigned long addr) { return 0; }
  1042. static inline struct kmem_cache_node *free_debug_processing(
  1043. struct kmem_cache *s, struct page *page, void *object,
  1044. unsigned long addr, unsigned long *flags) { return NULL; }
  1045. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1046. { return 1; }
  1047. static inline int check_object(struct kmem_cache *s, struct page *page,
  1048. void *object, u8 val) { return 1; }
  1049. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1050. struct page *page) {}
  1051. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1052. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1053. unsigned long flags, const char *name,
  1054. void (*ctor)(void *))
  1055. {
  1056. return flags;
  1057. }
  1058. #define slub_debug 0
  1059. #define disable_higher_order_debug 0
  1060. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1061. { return 0; }
  1062. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1063. { return 0; }
  1064. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1065. int objects) {}
  1066. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1067. int objects) {}
  1068. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1069. { return 0; }
  1070. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1071. void *object) {}
  1072. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1073. #endif /* CONFIG_SLUB_DEBUG */
  1074. /*
  1075. * Slab allocation and freeing
  1076. */
  1077. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1078. struct kmem_cache_order_objects oo)
  1079. {
  1080. int order = oo_order(oo);
  1081. flags |= __GFP_NOTRACK;
  1082. if (node == NUMA_NO_NODE)
  1083. return alloc_pages(flags, order);
  1084. else
  1085. return alloc_pages_exact_node(node, flags, order);
  1086. }
  1087. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1088. {
  1089. struct page *page;
  1090. struct kmem_cache_order_objects oo = s->oo;
  1091. gfp_t alloc_gfp;
  1092. flags &= gfp_allowed_mask;
  1093. if (flags & __GFP_WAIT)
  1094. local_irq_enable();
  1095. flags |= s->allocflags;
  1096. /*
  1097. * Let the initial higher-order allocation fail under memory pressure
  1098. * so we fall-back to the minimum order allocation.
  1099. */
  1100. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1101. page = alloc_slab_page(alloc_gfp, node, oo);
  1102. if (unlikely(!page)) {
  1103. oo = s->min;
  1104. /*
  1105. * Allocation may have failed due to fragmentation.
  1106. * Try a lower order alloc if possible
  1107. */
  1108. page = alloc_slab_page(flags, node, oo);
  1109. if (page)
  1110. stat(s, ORDER_FALLBACK);
  1111. }
  1112. if (kmemcheck_enabled && page
  1113. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1114. int pages = 1 << oo_order(oo);
  1115. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1116. /*
  1117. * Objects from caches that have a constructor don't get
  1118. * cleared when they're allocated, so we need to do it here.
  1119. */
  1120. if (s->ctor)
  1121. kmemcheck_mark_uninitialized_pages(page, pages);
  1122. else
  1123. kmemcheck_mark_unallocated_pages(page, pages);
  1124. }
  1125. if (flags & __GFP_WAIT)
  1126. local_irq_disable();
  1127. if (!page)
  1128. return NULL;
  1129. page->objects = oo_objects(oo);
  1130. mod_zone_page_state(page_zone(page),
  1131. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1132. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1133. 1 << oo_order(oo));
  1134. return page;
  1135. }
  1136. static void setup_object(struct kmem_cache *s, struct page *page,
  1137. void *object)
  1138. {
  1139. setup_object_debug(s, page, object);
  1140. if (unlikely(s->ctor))
  1141. s->ctor(object);
  1142. }
  1143. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1144. {
  1145. struct page *page;
  1146. void *start;
  1147. void *last;
  1148. void *p;
  1149. int order;
  1150. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1151. page = allocate_slab(s,
  1152. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1153. if (!page)
  1154. goto out;
  1155. order = compound_order(page);
  1156. inc_slabs_node(s, page_to_nid(page), page->objects);
  1157. memcg_bind_pages(s, order);
  1158. page->slab_cache = s;
  1159. __SetPageSlab(page);
  1160. if (page->pfmemalloc)
  1161. SetPageSlabPfmemalloc(page);
  1162. start = page_address(page);
  1163. if (unlikely(s->flags & SLAB_POISON))
  1164. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1165. last = start;
  1166. for_each_object(p, s, start, page->objects) {
  1167. setup_object(s, page, last);
  1168. set_freepointer(s, last, p);
  1169. last = p;
  1170. }
  1171. setup_object(s, page, last);
  1172. set_freepointer(s, last, NULL);
  1173. page->freelist = start;
  1174. page->inuse = page->objects;
  1175. page->frozen = 1;
  1176. out:
  1177. return page;
  1178. }
  1179. static void __free_slab(struct kmem_cache *s, struct page *page)
  1180. {
  1181. int order = compound_order(page);
  1182. int pages = 1 << order;
  1183. if (kmem_cache_debug(s)) {
  1184. void *p;
  1185. slab_pad_check(s, page);
  1186. for_each_object(p, s, page_address(page),
  1187. page->objects)
  1188. check_object(s, page, p, SLUB_RED_INACTIVE);
  1189. }
  1190. kmemcheck_free_shadow(page, compound_order(page));
  1191. mod_zone_page_state(page_zone(page),
  1192. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1193. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1194. -pages);
  1195. __ClearPageSlabPfmemalloc(page);
  1196. __ClearPageSlab(page);
  1197. memcg_release_pages(s, order);
  1198. reset_page_mapcount(page);
  1199. if (current->reclaim_state)
  1200. current->reclaim_state->reclaimed_slab += pages;
  1201. __free_memcg_kmem_pages(page, order);
  1202. }
  1203. #define need_reserve_slab_rcu \
  1204. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1205. static void rcu_free_slab(struct rcu_head *h)
  1206. {
  1207. struct page *page;
  1208. if (need_reserve_slab_rcu)
  1209. page = virt_to_head_page(h);
  1210. else
  1211. page = container_of((struct list_head *)h, struct page, lru);
  1212. __free_slab(page->slab_cache, page);
  1213. }
  1214. static void free_slab(struct kmem_cache *s, struct page *page)
  1215. {
  1216. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1217. struct rcu_head *head;
  1218. if (need_reserve_slab_rcu) {
  1219. int order = compound_order(page);
  1220. int offset = (PAGE_SIZE << order) - s->reserved;
  1221. VM_BUG_ON(s->reserved != sizeof(*head));
  1222. head = page_address(page) + offset;
  1223. } else {
  1224. /*
  1225. * RCU free overloads the RCU head over the LRU
  1226. */
  1227. head = (void *)&page->lru;
  1228. }
  1229. call_rcu(head, rcu_free_slab);
  1230. } else
  1231. __free_slab(s, page);
  1232. }
  1233. static void discard_slab(struct kmem_cache *s, struct page *page)
  1234. {
  1235. dec_slabs_node(s, page_to_nid(page), page->objects);
  1236. free_slab(s, page);
  1237. }
  1238. /*
  1239. * Management of partially allocated slabs.
  1240. *
  1241. * list_lock must be held.
  1242. */
  1243. static inline void add_partial(struct kmem_cache_node *n,
  1244. struct page *page, int tail)
  1245. {
  1246. n->nr_partial++;
  1247. if (tail == DEACTIVATE_TO_TAIL)
  1248. list_add_tail(&page->lru, &n->partial);
  1249. else
  1250. list_add(&page->lru, &n->partial);
  1251. }
  1252. /*
  1253. * list_lock must be held.
  1254. */
  1255. static inline void remove_partial(struct kmem_cache_node *n,
  1256. struct page *page)
  1257. {
  1258. list_del(&page->lru);
  1259. n->nr_partial--;
  1260. }
  1261. /*
  1262. * Remove slab from the partial list, freeze it and
  1263. * return the pointer to the freelist.
  1264. *
  1265. * Returns a list of objects or NULL if it fails.
  1266. *
  1267. * Must hold list_lock since we modify the partial list.
  1268. */
  1269. static inline void *acquire_slab(struct kmem_cache *s,
  1270. struct kmem_cache_node *n, struct page *page,
  1271. int mode)
  1272. {
  1273. void *freelist;
  1274. unsigned long counters;
  1275. struct page new;
  1276. /*
  1277. * Zap the freelist and set the frozen bit.
  1278. * The old freelist is the list of objects for the
  1279. * per cpu allocation list.
  1280. */
  1281. freelist = page->freelist;
  1282. counters = page->counters;
  1283. new.counters = counters;
  1284. if (mode) {
  1285. new.inuse = page->objects;
  1286. new.freelist = NULL;
  1287. } else {
  1288. new.freelist = freelist;
  1289. }
  1290. VM_BUG_ON(new.frozen);
  1291. new.frozen = 1;
  1292. if (!__cmpxchg_double_slab(s, page,
  1293. freelist, counters,
  1294. new.freelist, new.counters,
  1295. "acquire_slab"))
  1296. return NULL;
  1297. remove_partial(n, page);
  1298. WARN_ON(!freelist);
  1299. return freelist;
  1300. }
  1301. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1302. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1303. /*
  1304. * Try to allocate a partial slab from a specific node.
  1305. */
  1306. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1307. struct kmem_cache_cpu *c, gfp_t flags)
  1308. {
  1309. struct page *page, *page2;
  1310. void *object = NULL;
  1311. /*
  1312. * Racy check. If we mistakenly see no partial slabs then we
  1313. * just allocate an empty slab. If we mistakenly try to get a
  1314. * partial slab and there is none available then get_partials()
  1315. * will return NULL.
  1316. */
  1317. if (!n || !n->nr_partial)
  1318. return NULL;
  1319. spin_lock(&n->list_lock);
  1320. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1321. void *t;
  1322. int available;
  1323. if (!pfmemalloc_match(page, flags))
  1324. continue;
  1325. t = acquire_slab(s, n, page, object == NULL);
  1326. if (!t)
  1327. break;
  1328. if (!object) {
  1329. c->page = page;
  1330. stat(s, ALLOC_FROM_PARTIAL);
  1331. object = t;
  1332. available = page->objects - page->inuse;
  1333. } else {
  1334. available = put_cpu_partial(s, page, 0);
  1335. stat(s, CPU_PARTIAL_NODE);
  1336. }
  1337. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1338. break;
  1339. }
  1340. spin_unlock(&n->list_lock);
  1341. return object;
  1342. }
  1343. /*
  1344. * Get a page from somewhere. Search in increasing NUMA distances.
  1345. */
  1346. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1347. struct kmem_cache_cpu *c)
  1348. {
  1349. #ifdef CONFIG_NUMA
  1350. struct zonelist *zonelist;
  1351. struct zoneref *z;
  1352. struct zone *zone;
  1353. enum zone_type high_zoneidx = gfp_zone(flags);
  1354. void *object;
  1355. unsigned int cpuset_mems_cookie;
  1356. /*
  1357. * The defrag ratio allows a configuration of the tradeoffs between
  1358. * inter node defragmentation and node local allocations. A lower
  1359. * defrag_ratio increases the tendency to do local allocations
  1360. * instead of attempting to obtain partial slabs from other nodes.
  1361. *
  1362. * If the defrag_ratio is set to 0 then kmalloc() always
  1363. * returns node local objects. If the ratio is higher then kmalloc()
  1364. * may return off node objects because partial slabs are obtained
  1365. * from other nodes and filled up.
  1366. *
  1367. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1368. * defrag_ratio = 1000) then every (well almost) allocation will
  1369. * first attempt to defrag slab caches on other nodes. This means
  1370. * scanning over all nodes to look for partial slabs which may be
  1371. * expensive if we do it every time we are trying to find a slab
  1372. * with available objects.
  1373. */
  1374. if (!s->remote_node_defrag_ratio ||
  1375. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1376. return NULL;
  1377. do {
  1378. cpuset_mems_cookie = get_mems_allowed();
  1379. zonelist = node_zonelist(slab_node(), flags);
  1380. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1381. struct kmem_cache_node *n;
  1382. n = get_node(s, zone_to_nid(zone));
  1383. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1384. n->nr_partial > s->min_partial) {
  1385. object = get_partial_node(s, n, c, flags);
  1386. if (object) {
  1387. /*
  1388. * Return the object even if
  1389. * put_mems_allowed indicated that
  1390. * the cpuset mems_allowed was
  1391. * updated in parallel. It's a
  1392. * harmless race between the alloc
  1393. * and the cpuset update.
  1394. */
  1395. put_mems_allowed(cpuset_mems_cookie);
  1396. return object;
  1397. }
  1398. }
  1399. }
  1400. } while (!put_mems_allowed(cpuset_mems_cookie));
  1401. #endif
  1402. return NULL;
  1403. }
  1404. /*
  1405. * Get a partial page, lock it and return it.
  1406. */
  1407. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1408. struct kmem_cache_cpu *c)
  1409. {
  1410. void *object;
  1411. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1412. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1413. if (object || node != NUMA_NO_NODE)
  1414. return object;
  1415. return get_any_partial(s, flags, c);
  1416. }
  1417. #ifdef CONFIG_PREEMPT
  1418. /*
  1419. * Calculate the next globally unique transaction for disambiguiation
  1420. * during cmpxchg. The transactions start with the cpu number and are then
  1421. * incremented by CONFIG_NR_CPUS.
  1422. */
  1423. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1424. #else
  1425. /*
  1426. * No preemption supported therefore also no need to check for
  1427. * different cpus.
  1428. */
  1429. #define TID_STEP 1
  1430. #endif
  1431. static inline unsigned long next_tid(unsigned long tid)
  1432. {
  1433. return tid + TID_STEP;
  1434. }
  1435. static inline unsigned int tid_to_cpu(unsigned long tid)
  1436. {
  1437. return tid % TID_STEP;
  1438. }
  1439. static inline unsigned long tid_to_event(unsigned long tid)
  1440. {
  1441. return tid / TID_STEP;
  1442. }
  1443. static inline unsigned int init_tid(int cpu)
  1444. {
  1445. return cpu;
  1446. }
  1447. static inline void note_cmpxchg_failure(const char *n,
  1448. const struct kmem_cache *s, unsigned long tid)
  1449. {
  1450. #ifdef SLUB_DEBUG_CMPXCHG
  1451. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1452. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1453. #ifdef CONFIG_PREEMPT
  1454. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1455. printk("due to cpu change %d -> %d\n",
  1456. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1457. else
  1458. #endif
  1459. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1460. printk("due to cpu running other code. Event %ld->%ld\n",
  1461. tid_to_event(tid), tid_to_event(actual_tid));
  1462. else
  1463. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1464. actual_tid, tid, next_tid(tid));
  1465. #endif
  1466. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1467. }
  1468. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1469. {
  1470. int cpu;
  1471. for_each_possible_cpu(cpu)
  1472. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1473. }
  1474. /*
  1475. * Remove the cpu slab
  1476. */
  1477. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1478. {
  1479. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1480. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1481. int lock = 0;
  1482. enum slab_modes l = M_NONE, m = M_NONE;
  1483. void *nextfree;
  1484. int tail = DEACTIVATE_TO_HEAD;
  1485. struct page new;
  1486. struct page old;
  1487. if (page->freelist) {
  1488. stat(s, DEACTIVATE_REMOTE_FREES);
  1489. tail = DEACTIVATE_TO_TAIL;
  1490. }
  1491. /*
  1492. * Stage one: Free all available per cpu objects back
  1493. * to the page freelist while it is still frozen. Leave the
  1494. * last one.
