x86.c 120 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <trace/events/kvm.h>
  39. #undef TRACE_INCLUDE_FILE
  40. #define CREATE_TRACE_POINTS
  41. #include "trace.h"
  42. #include <asm/uaccess.h>
  43. #include <asm/msr.h>
  44. #include <asm/desc.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/mce.h>
  47. #define MAX_IO_MSRS 256
  48. #define CR0_RESERVED_BITS \
  49. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  50. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  51. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  52. #define CR4_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  54. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  55. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  56. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  57. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  58. #define KVM_MAX_MCE_BANKS 32
  59. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  60. /* EFER defaults:
  61. * - enable syscall per default because its emulated by KVM
  62. * - enable LME and LMA per default on 64 bit KVM
  63. */
  64. #ifdef CONFIG_X86_64
  65. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  66. #else
  67. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  68. #endif
  69. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  70. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  71. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  72. struct kvm_cpuid_entry2 __user *entries);
  73. struct kvm_x86_ops *kvm_x86_ops;
  74. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  75. int ignore_msrs = 0;
  76. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  77. struct kvm_stats_debugfs_item debugfs_entries[] = {
  78. { "pf_fixed", VCPU_STAT(pf_fixed) },
  79. { "pf_guest", VCPU_STAT(pf_guest) },
  80. { "tlb_flush", VCPU_STAT(tlb_flush) },
  81. { "invlpg", VCPU_STAT(invlpg) },
  82. { "exits", VCPU_STAT(exits) },
  83. { "io_exits", VCPU_STAT(io_exits) },
  84. { "mmio_exits", VCPU_STAT(mmio_exits) },
  85. { "signal_exits", VCPU_STAT(signal_exits) },
  86. { "irq_window", VCPU_STAT(irq_window_exits) },
  87. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  88. { "halt_exits", VCPU_STAT(halt_exits) },
  89. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  90. { "hypercalls", VCPU_STAT(hypercalls) },
  91. { "request_irq", VCPU_STAT(request_irq_exits) },
  92. { "irq_exits", VCPU_STAT(irq_exits) },
  93. { "host_state_reload", VCPU_STAT(host_state_reload) },
  94. { "efer_reload", VCPU_STAT(efer_reload) },
  95. { "fpu_reload", VCPU_STAT(fpu_reload) },
  96. { "insn_emulation", VCPU_STAT(insn_emulation) },
  97. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  98. { "irq_injections", VCPU_STAT(irq_injections) },
  99. { "nmi_injections", VCPU_STAT(nmi_injections) },
  100. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  101. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  102. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  103. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  104. { "mmu_flooded", VM_STAT(mmu_flooded) },
  105. { "mmu_recycled", VM_STAT(mmu_recycled) },
  106. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  107. { "mmu_unsync", VM_STAT(mmu_unsync) },
  108. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  109. { "largepages", VM_STAT(lpages) },
  110. { NULL }
  111. };
  112. unsigned long segment_base(u16 selector)
  113. {
  114. struct descriptor_table gdt;
  115. struct desc_struct *d;
  116. unsigned long table_base;
  117. unsigned long v;
  118. if (selector == 0)
  119. return 0;
  120. kvm_get_gdt(&gdt);
  121. table_base = gdt.base;
  122. if (selector & 4) { /* from ldt */
  123. u16 ldt_selector = kvm_read_ldt();
  124. table_base = segment_base(ldt_selector);
  125. }
  126. d = (struct desc_struct *)(table_base + (selector & ~7));
  127. v = get_desc_base(d);
  128. #ifdef CONFIG_X86_64
  129. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  130. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  131. #endif
  132. return v;
  133. }
  134. EXPORT_SYMBOL_GPL(segment_base);
  135. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  136. {
  137. if (irqchip_in_kernel(vcpu->kvm))
  138. return vcpu->arch.apic_base;
  139. else
  140. return vcpu->arch.apic_base;
  141. }
  142. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  143. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  144. {
  145. /* TODO: reserve bits check */
  146. if (irqchip_in_kernel(vcpu->kvm))
  147. kvm_lapic_set_base(vcpu, data);
  148. else
  149. vcpu->arch.apic_base = data;
  150. }
  151. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  152. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  153. {
  154. WARN_ON(vcpu->arch.exception.pending);
  155. vcpu->arch.exception.pending = true;
  156. vcpu->arch.exception.has_error_code = false;
  157. vcpu->arch.exception.nr = nr;
  158. }
  159. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  160. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  161. u32 error_code)
  162. {
  163. ++vcpu->stat.pf_guest;
  164. if (vcpu->arch.exception.pending) {
  165. switch(vcpu->arch.exception.nr) {
  166. case DF_VECTOR:
  167. /* triple fault -> shutdown */
  168. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  169. return;
  170. case PF_VECTOR:
  171. vcpu->arch.exception.nr = DF_VECTOR;
  172. vcpu->arch.exception.error_code = 0;
  173. return;
  174. default:
  175. /* replace previous exception with a new one in a hope
  176. that instruction re-execution will regenerate lost
  177. exception */
  178. vcpu->arch.exception.pending = false;
  179. break;
  180. }
  181. }
  182. vcpu->arch.cr2 = addr;
  183. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  184. }
  185. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  186. {
  187. vcpu->arch.nmi_pending = 1;
  188. }
  189. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  190. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  191. {
  192. WARN_ON(vcpu->arch.exception.pending);
  193. vcpu->arch.exception.pending = true;
  194. vcpu->arch.exception.has_error_code = true;
  195. vcpu->arch.exception.nr = nr;
  196. vcpu->arch.exception.error_code = error_code;
  197. }
  198. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  199. /*
  200. * Load the pae pdptrs. Return true is they are all valid.
  201. */
  202. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  203. {
  204. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  205. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  206. int i;
  207. int ret;
  208. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  209. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  210. offset * sizeof(u64), sizeof(pdpte));
  211. if (ret < 0) {
  212. ret = 0;
  213. goto out;
  214. }
  215. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  216. if (is_present_gpte(pdpte[i]) &&
  217. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  218. ret = 0;
  219. goto out;
  220. }
  221. }
  222. ret = 1;
  223. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  224. __set_bit(VCPU_EXREG_PDPTR,
  225. (unsigned long *)&vcpu->arch.regs_avail);
  226. __set_bit(VCPU_EXREG_PDPTR,
  227. (unsigned long *)&vcpu->arch.regs_dirty);
  228. out:
  229. return ret;
  230. }
  231. EXPORT_SYMBOL_GPL(load_pdptrs);
  232. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  233. {
  234. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  235. bool changed = true;
  236. int r;
  237. if (is_long_mode(vcpu) || !is_pae(vcpu))
  238. return false;
  239. if (!test_bit(VCPU_EXREG_PDPTR,
  240. (unsigned long *)&vcpu->arch.regs_avail))
  241. return true;
  242. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  243. if (r < 0)
  244. goto out;
  245. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  246. out:
  247. return changed;
  248. }
  249. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  250. {
  251. if (cr0 & CR0_RESERVED_BITS) {
  252. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  253. cr0, vcpu->arch.cr0);
  254. kvm_inject_gp(vcpu, 0);
  255. return;
  256. }
  257. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  258. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  259. kvm_inject_gp(vcpu, 0);
  260. return;
  261. }
  262. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  263. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  264. "and a clear PE flag\n");
  265. kvm_inject_gp(vcpu, 0);
  266. return;
  267. }
  268. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  269. #ifdef CONFIG_X86_64
  270. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  271. int cs_db, cs_l;
  272. if (!is_pae(vcpu)) {
  273. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  274. "in long mode while PAE is disabled\n");
  275. kvm_inject_gp(vcpu, 0);
  276. return;
  277. }
  278. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  279. if (cs_l) {
  280. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  281. "in long mode while CS.L == 1\n");
  282. kvm_inject_gp(vcpu, 0);
  283. return;
  284. }
  285. } else
  286. #endif
  287. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  288. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  289. "reserved bits\n");
  290. kvm_inject_gp(vcpu, 0);
  291. return;
  292. }
  293. }
  294. kvm_x86_ops->set_cr0(vcpu, cr0);
  295. vcpu->arch.cr0 = cr0;
  296. kvm_mmu_reset_context(vcpu);
  297. return;
  298. }
  299. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  300. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  301. {
  302. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  303. }
  304. EXPORT_SYMBOL_GPL(kvm_lmsw);
  305. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  306. {
  307. unsigned long old_cr4 = vcpu->arch.cr4;
  308. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  309. if (cr4 & CR4_RESERVED_BITS) {
  310. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  311. kvm_inject_gp(vcpu, 0);
  312. return;
  313. }
  314. if (is_long_mode(vcpu)) {
  315. if (!(cr4 & X86_CR4_PAE)) {
  316. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  317. "in long mode\n");
  318. kvm_inject_gp(vcpu, 0);
  319. return;
  320. }
  321. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  322. && ((cr4 ^ old_cr4) & pdptr_bits)
  323. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  324. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  325. kvm_inject_gp(vcpu, 0);
  326. return;
  327. }
  328. if (cr4 & X86_CR4_VMXE) {
  329. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  330. kvm_inject_gp(vcpu, 0);
  331. return;
  332. }
  333. kvm_x86_ops->set_cr4(vcpu, cr4);
  334. vcpu->arch.cr4 = cr4;
  335. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  336. kvm_mmu_reset_context(vcpu);
  337. }
  338. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  339. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  340. {
  341. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  342. kvm_mmu_sync_roots(vcpu);
  343. kvm_mmu_flush_tlb(vcpu);
  344. return;
  345. }
  346. if (is_long_mode(vcpu)) {
  347. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  348. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  349. kvm_inject_gp(vcpu, 0);
  350. return;
  351. }
  352. } else {
  353. if (is_pae(vcpu)) {
  354. if (cr3 & CR3_PAE_RESERVED_BITS) {
  355. printk(KERN_DEBUG
  356. "set_cr3: #GP, reserved bits\n");
  357. kvm_inject_gp(vcpu, 0);
  358. return;
  359. }
  360. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  361. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  362. "reserved bits\n");
  363. kvm_inject_gp(vcpu, 0);
  364. return;
  365. }
  366. }
  367. /*
  368. * We don't check reserved bits in nonpae mode, because
  369. * this isn't enforced, and VMware depends on this.
  370. */
  371. }
  372. /*
  373. * Does the new cr3 value map to physical memory? (Note, we
  374. * catch an invalid cr3 even in real-mode, because it would
  375. * cause trouble later on when we turn on paging anyway.)
  376. *
  377. * A real CPU would silently accept an invalid cr3 and would
  378. * attempt to use it - with largely undefined (and often hard
  379. * to debug) behavior on the guest side.
  380. */
  381. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  382. kvm_inject_gp(vcpu, 0);
  383. else {
  384. vcpu->arch.cr3 = cr3;
  385. vcpu->arch.mmu.new_cr3(vcpu);
  386. }
  387. }
  388. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  389. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  390. {
  391. if (cr8 & CR8_RESERVED_BITS) {
  392. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  393. kvm_inject_gp(vcpu, 0);
  394. return;
  395. }
  396. if (irqchip_in_kernel(vcpu->kvm))
  397. kvm_lapic_set_tpr(vcpu, cr8);
  398. else
  399. vcpu->arch.cr8 = cr8;
  400. }
  401. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  402. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  403. {
  404. if (irqchip_in_kernel(vcpu->kvm))
  405. return kvm_lapic_get_cr8(vcpu);
  406. else
  407. return vcpu->arch.cr8;
  408. }
  409. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  410. static inline u32 bit(int bitno)
  411. {
  412. return 1 << (bitno & 31);
  413. }
  414. /*
  415. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  416. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  417. *
  418. * This list is modified at module load time to reflect the
  419. * capabilities of the host cpu.
  420. */
  421. static u32 msrs_to_save[] = {
  422. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  423. MSR_K6_STAR,
  424. #ifdef CONFIG_X86_64
  425. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  426. #endif
  427. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  428. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  429. };
  430. static unsigned num_msrs_to_save;
  431. static u32 emulated_msrs[] = {
  432. MSR_IA32_MISC_ENABLE,
  433. };
  434. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  435. {
  436. if (efer & efer_reserved_bits) {
  437. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  438. efer);
  439. kvm_inject_gp(vcpu, 0);
  440. return;
  441. }
  442. if (is_paging(vcpu)
  443. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  444. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  445. kvm_inject_gp(vcpu, 0);
  446. return;
  447. }
  448. if (efer & EFER_FFXSR) {
  449. struct kvm_cpuid_entry2 *feat;
  450. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  451. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  452. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  453. kvm_inject_gp(vcpu, 0);
  454. return;
  455. }
  456. }
  457. if (efer & EFER_SVME) {
  458. struct kvm_cpuid_entry2 *feat;
  459. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  460. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  461. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  462. kvm_inject_gp(vcpu, 0);
  463. return;
  464. }
  465. }
  466. kvm_x86_ops->set_efer(vcpu, efer);
  467. efer &= ~EFER_LMA;
  468. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  469. vcpu->arch.shadow_efer = efer;
  470. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  471. kvm_mmu_reset_context(vcpu);
  472. }
  473. void kvm_enable_efer_bits(u64 mask)
  474. {
  475. efer_reserved_bits &= ~mask;
  476. }
  477. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  478. /*
  479. * Writes msr value into into the appropriate "register".
  480. * Returns 0 on success, non-0 otherwise.
  481. * Assumes vcpu_load() was already called.
  482. */
  483. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  484. {
  485. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  486. }
  487. /*
  488. * Adapt set_msr() to msr_io()'s calling convention
  489. */
  490. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  491. {
  492. return kvm_set_msr(vcpu, index, *data);
  493. }
  494. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  495. {
  496. static int version;
  497. struct pvclock_wall_clock wc;
  498. struct timespec now, sys, boot;
  499. if (!wall_clock)
  500. return;
  501. version++;
  502. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  503. /*
  504. * The guest calculates current wall clock time by adding
  505. * system time (updated by kvm_write_guest_time below) to the
  506. * wall clock specified here. guest system time equals host
  507. * system time for us, thus we must fill in host boot time here.
  508. */
  509. now = current_kernel_time();
  510. ktime_get_ts(&sys);
  511. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  512. wc.sec = boot.tv_sec;
  513. wc.nsec = boot.tv_nsec;
  514. wc.version = version;
  515. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  516. version++;
  517. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  518. }
  519. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  520. {
  521. uint32_t quotient, remainder;
  522. /* Don't try to replace with do_div(), this one calculates
  523. * "(dividend << 32) / divisor" */
  524. __asm__ ( "divl %4"
  525. : "=a" (quotient), "=d" (remainder)
  526. : "0" (0), "1" (dividend), "r" (divisor) );
  527. return quotient;
  528. }
  529. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  530. {
  531. uint64_t nsecs = 1000000000LL;
  532. int32_t shift = 0;
  533. uint64_t tps64;
  534. uint32_t tps32;
  535. tps64 = tsc_khz * 1000LL;
  536. while (tps64 > nsecs*2) {
  537. tps64 >>= 1;
  538. shift--;
  539. }
  540. tps32 = (uint32_t)tps64;
  541. while (tps32 <= (uint32_t)nsecs) {
  542. tps32 <<= 1;
  543. shift++;
  544. }
  545. hv_clock->tsc_shift = shift;
  546. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  547. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  548. __func__, tsc_khz, hv_clock->tsc_shift,
  549. hv_clock->tsc_to_system_mul);
  550. }
  551. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  552. static void kvm_write_guest_time(struct kvm_vcpu *v)
  553. {
  554. struct timespec ts;
  555. unsigned long flags;
  556. struct kvm_vcpu_arch *vcpu = &v->arch;
  557. void *shared_kaddr;
  558. unsigned long this_tsc_khz;
  559. if ((!vcpu->time_page))
  560. return;
  561. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  562. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  563. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  564. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  565. }
  566. put_cpu_var(cpu_tsc_khz);
  567. /* Keep irq disabled to prevent changes to the clock */
  568. local_irq_save(flags);
  569. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  570. ktime_get_ts(&ts);
  571. local_irq_restore(flags);
  572. /* With all the info we got, fill in the values */
  573. vcpu->hv_clock.system_time = ts.tv_nsec +
  574. (NSEC_PER_SEC * (u64)ts.tv_sec);
  575. /*
  576. * The interface expects us to write an even number signaling that the
  577. * update is finished. Since the guest won't see the intermediate
  578. * state, we just increase by 2 at the end.
  579. */
  580. vcpu->hv_clock.version += 2;
  581. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  582. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  583. sizeof(vcpu->hv_clock));
  584. kunmap_atomic(shared_kaddr, KM_USER0);
  585. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  586. }
  587. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  588. {
  589. struct kvm_vcpu_arch *vcpu = &v->arch;
  590. if (!vcpu->time_page)
  591. return 0;
  592. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  593. return 1;
  594. }
  595. static bool msr_mtrr_valid(unsigned msr)
  596. {
  597. switch (msr) {
  598. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  599. case MSR_MTRRfix64K_00000:
  600. case MSR_MTRRfix16K_80000:
  601. case MSR_MTRRfix16K_A0000:
  602. case MSR_MTRRfix4K_C0000:
  603. case MSR_MTRRfix4K_C8000:
  604. case MSR_MTRRfix4K_D0000:
  605. case MSR_MTRRfix4K_D8000:
  606. case MSR_MTRRfix4K_E0000:
  607. case MSR_MTRRfix4K_E8000:
  608. case MSR_MTRRfix4K_F0000:
  609. case MSR_MTRRfix4K_F8000:
  610. case MSR_MTRRdefType:
  611. case MSR_IA32_CR_PAT:
  612. return true;
  613. case 0x2f8:
  614. return true;
  615. }
  616. return false;
  617. }
  618. static bool valid_pat_type(unsigned t)
  619. {
  620. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  621. }
  622. static bool valid_mtrr_type(unsigned t)
  623. {
  624. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  625. }
  626. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  627. {
  628. int i;
  629. if (!msr_mtrr_valid(msr))
  630. return false;
  631. if (msr == MSR_IA32_CR_PAT) {
  632. for (i = 0; i < 8; i++)
  633. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  634. return false;
  635. return true;
  636. } else if (msr == MSR_MTRRdefType) {
  637. if (data & ~0xcff)
  638. return false;
  639. return valid_mtrr_type(data & 0xff);
  640. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  641. for (i = 0; i < 8 ; i++)
  642. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  643. return false;
  644. return true;
  645. }
  646. /* variable MTRRs */
  647. return valid_mtrr_type(data & 0xff);
  648. }
  649. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  650. {
  651. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  652. if (!mtrr_valid(vcpu, msr, data))
  653. return 1;
  654. if (msr == MSR_MTRRdefType) {
  655. vcpu->arch.mtrr_state.def_type = data;
  656. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  657. } else if (msr == MSR_MTRRfix64K_00000)
  658. p[0] = data;
  659. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  660. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  661. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  662. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  663. else if (msr == MSR_IA32_CR_PAT)
  664. vcpu->arch.pat = data;
  665. else { /* Variable MTRRs */
  666. int idx, is_mtrr_mask;
  667. u64 *pt;
  668. idx = (msr - 0x200) / 2;
  669. is_mtrr_mask = msr - 0x200 - 2 * idx;
  670. if (!is_mtrr_mask)
  671. pt =
  672. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  673. else
  674. pt =
  675. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  676. *pt = data;
  677. }
  678. kvm_mmu_reset_context(vcpu);
  679. return 0;
  680. }
  681. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  682. {
  683. u64 mcg_cap = vcpu->arch.mcg_cap;
  684. unsigned bank_num = mcg_cap & 0xff;
  685. switch (msr) {
  686. case MSR_IA32_MCG_STATUS:
  687. vcpu->arch.mcg_status = data;
  688. break;
  689. case MSR_IA32_MCG_CTL:
  690. if (!(mcg_cap & MCG_CTL_P))
  691. return 1;
  692. if (data != 0 && data != ~(u64)0)
  693. return -1;
  694. vcpu->arch.mcg_ctl = data;
  695. break;
  696. default:
  697. if (msr >= MSR_IA32_MC0_CTL &&
  698. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  699. u32 offset = msr - MSR_IA32_MC0_CTL;
  700. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  701. if ((offset & 0x3) == 0 &&
  702. data != 0 && data != ~(u64)0)
  703. return -1;
  704. vcpu->arch.mce_banks[offset] = data;
  705. break;
  706. }
  707. return 1;
  708. }
  709. return 0;
  710. }
  711. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  712. {
  713. switch (msr) {
  714. case MSR_EFER:
  715. set_efer(vcpu, data);
  716. break;
  717. case MSR_K7_HWCR:
  718. data &= ~(u64)0x40; /* ignore flush filter disable */
  719. if (data != 0) {
  720. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  721. data);
  722. return 1;
  723. }
  724. break;
  725. case MSR_FAM10H_MMIO_CONF_BASE:
  726. if (data != 0) {
  727. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  728. "0x%llx\n", data);
  729. return 1;
  730. }
  731. break;
  732. case MSR_AMD64_NB_CFG:
  733. break;
  734. case MSR_IA32_DEBUGCTLMSR:
  735. if (!data) {
  736. /* We support the non-activated case already */
  737. break;
  738. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  739. /* Values other than LBR and BTF are vendor-specific,
  740. thus reserved and should throw a #GP */
  741. return 1;
  742. }
  743. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  744. __func__, data);
  745. break;
  746. case MSR_IA32_UCODE_REV:
  747. case MSR_IA32_UCODE_WRITE:
  748. case MSR_VM_HSAVE_PA:
  749. case MSR_AMD64_PATCH_LOADER:
  750. break;
  751. case 0x200 ... 0x2ff:
  752. return set_msr_mtrr(vcpu, msr, data);
  753. case MSR_IA32_APICBASE:
  754. kvm_set_apic_base(vcpu, data);
  755. break;
  756. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  757. return kvm_x2apic_msr_write(vcpu, msr, data);
  758. case MSR_IA32_MISC_ENABLE:
  759. vcpu->arch.ia32_misc_enable_msr = data;
  760. break;
  761. case MSR_KVM_WALL_CLOCK:
  762. vcpu->kvm->arch.wall_clock = data;
  763. kvm_write_wall_clock(vcpu->kvm, data);
  764. break;
  765. case MSR_KVM_SYSTEM_TIME: {
  766. if (vcpu->arch.time_page) {
  767. kvm_release_page_dirty(vcpu->arch.time_page);
  768. vcpu->arch.time_page = NULL;
  769. }
  770. vcpu->arch.time = data;
  771. /* we verify if the enable bit is set... */
  772. if (!(data & 1))
  773. break;
  774. /* ...but clean it before doing the actual write */
  775. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  776. vcpu->arch.time_page =
  777. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  778. if (is_error_page(vcpu->arch.time_page)) {
  779. kvm_release_page_clean(vcpu->arch.time_page);
  780. vcpu->arch.time_page = NULL;
  781. }
  782. kvm_request_guest_time_update(vcpu);
  783. break;
  784. }
  785. case MSR_IA32_MCG_CTL:
  786. case MSR_IA32_MCG_STATUS:
  787. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  788. return set_msr_mce(vcpu, msr, data);
  789. /* Performance counters are not protected by a CPUID bit,
  790. * so we should check all of them in the generic path for the sake of
  791. * cross vendor migration.