  1495. *
  1496. * There is no need to take the list->lock because the page
  1497. * is still frozen.
  1498. */
  1499. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1500. void *prior;
  1501. unsigned long counters;
  1502. do {
  1503. prior = page->freelist;
  1504. counters = page->counters;
  1505. set_freepointer(s, freelist, prior);
  1506. new.counters = counters;
  1507. new.inuse--;
  1508. VM_BUG_ON(!new.frozen);
  1509. } while (!__cmpxchg_double_slab(s, page,
  1510. prior, counters,
  1511. freelist, new.counters,
  1512. "drain percpu freelist"));
  1513. freelist = nextfree;
  1514. }
  1515. /*
  1516. * Stage two: Ensure that the page is unfrozen while the
  1517. * list presence reflects the actual number of objects
  1518. * during unfreeze.
  1519. *
  1520. * We setup the list membership and then perform a cmpxchg
  1521. * with the count. If there is a mismatch then the page
  1522. * is not unfrozen but the page is on the wrong list.
  1523. *
  1524. * Then we restart the process which may have to remove
  1525. * the page from the list that we just put it on again
  1526. * because the number of objects in the slab may have
  1527. * changed.
  1528. */
  1529. redo:
  1530. old.freelist = page->freelist;
  1531. old.counters = page->counters;
  1532. VM_BUG_ON(!old.frozen);
  1533. /* Determine target state of the slab */
  1534. new.counters = old.counters;
  1535. if (freelist) {
  1536. new.inuse--;
  1537. set_freepointer(s, freelist, old.freelist);
  1538. new.freelist = freelist;
  1539. } else
  1540. new.freelist = old.freelist;
  1541. new.frozen = 0;
  1542. if (!new.inuse && n->nr_partial > s->min_partial)
  1543. m = M_FREE;
  1544. else if (new.freelist) {
  1545. m = M_PARTIAL;
  1546. if (!lock) {
  1547. lock = 1;
  1548. /*
  1549. * Taking the spinlock removes the possiblity
  1550. * that acquire_slab() will see a slab page that
  1551. * is frozen
  1552. */
  1553. spin_lock(&n->list_lock);
  1554. }
  1555. } else {
  1556. m = M_FULL;
  1557. if (kmem_cache_debug(s) && !lock) {
  1558. lock = 1;
  1559. /*
  1560. * This also ensures that the scanning of full
  1561. * slabs from diagnostic functions will not see
  1562. * any frozen slabs.
  1563. */
  1564. spin_lock(&n->list_lock);
  1565. }
  1566. }
  1567. if (l != m) {
  1568. if (l == M_PARTIAL)
  1569. remove_partial(n, page);
  1570. else if (l == M_FULL)
  1571. remove_full(s, page);
  1572. if (m == M_PARTIAL) {
  1573. add_partial(n, page, tail);
  1574. stat(s, tail);
  1575. } else if (m == M_FULL) {
  1576. stat(s, DEACTIVATE_FULL);
  1577. add_full(s, n, page);
  1578. }
  1579. }
  1580. l = m;
  1581. if (!__cmpxchg_double_slab(s, page,
  1582. old.freelist, old.counters,
  1583. new.freelist, new.counters,
  1584. "unfreezing slab"))
  1585. goto redo;
  1586. if (lock)
  1587. spin_unlock(&n->list_lock);
  1588. if (m == M_FREE) {
  1589. stat(s, DEACTIVATE_EMPTY);
  1590. discard_slab(s, page);
  1591. stat(s, FREE_SLAB);
  1592. }
  1593. }
  1594. /*
  1595. * Unfreeze all the cpu partial slabs.
  1596. *
  1597. * This function must be called with interrupts disabled
  1598. * for the cpu using c (or some other guarantee must be there
  1599. * to guarantee no concurrent accesses).
  1600. */
  1601. static void unfreeze_partials(struct kmem_cache *s,
  1602. struct kmem_cache_cpu *c)
  1603. {
  1604. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1605. struct page *page, *discard_page = NULL;
  1606. while ((page = c->partial)) {
  1607. struct page new;
  1608. struct page old;
  1609. c->partial = page->next;
  1610. n2 = get_node(s, page_to_nid(page));
  1611. if (n != n2) {
  1612. if (n)
  1613. spin_unlock(&n->list_lock);
  1614. n = n2;
  1615. spin_lock(&n->list_lock);
  1616. }
  1617. do {
  1618. old.freelist = page->freelist;
  1619. old.counters = page->counters;
  1620. VM_BUG_ON(!old.frozen);
  1621. new.counters = old.counters;
  1622. new.freelist = old.freelist;
  1623. new.frozen = 0;
  1624. } while (!__cmpxchg_double_slab(s, page,
  1625. old.freelist, old.counters,
  1626. new.freelist, new.counters,
  1627. "unfreezing slab"));
  1628. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1629. page->next = discard_page;
  1630. discard_page = page;
  1631. } else {
  1632. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1633. stat(s, FREE_ADD_PARTIAL);
  1634. }
  1635. }
  1636. if (n)
  1637. spin_unlock(&n->list_lock);
  1638. while (discard_page) {
  1639. page = discard_page;
  1640. discard_page = discard_page->next;
  1641. stat(s, DEACTIVATE_EMPTY);
  1642. discard_slab(s, page);
  1643. stat(s, FREE_SLAB);
  1644. }
  1645. }
  1646. /*
  1647. * Put a page that was just frozen (in __slab_free) into a partial page
  1648. * slot if available. This is done without interrupts disabled and without
  1649. * preemption disabled. The cmpxchg is racy and may put the partial page
  1650. * onto a random cpus partial slot.
  1651. *
  1652. * If we did not find a slot then simply move all the partials to the
  1653. * per node partial list.
  1654. */
  1655. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1656. {
  1657. struct page *oldpage;
  1658. int pages;
  1659. int pobjects;
  1660. do {
  1661. pages = 0;
  1662. pobjects = 0;
  1663. oldpage = this_cpu_read(s->cpu_slab->partial);
  1664. if (oldpage) {
  1665. pobjects = oldpage->pobjects;
  1666. pages = oldpage->pages;
  1667. if (drain && pobjects > s->cpu_partial) {
  1668. unsigned long flags;
  1669. /*
  1670. * partial array is full. Move the existing
  1671. * set to the per node partial list.
  1672. */
  1673. local_irq_save(flags);
  1674. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1675. local_irq_restore(flags);
  1676. oldpage = NULL;
  1677. pobjects = 0;
  1678. pages = 0;
  1679. stat(s, CPU_PARTIAL_DRAIN);
  1680. }
  1681. }
  1682. pages++;
  1683. pobjects += page->objects - page->inuse;
  1684. page->pages = pages;
  1685. page->pobjects = pobjects;
  1686. page->next = oldpage;
  1687. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1688. return pobjects;
  1689. }
  1690. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1691. {
  1692. stat(s, CPUSLAB_FLUSH);
  1693. deactivate_slab(s, c->page, c->freelist);
  1694. c->tid = next_tid(c->tid);
  1695. c->page = NULL;
  1696. c->freelist = NULL;
  1697. }
  1698. /*
  1699. * Flush cpu slab.
  1700. *
  1701. * Called from IPI handler with interrupts disabled.
  1702. */
  1703. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1704. {
  1705. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1706. if (likely(c)) {
  1707. if (c->page)
  1708. flush_slab(s, c);
  1709. unfreeze_partials(s, c);
  1710. }
  1711. }
  1712. static void flush_cpu_slab(void *d)
  1713. {
  1714. struct kmem_cache *s = d;
  1715. __flush_cpu_slab(s, smp_processor_id());
  1716. }
  1717. static bool has_cpu_slab(int cpu, void *info)
  1718. {
  1719. struct kmem_cache *s = info;
  1720. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1721. return c->page || c->partial;
  1722. }
  1723. static void flush_all(struct kmem_cache *s)
  1724. {
  1725. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1726. }
  1727. /*
  1728. * Check if the objects in a per cpu structure fit numa
  1729. * locality expectations.
  1730. */
  1731. static inline int node_match(struct page *page, int node)
  1732. {
  1733. #ifdef CONFIG_NUMA
  1734. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1735. return 0;
  1736. #endif
  1737. return 1;
  1738. }
  1739. static int count_free(struct page *page)
  1740. {
  1741. return page->objects - page->inuse;
  1742. }
  1743. static unsigned long count_partial(struct kmem_cache_node *n,
  1744. int (*get_count)(struct page *))
  1745. {
  1746. unsigned long flags;
  1747. unsigned long x = 0;
  1748. struct page *page;
  1749. spin_lock_irqsave(&n->list_lock, flags);
  1750. list_for_each_entry(page, &n->partial, lru)
  1751. x += get_count(page);
  1752. spin_unlock_irqrestore(&n->list_lock, flags);
  1753. return x;
  1754. }
  1755. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1756. {
  1757. #ifdef CONFIG_SLUB_DEBUG
  1758. return atomic_long_read(&n->total_objects);
  1759. #else
  1760. return 0;
  1761. #endif
  1762. }
  1763. static noinline void
  1764. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1765. {
  1766. int node;
  1767. printk(KERN_WARNING
  1768. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1769. nid, gfpflags);
  1770. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1771. "default order: %d, min order: %d\n", s->name, s->object_size,
  1772. s->size, oo_order(s->oo), oo_order(s->min));
  1773. if (oo_order(s->min) > get_order(s->object_size))
  1774. printk(KERN_WARNING " %s debugging increased min order, use "
  1775. "slub_debug=O to disable.\n", s->name);
  1776. for_each_online_node(node) {
  1777. struct kmem_cache_node *n = get_node(s, node);
  1778. unsigned long nr_slabs;
  1779. unsigned long nr_objs;
  1780. unsigned long nr_free;
  1781. if (!n)
  1782. continue;
  1783. nr_free = count_partial(n, count_free);
  1784. nr_slabs = node_nr_slabs(n);
  1785. nr_objs = node_nr_objs(n);
  1786. printk(KERN_WARNING
  1787. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1788. node, nr_slabs, nr_objs, nr_free);
  1789. }
  1790. }
  1791. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1792. int node, struct kmem_cache_cpu **pc)
  1793. {
  1794. void *freelist;
  1795. struct kmem_cache_cpu *c = *pc;
  1796. struct page *page;
  1797. freelist = get_partial(s, flags, node, c);
  1798. if (freelist)
  1799. return freelist;
  1800. page = new_slab(s, flags, node);
  1801. if (page) {
  1802. c = __this_cpu_ptr(s->cpu_slab);
  1803. if (c->page)
  1804. flush_slab(s, c);
  1805. /*
  1806. * No other reference to the page yet so we can
  1807. * muck around with it freely without cmpxchg
  1808. */
  1809. freelist = page->freelist;
  1810. page->freelist = NULL;
  1811. stat(s, ALLOC_SLAB);
  1812. c->page = page;
  1813. *pc = c;
  1814. } else
  1815. freelist = NULL;
  1816. return freelist;
  1817. }
  1818. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1819. {
  1820. if (unlikely(PageSlabPfmemalloc(page)))
  1821. return gfp_pfmemalloc_allowed(gfpflags);
  1822. return true;
  1823. }
  1824. /*
  1825. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1826. * or deactivate the page.
  1827. *
  1828. * The page is still frozen if the return value is not NULL.
  1829. *
  1830. * If this function returns NULL then the page has been unfrozen.
  1831. *
  1832. * This function must be called with interrupt disabled.
  1833. */
  1834. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1835. {
  1836. struct page new;
  1837. unsigned long counters;
  1838. void *freelist;
  1839. do {
  1840. freelist = page->freelist;
  1841. counters = page->counters;
  1842. new.counters = counters;
  1843. VM_BUG_ON(!new.frozen);
  1844. new.inuse = page->objects;
  1845. new.frozen = freelist != NULL;
  1846. } while (!__cmpxchg_double_slab(s, page,
  1847. freelist, counters,
  1848. NULL, new.counters,
  1849. "get_freelist"));
  1850. return freelist;
  1851. }
  1852. /*
  1853. * Slow path. The lockless freelist is empty or we need to perform
  1854. * debugging duties.
  1855. *
  1856. * Processing is still very fast if new objects have been freed to the
  1857. * regular freelist. In that case we simply take over the regular freelist
  1858. * as the lockless freelist and zap the regular freelist.
  1859. *
  1860. * If that is not working then we fall back to the partial lists. We take the
  1861. * first element of the freelist as the object to allocate now and move the
  1862. * rest of the freelist to the lockless freelist.
  1863. *
  1864. * And if we were unable to get a new slab from the partial slab lists then
  1865. * we need to allocate a new slab. This is the slowest path since it involves
  1866. * a call to the page allocator and the setup of a new slab.
  1867. */
  1868. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1869. unsigned long addr, struct kmem_cache_cpu *c)
  1870. {
  1871. void *freelist;
  1872. struct page *page;
  1873. unsigned long flags;
  1874. local_irq_save(flags);
  1875. #ifdef CONFIG_PREEMPT
  1876. /*
  1877. * We may have been preempted and rescheduled on a different
  1878. * cpu before disabling interrupts. Need to reload cpu area
  1879. * pointer.
  1880. */
  1881. c = this_cpu_ptr(s->cpu_slab);
  1882. #endif
  1883. page = c->page;
  1884. if (!page)
  1885. goto new_slab;
  1886. redo:
  1887. if (unlikely(!node_match(page, node))) {
  1888. stat(s, ALLOC_NODE_MISMATCH);
  1889. deactivate_slab(s, page, c->freelist);
  1890. c->page = NULL;
  1891. c->freelist = NULL;
  1892. goto new_slab;
  1893. }
  1894. /*
  1895. * By rights, we should be searching for a slab page that was
  1896. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1897. * information when the page leaves the per-cpu allocator
  1898. */
  1899. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1900. deactivate_slab(s, page, c->freelist);
  1901. c->page = NULL;
  1902. c->freelist = NULL;
  1903. goto new_slab;
  1904. }
  1905. /* must check again c->freelist in case of cpu migration or IRQ */
  1906. freelist = c->freelist;
  1907. if (freelist)
  1908. goto load_freelist;
  1909. stat(s, ALLOC_SLOWPATH);
  1910. freelist = get_freelist(s, page);
  1911. if (!freelist) {
  1912. c->page = NULL;
  1913. stat(s, DEACTIVATE_BYPASS);
  1914. goto new_slab;
  1915. }
  1916. stat(s, ALLOC_REFILL);
  1917. load_freelist:
  1918. /*
  1919. * freelist is pointing to the list of objects to be used.
  1920. * page is pointing to the page from which the objects are obtained.
  1921. * That page must be frozen for per cpu allocations to work.
  1922. */
  1923. VM_BUG_ON(!c->page->frozen);
  1924. c->freelist = get_freepointer(s, freelist);
  1925. c->tid = next_tid(c->tid);
  1926. local_irq_restore(flags);
  1927. return freelist;
  1928. new_slab:
  1929. if (c->partial) {
  1930. page = c->page = c->partial;
  1931. c->partial = page->next;
  1932. stat(s, CPU_PARTIAL_ALLOC);
  1933. c->freelist = NULL;
  1934. goto redo;
  1935. }
  1936. freelist = new_slab_objects(s, gfpflags, node, &c);
  1937. if (unlikely(!freelist)) {
  1938. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1939. slab_out_of_memory(s, gfpflags, node);
  1940. local_irq_restore(flags);
  1941. return NULL;
  1942. }
  1943. page = c->page;
  1944. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1945. goto load_freelist;
  1946. /* Only entered in the debug case */
  1947. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1948. goto new_slab; /* Slab failed checks. Next slab needed */
  1949. deactivate_slab(s, page, get_freepointer(s, freelist));
  1950. c->page = NULL;
  1951. c->freelist = NULL;
  1952. local_irq_restore(flags);
  1953. return freelist;
  1954. }
  1955. /*
  1956. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1957. * have the fastpath folded into their functions. So no function call
  1958. * overhead for requests that can be satisfied on the fastpath.
  1959. *
  1960. * The fastpath works by first checking if the lockless freelist can be used.
  1961. * If not then __slab_alloc is called for slow processing.
  1962. *
  1963. * Otherwise we can simply pick the next object from the lockless free list.
  1964. */
  1965. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  1966. gfp_t gfpflags, int node, unsigned long addr)
  1967. {
  1968. void **object;
  1969. struct kmem_cache_cpu *c;
  1970. struct page *page;
  1971. unsigned long tid;
  1972. if (slab_pre_alloc_hook(s, gfpflags))
  1973. return NULL;
  1974. s = memcg_kmem_get_cache(s, gfpflags);
  1975. redo:
  1976. /*
  1977. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1978. * enabled. We may switch back and forth between cpus while
  1979. * reading from one cpu area. That does not matter as long
  1980. * as we end up on the original cpu again when doing the cmpxchg.
  1981. */
  1982. c = __this_cpu_ptr(s->cpu_slab);
  1983. /*
  1984. * The transaction ids are globally unique per cpu and per operation on
  1985. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1986. * occurs on the right processor and that there was no operation on the
  1987. * linked list in between.
  1988. */
  1989. tid = c->tid;
  1990. barrier();
  1991. object = c->freelist;
  1992. page = c->page;
  1993. if (unlikely(!object || !node_match(page, node)))
  1994. object = __slab_alloc(s, gfpflags, node, addr, c);
  1995. else {
  1996. void *next_object = get_freepointer_safe(s, object);
  1997. /*
  1998. * The cmpxchg will only match if there was no additional
  1999. * operation and if we are on the right processor.
  2000. *
  2001. * The cmpxchg does the following atomically (without lock semantics!)
  2002. * 1. Relocate first pointer to the current per cpu area.
  2003. * 2. Verify that tid and freelist have not been changed
  2004. * 3. If they were not changed replace tid and freelist
  2005. *
  2006. * Since this is without lock semantics the protection is only against
  2007. * code executing on this cpu *not* from access by other cpus.
  2008. */
  2009. if (unlikely(!this_cpu_cmpxchg_double(
  2010. s->cpu_slab->freelist, s->cpu_slab->tid,
  2011. object, tid,
  2012. next_object, next_tid(tid)))) {
  2013. note_cmpxchg_failure("slab_alloc", s, tid);
  2014. goto redo;
  2015. }
  2016. prefetch_freepointer(s, next_object);
  2017. stat(s, ALLOC_FASTPATH);
  2018. }
  2019. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2020. memset(object, 0, s->object_size);
  2021. slab_post_alloc_hook(s, gfpflags, object);
  2022. return object;
  2023. }
  2024. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2025. gfp_t gfpflags, unsigned long addr)
  2026. {
  2027. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2028. }
  2029. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2030. {
  2031. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2032. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2033. return ret;
  2034. }
  2035. EXPORT_SYMBOL(kmem_cache_alloc);
  2036. #ifdef CONFIG_TRACING
  2037. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2038. {
  2039. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2040. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2041. return ret;
  2042. }
  2043. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2044. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2045. {
  2046. void *ret = kmalloc_order(size, flags, order);
  2047. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2048. return ret;
  2049. }
  2050. EXPORT_SYMBOL(kmalloc_order_trace);
  2051. #endif
  2052. #ifdef CONFIG_NUMA
  2053. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2054. {
  2055. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2056. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2057. s->object_size, s->size, gfpflags, node);
  2058. return ret;
  2059. }
  2060. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2061. #ifdef CONFIG_TRACING
  2062. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2063. gfp_t gfpflags,
  2064. int node, size_t size)
  2065. {
  2066. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2067. trace_kmalloc_node(_RET_IP_, ret,
  2068. size, s->size, gfpflags, node);
  2069. return ret;
  2070. }
  2071. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2072. #endif
  2073. #endif
  2074. /*
  2075. * Slow patch handling. This may still be called frequently since objects
  2076. * have a longer lifetime than the cpu slabs in most processing loads.
  2077. *
  2078. * So we still attempt to reduce cache line usage. Just take the slab
  2079. * lock and free the item. If there is no additional partial page
  2080. * handling required then we can return immediately.
  2081. */
  2082. static void __slab_free(struct kmem_cache *s, struct page *page,
  2083. void *x, unsigned long addr)
  2084. {
  2085. void *prior;
  2086. void **object = (void *)x;
  2087. int was_frozen;
  2088. struct page new;
  2089. unsigned long counters;
  2090. struct kmem_cache_node *n = NULL;
  2091. unsigned long uninitialized_var(flags);
  2092. stat(s, FREE_SLOWPATH);
  2093. if (kmem_cache_debug(s) &&
  2094. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2095. return;
  2096. do {
  2097. if (unlikely(n)) {
  2098. spin_unlock_irqrestore(&n->list_lock, flags);
  2099. n = NULL;
  2100. }
  2101. prior = page->freelist;
  2102. counters = page->counters;
  2103. set_freepointer(s, object, prior);
  2104. new.counters = counters;
  2105. was_frozen = new.frozen;
  2106. new.inuse--;
  2107. if ((!new.inuse || !prior) && !was_frozen) {
  2108. if (!kmem_cache_debug(s) && !prior)
  2109. /*
  2110. * Slab was on no list before and will be partially empty
  2111. * We can defer the list move and instead freeze it.
  2112. */
  2113. new.frozen = 1;
  2114. else { /* Needs to be taken off a list */
  2115. n = get_node(s, page_to_nid(page));
  2116. /*
  2117. * Speculatively acquire the list_lock.
  2118. * If the cmpxchg does not succeed then we may
  2119. * drop the list_lock without any processing.
  2120. *
  2121. * Otherwise the list_lock will synchronize with
  2122. * other processors updating the list of slabs.
  2123. */
  2124. spin_lock_irqsave(&n->list_lock, flags);
  2125. }
  2126. }
  2127. } while (!cmpxchg_double_slab(s, page,
  2128. prior, counters,
  2129. object, new.counters,
  2130. "__slab_free"));
  2131. if (likely(!n)) {
  2132. /*
  2133. * If we just froze the page then put it onto the
  2134. * per cpu partial list.
  2135. */
  2136. if (new.frozen && !was_frozen) {
  2137. put_cpu_partial(s, page, 1);
  2138. stat(s, CPU_PARTIAL_FREE);
  2139. }
  2140. /*
  2141. * The list lock was not taken therefore no list
  2142. * activity can be necessary.
  2143. */
  2144. if (was_frozen)
  2145. stat(s, FREE_FROZEN);
  2146. return;
  2147. }
  2148. if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
  2149. goto slab_empty;
  2150. /*
  2151. * Objects left in the slab. If it was not on the partial list before
  2152. * then add it.
  2153. */
  2154. if (kmem_cache_debug(s) && unlikely(!prior)) {
  2155. remove_full(s, page);
  2156. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2157. stat(s, FREE_ADD_PARTIAL);
  2158. }
  2159. spin_unlock_irqrestore(&n->list_lock, flags);
  2160. return;
  2161. slab_empty:
  2162. if (prior) {
  2163. /*
  2164. * Slab on the partial list.
  2165. */
  2166. remove_partial(n, page);
  2167. stat(s, FREE_REMOVE_PARTIAL);
  2168. } else
  2169. /* Slab must be on the full list */
  2170. remove_full(s, page);
  2171. spin_unlock_irqrestore(&n->list_lock, flags);
  2172. stat(s, FREE_SLAB);
  2173. discard_slab(s, page);
  2174. }
  2175. /*
  2176. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2177. * can perform fastpath freeing without additional function calls.
  2178. *
  2179. * The fastpath is only possible if we are freeing to the current cpu slab
  2180. * of this processor. This typically the case if we have just allocated
  2181. * the item before.
  2182. *
  2183. * If fastpath is not possible then fall back to __slab_free where we deal
  2184. * with all sorts of special processing.
  2185. */
  2186. static __always_inline void slab_free(struct kmem_cache *s,
  2187. struct page *page, void *x, unsigned long addr)
  2188. {
  2189. void **object = (void *)x;
  2190. struct kmem_cache_cpu *c;
  2191. unsigned long tid;
  2192. slab_free_hook(s, x);
  2193. redo:
  2194. /*
  2195. * Determine the currently cpus per cpu slab.
  2196. * The cpu may change afterward. However that does not matter since
  2197. * data is retrieved via this pointer. If we are on the same cpu
  2198. * during the cmpxchg then the free will succedd.
  2199. */
  2200. c = __this_cpu_ptr(s->cpu_slab);
  2201. tid = c->tid;
  2202. barrier();
  2203. if (likely(page == c->page)) {
  2204. set_freepointer(s, object, c->freelist);
  2205. if (unlikely(!this_cpu_cmpxchg_double(
  2206. s->cpu_slab->freelist, s->cpu_slab->tid,
  2207. c->freelist, tid,
  2208. object, next_tid(tid)))) {
  2209. note_cmpxchg_failure("slab_free", s, tid);
  2210. goto redo;
  2211. }
  2212. stat(s, FREE_FASTPATH);
  2213. } else
  2214. __slab_free(s, page, x, addr);
  2215. }
  2216. void kmem_cache_free(struct kmem_cache *s, void *x)
  2217. {
  2218. s = cache_from_obj(s, x);
  2219. if (!s)
  2220. return;
  2221. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2222. trace_kmem_cache_free(_RET_IP_, x);
  2223. }
  2224. EXPORT_SYMBOL(kmem_cache_free);
  2225. /*
  2226. * Object placement in a slab is made very easy because we always start at
  2227. * offset 0. If we tune the size of the object to the alignment then we can
  2228. * get the required alignment by putting one properly sized object after
  2229. * another.
  2230. *
  2231. * Notice that the allocation order determines the sizes of the per cpu
  2232. * caches. Each processor has always one slab available for allocations.
  2233. * Increasing the allocation order reduces the number of times that slabs
  2234. * must be moved on and off the partial lists and is therefore a factor in
  2235. * locking overhead.
  2236. */
  2237. /*
  2238. * Mininum / Maximum order of slab pages. This influences locking overhead
  2239. * and slab fragmentation. A higher order reduces the number of partial slabs
  2240. * and increases the number of allocations possible without having to
  2241. * take the list_lock.
  2242. */
  2243. static int slub_min_order;
  2244. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2245. static int slub_min_objects;
  2246. /*
  2247. * Merge control. If this is set then no merging of slab caches will occur.
  2248. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2249. */
  2250. static int slub_nomerge;
  2251. /*
  2252. * Calculate the order of allocation given an slab object size.
  2253. *
  2254. * The order of allocation has significant impact on performance and other
  2255. * system components. Generally order 0 allocations should be preferred since
  2256. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2257. * be problematic to put into order 0 slabs because there may be too much
  2258. * unused space left. We go to a higher order if more than 1/16th of the slab
  2259. * would be wasted.
  2260. *
  2261. * In order to reach satisfactory performance we must ensure that a minimum
  2262. * number of objects is in one slab. Otherwise we may generate too much
  2263. * activity on the partial lists which requires taking the list_lock. This is
  2264. * less a concern for large slabs though which are rarely used.
  2265. *
  2266. * slub_max_order specifies the order where we begin to stop considering the
  2267. * number of objects in a slab as critical. If we reach slub_max_order then
  2268. * we try to keep the page order as low as possible. So we accept more waste
  2269. * of space in favor of a small page order.
  2270. *
  2271. * Higher order allocations also allow the placement of more objects in a
  2272. * slab and thereby reduce object handling overhead. If the user has
  2273. * requested a higher mininum order then we start with that one instead of
  2274. * the smallest order which will fit the object.
  2275. */
  2276. static inline int slab_order(int size, int min_objects,
  2277. int max_order, int fract_leftover, int reserved)
  2278. {
  2279. int order;
  2280. int rem;
  2281. int min_order = slub_min_order;
  2282. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2283. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2284. for (order = max(min_order,
  2285. fls(min_objects * size - 1) - PAGE_SHIFT);
  2286. order <= max_order; order++) {
  2287. unsigned long slab_size = PAGE_SIZE << order;
  2288. if (slab_size < min_objects * size + reserved)
  2289. continue;
  2290. rem = (slab_size - reserved) % size;
  2291. if (rem <= slab_size / fract_leftover)
  2292. break;
  2293. }
  2294. return order;
  2295. }
  2296. static inline int calculate_order(int size, int reserved)
  2297. {
  2298. int order;
  2299. int min_objects;
  2300. int fraction;
  2301. int max_objects;
  2302. /*
  2303. * Attempt to find best configuration for a slab. This
  2304. * works by first attempting to generate a layout with
  2305. * the best configuration and backing off gradually.
  2306. *
  2307. * First we reduce the acceptable waste in a slab. Then
  2308. * we reduce the minimum objects required in a slab.
  2309. */
  2310. min_objects = slub_min_objects;
  2311. if (!min_objects)
  2312. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2313. max_objects = order_objects(slub_max_order, size, reserved);
  2314. min_objects = min(min_objects, max_objects);
  2315. while (min_objects > 1) {
  2316. fraction = 16;
  2317. while (fraction >= 4) {
  2318. order = slab_order(size, min_objects,
  2319. slub_max_order, fraction, reserved);
  2320. if (order <= slub_max_order)
  2321. return order;
  2322. fraction /= 2;
  2323. }
  2324. min_objects--;
  2325. }
  2326. /*
  2327. * We were unable to place multiple objects in a slab. Now
  2328. * lets see if we can place a single object there.