  792. * Writing a zero into the event select MSRs disables them,
  793. * which we perfectly emulate ;-). Any other value should be at least
  794. * reported, some guests depend on them.
  795. */
  796. case MSR_P6_EVNTSEL0:
  797. case MSR_P6_EVNTSEL1:
  798. case MSR_K7_EVNTSEL0:
  799. case MSR_K7_EVNTSEL1:
  800. case MSR_K7_EVNTSEL2:
  801. case MSR_K7_EVNTSEL3:
  802. if (data != 0)
  803. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  804. "0x%x data 0x%llx\n", msr, data);
  805. break;
  806. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  807. * so we ignore writes to make it happy.
  808. */
  809. case MSR_P6_PERFCTR0:
  810. case MSR_P6_PERFCTR1:
  811. case MSR_K7_PERFCTR0:
  812. case MSR_K7_PERFCTR1:
  813. case MSR_K7_PERFCTR2:
  814. case MSR_K7_PERFCTR3:
  815. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  816. "0x%x data 0x%llx\n", msr, data);
  817. break;
  818. default:
  819. if (!ignore_msrs) {
  820. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  821. msr, data);
  822. return 1;
  823. } else {
  824. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  825. msr, data);
  826. break;
  827. }
  828. }
  829. return 0;
  830. }
  831. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  832. /*
  833. * Reads an msr value (of 'msr_index') into 'pdata'.
  834. * Returns 0 on success, non-0 otherwise.
  835. * Assumes vcpu_load() was already called.
  836. */
  837. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  838. {
  839. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  840. }
  841. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  842. {
  843. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  844. if (!msr_mtrr_valid(msr))
  845. return 1;
  846. if (msr == MSR_MTRRdefType)
  847. *pdata = vcpu->arch.mtrr_state.def_type +
  848. (vcpu->arch.mtrr_state.enabled << 10);
  849. else if (msr == MSR_MTRRfix64K_00000)
  850. *pdata = p[0];
  851. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  852. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  853. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  854. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  855. else if (msr == MSR_IA32_CR_PAT)
  856. *pdata = vcpu->arch.pat;
  857. else { /* Variable MTRRs */
  858. int idx, is_mtrr_mask;
  859. u64 *pt;
  860. idx = (msr - 0x200) / 2;
  861. is_mtrr_mask = msr - 0x200 - 2 * idx;
  862. if (!is_mtrr_mask)
  863. pt =
  864. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  865. else
  866. pt =
  867. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  868. *pdata = *pt;
  869. }
  870. return 0;
  871. }
  872. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  873. {
  874. u64 data;
  875. u64 mcg_cap = vcpu->arch.mcg_cap;
  876. unsigned bank_num = mcg_cap & 0xff;
  877. switch (msr) {
  878. case MSR_IA32_P5_MC_ADDR:
  879. case MSR_IA32_P5_MC_TYPE:
  880. data = 0;
  881. break;
  882. case MSR_IA32_MCG_CAP:
  883. data = vcpu->arch.mcg_cap;
  884. break;
  885. case MSR_IA32_MCG_CTL:
  886. if (!(mcg_cap & MCG_CTL_P))
  887. return 1;
  888. data = vcpu->arch.mcg_ctl;
  889. break;
  890. case MSR_IA32_MCG_STATUS:
  891. data = vcpu->arch.mcg_status;
  892. break;
  893. default:
  894. if (msr >= MSR_IA32_MC0_CTL &&
  895. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  896. u32 offset = msr - MSR_IA32_MC0_CTL;
  897. data = vcpu->arch.mce_banks[offset];
  898. break;
  899. }
  900. return 1;
  901. }
  902. *pdata = data;
  903. return 0;
  904. }
  905. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  906. {
  907. u64 data;
  908. switch (msr) {
  909. case MSR_IA32_PLATFORM_ID:
  910. case MSR_IA32_UCODE_REV:
  911. case MSR_IA32_EBL_CR_POWERON:
  912. case MSR_IA32_DEBUGCTLMSR:
  913. case MSR_IA32_LASTBRANCHFROMIP:
  914. case MSR_IA32_LASTBRANCHTOIP:
  915. case MSR_IA32_LASTINTFROMIP:
  916. case MSR_IA32_LASTINTTOIP:
  917. case MSR_K8_SYSCFG:
  918. case MSR_K7_HWCR:
  919. case MSR_VM_HSAVE_PA:
  920. case MSR_P6_PERFCTR0:
  921. case MSR_P6_PERFCTR1:
  922. case MSR_P6_EVNTSEL0:
  923. case MSR_P6_EVNTSEL1:
  924. case MSR_K7_EVNTSEL0:
  925. case MSR_K7_PERFCTR0:
  926. case MSR_K8_INT_PENDING_MSG:
  927. case MSR_AMD64_NB_CFG:
  928. case MSR_FAM10H_MMIO_CONF_BASE:
  929. data = 0;
  930. break;
  931. case MSR_MTRRcap:
  932. data = 0x500 | KVM_NR_VAR_MTRR;
  933. break;
  934. case 0x200 ... 0x2ff:
  935. return get_msr_mtrr(vcpu, msr, pdata);
  936. case 0xcd: /* fsb frequency */
  937. data = 3;
  938. break;
  939. case MSR_IA32_APICBASE:
  940. data = kvm_get_apic_base(vcpu);
  941. break;
  942. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  943. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  944. break;
  945. case MSR_IA32_MISC_ENABLE:
  946. data = vcpu->arch.ia32_misc_enable_msr;
  947. break;
  948. case MSR_IA32_PERF_STATUS:
  949. /* TSC increment by tick */
  950. data = 1000ULL;
  951. /* CPU multiplier */
  952. data |= (((uint64_t)4ULL) << 40);
  953. break;
  954. case MSR_EFER:
  955. data = vcpu->arch.shadow_efer;
  956. break;
  957. case MSR_KVM_WALL_CLOCK:
  958. data = vcpu->kvm->arch.wall_clock;
  959. break;
  960. case MSR_KVM_SYSTEM_TIME:
  961. data = vcpu->arch.time;
  962. break;
  963. case MSR_IA32_P5_MC_ADDR:
  964. case MSR_IA32_P5_MC_TYPE:
  965. case MSR_IA32_MCG_CAP:
  966. case MSR_IA32_MCG_CTL:
  967. case MSR_IA32_MCG_STATUS:
  968. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  969. return get_msr_mce(vcpu, msr, pdata);
  970. default:
  971. if (!ignore_msrs) {
  972. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  973. return 1;
  974. } else {
  975. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  976. data = 0;
  977. }
  978. break;
  979. }
  980. *pdata = data;
  981. return 0;
  982. }
  983. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  984. /*
  985. * Read or write a bunch of msrs. All parameters are kernel addresses.
  986. *
  987. * @return number of msrs set successfully.
  988. */
  989. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  990. struct kvm_msr_entry *entries,
  991. int (*do_msr)(struct kvm_vcpu *vcpu,
  992. unsigned index, u64 *data))
  993. {
  994. int i;
  995. vcpu_load(vcpu);
  996. down_read(&vcpu->kvm->slots_lock);
  997. for (i = 0; i < msrs->nmsrs; ++i)
  998. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  999. break;
  1000. up_read(&vcpu->kvm->slots_lock);
  1001. vcpu_put(vcpu);
  1002. return i;
  1003. }
  1004. /*
  1005. * Read or write a bunch of msrs. Parameters are user addresses.
  1006. *
  1007. * @return number of msrs set successfully.