  2329. */
  2330. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2331. if (order <= slub_max_order)
  2332. return order;
  2333. /*
  2334. * Doh this slab cannot be placed using slub_max_order.
  2335. */
  2336. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2337. if (order < MAX_ORDER)
  2338. return order;
  2339. return -ENOSYS;
  2340. }
  2341. static void
  2342. init_kmem_cache_node(struct kmem_cache_node *n)
  2343. {
  2344. n->nr_partial = 0;
  2345. spin_lock_init(&n->list_lock);
  2346. INIT_LIST_HEAD(&n->partial);
  2347. #ifdef CONFIG_SLUB_DEBUG
  2348. atomic_long_set(&n->nr_slabs, 0);
  2349. atomic_long_set(&n->total_objects, 0);
  2350. INIT_LIST_HEAD(&n->full);
  2351. #endif
  2352. }
  2353. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2354. {
  2355. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2356. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2357. /*
  2358. * Must align to double word boundary for the double cmpxchg
  2359. * instructions to work; see __pcpu_double_call_return_bool().
  2360. */
  2361. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2362. 2 * sizeof(void *));
  2363. if (!s->cpu_slab)
  2364. return 0;
  2365. init_kmem_cache_cpus(s);
  2366. return 1;
  2367. }
  2368. static struct kmem_cache *kmem_cache_node;
  2369. /*
  2370. * No kmalloc_node yet so do it by hand. We know that this is the first
  2371. * slab on the node for this slabcache. There are no concurrent accesses
  2372. * possible.
  2373. *
  2374. * Note that this function only works on the kmalloc_node_cache
  2375. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2376. * memory on a fresh node that has no slab structures yet.
  2377. */
  2378. static void early_kmem_cache_node_alloc(int node)
  2379. {
  2380. struct page *page;
  2381. struct kmem_cache_node *n;
  2382. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2383. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2384. BUG_ON(!page);
  2385. if (page_to_nid(page) != node) {
  2386. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2387. "node %d\n", node);
  2388. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2389. "in order to be able to continue\n");
  2390. }
  2391. n = page->freelist;
  2392. BUG_ON(!n);
  2393. page->freelist = get_freepointer(kmem_cache_node, n);
  2394. page->inuse = 1;
  2395. page->frozen = 0;
  2396. kmem_cache_node->node[node] = n;
  2397. #ifdef CONFIG_SLUB_DEBUG
  2398. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2399. init_tracking(kmem_cache_node, n);
  2400. #endif
  2401. init_kmem_cache_node(n);
  2402. inc_slabs_node(kmem_cache_node, node, page->objects);
  2403. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2404. }
  2405. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2406. {
  2407. int node;
  2408. for_each_node_state(node, N_NORMAL_MEMORY) {
  2409. struct kmem_cache_node *n = s->node[node];
  2410. if (n)
  2411. kmem_cache_free(kmem_cache_node, n);
  2412. s->node[node] = NULL;
  2413. }
  2414. }
  2415. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2416. {
  2417. int node;
  2418. for_each_node_state(node, N_NORMAL_MEMORY) {
  2419. struct kmem_cache_node *n;
  2420. if (slab_state == DOWN) {
  2421. early_kmem_cache_node_alloc(node);
  2422. continue;
  2423. }
  2424. n = kmem_cache_alloc_node(kmem_cache_node,
  2425. GFP_KERNEL, node);
  2426. if (!n) {
  2427. free_kmem_cache_nodes(s);
  2428. return 0;
  2429. }
  2430. s->node[node] = n;
  2431. init_kmem_cache_node(n);
  2432. }
  2433. return 1;
  2434. }
  2435. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2436. {
  2437. if (min < MIN_PARTIAL)
  2438. min = MIN_PARTIAL;
  2439. else if (min > MAX_PARTIAL)
  2440. min = MAX_PARTIAL;
  2441. s->min_partial = min;
  2442. }
  2443. /*
  2444. * calculate_sizes() determines the order and the distribution of data within
  2445. * a slab object.
  2446. */
  2447. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2448. {
  2449. unsigned long flags = s->flags;
  2450. unsigned long size = s->object_size;
  2451. int order;
  2452. /*
  2453. * Round up object size to the next word boundary. We can only
  2454. * place the free pointer at word boundaries and this determines
  2455. * the possible location of the free pointer.
  2456. */
  2457. size = ALIGN(size, sizeof(void *));
  2458. #ifdef CONFIG_SLUB_DEBUG
  2459. /*
  2460. * Determine if we can poison the object itself. If the user of
  2461. * the slab may touch the object after free or before allocation
  2462. * then we should never poison the object itself.
  2463. */
  2464. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2465. !s->ctor)
  2466. s->flags |= __OBJECT_POISON;
  2467. else
  2468. s->flags &= ~__OBJECT_POISON;
  2469. /*
  2470. * If we are Redzoning then check if there is some space between the
  2471. * end of the object and the free pointer. If not then add an
  2472. * additional word to have some bytes to store Redzone information.
  2473. */
  2474. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2475. size += sizeof(void *);
  2476. #endif
  2477. /*
  2478. * With that we have determined the number of bytes in actual use
  2479. * by the object. This is the potential offset to the free pointer.
  2480. */
  2481. s->inuse = size;
  2482. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2483. s->ctor)) {
  2484. /*
  2485. * Relocate free pointer after the object if it is not
  2486. * permitted to overwrite the first word of the object on
  2487. * kmem_cache_free.
  2488. *
  2489. * This is the case if we do RCU, have a constructor or
  2490. * destructor or are poisoning the objects.
  2491. */
  2492. s->offset = size;
  2493. size += sizeof(void *);
  2494. }
  2495. #ifdef CONFIG_SLUB_DEBUG
  2496. if (flags & SLAB_STORE_USER)
  2497. /*
  2498. * Need to store information about allocs and frees after
  2499. * the object.
  2500. */
  2501. size += 2 * sizeof(struct track);
  2502. if (flags & SLAB_RED_ZONE)
  2503. /*
  2504. * Add some empty padding so that we can catch
  2505. * overwrites from earlier objects rather than let
  2506. * tracking information or the free pointer be
  2507. * corrupted if a user writes before the start
  2508. * of the object.
  2509. */
  2510. size += sizeof(void *);
  2511. #endif
  2512. /*
  2513. * SLUB stores one object immediately after another beginning from
  2514. * offset 0. In order to align the objects we have to simply size
  2515. * each object to conform to the alignment.
  2516. */
  2517. size = ALIGN(size, s->align);
  2518. s->size = size;
  2519. if (forced_order >= 0)
  2520. order = forced_order;
  2521. else
  2522. order = calculate_order(size, s->reserved);
  2523. if (order < 0)
  2524. return 0;
  2525. s->allocflags = 0;
  2526. if (order)
  2527. s->allocflags |= __GFP_COMP;
  2528. if (s->flags & SLAB_CACHE_DMA)
  2529. s->allocflags |= SLUB_DMA;
  2530. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2531. s->allocflags |= __GFP_RECLAIMABLE;
  2532. /*
  2533. * Determine the number of objects per slab
  2534. */
  2535. s->oo = oo_make(order, size, s->reserved);
  2536. s->min = oo_make(get_order(size), size, s->reserved);
  2537. if (oo_objects(s->oo) > oo_objects(s->max))
  2538. s->max = s->oo;
  2539. return !!oo_objects(s->oo);
  2540. }
  2541. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2542. {
  2543. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2544. s->reserved = 0;
  2545. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2546. s->reserved = sizeof(struct rcu_head);
  2547. if (!calculate_sizes(s, -1))
  2548. goto error;
  2549. if (disable_higher_order_debug) {
  2550. /*
  2551. * Disable debugging flags that store metadata if the min slab
  2552. * order increased.
  2553. */
  2554. if (get_order(s->size) > get_order(s->object_size)) {
  2555. s->flags &= ~DEBUG_METADATA_FLAGS;
  2556. s->offset = 0;
  2557. if (!calculate_sizes(s, -1))
  2558. goto error;
  2559. }
  2560. }
  2561. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2562. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2563. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2564. /* Enable fast mode */
  2565. s->flags |= __CMPXCHG_DOUBLE;
  2566. #endif
  2567. /*
  2568. * The larger the object size is, the more pages we want on the partial
  2569. * list to avoid pounding the page allocator excessively.
  2570. */
  2571. set_min_partial(s, ilog2(s->size) / 2);
  2572. /*
  2573. * cpu_partial determined the maximum number of objects kept in the
  2574. * per cpu partial lists of a processor.
  2575. *
  2576. * Per cpu partial lists mainly contain slabs that just have one
  2577. * object freed. If they are used for allocation then they can be
  2578. * filled up again with minimal effort. The slab will never hit the
  2579. * per node partial lists and therefore no locking will be required.
  2580. *
  2581. * This setting also determines
  2582. *
  2583. * A) The number of objects from per cpu partial slabs dumped to the
  2584. * per node list when we reach the limit.
  2585. * B) The number of objects in cpu partial slabs to extract from the
  2586. * per node list when we run out of per cpu objects. We only fetch 50%
  2587. * to keep some capacity around for frees.
  2588. */
  2589. if (kmem_cache_debug(s))
  2590. s->cpu_partial = 0;
  2591. else if (s->size >= PAGE_SIZE)
  2592. s->cpu_partial = 2;
  2593. else if (s->size >= 1024)
  2594. s->cpu_partial = 6;
  2595. else if (s->size >= 256)
  2596. s->cpu_partial = 13;
  2597. else
  2598. s->cpu_partial = 30;
  2599. #ifdef CONFIG_NUMA
  2600. s->remote_node_defrag_ratio = 1000;
  2601. #endif
  2602. if (!init_kmem_cache_nodes(s))
  2603. goto error;
  2604. if (alloc_kmem_cache_cpus(s))
  2605. return 0;
  2606. free_kmem_cache_nodes(s);
  2607. error:
  2608. if (flags & SLAB_PANIC)
  2609. panic("Cannot create slab %s size=%lu realsize=%u "
  2610. "order=%u offset=%u flags=%lx\n",
  2611. s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
  2612. s->offset, flags);
  2613. return -EINVAL;
  2614. }
  2615. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2616. const char *text)
  2617. {
  2618. #ifdef CONFIG_SLUB_DEBUG
  2619. void *addr = page_address(page);
  2620. void *p;
  2621. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2622. sizeof(long), GFP_ATOMIC);
  2623. if (!map)
  2624. return;
  2625. slab_err(s, page, text, s->name);
  2626. slab_lock(page);
  2627. get_map(s, page, map);
  2628. for_each_object(p, s, addr, page->objects) {
  2629. if (!test_bit(slab_index(p, s, addr), map)) {
  2630. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2631. p, p - addr);
  2632. print_tracking(s, p);
  2633. }
  2634. }
  2635. slab_unlock(page);
  2636. kfree(map);
  2637. #endif
  2638. }
  2639. /*
  2640. * Attempt to free all partial slabs on a node.
  2641. * This is called from kmem_cache_close(). We must be the last thread
  2642. * using the cache and therefore we do not need to lock anymore.
  2643. */
  2644. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2645. {
  2646. struct page *page, *h;
  2647. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2648. if (!page->inuse) {
  2649. remove_partial(n, page);
  2650. discard_slab(s, page);
  2651. } else {
  2652. list_slab_objects(s, page,
  2653. "Objects remaining in %s on kmem_cache_close()");
  2654. }
  2655. }
  2656. }
  2657. /*
  2658. * Release all resources used by a slab cache.
  2659. */
  2660. static inline int kmem_cache_close(struct kmem_cache *s)
  2661. {
  2662. int node;
  2663. flush_all(s);
  2664. /* Attempt to free all objects */
  2665. for_each_node_state(node, N_NORMAL_MEMORY) {
  2666. struct kmem_cache_node *n = get_node(s, node);
  2667. free_partial(s, n);
  2668. if (n->nr_partial || slabs_node(s, node))
  2669. return 1;
  2670. }
  2671. free_percpu(s->cpu_slab);
  2672. free_kmem_cache_nodes(s);
  2673. return 0;
  2674. }
  2675. int __kmem_cache_shutdown(struct kmem_cache *s)
  2676. {
  2677. int rc = kmem_cache_close(s);
  2678. if (!rc)
  2679. sysfs_slab_remove(s);
  2680. return rc;
  2681. }
  2682. /********************************************************************
  2683. * Kmalloc subsystem
  2684. *******************************************************************/
  2685. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2686. EXPORT_SYMBOL(kmalloc_caches);
  2687. #ifdef CONFIG_ZONE_DMA
  2688. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2689. #endif
  2690. static int __init setup_slub_min_order(char *str)
  2691. {
  2692. get_option(&str, &slub_min_order);
  2693. return 1;
  2694. }
  2695. __setup("slub_min_order=", setup_slub_min_order);
  2696. static int __init setup_slub_max_order(char *str)
  2697. {
  2698. get_option(&str, &slub_max_order);
  2699. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2700. return 1;
  2701. }
  2702. __setup("slub_max_order=", setup_slub_max_order);
  2703. static int __init setup_slub_min_objects(char *str)
  2704. {
  2705. get_option(&str, &slub_min_objects);
  2706. return 1;
  2707. }
  2708. __setup("slub_min_objects=", setup_slub_min_objects);
  2709. static int __init setup_slub_nomerge(char *str)
  2710. {
  2711. slub_nomerge = 1;
  2712. return 1;
  2713. }
  2714. __setup("slub_nomerge", setup_slub_nomerge);
  2715. /*
  2716. * Conversion table for small slabs sizes / 8 to the index in the
  2717. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2718. * of two cache sizes there. The size of larger slabs can be determined using
  2719. * fls.
  2720. */
  2721. static s8 size_index[24] = {
  2722. 3, /* 8 */
  2723. 4, /* 16 */
  2724. 5, /* 24 */
  2725. 5, /* 32 */
  2726. 6, /* 40 */
  2727. 6, /* 48 */
  2728. 6, /* 56 */
  2729. 6, /* 64 */
  2730. 1, /* 72 */
  2731. 1, /* 80 */
  2732. 1, /* 88 */
  2733. 1, /* 96 */
  2734. 7, /* 104 */
  2735. 7, /* 112 */
  2736. 7, /* 120 */
  2737. 7, /* 128 */
  2738. 2, /* 136 */
  2739. 2, /* 144 */
  2740. 2, /* 152 */
  2741. 2, /* 160 */
  2742. 2, /* 168 */
  2743. 2, /* 176 */
  2744. 2, /* 184 */
  2745. 2 /* 192 */
  2746. };
  2747. static inline int size_index_elem(size_t bytes)
  2748. {
  2749. return (bytes - 1) / 8;
  2750. }
  2751. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2752. {
  2753. int index;
  2754. if (size <= 192) {
  2755. if (!size)
  2756. return ZERO_SIZE_PTR;
  2757. index = size_index[size_index_elem(size)];
  2758. } else
  2759. index = fls(size - 1);
  2760. #ifdef CONFIG_ZONE_DMA
  2761. if (unlikely((flags & SLUB_DMA)))
  2762. return kmalloc_dma_caches[index];
  2763. #endif
  2764. return kmalloc_caches[index];
  2765. }
  2766. void *__kmalloc(size_t size, gfp_t flags)
  2767. {
  2768. struct kmem_cache *s;
  2769. void *ret;
  2770. if (unlikely(size > SLUB_MAX_SIZE))
  2771. return kmalloc_large(size, flags);
  2772. s = get_slab(size, flags);
  2773. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2774. return s;
  2775. ret = slab_alloc(s, flags, _RET_IP_);
  2776. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2777. return ret;
  2778. }
  2779. EXPORT_SYMBOL(__kmalloc);
  2780. #ifdef CONFIG_NUMA
  2781. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2782. {
  2783. struct page *page;
  2784. void *ptr = NULL;
  2785. flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
  2786. page = alloc_pages_node(node, flags, get_order(size));
  2787. if (page)
  2788. ptr = page_address(page);
  2789. kmemleak_alloc(ptr, size, 1, flags);
  2790. return ptr;
  2791. }
  2792. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2793. {
  2794. struct kmem_cache *s;
  2795. void *ret;
  2796. if (unlikely(size > SLUB_MAX_SIZE)) {
  2797. ret = kmalloc_large_node(size, flags, node);
  2798. trace_kmalloc_node(_RET_IP_, ret,
  2799. size, PAGE_SIZE << get_order(size),
  2800. flags, node);
  2801. return ret;
  2802. }
  2803. s = get_slab(size, flags);
  2804. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2805. return s;
  2806. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2807. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2808. return ret;
  2809. }
  2810. EXPORT_SYMBOL(__kmalloc_node);
  2811. #endif
  2812. size_t ksize(const void *object)
  2813. {
  2814. struct page *page;
  2815. if (unlikely(object == ZERO_SIZE_PTR))
  2816. return 0;
  2817. page = virt_to_head_page(object);
  2818. if (unlikely(!PageSlab(page))) {
  2819. WARN_ON(!PageCompound(page));
  2820. return PAGE_SIZE << compound_order(page);
  2821. }
  2822. return slab_ksize(page->slab_cache);
  2823. }
  2824. EXPORT_SYMBOL(ksize);
  2825. #ifdef CONFIG_SLUB_DEBUG
  2826. bool verify_mem_not_deleted(const void *x)
  2827. {
  2828. struct page *page;
  2829. void *object = (void *)x;
  2830. unsigned long flags;
  2831. bool rv;
  2832. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2833. return false;
  2834. local_irq_save(flags);
  2835. page = virt_to_head_page(x);
  2836. if (unlikely(!PageSlab(page))) {
  2837. /* maybe it was from stack? */
  2838. rv = true;
  2839. goto out_unlock;
  2840. }
  2841. slab_lock(page);
  2842. if (on_freelist(page->slab_cache, page, object)) {
  2843. object_err(page->slab_cache, page, object, "Object is on free-list");
  2844. rv = false;
  2845. } else {
  2846. rv = true;
  2847. }
  2848. slab_unlock(page);
  2849. out_unlock:
  2850. local_irq_restore(flags);
  2851. return rv;
  2852. }
  2853. EXPORT_SYMBOL(verify_mem_not_deleted);
  2854. #endif
  2855. void kfree(const void *x)
  2856. {
  2857. struct page *page;
  2858. void *object = (void *)x;
  2859. trace_kfree(_RET_IP_, x);
  2860. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2861. return;
  2862. page = virt_to_head_page(x);
  2863. if (unlikely(!PageSlab(page))) {
  2864. BUG_ON(!PageCompound(page));
  2865. kmemleak_free(x);
  2866. __free_memcg_kmem_pages(page, compound_order(page));
  2867. return;
  2868. }
  2869. slab_free(page->slab_cache, page, object, _RET_IP_);
  2870. }
  2871. EXPORT_SYMBOL(kfree);
  2872. /*
  2873. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2874. * the remaining slabs by the number of items in use. The slabs with the
  2875. * most items in use come first. New allocations will then fill those up
  2876. * and thus they can be removed from the partial lists.
  2877. *
  2878. * The slabs with the least items are placed last. This results in them
  2879. * being allocated from last increasing the chance that the last objects
  2880. * are freed in them.
  2881. */
  2882. int kmem_cache_shrink(struct kmem_cache *s)
  2883. {
  2884. int node;
  2885. int i;
  2886. struct kmem_cache_node *n;
  2887. struct page *page;
  2888. struct page *t;
  2889. int objects = oo_objects(s->max);
  2890. struct list_head *slabs_by_inuse =
  2891. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2892. unsigned long flags;
  2893. if (!slabs_by_inuse)
  2894. return -ENOMEM;
  2895. flush_all(s);
  2896. for_each_node_state(node, N_NORMAL_MEMORY) {
  2897. n = get_node(s, node);
  2898. if (!n->nr_partial)
  2899. continue;
  2900. for (i = 0; i < objects; i++)
  2901. INIT_LIST_HEAD(slabs_by_inuse + i);
  2902. spin_lock_irqsave(&n->list_lock, flags);
  2903. /*
  2904. * Build lists indexed by the items in use in each slab.
  2905. *
  2906. * Note that concurrent frees may occur while we hold the
  2907. * list_lock. page->inuse here is the upper limit.
  2908. */
  2909. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2910. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2911. if (!page->inuse)
  2912. n->nr_partial--;
  2913. }
  2914. /*
  2915. * Rebuild the partial list with the slabs filled up most
  2916. * first and the least used slabs at the end.
  2917. */
  2918. for (i = objects - 1; i > 0; i--)
  2919. list_splice(slabs_by_inuse + i, n->partial.prev);
  2920. spin_unlock_irqrestore(&n->list_lock, flags);
  2921. /* Release empty slabs */
  2922. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2923. discard_slab(s, page);
  2924. }
  2925. kfree(slabs_by_inuse);
  2926. return 0;
  2927. }
  2928. EXPORT_SYMBOL(kmem_cache_shrink);
  2929. #if defined(CONFIG_MEMORY_HOTPLUG)
  2930. static int slab_mem_going_offline_callback(void *arg)
  2931. {
  2932. struct kmem_cache *s;
  2933. mutex_lock(&slab_mutex);
  2934. list_for_each_entry(s, &slab_caches, list)
  2935. kmem_cache_shrink(s);
  2936. mutex_unlock(&slab_mutex);
  2937. return 0;
  2938. }
  2939. static void slab_mem_offline_callback(void *arg)
  2940. {
  2941. struct kmem_cache_node *n;
  2942. struct kmem_cache *s;
  2943. struct memory_notify *marg = arg;
  2944. int offline_node;
  2945. offline_node = marg->status_change_nid_normal;
  2946. /*
  2947. * If the node still has available memory. we need kmem_cache_node
  2948. * for it yet.
  2949. */
  2950. if (offline_node < 0)
  2951. return;
  2952. mutex_lock(&slab_mutex);
  2953. list_for_each_entry(s, &slab_caches, list) {
  2954. n = get_node(s, offline_node);
  2955. if (n) {
  2956. /*
  2957. * if n->nr_slabs > 0, slabs still exist on the node
  2958. * that is going down. We were unable to free them,
  2959. * and offline_pages() function shouldn't call this
  2960. * callback. So, we must fail.
  2961. */
  2962. BUG_ON(slabs_node(s, offline_node));
  2963. s->node[offline_node] = NULL;
  2964. kmem_cache_free(kmem_cache_node, n);
  2965. }
  2966. }
  2967. mutex_unlock(&slab_mutex);
  2968. }
  2969. static int slab_mem_going_online_callback(void *arg)
  2970. {
  2971. struct kmem_cache_node *n;
  2972. struct kmem_cache *s;
  2973. struct memory_notify *marg = arg;
  2974. int nid = marg->status_change_nid_normal;
  2975. int ret = 0;
  2976. /*
  2977. * If the node's memory is already available, then kmem_cache_node is
  2978. * already created. Nothing to do.
  2979. */
  2980. if (nid < 0)
  2981. return 0;
  2982. /*
  2983. * We are bringing a node online. No memory is available yet. We must
  2984. * allocate a kmem_cache_node structure in order to bring the node
  2985. * online.
  2986. */
  2987. mutex_lock(&slab_mutex);
  2988. list_for_each_entry(s, &slab_caches, list) {
  2989. /*
  2990. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2991. * since memory is not yet available from the node that
  2992. * is brought up.
  2993. */
  2994. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2995. if (!n) {
  2996. ret = -ENOMEM;
  2997. goto out;
  2998. }
  2999. init_kmem_cache_node(n);
  3000. s->node[nid] = n;
  3001. }
  3002. out:
  3003. mutex_unlock(&slab_mutex);
  3004. return ret;
  3005. }
  3006. static int slab_memory_callback(struct notifier_block *self,
  3007. unsigned long action, void *arg)
  3008. {
  3009. int ret = 0;
  3010. switch (action) {
  3011. case MEM_GOING_ONLINE:
  3012. ret = slab_mem_going_online_callback(arg);
  3013. break;
  3014. case MEM_GOING_OFFLINE:
  3015. ret = slab_mem_going_offline_callback(arg);
  3016. break;
  3017. case MEM_OFFLINE:
  3018. case MEM_CANCEL_ONLINE:
  3019. slab_mem_offline_callback(arg);
  3020. break;
  3021. case MEM_ONLINE:
  3022. case MEM_CANCEL_OFFLINE:
  3023. break;
  3024. }
  3025. if (ret)
  3026. ret = notifier_from_errno(ret);
  3027. else
  3028. ret = NOTIFY_OK;
  3029. return ret;
  3030. }
  3031. #endif /* CONFIG_MEMORY_HOTPLUG */
  3032. /********************************************************************
  3033. * Basic setup of slabs
  3034. *******************************************************************/
  3035. /*
  3036. * Used for early kmem_cache structures that were allocated using
  3037. * the page allocator. Allocate them properly then fix up the pointers
  3038. * that may be pointing to the wrong kmem_cache structure.
  3039. */
  3040. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3041. {
  3042. int node;
  3043. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3044. memcpy(s, static_cache, kmem_cache->object_size);
  3045. for_each_node_state(node, N_NORMAL_MEMORY) {
  3046. struct kmem_cache_node *n = get_node(s, node);
  3047. struct page *p;
  3048. if (n) {
  3049. list_for_each_entry(p, &n->partial, lru)
  3050. p->slab_cache = s;
  3051. #ifdef CONFIG_SLUB_DEBUG
  3052. list_for_each_entry(p, &n->full, lru)
  3053. p->slab_cache = s;
  3054. #endif
  3055. }
  3056. }
  3057. list_add(&s->list, &slab_caches);
  3058. return s;
  3059. }
  3060. void __init kmem_cache_init(void)
  3061. {
  3062. static __initdata struct kmem_cache boot_kmem_cache,
  3063. boot_kmem_cache_node;
  3064. int i;
  3065. int caches = 2;
  3066. if (debug_guardpage_minorder())
  3067. slub_max_order = 0;
  3068. kmem_cache_node = &boot_kmem_cache_node;
  3069. kmem_cache = &boot_kmem_cache;
  3070. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3071. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3072. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3073. /* Able to allocate the per node structures */
  3074. slab_state = PARTIAL;
  3075. create_boot_cache(kmem_cache, "kmem_cache",
  3076. offsetof(struct kmem_cache, node) +
  3077. nr_node_ids * sizeof(struct kmem_cache_node *),
  3078. SLAB_HWCACHE_ALIGN);
  3079. kmem_cache = bootstrap(&boot_kmem_cache);
  3080. /*
  3081. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3082. * kmem_cache_node is separately allocated so no need to
  3083. * update any list pointers.
  3084. */
  3085. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3086. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3087. /*
  3088. * Patch up the size_index table if we have strange large alignment
  3089. * requirements for the kmalloc array. This is only the case for
  3090. * MIPS it seems. The standard arches will not generate any code here.
  3091. *
  3092. * Largest permitted alignment is 256 bytes due to the way we
  3093. * handle the index determination for the smaller caches.
  3094. *
  3095. * Make sure that nothing crazy happens if someone starts tinkering
  3096. * around with ARCH_KMALLOC_MINALIGN
  3097. */
  3098. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3099. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3100. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3101. int elem = size_index_elem(i);
  3102. if (elem >= ARRAY_SIZE(size_index))
  3103. break;
  3104. size_index[elem] = KMALLOC_SHIFT_LOW;
  3105. }
  3106. if (KMALLOC_MIN_SIZE == 64) {
  3107. /*
  3108. * The 96 byte size cache is not used if the alignment
  3109. * is 64 byte.
  3110. */
  3111. for (i = 64 + 8; i <= 96; i += 8)
  3112. size_index[size_index_elem(i)] = 7;
  3113. } else if (KMALLOC_MIN_SIZE == 128) {
  3114. /*
  3115. * The 192 byte sized cache is not used if the alignment
  3116. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3117. * instead.
  3118. */
  3119. for (i = 128 + 8; i <= 192; i += 8)
  3120. size_index[size_index_elem(i)] = 8;
  3121. }
  3122. /* Caches that are not of the two-to-the-power-of size */
  3123. if (KMALLOC_MIN_SIZE <= 32) {
  3124. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3125. caches++;
  3126. }
  3127. if (KMALLOC_MIN_SIZE <= 64) {
  3128. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3129. caches++;
  3130. }
  3131. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3132. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3133. caches++;
  3134. }
  3135. slab_state = UP;
  3136. /* Provide the correct kmalloc names now that the caches are up */
  3137. if (KMALLOC_MIN_SIZE <= 32) {
  3138. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3139. BUG_ON(!kmalloc_caches[1]->name);
  3140. }
  3141. if (KMALLOC_MIN_SIZE <= 64) {
  3142. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3143. BUG_ON(!kmalloc_caches[2]->name);
  3144. }
  3145. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3146. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3147. BUG_ON(!s);
  3148. kmalloc_caches[i]->name = s;
  3149. }
  3150. #ifdef CONFIG_SMP
  3151. register_cpu_notifier(&slab_notifier);
  3152. #endif
  3153. #ifdef CONFIG_ZONE_DMA
  3154. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3155. struct kmem_cache *s = kmalloc_caches[i];
  3156. if (s && s->size) {
  3157. char *name = kasprintf(GFP_NOWAIT,
  3158. "dma-kmalloc-%d", s->object_size);
  3159. BUG_ON(!name);
  3160. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3161. s->object_size, SLAB_CACHE_DMA);
  3162. }
  3163. }
  3164. #endif
  3165. printk(KERN_INFO
  3166. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3167. " CPUs=%d, Nodes=%d\n",
  3168. caches, cache_line_size(),
  3169. slub_min_order, slub_max_order, slub_min_objects,
  3170. nr_cpu_ids, nr_node_ids);
  3171. }
  3172. void __init kmem_cache_init_late(void)
  3173. {
  3174. }
  3175. /*
  3176. * Find a mergeable slab cache
  3177. */
  3178. static int slab_unmergeable(struct kmem_cache *s)
  3179. {
  3180. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3181. return 1;
  3182. if (s->ctor)
  3183. return 1;
  3184. /*
  3185. * We may have set a slab to be unmergeable during bootstrap.