  1008. */
  1009. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1010. int (*do_msr)(struct kvm_vcpu *vcpu,
  1011. unsigned index, u64 *data),
  1012. int writeback)
  1013. {
  1014. struct kvm_msrs msrs;
  1015. struct kvm_msr_entry *entries;
  1016. int r, n;
  1017. unsigned size;
  1018. r = -EFAULT;
  1019. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1020. goto out;
  1021. r = -E2BIG;
  1022. if (msrs.nmsrs >= MAX_IO_MSRS)
  1023. goto out;
  1024. r = -ENOMEM;
  1025. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1026. entries = vmalloc(size);
  1027. if (!entries)
  1028. goto out;
  1029. r = -EFAULT;
  1030. if (copy_from_user(entries, user_msrs->entries, size))
  1031. goto out_free;
  1032. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1033. if (r < 0)
  1034. goto out_free;
  1035. r = -EFAULT;
  1036. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1037. goto out_free;
  1038. r = n;
  1039. out_free:
  1040. vfree(entries);
  1041. out:
  1042. return r;
  1043. }
  1044. int kvm_dev_ioctl_check_extension(long ext)
  1045. {
  1046. int r;
  1047. switch (ext) {
  1048. case KVM_CAP_IRQCHIP:
  1049. case KVM_CAP_HLT:
  1050. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1051. case KVM_CAP_SET_TSS_ADDR:
  1052. case KVM_CAP_EXT_CPUID:
  1053. case KVM_CAP_CLOCKSOURCE:
  1054. case KVM_CAP_PIT:
  1055. case KVM_CAP_NOP_IO_DELAY:
  1056. case KVM_CAP_MP_STATE:
  1057. case KVM_CAP_SYNC_MMU:
  1058. case KVM_CAP_REINJECT_CONTROL:
  1059. case KVM_CAP_IRQ_INJECT_STATUS:
  1060. case KVM_CAP_ASSIGN_DEV_IRQ:
  1061. case KVM_CAP_IRQFD:
  1062. case KVM_CAP_IOEVENTFD:
  1063. case KVM_CAP_PIT2:
  1064. case KVM_CAP_PIT_STATE2:
  1065. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1066. r = 1;
  1067. break;
  1068. case KVM_CAP_COALESCED_MMIO:
  1069. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1070. break;
  1071. case KVM_CAP_VAPIC:
  1072. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1073. break;
  1074. case KVM_CAP_NR_VCPUS:
  1075. r = KVM_MAX_VCPUS;
  1076. break;
  1077. case KVM_CAP_NR_MEMSLOTS:
  1078. r = KVM_MEMORY_SLOTS;
  1079. break;
  1080. case KVM_CAP_PV_MMU:
  1081. r = !tdp_enabled;
  1082. break;
  1083. case KVM_CAP_IOMMU:
  1084. r = iommu_found();
  1085. break;
  1086. case KVM_CAP_MCE:
  1087. r = KVM_MAX_MCE_BANKS;
  1088. break;
  1089. default:
  1090. r = 0;
  1091. break;
  1092. }
  1093. return r;
  1094. }
  1095. long kvm_arch_dev_ioctl(struct file *filp,
  1096. unsigned int ioctl, unsigned long arg)
  1097. {
  1098. void __user *argp = (void __user *)arg;
  1099. long r;
  1100. switch (ioctl) {
  1101. case KVM_GET_MSR_INDEX_LIST: {
  1102. struct kvm_msr_list __user *user_msr_list = argp;
  1103. struct kvm_msr_list msr_list;
  1104. unsigned n;
  1105. r = -EFAULT;
  1106. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1107. goto out;
  1108. n = msr_list.nmsrs;
  1109. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1110. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1111. goto out;
  1112. r = -E2BIG;
  1113. if (n < msr_list.nmsrs)
  1114. goto out;
  1115. r = -EFAULT;
  1116. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1117. num_msrs_to_save * sizeof(u32)))
  1118. goto out;
  1119. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1120. &emulated_msrs,
  1121. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1122. goto out;
  1123. r = 0;
  1124. break;
  1125. }
  1126. case KVM_GET_SUPPORTED_CPUID: {
  1127. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1128. struct kvm_cpuid2 cpuid;
  1129. r = -EFAULT;
  1130. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1131. goto out;
  1132. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1133. cpuid_arg->entries);
  1134. if (r)
  1135. goto out;
  1136. r = -EFAULT;
  1137. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1138. goto out;
  1139. r = 0;
  1140. break;
  1141. }
  1142. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1143. u64 mce_cap;
  1144. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1145. r = -EFAULT;
  1146. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1147. goto out;
  1148. r = 0;
  1149. break;
  1150. }
  1151. default:
  1152. r = -EINVAL;
  1153. }
  1154. out:
  1155. return r;
  1156. }
  1157. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1158. {
  1159. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1160. kvm_request_guest_time_update(vcpu);
  1161. }
  1162. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1163. {
  1164. kvm_x86_ops->vcpu_put(vcpu);
  1165. kvm_put_guest_fpu(vcpu);
  1166. }
  1167. static int is_efer_nx(void)
  1168. {
  1169. unsigned long long efer = 0;
  1170. rdmsrl_safe(MSR_EFER, &efer);
  1171. return efer & EFER_NX;
  1172. }
  1173. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1174. {
  1175. int i;
  1176. struct kvm_cpuid_entry2 *e, *entry;
  1177. entry = NULL;
  1178. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1179. e = &vcpu->arch.cpuid_entries[i];
  1180. if (e->function == 0x80000001) {
  1181. entry = e;
  1182. break;
  1183. }
  1184. }
  1185. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1186. entry->edx &= ~(1 << 20);
  1187. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1188. }
  1189. }
  1190. /* when an old userspace process fills a new kernel module */
  1191. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1192. struct kvm_cpuid *cpuid,
  1193. struct kvm_cpuid_entry __user *entries)
  1194. {
  1195. int r, i;
  1196. struct kvm_cpuid_entry *cpuid_entries;
  1197. r = -E2BIG;
  1198. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1199. goto out;
  1200. r = -ENOMEM;
  1201. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1202. if (!cpuid_entries)
  1203. goto out;
  1204. r = -EFAULT;
  1205. if (copy_from_user(cpuid_entries, entries,
  1206. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1207. goto out_free;
  1208. for (i = 0; i < cpuid->nent; i++) {
  1209. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1210. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1211. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1212. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1213. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1214. vcpu->arch.cpuid_entries[i].index = 0;
  1215. vcpu->arch.cpuid_entries[i].flags = 0;
  1216. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1217. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1218. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1219. }
  1220. vcpu->arch.cpuid_nent = cpuid->nent;
  1221. cpuid_fix_nx_cap(vcpu);
  1222. r = 0;
  1223. kvm_apic_set_version(vcpu);
  1224. out_free:
  1225. vfree(cpuid_entries);
  1226. out:
  1227. return r;
  1228. }
  1229. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1230. struct kvm_cpuid2 *cpuid,
  1231. struct kvm_cpuid_entry2 __user *entries)
  1232. {
  1233. int r;
  1234. r = -E2BIG;
  1235. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1236. goto out;
  1237. r = -EFAULT;
  1238. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1239. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1240. goto out;
  1241. vcpu->arch.cpuid_nent = cpuid->nent;
  1242. kvm_apic_set_version(vcpu);
  1243. return 0;
  1244. out:
  1245. return r;
  1246. }
  1247. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1248. struct kvm_cpuid2 *cpuid,
  1249. struct kvm_cpuid_entry2 __user *entries)
  1250. {
  1251. int r;
  1252. r = -E2BIG;
  1253. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1254. goto out;
  1255. r = -EFAULT;
  1256. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1257. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1258. goto out;
  1259. return 0;
  1260. out:
  1261. cpuid->nent = vcpu->arch.cpuid_nent;
  1262. return r;
  1263. }
  1264. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1265. u32 index)
  1266. {
  1267. entry->function = function;
  1268. entry->index = index;
  1269. cpuid_count(entry->function, entry->index,
  1270. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1271. entry->flags = 0;
  1272. }
  1273. #define F(x) bit(X86_FEATURE_##x)
  1274. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1275. u32 index, int *nent, int maxnent)
  1276. {
  1277. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1278. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1279. #ifdef CONFIG_X86_64
  1280. unsigned f_lm = F(LM);
  1281. #else
  1282. unsigned f_lm = 0;
  1283. #endif
  1284. /* cpuid 1.edx */
  1285. const u32 kvm_supported_word0_x86_features =
  1286. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1287. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1288. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1289. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1290. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1291. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1292. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1293. 0 /* HTT, TM, Reserved, PBE */;
  1294. /* cpuid 0x80000001.edx */
  1295. const u32 kvm_supported_word1_x86_features =
  1296. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1297. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1298. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1299. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1300. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1301. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1302. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1303. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1304. /* cpuid 1.ecx */
  1305. const u32 kvm_supported_word4_x86_features =
  1306. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1307. 0 /* DS-CPL, VMX, SMX, EST */ |
  1308. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1309. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1310. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1311. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1312. 0 /* Reserved, XSAVE, OSXSAVE */;
  1313. /* cpuid 0x80000001.ecx */
  1314. const u32 kvm_supported_word6_x86_features =
  1315. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1316. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1317. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1318. 0 /* SKINIT */ | 0 /* WDT */;
  1319. /* all calls to cpuid_count() should be made on the same cpu */
  1320. get_cpu();
  1321. do_cpuid_1_ent(entry, function, index);
  1322. ++*nent;
  1323. switch (function) {
  1324. case 0:
  1325. entry->eax = min(entry->eax, (u32)0xb);
  1326. break;
  1327. case 1:
  1328. entry->edx &= kvm_supported_word0_x86_features;
  1329. entry->ecx &= kvm_supported_word4_x86_features;
  1330. /* we support x2apic emulation even if host does not support
  1331. * it since we emulate x2apic in software */
  1332. entry->ecx |= F(X2APIC);
  1333. break;
  1334. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1335. * may return different values. This forces us to get_cpu() before
  1336. * issuing the first command, and also to emulate this annoying behavior
  1337. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1338. case 2: {
  1339. int t, times = entry->eax & 0xff;
  1340. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1341. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1342. for (t = 1; t < times && *nent < maxnent; ++t) {
  1343. do_cpuid_1_ent(&entry[t], function, 0);
  1344. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1345. ++*nent;
  1346. }
  1347. break;
  1348. }
  1349. /* function 4 and 0xb have additional index. */
  1350. case 4: {
  1351. int i, cache_type;
  1352. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1353. /* read more entries until cache_type is zero */