  3186. */
  3187. if (s->refcount < 0)
  3188. return 1;
  3189. return 0;
  3190. }
  3191. static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
  3192. size_t align, unsigned long flags, const char *name,
  3193. void (*ctor)(void *))
  3194. {
  3195. struct kmem_cache *s;
  3196. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3197. return NULL;
  3198. if (ctor)
  3199. return NULL;
  3200. size = ALIGN(size, sizeof(void *));
  3201. align = calculate_alignment(flags, align, size);
  3202. size = ALIGN(size, align);
  3203. flags = kmem_cache_flags(size, flags, name, NULL);
  3204. list_for_each_entry(s, &slab_caches, list) {
  3205. if (slab_unmergeable(s))
  3206. continue;
  3207. if (size > s->size)
  3208. continue;
  3209. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3210. continue;
  3211. /*
  3212. * Check if alignment is compatible.
  3213. * Courtesy of Adrian Drzewiecki
  3214. */
  3215. if ((s->size & ~(align - 1)) != s->size)
  3216. continue;
  3217. if (s->size - size >= sizeof(void *))
  3218. continue;
  3219. if (!cache_match_memcg(s, memcg))
  3220. continue;
  3221. return s;
  3222. }
  3223. return NULL;
  3224. }
  3225. struct kmem_cache *
  3226. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  3227. size_t align, unsigned long flags, void (*ctor)(void *))
  3228. {
  3229. struct kmem_cache *s;
  3230. s = find_mergeable(memcg, size, align, flags, name, ctor);
  3231. if (s) {
  3232. s->refcount++;
  3233. /*
  3234. * Adjust the object sizes so that we clear
  3235. * the complete object on kzalloc.
  3236. */
  3237. s->object_size = max(s->object_size, (int)size);
  3238. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3239. if (sysfs_slab_alias(s, name)) {
  3240. s->refcount--;
  3241. s = NULL;
  3242. }
  3243. }
  3244. return s;
  3245. }
  3246. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3247. {
  3248. int err;
  3249. err = kmem_cache_open(s, flags);
  3250. if (err)
  3251. return err;
  3252. /* Mutex is not taken during early boot */
  3253. if (slab_state <= UP)
  3254. return 0;
  3255. mutex_unlock(&slab_mutex);
  3256. err = sysfs_slab_add(s);
  3257. mutex_lock(&slab_mutex);
  3258. if (err)
  3259. kmem_cache_close(s);
  3260. return err;
  3261. }
  3262. #ifdef CONFIG_SMP
  3263. /*
  3264. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3265. * necessary.
  3266. */
  3267. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3268. unsigned long action, void *hcpu)
  3269. {
  3270. long cpu = (long)hcpu;
  3271. struct kmem_cache *s;
  3272. unsigned long flags;
  3273. switch (action) {
  3274. case CPU_UP_CANCELED:
  3275. case CPU_UP_CANCELED_FROZEN:
  3276. case CPU_DEAD:
  3277. case CPU_DEAD_FROZEN:
  3278. mutex_lock(&slab_mutex);
  3279. list_for_each_entry(s, &slab_caches, list) {
  3280. local_irq_save(flags);
  3281. __flush_cpu_slab(s, cpu);
  3282. local_irq_restore(flags);
  3283. }
  3284. mutex_unlock(&slab_mutex);
  3285. break;
  3286. default:
  3287. break;
  3288. }
  3289. return NOTIFY_OK;
  3290. }
  3291. static struct notifier_block __cpuinitdata slab_notifier = {
  3292. .notifier_call = slab_cpuup_callback
  3293. };
  3294. #endif
  3295. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3296. {
  3297. struct kmem_cache *s;
  3298. void *ret;
  3299. if (unlikely(size > SLUB_MAX_SIZE))
  3300. return kmalloc_large(size, gfpflags);
  3301. s = get_slab(size, gfpflags);
  3302. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3303. return s;
  3304. ret = slab_alloc(s, gfpflags, caller);
  3305. /* Honor the call site pointer we received. */
  3306. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3307. return ret;
  3308. }
  3309. #ifdef CONFIG_NUMA
  3310. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3311. int node, unsigned long caller)
  3312. {
  3313. struct kmem_cache *s;
  3314. void *ret;
  3315. if (unlikely(size > SLUB_MAX_SIZE)) {
  3316. ret = kmalloc_large_node(size, gfpflags, node);
  3317. trace_kmalloc_node(caller, ret,
  3318. size, PAGE_SIZE << get_order(size),
  3319. gfpflags, node);
  3320. return ret;
  3321. }
  3322. s = get_slab(size, gfpflags);
  3323. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3324. return s;
  3325. ret = slab_alloc_node(s, gfpflags, node, caller);
  3326. /* Honor the call site pointer we received. */
  3327. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3328. return ret;
  3329. }
  3330. #endif
  3331. #ifdef CONFIG_SYSFS
  3332. static int count_inuse(struct page *page)
  3333. {
  3334. return page->inuse;
  3335. }
  3336. static int count_total(struct page *page)
  3337. {
  3338. return page->objects;
  3339. }
  3340. #endif
  3341. #ifdef CONFIG_SLUB_DEBUG
  3342. static int validate_slab(struct kmem_cache *s, struct page *page,
  3343. unsigned long *map)
  3344. {
  3345. void *p;
  3346. void *addr = page_address(page);
  3347. if (!check_slab(s, page) ||
  3348. !on_freelist(s, page, NULL))
  3349. return 0;
  3350. /* Now we know that a valid freelist exists */
  3351. bitmap_zero(map, page->objects);
  3352. get_map(s, page, map);
  3353. for_each_object(p, s, addr, page->objects) {
  3354. if (test_bit(slab_index(p, s, addr), map))
  3355. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3356. return 0;
  3357. }
  3358. for_each_object(p, s, addr, page->objects)
  3359. if (!test_bit(slab_index(p, s, addr), map))
  3360. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3361. return 0;
  3362. return 1;
  3363. }
  3364. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3365. unsigned long *map)
  3366. {
  3367. slab_lock(page);
  3368. validate_slab(s, page, map);
  3369. slab_unlock(page);
  3370. }
  3371. static int validate_slab_node(struct kmem_cache *s,
  3372. struct kmem_cache_node *n, unsigned long *map)
  3373. {
  3374. unsigned long count = 0;
  3375. struct page *page;
  3376. unsigned long flags;
  3377. spin_lock_irqsave(&n->list_lock, flags);
  3378. list_for_each_entry(page, &n->partial, lru) {
  3379. validate_slab_slab(s, page, map);
  3380. count++;
  3381. }
  3382. if (count != n->nr_partial)
  3383. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3384. "counter=%ld\n", s->name, count, n->nr_partial);
  3385. if (!(s->flags & SLAB_STORE_USER))
  3386. goto out;
  3387. list_for_each_entry(page, &n->full, lru) {
  3388. validate_slab_slab(s, page, map);
  3389. count++;
  3390. }
  3391. if (count != atomic_long_read(&n->nr_slabs))
  3392. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3393. "counter=%ld\n", s->name, count,
  3394. atomic_long_read(&n->nr_slabs));
  3395. out:
  3396. spin_unlock_irqrestore(&n->list_lock, flags);
  3397. return count;
  3398. }
  3399. static long validate_slab_cache(struct kmem_cache *s)
  3400. {
  3401. int node;
  3402. unsigned long count = 0;
  3403. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3404. sizeof(unsigned long), GFP_KERNEL);
  3405. if (!map)
  3406. return -ENOMEM;
  3407. flush_all(s);
  3408. for_each_node_state(node, N_NORMAL_MEMORY) {
  3409. struct kmem_cache_node *n = get_node(s, node);
  3410. count += validate_slab_node(s, n, map);
  3411. }
  3412. kfree(map);
  3413. return count;
  3414. }
  3415. /*
  3416. * Generate lists of code addresses where slabcache objects are allocated
  3417. * and freed.
  3418. */
  3419. struct location {
  3420. unsigned long count;
  3421. unsigned long addr;
  3422. long long sum_time;
  3423. long min_time;
  3424. long max_time;
  3425. long min_pid;
  3426. long max_pid;
  3427. DECLARE_BITMAP(cpus, NR_CPUS);
  3428. nodemask_t nodes;
  3429. };
  3430. struct loc_track {
  3431. unsigned long max;
  3432. unsigned long count;
  3433. struct location *loc;
  3434. };
  3435. static void free_loc_track(struct loc_track *t)
  3436. {
  3437. if (t->max)
  3438. free_pages((unsigned long)t->loc,
  3439. get_order(sizeof(struct location) * t->max));
  3440. }
  3441. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3442. {
  3443. struct location *l;
  3444. int order;
  3445. order = get_order(sizeof(struct location) * max);
  3446. l = (void *)__get_free_pages(flags, order);
  3447. if (!l)
  3448. return 0;
  3449. if (t->count) {
  3450. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3451. free_loc_track(t);
  3452. }
  3453. t->max = max;
  3454. t->loc = l;
  3455. return 1;
  3456. }
  3457. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3458. const struct track *track)
  3459. {
  3460. long start, end, pos;
  3461. struct location *l;
  3462. unsigned long caddr;
  3463. unsigned long age = jiffies - track->when;
  3464. start = -1;
  3465. end = t->count;
  3466. for ( ; ; ) {
  3467. pos = start + (end - start + 1) / 2;
  3468. /*
  3469. * There is nothing at "end". If we end up there
  3470. * we need to add something to before end.
  3471. */
  3472. if (pos == end)
  3473. break;
  3474. caddr = t->loc[pos].addr;
  3475. if (track->addr == caddr) {
  3476. l = &t->loc[pos];
  3477. l->count++;
  3478. if (track->when) {
  3479. l->sum_time += age;
  3480. if (age < l->min_time)
  3481. l->min_time = age;
  3482. if (age > l->max_time)
  3483. l->max_time = age;
  3484. if (track->pid < l->min_pid)
  3485. l->min_pid = track->pid;
  3486. if (track->pid > l->max_pid)
  3487. l->max_pid = track->pid;
  3488. cpumask_set_cpu(track->cpu,
  3489. to_cpumask(l->cpus));
  3490. }
  3491. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3492. return 1;
  3493. }
  3494. if (track->addr < caddr)
  3495. end = pos;
  3496. else
  3497. start = pos;
  3498. }
  3499. /*
  3500. * Not found. Insert new tracking element.