  1354. for (i = 1; *nent < maxnent; ++i) {
  1355. cache_type = entry[i - 1].eax & 0x1f;
  1356. if (!cache_type)
  1357. break;
  1358. do_cpuid_1_ent(&entry[i], function, i);
  1359. entry[i].flags |=
  1360. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1361. ++*nent;
  1362. }
  1363. break;
  1364. }
  1365. case 0xb: {
  1366. int i, level_type;
  1367. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1368. /* read more entries until level_type is zero */
  1369. for (i = 1; *nent < maxnent; ++i) {
  1370. level_type = entry[i - 1].ecx & 0xff00;
  1371. if (!level_type)
  1372. break;
  1373. do_cpuid_1_ent(&entry[i], function, i);
  1374. entry[i].flags |=
  1375. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1376. ++*nent;
  1377. }
  1378. break;
  1379. }
  1380. case 0x80000000:
  1381. entry->eax = min(entry->eax, 0x8000001a);
  1382. break;
  1383. case 0x80000001:
  1384. entry->edx &= kvm_supported_word1_x86_features;
  1385. entry->ecx &= kvm_supported_word6_x86_features;
  1386. break;
  1387. }
  1388. put_cpu();
  1389. }
  1390. #undef F
  1391. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1392. struct kvm_cpuid_entry2 __user *entries)
  1393. {
  1394. struct kvm_cpuid_entry2 *cpuid_entries;
  1395. int limit, nent = 0, r = -E2BIG;
  1396. u32 func;
  1397. if (cpuid->nent < 1)
  1398. goto out;
  1399. r = -ENOMEM;
  1400. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1401. if (!cpuid_entries)
  1402. goto out;
  1403. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1404. limit = cpuid_entries[0].eax;
  1405. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1406. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1407. &nent, cpuid->nent);
  1408. r = -E2BIG;
  1409. if (nent >= cpuid->nent)
  1410. goto out_free;
  1411. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1412. limit = cpuid_entries[nent - 1].eax;
  1413. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1414. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1415. &nent, cpuid->nent);
  1416. r = -E2BIG;
  1417. if (nent >= cpuid->nent)
  1418. goto out_free;
  1419. r = -EFAULT;
  1420. if (copy_to_user(entries, cpuid_entries,
  1421. nent * sizeof(struct kvm_cpuid_entry2)))
  1422. goto out_free;
  1423. cpuid->nent = nent;
  1424. r = 0;
  1425. out_free:
  1426. vfree(cpuid_entries);
  1427. out:
  1428. return r;
  1429. }
  1430. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1431. struct kvm_lapic_state *s)
  1432. {
  1433. vcpu_load(vcpu);
  1434. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1435. vcpu_put(vcpu);
  1436. return 0;
  1437. }
  1438. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1439. struct kvm_lapic_state *s)
  1440. {
  1441. vcpu_load(vcpu);
  1442. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1443. kvm_apic_post_state_restore(vcpu);
  1444. vcpu_put(vcpu);
  1445. return 0;
  1446. }
  1447. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1448. struct kvm_interrupt *irq)
  1449. {
  1450. if (irq->irq < 0 || irq->irq >= 256)
  1451. return -EINVAL;
  1452. if (irqchip_in_kernel(vcpu->kvm))
  1453. return -ENXIO;
  1454. vcpu_load(vcpu);
  1455. kvm_queue_interrupt(vcpu, irq->irq, false);
  1456. vcpu_put(vcpu);
  1457. return 0;
  1458. }
  1459. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1460. {
  1461. vcpu_load(vcpu);
  1462. kvm_inject_nmi(vcpu);
  1463. vcpu_put(vcpu);
  1464. return 0;
  1465. }
  1466. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1467. struct kvm_tpr_access_ctl *tac)
  1468. {
  1469. if (tac->flags)
  1470. return -EINVAL;
  1471. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1472. return 0;
  1473. }
  1474. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1475. u64 mcg_cap)
  1476. {
  1477. int r;
  1478. unsigned bank_num = mcg_cap & 0xff, bank;
  1479. r = -EINVAL;
  1480. if (!bank_num)
  1481. goto out;
  1482. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1483. goto out;
  1484. r = 0;
  1485. vcpu->arch.mcg_cap = mcg_cap;
  1486. /* Init IA32_MCG_CTL to all 1s */
  1487. if (mcg_cap & MCG_CTL_P)
  1488. vcpu->arch.mcg_ctl = ~(u64)0;
  1489. /* Init IA32_MCi_CTL to all 1s */
  1490. for (bank = 0; bank < bank_num; bank++)
  1491. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1492. out:
  1493. return r;
  1494. }
  1495. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1496. struct kvm_x86_mce *mce)
  1497. {
  1498. u64 mcg_cap = vcpu->arch.mcg_cap;
  1499. unsigned bank_num = mcg_cap & 0xff;
  1500. u64 *banks = vcpu->arch.mce_banks;
  1501. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1502. return -EINVAL;
  1503. /*
  1504. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1505. * reporting is disabled
  1506. */
  1507. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1508. vcpu->arch.mcg_ctl != ~(u64)0)
  1509. return 0;
  1510. banks += 4 * mce->bank;
  1511. /*
  1512. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1513. * reporting is disabled for the bank
  1514. */
  1515. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1516. return 0;
  1517. if (mce->status & MCI_STATUS_UC) {
  1518. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1519. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1520. printk(KERN_DEBUG "kvm: set_mce: "
  1521. "injects mce exception while "
  1522. "previous one is in progress!\n");
  1523. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1524. return 0;
  1525. }
  1526. if (banks[1] & MCI_STATUS_VAL)
  1527. mce->status |= MCI_STATUS_OVER;
  1528. banks[2] = mce->addr;
  1529. banks[3] = mce->misc;
  1530. vcpu->arch.mcg_status = mce->mcg_status;
  1531. banks[1] = mce->status;
  1532. kvm_queue_exception(vcpu, MC_VECTOR);
  1533. } else if (!(banks[1] & MCI_STATUS_VAL)
  1534. || !(banks[1] & MCI_STATUS_UC)) {
  1535. if (banks[1] & MCI_STATUS_VAL)
  1536. mce->status |= MCI_STATUS_OVER;
  1537. banks[2] = mce->addr;
  1538. banks[3] = mce->misc;
  1539. banks[1] = mce->status;
  1540. } else
  1541. banks[1] |= MCI_STATUS_OVER;
  1542. return 0;
  1543. }
  1544. long kvm_arch_vcpu_ioctl(struct file *filp,
  1545. unsigned int ioctl, unsigned long arg)
  1546. {
  1547. struct kvm_vcpu *vcpu = filp->private_data;
  1548. void __user *argp = (void __user *)arg;
  1549. int r;
  1550. struct kvm_lapic_state *lapic = NULL;
  1551. switch (ioctl) {
  1552. case KVM_GET_LAPIC: {
  1553. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1554. r = -ENOMEM;
  1555. if (!lapic)
  1556. goto out;
  1557. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1558. if (r)
  1559. goto out;
  1560. r = -EFAULT;
  1561. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1562. goto out;
  1563. r = 0;
  1564. break;
  1565. }
  1566. case KVM_SET_LAPIC: {
  1567. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1568. r = -ENOMEM;
  1569. if (!lapic)
  1570. goto out;
  1571. r = -EFAULT;
  1572. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1573. goto out;
  1574. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1575. if (r)
  1576. goto out;
  1577. r = 0;
  1578. break;
  1579. }
  1580. case KVM_INTERRUPT: {
  1581. struct kvm_interrupt irq;
  1582. r = -EFAULT;
  1583. if (copy_from_user(&irq, argp, sizeof irq))
  1584. goto out;
  1585. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1586. if (r)
  1587. goto out;
  1588. r = 0;
  1589. break;
  1590. }
  1591. case KVM_NMI: {
  1592. r = kvm_vcpu_ioctl_nmi(vcpu);
  1593. if (r)
  1594. goto out;
  1595. r = 0;
  1596. break;
  1597. }
  1598. case KVM_SET_CPUID: {
  1599. struct kvm_cpuid __user *cpuid_arg = argp;
  1600. struct kvm_cpuid cpuid;
  1601. r = -EFAULT;
  1602. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1603. goto out;
  1604. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1605. if (r)
  1606. goto out;
  1607. break;
  1608. }
  1609. case KVM_SET_CPUID2: {
  1610. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1611. struct kvm_cpuid2 cpuid;
  1612. r = -EFAULT;
  1613. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1614. goto out;
  1615. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1616. cpuid_arg->entries);
  1617. if (r)
  1618. goto out;
  1619. break;
  1620. }
  1621. case KVM_GET_CPUID2: {
  1622. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1623. struct kvm_cpuid2 cpuid;
  1624. r = -EFAULT;
  1625. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1626. goto out;
  1627. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1628. cpuid_arg->entries);
  1629. if (r)
  1630. goto out;
  1631. r = -EFAULT;
  1632. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1633. goto out;
  1634. r = 0;
  1635. break;
  1636. }
  1637. case KVM_GET_MSRS:
  1638. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1639. break;
  1640. case KVM_SET_MSRS:
  1641. r = msr_io(vcpu, argp, do_set_msr, 0);
  1642. break;
  1643. case KVM_TPR_ACCESS_REPORTING: {
  1644. struct kvm_tpr_access_ctl tac;
  1645. r = -EFAULT;
  1646. if (copy_from_user(&tac, argp, sizeof tac))
  1647. goto out;
  1648. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1649. if (r)
  1650. goto out;
  1651. r = -EFAULT;
  1652. if (copy_to_user(argp, &tac, sizeof tac))
  1653. goto out;
  1654. r = 0;
  1655. break;
  1656. };
  1657. case KVM_SET_VAPIC_ADDR: {
  1658. struct kvm_vapic_addr va;
  1659. r = -EINVAL;
  1660. if (!irqchip_in_kernel(vcpu->kvm))
  1661. goto out;
  1662. r = -EFAULT;
  1663. if (copy_from_user(&va, argp, sizeof va))
  1664. goto out;
  1665. r = 0;
  1666. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1667. break;
  1668. }
  1669. case KVM_X86_SETUP_MCE: {
  1670. u64 mcg_cap;
  1671. r = -EFAULT;
  1672. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1673. goto out;
  1674. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1675. break;
  1676. }
  1677. case KVM_X86_SET_MCE: {
  1678. struct kvm_x86_mce mce;
  1679. r = -EFAULT;
  1680. if (copy_from_user(&mce, argp, sizeof mce))
  1681. goto out;
  1682. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1683. break;
  1684. }
  1685. default:
  1686. r = -EINVAL;
  1687. }
  1688. out:
  1689. kfree(lapic);
  1690. return r;
  1691. }
  1692. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1693. {
  1694. int ret;
  1695. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1696. return -1;
  1697. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1698. return ret;
  1699. }
  1700. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1701. u64 ident_addr)
  1702. {
  1703. kvm->arch.ept_identity_map_addr = ident_addr;
  1704. return 0;
  1705. }
  1706. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1707. u32 kvm_nr_mmu_pages)
  1708. {
  1709. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1710. return -EINVAL;
  1711. down_write(&kvm->slots_lock);
  1712. spin_lock(&kvm->mmu_lock);
  1713. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1714. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1715. spin_unlock(&kvm->mmu_lock);
  1716. up_write(&kvm->slots_lock);
  1717. return 0;
  1718. }
  1719. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1720. {
  1721. return kvm->arch.n_alloc_mmu_pages;
  1722. }
  1723. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1724. {
  1725. int i;
  1726. struct kvm_mem_alias *alias;
  1727. for (i = 0; i < kvm->arch.naliases; ++i) {
  1728. alias = &kvm->arch.aliases[i];
  1729. if (gfn >= alias->base_gfn
  1730. && gfn < alias->base_gfn + alias->npages)
  1731. return alias->target_gfn + gfn - alias->base_gfn;
  1732. }
  1733. return gfn;
  1734. }
  1735. /*
  1736. * Set a new alias region. Aliases map a portion of physical memory into
  1737. * another portion. This is useful for memory windows, for example the PC
  1738. * VGA region.