  3501. */
  3502. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3503. return 0;
  3504. l = t->loc + pos;
  3505. if (pos < t->count)
  3506. memmove(l + 1, l,
  3507. (t->count - pos) * sizeof(struct location));
  3508. t->count++;
  3509. l->count = 1;
  3510. l->addr = track->addr;
  3511. l->sum_time = age;
  3512. l->min_time = age;
  3513. l->max_time = age;
  3514. l->min_pid = track->pid;
  3515. l->max_pid = track->pid;
  3516. cpumask_clear(to_cpumask(l->cpus));
  3517. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3518. nodes_clear(l->nodes);
  3519. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3520. return 1;
  3521. }
  3522. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3523. struct page *page, enum track_item alloc,
  3524. unsigned long *map)
  3525. {
  3526. void *addr = page_address(page);
  3527. void *p;
  3528. bitmap_zero(map, page->objects);
  3529. get_map(s, page, map);
  3530. for_each_object(p, s, addr, page->objects)
  3531. if (!test_bit(slab_index(p, s, addr), map))
  3532. add_location(t, s, get_track(s, p, alloc));
  3533. }
  3534. static int list_locations(struct kmem_cache *s, char *buf,
  3535. enum track_item alloc)
  3536. {
  3537. int len = 0;
  3538. unsigned long i;
  3539. struct loc_track t = { 0, 0, NULL };
  3540. int node;
  3541. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3542. sizeof(unsigned long), GFP_KERNEL);
  3543. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3544. GFP_TEMPORARY)) {
  3545. kfree(map);
  3546. return sprintf(buf, "Out of memory\n");
  3547. }
  3548. /* Push back cpu slabs */
  3549. flush_all(s);
  3550. for_each_node_state(node, N_NORMAL_MEMORY) {
  3551. struct kmem_cache_node *n = get_node(s, node);
  3552. unsigned long flags;
  3553. struct page *page;
  3554. if (!atomic_long_read(&n->nr_slabs))
  3555. continue;
  3556. spin_lock_irqsave(&n->list_lock, flags);
  3557. list_for_each_entry(page, &n->partial, lru)
  3558. process_slab(&t, s, page, alloc, map);
  3559. list_for_each_entry(page, &n->full, lru)
  3560. process_slab(&t, s, page, alloc, map);
  3561. spin_unlock_irqrestore(&n->list_lock, flags);
  3562. }
  3563. for (i = 0; i < t.count; i++) {
  3564. struct location *l = &t.loc[i];
  3565. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3566. break;
  3567. len += sprintf(buf + len, "%7ld ", l->count);
  3568. if (l->addr)
  3569. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3570. else
  3571. len += sprintf(buf + len, "<not-available>");
  3572. if (l->sum_time != l->min_time) {
  3573. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3574. l->min_time,
  3575. (long)div_u64(l->sum_time, l->count),
  3576. l->max_time);
  3577. } else
  3578. len += sprintf(buf + len, " age=%ld",
  3579. l->min_time);
  3580. if (l->min_pid != l->max_pid)
  3581. len += sprintf(buf + len, " pid=%ld-%ld",
  3582. l->min_pid, l->max_pid);
  3583. else
  3584. len += sprintf(buf + len, " pid=%ld",
  3585. l->min_pid);
  3586. if (num_online_cpus() > 1 &&
  3587. !cpumask_empty(to_cpumask(l->cpus)) &&
  3588. len < PAGE_SIZE - 60) {
  3589. len += sprintf(buf + len, " cpus=");
  3590. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3591. to_cpumask(l->cpus));
  3592. }
  3593. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3594. len < PAGE_SIZE - 60) {
  3595. len += sprintf(buf + len, " nodes=");
  3596. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3597. l->nodes);
  3598. }
  3599. len += sprintf(buf + len, "\n");
  3600. }
  3601. free_loc_track(&t);
  3602. kfree(map);
  3603. if (!t.count)
  3604. len += sprintf(buf, "No data\n");
  3605. return len;
  3606. }
  3607. #endif
  3608. #ifdef SLUB_RESILIENCY_TEST
  3609. static void resiliency_test(void)
  3610. {
  3611. u8 *p;
  3612. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3613. printk(KERN_ERR "SLUB resiliency testing\n");
  3614. printk(KERN_ERR "-----------------------\n");
  3615. printk(KERN_ERR "A. Corruption after allocation\n");
  3616. p = kzalloc(16, GFP_KERNEL);
  3617. p[16] = 0x12;
  3618. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3619. " 0x12->0x%p\n\n", p + 16);
  3620. validate_slab_cache(kmalloc_caches[4]);
  3621. /* Hmmm... The next two are dangerous */
  3622. p = kzalloc(32, GFP_KERNEL);
  3623. p[32 + sizeof(void *)] = 0x34;
  3624. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3625. " 0x34 -> -0x%p\n", p);
  3626. printk(KERN_ERR
  3627. "If allocated object is overwritten then not detectable\n\n");
  3628. validate_slab_cache(kmalloc_caches[5]);
  3629. p = kzalloc(64, GFP_KERNEL);
  3630. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3631. *p = 0x56;
  3632. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3633. p);
  3634. printk(KERN_ERR
  3635. "If allocated object is overwritten then not detectable\n\n");
  3636. validate_slab_cache(kmalloc_caches[6]);
  3637. printk(KERN_ERR "\nB. Corruption after free\n");
  3638. p = kzalloc(128, GFP_KERNEL);
  3639. kfree(p);
  3640. *p = 0x78;
  3641. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3642. validate_slab_cache(kmalloc_caches[7]);
  3643. p = kzalloc(256, GFP_KERNEL);
  3644. kfree(p);
  3645. p[50] = 0x9a;
  3646. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3647. p);
  3648. validate_slab_cache(kmalloc_caches[8]);
  3649. p = kzalloc(512, GFP_KERNEL);
  3650. kfree(p);
  3651. p[512] = 0xab;
  3652. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3653. validate_slab_cache(kmalloc_caches[9]);
  3654. }
  3655. #else
  3656. #ifdef CONFIG_SYSFS
  3657. static void resiliency_test(void) {};
  3658. #endif
  3659. #endif
  3660. #ifdef CONFIG_SYSFS
  3661. enum slab_stat_type {
  3662. SL_ALL, /* All slabs */
  3663. SL_PARTIAL, /* Only partially allocated slabs */
  3664. SL_CPU, /* Only slabs used for cpu caches */
  3665. SL_OBJECTS, /* Determine allocated objects not slabs */
  3666. SL_TOTAL /* Determine object capacity not slabs */
  3667. };
  3668. #define SO_ALL (1 << SL_ALL)
  3669. #define SO_PARTIAL (1 << SL_PARTIAL)
  3670. #define SO_CPU (1 << SL_CPU)
  3671. #define SO_OBJECTS (1 << SL_OBJECTS)
  3672. #define SO_TOTAL (1 << SL_TOTAL)
  3673. static ssize_t show_slab_objects(struct kmem_cache *s,
  3674. char *buf, unsigned long flags)
  3675. {
  3676. unsigned long total = 0;
  3677. int node;
  3678. int x;
  3679. unsigned long *nodes;
  3680. unsigned long *per_cpu;
  3681. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3682. if (!nodes)
  3683. return -ENOMEM;
  3684. per_cpu = nodes + nr_node_ids;
  3685. if (flags & SO_CPU) {
  3686. int cpu;
  3687. for_each_possible_cpu(cpu) {
  3688. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3689. int node;
  3690. struct page *page;
  3691. page = ACCESS_ONCE(c->page);
  3692. if (!page)
  3693. continue;
  3694. node = page_to_nid(page);
  3695. if (flags & SO_TOTAL)
  3696. x = page->objects;
  3697. else if (flags & SO_OBJECTS)
  3698. x = page->inuse;
  3699. else
  3700. x = 1;
  3701. total += x;
  3702. nodes[node] += x;
  3703. page = ACCESS_ONCE(c->partial);
  3704. if (page) {
  3705. x = page->pobjects;
  3706. total += x;
  3707. nodes[node] += x;
  3708. }
  3709. per_cpu[node]++;
  3710. }
  3711. }
  3712. lock_memory_hotplug();
  3713. #ifdef CONFIG_SLUB_DEBUG
  3714. if (flags & SO_ALL) {
  3715. for_each_node_state(node, N_NORMAL_MEMORY) {
  3716. struct kmem_cache_node *n = get_node(s, node);
  3717. if (flags & SO_TOTAL)
  3718. x = atomic_long_read(&n->total_objects);
  3719. else if (flags & SO_OBJECTS)
  3720. x = atomic_long_read(&n->total_objects) -
  3721. count_partial(n, count_free);
  3722. else
  3723. x = atomic_long_read(&n->nr_slabs);
  3724. total += x;
  3725. nodes[node] += x;
  3726. }
  3727. } else
  3728. #endif
  3729. if (flags & SO_PARTIAL) {
  3730. for_each_node_state(node, N_NORMAL_MEMORY) {
  3731. struct kmem_cache_node *n = get_node(s, node);
  3732. if (flags & SO_TOTAL)
  3733. x = count_partial(n, count_total);
  3734. else if (flags & SO_OBJECTS)
  3735. x = count_partial(n, count_inuse);
  3736. else
  3737. x = n->nr_partial;
  3738. total += x;
  3739. nodes[node] += x;
  3740. }
  3741. }
  3742. x = sprintf(buf, "%lu", total);
  3743. #ifdef CONFIG_NUMA
  3744. for_each_node_state(node, N_NORMAL_MEMORY)
  3745. if (nodes[node])
  3746. x += sprintf(buf + x, " N%d=%lu",
  3747. node, nodes[node]);
  3748. #endif
  3749. unlock_memory_hotplug();
  3750. kfree(nodes);
  3751. return x + sprintf(buf + x, "\n");
  3752. }
  3753. #ifdef CONFIG_SLUB_DEBUG
  3754. static int any_slab_objects(struct kmem_cache *s)
  3755. {
  3756. int node;
  3757. for_each_online_node(node) {
  3758. struct kmem_cache_node *n = get_node(s, node);
  3759. if (!n)
  3760. continue;
  3761. if (atomic_long_read(&n->total_objects))
  3762. return 1;
  3763. }
  3764. return 0;
  3765. }
  3766. #endif
  3767. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3768. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3769. struct slab_attribute {
  3770. struct attribute attr;
  3771. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3772. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3773. };
  3774. #define SLAB_ATTR_RO(_name) \
  3775. static struct slab_attribute _name##_attr = \
  3776. __ATTR(_name, 0400, _name##_show, NULL)
  3777. #define SLAB_ATTR(_name) \
  3778. static struct slab_attribute _name##_attr = \
  3779. __ATTR(_name, 0600, _name##_show, _name##_store)
  3780. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3781. {
  3782. return sprintf(buf, "%d\n", s->size);
  3783. }
  3784. SLAB_ATTR_RO(slab_size);
  3785. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3786. {
  3787. return sprintf(buf, "%d\n", s->align);
  3788. }
  3789. SLAB_ATTR_RO(align);
  3790. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3791. {
  3792. return sprintf(buf, "%d\n", s->object_size);
  3793. }
  3794. SLAB_ATTR_RO(object_size);
  3795. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3796. {
  3797. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3798. }
  3799. SLAB_ATTR_RO(objs_per_slab);
  3800. static ssize_t order_store(struct kmem_cache *s,
  3801. const char *buf, size_t length)
  3802. {
  3803. unsigned long order;
  3804. int err;
  3805. err = strict_strtoul(buf, 10, &order);
  3806. if (err)
  3807. return err;
  3808. if (order > slub_max_order || order < slub_min_order)
  3809. return -EINVAL;
  3810. calculate_sizes(s, order);
  3811. return length;
  3812. }
  3813. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3814. {
  3815. return sprintf(buf, "%d\n", oo_order(s->oo));
  3816. }
  3817. SLAB_ATTR(order);
  3818. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3819. {
  3820. return sprintf(buf, "%lu\n", s->min_partial);
  3821. }
  3822. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3823. size_t length)
  3824. {
  3825. unsigned long min;
  3826. int err;
  3827. err = strict_strtoul(buf, 10, &min);
  3828. if (err)
  3829. return err;
  3830. set_min_partial(s, min);
  3831. return length;
  3832. }
  3833. SLAB_ATTR(min_partial);
  3834. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3835. {
  3836. return sprintf(buf, "%u\n", s->cpu_partial);
  3837. }
  3838. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3839. size_t length)
  3840. {
  3841. unsigned long objects;
  3842. int err;
  3843. err = strict_strtoul(buf, 10, &objects);
  3844. if (err)
  3845. return err;
  3846. if (objects && kmem_cache_debug(s))
  3847. return -EINVAL;
  3848. s->cpu_partial = objects;
  3849. flush_all(s);
  3850. return length;
  3851. }
  3852. SLAB_ATTR(cpu_partial);
  3853. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3854. {
  3855. if (!s->ctor)
  3856. return 0;
  3857. return sprintf(buf, "%pS\n", s->ctor);
  3858. }
  3859. SLAB_ATTR_RO(ctor);
  3860. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3861. {
  3862. return sprintf(buf, "%d\n", s->refcount - 1);
  3863. }
  3864. SLAB_ATTR_RO(aliases);
  3865. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3866. {
  3867. return show_slab_objects(s, buf, SO_PARTIAL);
  3868. }
  3869. SLAB_ATTR_RO(partial);
  3870. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3871. {
  3872. return show_slab_objects(s, buf, SO_CPU);
  3873. }
  3874. SLAB_ATTR_RO(cpu_slabs);
  3875. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3876. {
  3877. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3878. }
  3879. SLAB_ATTR_RO(objects);
  3880. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3881. {
  3882. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3883. }
  3884. SLAB_ATTR_RO(objects_partial);
  3885. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3886. {
  3887. int objects = 0;
  3888. int pages = 0;
  3889. int cpu;
  3890. int len;
  3891. for_each_online_cpu(cpu) {
  3892. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3893. if (page) {
  3894. pages += page->pages;
  3895. objects += page->pobjects;
  3896. }
  3897. }
  3898. len = sprintf(buf, "%d(%d)", objects, pages);
  3899. #ifdef CONFIG_SMP
  3900. for_each_online_cpu(cpu) {
  3901. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3902. if (page && len < PAGE_SIZE - 20)
  3903. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3904. page->pobjects, page->pages);
  3905. }
  3906. #endif
  3907. return len + sprintf(buf + len, "\n");
  3908. }
  3909. SLAB_ATTR_RO(slabs_cpu_partial);
  3910. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3911. {
  3912. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3913. }
  3914. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3915. const char *buf, size_t length)
  3916. {
  3917. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3918. if (buf[0] == '1')
  3919. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3920. return length;
  3921. }
  3922. SLAB_ATTR(reclaim_account);
  3923. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3924. {
  3925. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3926. }
  3927. SLAB_ATTR_RO(hwcache_align);
  3928. #ifdef CONFIG_ZONE_DMA
  3929. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3930. {
  3931. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3932. }
  3933. SLAB_ATTR_RO(cache_dma);
  3934. #endif
  3935. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3936. {
  3937. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3938. }
  3939. SLAB_ATTR_RO(destroy_by_rcu);
  3940. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3941. {
  3942. return sprintf(buf, "%d\n", s->reserved);
  3943. }
  3944. SLAB_ATTR_RO(reserved);
  3945. #ifdef CONFIG_SLUB_DEBUG
  3946. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3947. {
  3948. return show_slab_objects(s, buf, SO_ALL);
  3949. }
  3950. SLAB_ATTR_RO(slabs);
  3951. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3952. {
  3953. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3954. }
  3955. SLAB_ATTR_RO(total_objects);
  3956. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3957. {
  3958. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3959. }
  3960. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3961. const char *buf, size_t length)
  3962. {
  3963. s->flags &= ~SLAB_DEBUG_FREE;
  3964. if (buf[0] == '1') {
  3965. s->flags &= ~__CMPXCHG_DOUBLE;
  3966. s->flags |= SLAB_DEBUG_FREE;
  3967. }
  3968. return length;
  3969. }
  3970. SLAB_ATTR(sanity_checks);
  3971. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3972. {
  3973. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3974. }
  3975. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3976. size_t length)
  3977. {
  3978. s->flags &= ~SLAB_TRACE;
  3979. if (buf[0] == '1') {
  3980. s->flags &= ~__CMPXCHG_DOUBLE;
  3981. s->flags |= SLAB_TRACE;
  3982. }
  3983. return length;
  3984. }
  3985. SLAB_ATTR(trace);
  3986. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3987. {
  3988. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3989. }
  3990. static ssize_t red_zone_store(struct kmem_cache *s,
  3991. const char *buf, size_t length)