  1739. */
  1740. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1741. struct kvm_memory_alias *alias)
  1742. {
  1743. int r, n;
  1744. struct kvm_mem_alias *p;
  1745. r = -EINVAL;
  1746. /* General sanity checks */
  1747. if (alias->memory_size & (PAGE_SIZE - 1))
  1748. goto out;
  1749. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1750. goto out;
  1751. if (alias->slot >= KVM_ALIAS_SLOTS)
  1752. goto out;
  1753. if (alias->guest_phys_addr + alias->memory_size
  1754. < alias->guest_phys_addr)
  1755. goto out;
  1756. if (alias->target_phys_addr + alias->memory_size
  1757. < alias->target_phys_addr)
  1758. goto out;
  1759. down_write(&kvm->slots_lock);
  1760. spin_lock(&kvm->mmu_lock);
  1761. p = &kvm->arch.aliases[alias->slot];
  1762. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1763. p->npages = alias->memory_size >> PAGE_SHIFT;
  1764. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1765. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1766. if (kvm->arch.aliases[n - 1].npages)
  1767. break;
  1768. kvm->arch.naliases = n;
  1769. spin_unlock(&kvm->mmu_lock);
  1770. kvm_mmu_zap_all(kvm);
  1771. up_write(&kvm->slots_lock);
  1772. return 0;
  1773. out:
  1774. return r;
  1775. }
  1776. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1777. {
  1778. int r;
  1779. r = 0;
  1780. switch (chip->chip_id) {
  1781. case KVM_IRQCHIP_PIC_MASTER:
  1782. memcpy(&chip->chip.pic,
  1783. &pic_irqchip(kvm)->pics[0],
  1784. sizeof(struct kvm_pic_state));
  1785. break;
  1786. case KVM_IRQCHIP_PIC_SLAVE:
  1787. memcpy(&chip->chip.pic,
  1788. &pic_irqchip(kvm)->pics[1],
  1789. sizeof(struct kvm_pic_state));
  1790. break;
  1791. case KVM_IRQCHIP_IOAPIC:
  1792. memcpy(&chip->chip.ioapic,
  1793. ioapic_irqchip(kvm),
  1794. sizeof(struct kvm_ioapic_state));
  1795. break;
  1796. default:
  1797. r = -EINVAL;
  1798. break;
  1799. }
  1800. return r;
  1801. }
  1802. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1803. {
  1804. int r;
  1805. r = 0;
  1806. switch (chip->chip_id) {
  1807. case KVM_IRQCHIP_PIC_MASTER:
  1808. spin_lock(&pic_irqchip(kvm)->lock);
  1809. memcpy(&pic_irqchip(kvm)->pics[0],
  1810. &chip->chip.pic,
  1811. sizeof(struct kvm_pic_state));
  1812. spin_unlock(&pic_irqchip(kvm)->lock);
  1813. break;
  1814. case KVM_IRQCHIP_PIC_SLAVE:
  1815. spin_lock(&pic_irqchip(kvm)->lock);
  1816. memcpy(&pic_irqchip(kvm)->pics[1],
  1817. &chip->chip.pic,
  1818. sizeof(struct kvm_pic_state));
  1819. spin_unlock(&pic_irqchip(kvm)->lock);
  1820. break;
  1821. case KVM_IRQCHIP_IOAPIC:
  1822. mutex_lock(&kvm->irq_lock);
  1823. memcpy(ioapic_irqchip(kvm),
  1824. &chip->chip.ioapic,
  1825. sizeof(struct kvm_ioapic_state));
  1826. mutex_unlock(&kvm->irq_lock);
  1827. break;
  1828. default:
  1829. r = -EINVAL;
  1830. break;
  1831. }
  1832. kvm_pic_update_irq(pic_irqchip(kvm));
  1833. return r;
  1834. }
  1835. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1836. {
  1837. int r = 0;
  1838. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1839. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1840. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1841. return r;
  1842. }
  1843. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1844. {
  1845. int r = 0;
  1846. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1847. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1848. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  1849. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1850. return r;
  1851. }
  1852. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1853. {
  1854. int r = 0;
  1855. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1856. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  1857. sizeof(ps->channels));
  1858. ps->flags = kvm->arch.vpit->pit_state.flags;
  1859. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1860. return r;
  1861. }
  1862. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1863. {
  1864. int r = 0, start = 0;
  1865. u32 prev_legacy, cur_legacy;
  1866. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1867. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1868. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1869. if (!prev_legacy && cur_legacy)
  1870. start = 1;
  1871. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  1872. sizeof(kvm->arch.vpit->pit_state.channels));
  1873. kvm->arch.vpit->pit_state.flags = ps->flags;
  1874. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  1875. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1876. return r;
  1877. }
  1878. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1879. struct kvm_reinject_control *control)
  1880. {
  1881. if (!kvm->arch.vpit)
  1882. return -ENXIO;
  1883. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1884. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1885. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1886. return 0;
  1887. }
  1888. /*
  1889. * Get (and clear) the dirty memory log for a memory slot.
  1890. */
  1891. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1892. struct kvm_dirty_log *log)
  1893. {
  1894. int r;
  1895. int n;
  1896. struct kvm_memory_slot *memslot;
  1897. int is_dirty = 0;
  1898. down_write(&kvm->slots_lock);
  1899. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1900. if (r)
  1901. goto out;
  1902. /* If nothing is dirty, don't bother messing with page tables. */
  1903. if (is_dirty) {
  1904. spin_lock(&kvm->mmu_lock);
  1905. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1906. spin_unlock(&kvm->mmu_lock);
  1907. kvm_flush_remote_tlbs(kvm);
  1908. memslot = &kvm->memslots[log->slot];
  1909. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1910. memset(memslot->dirty_bitmap, 0, n);
  1911. }
  1912. r = 0;
  1913. out:
  1914. up_write(&kvm->slots_lock);
  1915. return r;
  1916. }
  1917. long kvm_arch_vm_ioctl(struct file *filp,
  1918. unsigned int ioctl, unsigned long arg)
  1919. {
  1920. struct kvm *kvm = filp->private_data;
  1921. void __user *argp = (void __user *)arg;
  1922. int r = -EINVAL;
  1923. /*
  1924. * This union makes it completely explicit to gcc-3.x
  1925. * that these two variables' stack usage should be
  1926. * combined, not added together.
  1927. */
  1928. union {
  1929. struct kvm_pit_state ps;
  1930. struct kvm_pit_state2 ps2;
  1931. struct kvm_memory_alias alias;
  1932. struct kvm_pit_config pit_config;
  1933. } u;
  1934. switch (ioctl) {
  1935. case KVM_SET_TSS_ADDR:
  1936. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1937. if (r < 0)
  1938. goto out;
  1939. break;
  1940. case KVM_SET_IDENTITY_MAP_ADDR: {
  1941. u64 ident_addr;
  1942. r = -EFAULT;
  1943. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  1944. goto out;
  1945. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  1946. if (r < 0)
  1947. goto out;
  1948. break;
  1949. }
  1950. case KVM_SET_MEMORY_REGION: {
  1951. struct kvm_memory_region kvm_mem;
  1952. struct kvm_userspace_memory_region kvm_userspace_mem;
  1953. r = -EFAULT;
  1954. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1955. goto out;
  1956. kvm_userspace_mem.slot = kvm_mem.slot;
  1957. kvm_userspace_mem.flags = kvm_mem.flags;
  1958. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1959. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1960. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1961. if (r)
  1962. goto out;
  1963. break;
  1964. }
  1965. case KVM_SET_NR_MMU_PAGES:
  1966. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1967. if (r)
  1968. goto out;
  1969. break;
  1970. case KVM_GET_NR_MMU_PAGES:
  1971. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1972. break;
  1973. case KVM_SET_MEMORY_ALIAS:
  1974. r = -EFAULT;
  1975. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1976. goto out;
  1977. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1978. if (r)
  1979. goto out;
  1980. break;
  1981. case KVM_CREATE_IRQCHIP:
  1982. r = -ENOMEM;
  1983. kvm->arch.vpic = kvm_create_pic(kvm);
  1984. if (kvm->arch.vpic) {
  1985. r = kvm_ioapic_init(kvm);
  1986. if (r) {
  1987. kfree(kvm->arch.vpic);
  1988. kvm->arch.vpic = NULL;
  1989. goto out;
  1990. }
  1991. } else
  1992. goto out;
  1993. r = kvm_setup_default_irq_routing(kvm);
  1994. if (r) {
  1995. kfree(kvm->arch.vpic);
  1996. kfree(kvm->arch.vioapic);
  1997. goto out;
  1998. }
  1999. break;
  2000. case KVM_CREATE_PIT:
  2001. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2002. goto create_pit;
  2003. case KVM_CREATE_PIT2:
  2004. r = -EFAULT;
  2005. if (copy_from_user(&u.pit_config, argp,
  2006. sizeof(struct kvm_pit_config)))
  2007. goto out;
  2008. create_pit:
  2009. down_write(&kvm->slots_lock);
  2010. r = -EEXIST;
  2011. if (kvm->arch.vpit)
  2012. goto create_pit_unlock;
  2013. r = -ENOMEM;
  2014. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2015. if (kvm->arch.vpit)
  2016. r = 0;
  2017. create_pit_unlock:
  2018. up_write(&kvm->slots_lock);
  2019. break;
  2020. case KVM_IRQ_LINE_STATUS:
  2021. case KVM_IRQ_LINE: {
  2022. struct kvm_irq_level irq_event;
  2023. r = -EFAULT;
  2024. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2025. goto out;
  2026. if (irqchip_in_kernel(kvm)) {
  2027. __s32 status;
  2028. mutex_lock(&kvm->irq_lock);
  2029. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2030. irq_event.irq, irq_event.level);
  2031. mutex_unlock(&kvm->irq_lock);
  2032. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2033. irq_event.status = status;
  2034. if (copy_to_user(argp, &irq_event,
  2035. sizeof irq_event))
  2036. goto out;
  2037. }
  2038. r = 0;
  2039. }
  2040. break;
  2041. }
  2042. case KVM_GET_IRQCHIP: {
  2043. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2044. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2045. r = -ENOMEM;
  2046. if (!chip)
  2047. goto out;
  2048. r = -EFAULT;
  2049. if (copy_from_user(chip, argp, sizeof *chip))
  2050. goto get_irqchip_out;
  2051. r = -ENXIO;
  2052. if (!irqchip_in_kernel(kvm))
  2053. goto get_irqchip_out;
  2054. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2055. if (r)
  2056. goto get_irqchip_out;
  2057. r = -EFAULT;
  2058. if (copy_to_user(argp, chip, sizeof *chip))
  2059. goto get_irqchip_out;
  2060. r = 0;
  2061. get_irqchip_out:
  2062. kfree(chip);
  2063. if (r)
  2064. goto out;
  2065. break;
  2066. }
  2067. case KVM_SET_IRQCHIP: {
  2068. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2069. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2070. r = -ENOMEM;
  2071. if (!chip)
  2072. goto out;
  2073. r = -EFAULT;
  2074. if (copy_from_user(chip, argp, sizeof *chip))
  2075. goto set_irqchip_out;
  2076. r = -ENXIO;
  2077. if (!irqchip_in_kernel(kvm))
  2078. goto set_irqchip_out;
  2079. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2080. if (r)
  2081. goto set_irqchip_out;
  2082. r = 0;
  2083. set_irqchip_out:
  2084. kfree(chip);
  2085. if (r)
  2086. goto out;
  2087. break;
  2088. }
  2089. case KVM_GET_PIT: {
  2090. r = -EFAULT;
  2091. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2092. goto out;
  2093. r = -ENXIO;
  2094. if (!kvm->arch.vpit)
  2095. goto out;
  2096. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2097. if (r)
  2098. goto out;
  2099. r = -EFAULT;
  2100. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2101. goto out;
  2102. r = 0;
  2103. break;
  2104. }
  2105. case KVM_SET_PIT: {
  2106. r = -EFAULT;
  2107. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2108. goto out;
  2109. r = -ENXIO;
  2110. if (!kvm->arch.vpit)
  2111. goto out;
  2112. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2113. if (r)
  2114. goto out;
  2115. r = 0;
  2116. break;
  2117. }
  2118. case KVM_GET_PIT2: {
  2119. r = -ENXIO;
  2120. if (!kvm->arch.vpit)
  2121. goto out;
  2122. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2123. if (r)
  2124. goto out;
  2125. r = -EFAULT;
  2126. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2127. goto out;
  2128. r = 0;
  2129. break;
  2130. }
  2131. case KVM_SET_PIT2: {
  2132. r = -EFAULT;
  2133. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2134. goto out;
  2135. r = -ENXIO;
  2136. if (!kvm->arch.vpit)
  2137. goto out;
  2138. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2139. if (r)
  2140. goto out;
  2141. r = 0;
  2142. break;
  2143. }
  2144. case KVM_REINJECT_CONTROL: {
  2145. struct kvm_reinject_control control;
  2146. r = -EFAULT;
  2147. if (copy_from_user(&control, argp, sizeof(control)))
  2148. goto out;
  2149. r = kvm_vm_ioctl_reinject(kvm, &control);
  2150. if (r)
  2151. goto out;
  2152. r = 0;
  2153. break;
  2154. }
  2155. default:
  2156. ;
  2157. }
  2158. out:
  2159. return r;
  2160. }
  2161. static void kvm_init_msr_list(void)
  2162. {
  2163. u32 dummy[2];
  2164. unsigned i, j;
  2165. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2166. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2167. continue;
  2168. if (j < i)
  2169. msrs_to_save[j] = msrs_to_save[i];
  2170. j++;
  2171. }
  2172. num_msrs_to_save = j;
  2173. }
  2174. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2175. const void *v)
  2176. {
  2177. if (vcpu->arch.apic &&
  2178. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2179. return 0;
  2180. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2181. }
  2182. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2183. {
  2184. if (vcpu->arch.apic &&
  2185. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2186. return 0;
  2187. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2188. }
  2189. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2190. struct kvm_vcpu *vcpu)
  2191. {
  2192. void *data = val;
  2193. int r = X86EMUL_CONTINUE;
  2194. while (bytes) {
  2195. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2196. unsigned offset = addr & (PAGE_SIZE-1);
  2197. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2198. int ret;
  2199. if (gpa == UNMAPPED_GVA) {
  2200. r = X86EMUL_PROPAGATE_FAULT;
  2201. goto out;
  2202. }
  2203. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2204. if (ret < 0) {
  2205. r = X86EMUL_UNHANDLEABLE;
  2206. goto out;
  2207. }
  2208. bytes -= toread;
  2209. data += toread;
  2210. addr += toread;
  2211. }
  2212. out:
  2213. return r;
  2214. }
  2215. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2216. struct kvm_vcpu *vcpu)
  2217. {
  2218. void *data = val;
  2219. int r = X86EMUL_CONTINUE;
  2220. while (bytes) {
  2221. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2222. unsigned offset = addr & (PAGE_SIZE-1);
  2223. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2224. int ret;
  2225. if (gpa == UNMAPPED_GVA) {
  2226. r = X86EMUL_PROPAGATE_FAULT;
  2227. goto out;
  2228. }
  2229. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2230. if (ret < 0) {
  2231. r = X86EMUL_UNHANDLEABLE;
  2232. goto out;
  2233. }
  2234. bytes -= towrite;
  2235. data += towrite;
  2236. addr += towrite;
  2237. }
  2238. out:
  2239. return r;
  2240. }
  2241. static int emulator_read_emulated(unsigned long addr,
  2242. void *val,
  2243. unsigned int bytes,
  2244. struct kvm_vcpu *vcpu)
  2245. {
  2246. gpa_t gpa;
  2247. if (vcpu->mmio_read_completed) {
  2248. memcpy(val, vcpu->mmio_data, bytes);
  2249. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2250. vcpu->mmio_phys_addr, *(u64 *)val);
  2251. vcpu->mmio_read_completed = 0;
  2252. return X86EMUL_CONTINUE;
  2253. }
  2254. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2255. /* For APIC access vmexit */
  2256. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2257. goto mmio;
  2258. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2259. == X86EMUL_CONTINUE)
  2260. return X86EMUL_CONTINUE;
  2261. if (gpa == UNMAPPED_GVA)
  2262. return X86EMUL_PROPAGATE_FAULT;
  2263. mmio:
  2264. /*
  2265. * Is this MMIO handled locally?
  2266. */
  2267. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2268. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2269. return X86EMUL_CONTINUE;
  2270. }
  2271. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2272. vcpu->mmio_needed = 1;
  2273. vcpu->mmio_phys_addr = gpa;
  2274. vcpu->mmio_size = bytes;
  2275. vcpu->mmio_is_write = 0;
  2276. return X86EMUL_UNHANDLEABLE;
  2277. }
  2278. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2279. const void *val, int bytes)
  2280. {
  2281. int ret;
  2282. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2283. if (ret < 0)
  2284. return 0;
  2285. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2286. return 1;
  2287. }
  2288. static int emulator_write_emulated_onepage(unsigned long addr,
  2289. const void *val,
  2290. unsigned int bytes,
  2291. struct kvm_vcpu *vcpu)
  2292. {
  2293. gpa_t gpa;
  2294. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2295. if (gpa == UNMAPPED_GVA) {
  2296. kvm_inject_page_fault(vcpu, addr, 2);
  2297. return X86EMUL_PROPAGATE_FAULT;
  2298. }
  2299. /* For APIC access vmexit */
  2300. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2301. goto mmio;
  2302. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2303. return X86EMUL_CONTINUE;
  2304. mmio:
  2305. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2306. /*
  2307. * Is this MMIO handled locally?