  3992. {
  3993. if (any_slab_objects(s))
  3994. return -EBUSY;
  3995. s->flags &= ~SLAB_RED_ZONE;
  3996. if (buf[0] == '1') {
  3997. s->flags &= ~__CMPXCHG_DOUBLE;
  3998. s->flags |= SLAB_RED_ZONE;
  3999. }
  4000. calculate_sizes(s, -1);
  4001. return length;
  4002. }
  4003. SLAB_ATTR(red_zone);
  4004. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4005. {
  4006. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4007. }
  4008. static ssize_t poison_store(struct kmem_cache *s,
  4009. const char *buf, size_t length)
  4010. {
  4011. if (any_slab_objects(s))
  4012. return -EBUSY;
  4013. s->flags &= ~SLAB_POISON;
  4014. if (buf[0] == '1') {
  4015. s->flags &= ~__CMPXCHG_DOUBLE;
  4016. s->flags |= SLAB_POISON;
  4017. }
  4018. calculate_sizes(s, -1);
  4019. return length;
  4020. }
  4021. SLAB_ATTR(poison);
  4022. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4023. {
  4024. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4025. }
  4026. static ssize_t store_user_store(struct kmem_cache *s,
  4027. const char *buf, size_t length)
  4028. {
  4029. if (any_slab_objects(s))
  4030. return -EBUSY;
  4031. s->flags &= ~SLAB_STORE_USER;
  4032. if (buf[0] == '1') {
  4033. s->flags &= ~__CMPXCHG_DOUBLE;
  4034. s->flags |= SLAB_STORE_USER;
  4035. }
  4036. calculate_sizes(s, -1);
  4037. return length;
  4038. }
  4039. SLAB_ATTR(store_user);
  4040. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4041. {
  4042. return 0;
  4043. }
  4044. static ssize_t validate_store(struct kmem_cache *s,
  4045. const char *buf, size_t length)
  4046. {
  4047. int ret = -EINVAL;
  4048. if (buf[0] == '1') {
  4049. ret = validate_slab_cache(s);
  4050. if (ret >= 0)
  4051. ret = length;
  4052. }
  4053. return ret;
  4054. }
  4055. SLAB_ATTR(validate);
  4056. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4057. {
  4058. if (!(s->flags & SLAB_STORE_USER))
  4059. return -ENOSYS;
  4060. return list_locations(s, buf, TRACK_ALLOC);
  4061. }
  4062. SLAB_ATTR_RO(alloc_calls);
  4063. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4064. {
  4065. if (!(s->flags & SLAB_STORE_USER))
  4066. return -ENOSYS;
  4067. return list_locations(s, buf, TRACK_FREE);
  4068. }
  4069. SLAB_ATTR_RO(free_calls);
  4070. #endif /* CONFIG_SLUB_DEBUG */
  4071. #ifdef CONFIG_FAILSLAB
  4072. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4073. {
  4074. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4075. }
  4076. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4077. size_t length)
  4078. {
  4079. s->flags &= ~SLAB_FAILSLAB;
  4080. if (buf[0] == '1')
  4081. s->flags |= SLAB_FAILSLAB;
  4082. return length;
  4083. }
  4084. SLAB_ATTR(failslab);
  4085. #endif
  4086. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4087. {
  4088. return 0;
  4089. }
  4090. static ssize_t shrink_store(struct kmem_cache *s,
  4091. const char *buf, size_t length)
  4092. {
  4093. if (buf[0] == '1') {
  4094. int rc = kmem_cache_shrink(s);
  4095. if (rc)
  4096. return rc;
  4097. } else
  4098. return -EINVAL;
  4099. return length;
  4100. }
  4101. SLAB_ATTR(shrink);
  4102. #ifdef CONFIG_NUMA
  4103. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4104. {
  4105. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4106. }
  4107. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4108. const char *buf, size_t length)
  4109. {
  4110. unsigned long ratio;
  4111. int err;
  4112. err = strict_strtoul(buf, 10, &ratio);
  4113. if (err)
  4114. return err;
  4115. if (ratio <= 100)
  4116. s->remote_node_defrag_ratio = ratio * 10;
  4117. return length;
  4118. }
  4119. SLAB_ATTR(remote_node_defrag_ratio);
  4120. #endif
  4121. #ifdef CONFIG_SLUB_STATS
  4122. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4123. {
  4124. unsigned long sum = 0;
  4125. int cpu;
  4126. int len;
  4127. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4128. if (!data)
  4129. return -ENOMEM;
  4130. for_each_online_cpu(cpu) {
  4131. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4132. data[cpu] = x;
  4133. sum += x;
  4134. }
  4135. len = sprintf(buf, "%lu", sum);
  4136. #ifdef CONFIG_SMP
  4137. for_each_online_cpu(cpu) {
  4138. if (data[cpu] && len < PAGE_SIZE - 20)
  4139. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4140. }
  4141. #endif
  4142. kfree(data);
  4143. return len + sprintf(buf + len, "\n");
  4144. }
  4145. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4146. {
  4147. int cpu;
  4148. for_each_online_cpu(cpu)
  4149. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4150. }
  4151. #define STAT_ATTR(si, text) \
  4152. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4153. { \
  4154. return show_stat(s, buf, si); \
  4155. } \
  4156. static ssize_t text##_store(struct kmem_cache *s, \
  4157. const char *buf, size_t length) \
  4158. { \
  4159. if (buf[0] != '0') \
  4160. return -EINVAL; \
  4161. clear_stat(s, si); \
  4162. return length; \
  4163. } \
  4164. SLAB_ATTR(text); \
  4165. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4166. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4167. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4168. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4169. STAT_ATTR(FREE_FROZEN, free_frozen);
  4170. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4171. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4172. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4173. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4174. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4175. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4176. STAT_ATTR(FREE_SLAB, free_slab);
  4177. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4178. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4179. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4180. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4181. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4182. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4183. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4184. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4185. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4186. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4187. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4188. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4189. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4190. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4191. #endif
  4192. static struct attribute *slab_attrs[] = {
  4193. &slab_size_attr.attr,
  4194. &object_size_attr.attr,
  4195. &objs_per_slab_attr.attr,
  4196. &order_attr.attr,
  4197. &min_partial_attr.attr,
  4198. &cpu_partial_attr.attr,
  4199. &objects_attr.attr,
  4200. &objects_partial_attr.attr,
  4201. &partial_attr.attr,
  4202. &cpu_slabs_attr.attr,
  4203. &ctor_attr.attr,
  4204. &aliases_attr.attr,
  4205. &align_attr.attr,
  4206. &hwcache_align_attr.attr,
  4207. &reclaim_account_attr.attr,
  4208. &destroy_by_rcu_attr.attr,
  4209. &shrink_attr.attr,
  4210. &reserved_attr.attr,
  4211. &slabs_cpu_partial_attr.attr,
  4212. #ifdef CONFIG_SLUB_DEBUG
  4213. &total_objects_attr.attr,
  4214. &slabs_attr.attr,
  4215. &sanity_checks_attr.attr,
  4216. &trace_attr.attr,
  4217. &red_zone_attr.attr,
  4218. &poison_attr.attr,
  4219. &store_user_attr.attr,
  4220. &validate_attr.attr,
  4221. &alloc_calls_attr.attr,
  4222. &free_calls_attr.attr,
  4223. #endif
  4224. #ifdef CONFIG_ZONE_DMA
  4225. &cache_dma_attr.attr,
  4226. #endif
  4227. #ifdef CONFIG_NUMA
  4228. &remote_node_defrag_ratio_attr.attr,
  4229. #endif
  4230. #ifdef CONFIG_SLUB_STATS
  4231. &alloc_fastpath_attr.attr,
  4232. &alloc_slowpath_attr.attr,
  4233. &free_fastpath_attr.attr,
  4234. &free_slowpath_attr.attr,
  4235. &free_frozen_attr.attr,
  4236. &free_add_partial_attr.attr,
  4237. &free_remove_partial_attr.attr,
  4238. &alloc_from_partial_attr.attr,
  4239. &alloc_slab_attr.attr,
  4240. &alloc_refill_attr.attr,
  4241. &alloc_node_mismatch_attr.attr,
  4242. &free_slab_attr.attr,
  4243. &cpuslab_flush_attr.attr,
  4244. &deactivate_full_attr.attr,
  4245. &deactivate_empty_attr.attr,
  4246. &deactivate_to_head_attr.attr,
  4247. &deactivate_to_tail_attr.attr,
  4248. &deactivate_remote_frees_attr.attr,
  4249. &deactivate_bypass_attr.attr,
  4250. &order_fallback_attr.attr,
  4251. &cmpxchg_double_fail_attr.attr,
  4252. &cmpxchg_double_cpu_fail_attr.attr,
  4253. &cpu_partial_alloc_attr.attr,
  4254. &cpu_partial_free_attr.attr,
  4255. &cpu_partial_node_attr.attr,
  4256. &cpu_partial_drain_attr.attr,
  4257. #endif
  4258. #ifdef CONFIG_FAILSLAB
  4259. &failslab_attr.attr,
  4260. #endif
  4261. NULL
  4262. };
  4263. static struct attribute_group slab_attr_group = {
  4264. .attrs = slab_attrs,
  4265. };
  4266. static ssize_t slab_attr_show(struct kobject *kobj,
  4267. struct attribute *attr,
  4268. char *buf)
  4269. {
  4270. struct slab_attribute *attribute;
  4271. struct kmem_cache *s;
  4272. int err;
  4273. attribute = to_slab_attr(attr);
  4274. s = to_slab(kobj);
  4275. if (!attribute->show)
  4276. return -EIO;
  4277. err = attribute->show(s, buf);
  4278. return err;
  4279. }
  4280. static ssize_t slab_attr_store(struct kobject *kobj,
  4281. struct attribute *attr,
  4282. const char *buf, size_t len)
  4283. {
  4284. struct slab_attribute *attribute;
  4285. struct kmem_cache *s;
  4286. int err;
  4287. attribute = to_slab_attr(attr);
  4288. s = to_slab(kobj);
  4289. if (!attribute->store)
  4290. return -EIO;
  4291. err = attribute->store(s, buf, len);
  4292. return err;
  4293. }
  4294. static const struct sysfs_ops slab_sysfs_ops = {
  4295. .show = slab_attr_show,
  4296. .store = slab_attr_store,
  4297. };
  4298. static struct kobj_type slab_ktype = {
  4299. .sysfs_ops = &slab_sysfs_ops,
  4300. };
  4301. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4302. {
  4303. struct kobj_type *ktype = get_ktype(kobj);
  4304. if (ktype == &slab_ktype)
  4305. return 1;
  4306. return 0;
  4307. }
  4308. static const struct kset_uevent_ops slab_uevent_ops = {
  4309. .filter = uevent_filter,
  4310. };
  4311. static struct kset *slab_kset;
  4312. #define ID_STR_LENGTH 64
  4313. /* Create a unique string id for a slab cache:
  4314. *
  4315. * Format :[flags-]size
  4316. */
  4317. static char *create_unique_id(struct kmem_cache *s)
  4318. {
  4319. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4320. char *p = name;
  4321. BUG_ON(!name);
  4322. *p++ = ':';
  4323. /*
  4324. * First flags affecting slabcache operations. We will only
  4325. * get here for aliasable slabs so we do not need to support
  4326. * too many flags. The flags here must cover all flags that
  4327. * are matched during merging to guarantee that the id is
  4328. * unique.
  4329. */
  4330. if (s->flags & SLAB_CACHE_DMA)
  4331. *p++ = 'd';
  4332. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4333. *p++ = 'a';
  4334. if (s->flags & SLAB_DEBUG_FREE)
  4335. *p++ = 'F';
  4336. if (!(s->flags & SLAB_NOTRACK))
  4337. *p++ = 't';
  4338. if (p != name + 1)
  4339. *p++ = '-';
  4340. p += sprintf(p, "%07d", s->size);
  4341. #ifdef CONFIG_MEMCG_KMEM
  4342. if (!is_root_cache(s))
  4343. p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
  4344. #endif
  4345. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4346. return name;
  4347. }
  4348. static int sysfs_slab_add(struct kmem_cache *s)
  4349. {
  4350. int err;
  4351. const char *name;
  4352. int unmergeable = slab_unmergeable(s);
  4353. if (unmergeable) {
  4354. /*
  4355. * Slabcache can never be merged so we can use the name proper.
  4356. * This is typically the case for debug situations. In that
  4357. * case we can catch duplicate names easily.
  4358. */
  4359. sysfs_remove_link(&slab_kset->kobj, s->name);
  4360. name = s->name;
  4361. } else {
  4362. /*
  4363. * Create a unique name for the slab as a target
  4364. * for the symlinks.
  4365. */
  4366. name = create_unique_id(s);
  4367. }
  4368. s->kobj.kset = slab_kset;
  4369. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4370. if (err) {
  4371. kobject_put(&s->kobj);
  4372. return err;
  4373. }
  4374. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4375. if (err) {
  4376. kobject_del(&s->kobj);
  4377. kobject_put(&s->kobj);
  4378. return err;
  4379. }
  4380. kobject_uevent(&s->kobj, KOBJ_ADD);
  4381. if (!unmergeable) {
  4382. /* Setup first alias */
  4383. sysfs_slab_alias(s, s->name);
  4384. kfree(name);
  4385. }
  4386. return 0;
  4387. }
  4388. static void sysfs_slab_remove(struct kmem_cache *s)
  4389. {
  4390. if (slab_state < FULL)
  4391. /*
  4392. * Sysfs has not been setup yet so no need to remove the
  4393. * cache from sysfs.
  4394. */
  4395. return;
  4396. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4397. kobject_del(&s->kobj);
  4398. kobject_put(&s->kobj);
  4399. }
  4400. /*
  4401. * Need to buffer aliases during bootup until sysfs becomes
  4402. * available lest we lose that information.
  4403. */
  4404. struct saved_alias {
  4405. struct kmem_cache *s;
  4406. const char *name;
  4407. struct saved_alias *next;
  4408. };
  4409. static struct saved_alias *alias_list;
  4410. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4411. {
  4412. struct saved_alias *al;
  4413. if (slab_state == FULL) {
  4414. /*
  4415. * If we have a leftover link then remove it.
  4416. */
  4417. sysfs_remove_link(&slab_kset->kobj, name);
  4418. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4419. }
  4420. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4421. if (!al)
  4422. return -ENOMEM;
  4423. al->s = s;
  4424. al->name = name;
  4425. al->next = alias_list;
  4426. alias_list = al;
  4427. return 0;
  4428. }
  4429. static int __init slab_sysfs_init(void)
  4430. {
  4431. struct kmem_cache *s;
  4432. int err;
  4433. mutex_lock(&slab_mutex);
  4434. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4435. if (!slab_kset) {
  4436. mutex_unlock(&slab_mutex);
  4437. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4438. return -ENOSYS;
  4439. }
  4440. slab_state = FULL;
  4441. list_for_each_entry(s, &slab_caches, list) {
  4442. err = sysfs_slab_add(s);
  4443. if (err)
  4444. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4445. " to sysfs\n", s->name);
  4446. }
  4447. while (alias_list) {
  4448. struct saved_alias *al = alias_list;
  4449. alias_list = alias_list->next;
  4450. err = sysfs_slab_alias(al->s, al->name);
  4451. if (err)
  4452. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4453. " %s to sysfs\n", al->name);
  4454. kfree(al);
  4455. }
  4456. mutex_unlock(&slab_mutex);
  4457. resiliency_test();
  4458. return 0;
  4459. }
  4460. __initcall(slab_sysfs_init);
  4461. #endif /* CONFIG_SYSFS */
  4462. /*
  4463. * The /proc/slabinfo ABI
  4464. */
  4465. #ifdef CONFIG_SLABINFO
  4466. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4467. {
  4468. unsigned long nr_partials = 0;
  4469. unsigned long nr_slabs = 0;
  4470. unsigned long nr_objs = 0;
  4471. unsigned long nr_free = 0;
  4472. int node;
  4473. for_each_online_node(node) {
  4474. struct kmem_cache_node *n = get_node(s, node);
  4475. if (!n)
  4476. continue;
  4477. nr_partials += n->nr_partial;
  4478. nr_slabs += atomic_long_read(&n->nr_slabs);
  4479. nr_objs += atomic_long_read(&n->total_objects);
  4480. nr_free += count_partial(n, count_free);
  4481. }
  4482. sinfo->active_objs = nr_objs - nr_free;
  4483. sinfo->num_objs = nr_objs;
  4484. sinfo->active_slabs = nr_slabs;
  4485. sinfo->num_slabs = nr_slabs;
  4486. sinfo->objects_per_slab = oo_objects(s->oo);
  4487. sinfo->cache_order = oo_order(s->oo);
  4488. }
  4489. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4490. {
  4491. }
  4492. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4493. size_t count, loff_t *ppos)
  4494. {
  4495. return -EIO;
  4496. }
  4497. #endif /* CONFIG_SLABINFO */