  2308. */
  2309. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2310. return X86EMUL_CONTINUE;
  2311. vcpu->mmio_needed = 1;
  2312. vcpu->mmio_phys_addr = gpa;
  2313. vcpu->mmio_size = bytes;
  2314. vcpu->mmio_is_write = 1;
  2315. memcpy(vcpu->mmio_data, val, bytes);
  2316. return X86EMUL_CONTINUE;
  2317. }
  2318. int emulator_write_emulated(unsigned long addr,
  2319. const void *val,
  2320. unsigned int bytes,
  2321. struct kvm_vcpu *vcpu)
  2322. {
  2323. /* Crossing a page boundary? */
  2324. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2325. int rc, now;
  2326. now = -addr & ~PAGE_MASK;
  2327. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2328. if (rc != X86EMUL_CONTINUE)
  2329. return rc;
  2330. addr += now;
  2331. val += now;
  2332. bytes -= now;
  2333. }
  2334. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2335. }
  2336. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2337. static int emulator_cmpxchg_emulated(unsigned long addr,
  2338. const void *old,
  2339. const void *new,
  2340. unsigned int bytes,
  2341. struct kvm_vcpu *vcpu)
  2342. {
  2343. static int reported;
  2344. if (!reported) {
  2345. reported = 1;
  2346. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  2347. }
  2348. #ifndef CONFIG_X86_64
  2349. /* guests cmpxchg8b have to be emulated atomically */
  2350. if (bytes == 8) {
  2351. gpa_t gpa;
  2352. struct page *page;
  2353. char *kaddr;
  2354. u64 val;
  2355. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2356. if (gpa == UNMAPPED_GVA ||
  2357. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2358. goto emul_write;
  2359. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2360. goto emul_write;
  2361. val = *(u64 *)new;
  2362. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2363. kaddr = kmap_atomic(page, KM_USER0);
  2364. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2365. kunmap_atomic(kaddr, KM_USER0);
  2366. kvm_release_page_dirty(page);
  2367. }
  2368. emul_write:
  2369. #endif
  2370. return emulator_write_emulated(addr, new, bytes, vcpu);
  2371. }
  2372. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2373. {
  2374. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2375. }
  2376. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2377. {
  2378. kvm_mmu_invlpg(vcpu, address);
  2379. return X86EMUL_CONTINUE;
  2380. }
  2381. int emulate_clts(struct kvm_vcpu *vcpu)
  2382. {
  2383. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2384. return X86EMUL_CONTINUE;
  2385. }
  2386. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2387. {
  2388. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2389. switch (dr) {
  2390. case 0 ... 3:
  2391. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2392. return X86EMUL_CONTINUE;
  2393. default:
  2394. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2395. return X86EMUL_UNHANDLEABLE;
  2396. }
  2397. }
  2398. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2399. {
  2400. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2401. int exception;
  2402. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2403. if (exception) {
  2404. /* FIXME: better handling */
  2405. return X86EMUL_UNHANDLEABLE;
  2406. }
  2407. return X86EMUL_CONTINUE;
  2408. }
  2409. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2410. {
  2411. u8 opcodes[4];
  2412. unsigned long rip = kvm_rip_read(vcpu);
  2413. unsigned long rip_linear;
  2414. if (!printk_ratelimit())
  2415. return;
  2416. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2417. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2418. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2419. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2420. }
  2421. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2422. static struct x86_emulate_ops emulate_ops = {
  2423. .read_std = kvm_read_guest_virt,
  2424. .read_emulated = emulator_read_emulated,
  2425. .write_emulated = emulator_write_emulated,
  2426. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2427. };
  2428. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2429. {
  2430. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2431. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2432. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2433. vcpu->arch.regs_dirty = ~0;
  2434. }
  2435. int emulate_instruction(struct kvm_vcpu *vcpu,
  2436. struct kvm_run *run,
  2437. unsigned long cr2,
  2438. u16 error_code,
  2439. int emulation_type)
  2440. {
  2441. int r, shadow_mask;
  2442. struct decode_cache *c;
  2443. kvm_clear_exception_queue(vcpu);
  2444. vcpu->arch.mmio_fault_cr2 = cr2;
  2445. /*
  2446. * TODO: fix x86_emulate.c to use guest_read/write_register
  2447. * instead of direct ->regs accesses, can save hundred cycles
  2448. * on Intel for instructions that don't read/change RSP, for
  2449. * for example.
  2450. */
  2451. cache_all_regs(vcpu);
  2452. vcpu->mmio_is_write = 0;
  2453. vcpu->arch.pio.string = 0;
  2454. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2455. int cs_db, cs_l;
  2456. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2457. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2458. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2459. vcpu->arch.emulate_ctxt.mode =
  2460. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2461. ? X86EMUL_MODE_REAL : cs_l
  2462. ? X86EMUL_MODE_PROT64 : cs_db
  2463. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2464. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2465. /* Only allow emulation of specific instructions on #UD
  2466. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2467. c = &vcpu->arch.emulate_ctxt.decode;
  2468. if (emulation_type & EMULTYPE_TRAP_UD) {
  2469. if (!c->twobyte)
  2470. return EMULATE_FAIL;
  2471. switch (c->b) {
  2472. case 0x01: /* VMMCALL */
  2473. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2474. return EMULATE_FAIL;
  2475. break;
  2476. case 0x34: /* sysenter */
  2477. case 0x35: /* sysexit */
  2478. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2479. return EMULATE_FAIL;
  2480. break;
  2481. case 0x05: /* syscall */
  2482. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2483. return EMULATE_FAIL;
  2484. break;
  2485. default:
  2486. return EMULATE_FAIL;
  2487. }
  2488. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2489. return EMULATE_FAIL;
  2490. }
  2491. ++vcpu->stat.insn_emulation;
  2492. if (r) {
  2493. ++vcpu->stat.insn_emulation_fail;
  2494. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2495. return EMULATE_DONE;
  2496. return EMULATE_FAIL;
  2497. }
  2498. }
  2499. if (emulation_type & EMULTYPE_SKIP) {
  2500. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2501. return EMULATE_DONE;
  2502. }
  2503. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2504. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2505. if (r == 0)
  2506. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2507. if (vcpu->arch.pio.string)
  2508. return EMULATE_DO_MMIO;
  2509. if ((r || vcpu->mmio_is_write) && run) {
  2510. run->exit_reason = KVM_EXIT_MMIO;
  2511. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2512. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2513. run->mmio.len = vcpu->mmio_size;
  2514. run->mmio.is_write = vcpu->mmio_is_write;
  2515. }
  2516. if (r) {
  2517. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2518. return EMULATE_DONE;
  2519. if (!vcpu->mmio_needed) {
  2520. kvm_report_emulation_failure(vcpu, "mmio");
  2521. return EMULATE_FAIL;
  2522. }
  2523. return EMULATE_DO_MMIO;
  2524. }
  2525. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2526. if (vcpu->mmio_is_write) {
  2527. vcpu->mmio_needed = 0;
  2528. return EMULATE_DO_MMIO;
  2529. }
  2530. return EMULATE_DONE;
  2531. }
  2532. EXPORT_SYMBOL_GPL(emulate_instruction);
  2533. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2534. {
  2535. void *p = vcpu->arch.pio_data;
  2536. gva_t q = vcpu->arch.pio.guest_gva;
  2537. unsigned bytes;
  2538. int ret;
  2539. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2540. if (vcpu->arch.pio.in)
  2541. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2542. else
  2543. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2544. return ret;
  2545. }
  2546. int complete_pio(struct kvm_vcpu *vcpu)
  2547. {
  2548. struct kvm_pio_request *io = &vcpu->arch.pio;
  2549. long delta;
  2550. int r;
  2551. unsigned long val;
  2552. if (!io->string) {
  2553. if (io->in) {
  2554. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2555. memcpy(&val, vcpu->arch.pio_data, io->size);
  2556. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2557. }
  2558. } else {
  2559. if (io->in) {
  2560. r = pio_copy_data(vcpu);
  2561. if (r)
  2562. return r;
  2563. }
  2564. delta = 1;
  2565. if (io->rep) {
  2566. delta *= io->cur_count;
  2567. /*
  2568. * The size of the register should really depend on
  2569. * current address size.
  2570. */
  2571. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2572. val -= delta;
  2573. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2574. }
  2575. if (io->down)
  2576. delta = -delta;
  2577. delta *= io->size;
  2578. if (io->in) {
  2579. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2580. val += delta;
  2581. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2582. } else {
  2583. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2584. val += delta;
  2585. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2586. }
  2587. }
  2588. io->count -= io->cur_count;
  2589. io->cur_count = 0;
  2590. return 0;
  2591. }
  2592. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2593. {
  2594. /* TODO: String I/O for in kernel device */
  2595. int r;
  2596. if (vcpu->arch.pio.in)
  2597. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2598. vcpu->arch.pio.size, pd);
  2599. else
  2600. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2601. vcpu->arch.pio.size, pd);
  2602. return r;
  2603. }
  2604. static int pio_string_write(struct kvm_vcpu *vcpu)
  2605. {
  2606. struct kvm_pio_request *io = &vcpu->arch.pio;
  2607. void *pd = vcpu->arch.pio_data;
  2608. int i, r = 0;
  2609. for (i = 0; i < io->cur_count; i++) {
  2610. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2611. io->port, io->size, pd)) {
  2612. r = -EOPNOTSUPP;
  2613. break;
  2614. }
  2615. pd += io->size;
  2616. }
  2617. return r;
  2618. }
  2619. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2620. int size, unsigned port)
  2621. {
  2622. unsigned long val;
  2623. vcpu->run->exit_reason = KVM_EXIT_IO;
  2624. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2625. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2626. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2627. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2628. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2629. vcpu->arch.pio.in = in;
  2630. vcpu->arch.pio.string = 0;
  2631. vcpu->arch.pio.down = 0;
  2632. vcpu->arch.pio.rep = 0;
  2633. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2634. size, 1);
  2635. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2636. memcpy(vcpu->arch.pio_data, &val, 4);
  2637. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2638. complete_pio(vcpu);
  2639. return 1;
  2640. }
  2641. return 0;
  2642. }
  2643. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2644. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2645. int size, unsigned long count, int down,
  2646. gva_t address, int rep, unsigned port)
  2647. {
  2648. unsigned now, in_page;
  2649. int ret = 0;
  2650. vcpu->run->exit_reason = KVM_EXIT_IO;
  2651. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2652. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2653. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2654. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2655. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2656. vcpu->arch.pio.in = in;
  2657. vcpu->arch.pio.string = 1;
  2658. vcpu->arch.pio.down = down;
  2659. vcpu->arch.pio.rep = rep;
  2660. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2661. size, count);
  2662. if (!count) {
  2663. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2664. return 1;
  2665. }
  2666. if (!down)
  2667. in_page = PAGE_SIZE - offset_in_page(address);
  2668. else
  2669. in_page = offset_in_page(address) + size;
  2670. now = min(count, (unsigned long)in_page / size);
  2671. if (!now)
  2672. now = 1;
  2673. if (down) {
  2674. /*
  2675. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2676. */
  2677. pr_unimpl(vcpu, "guest string pio down\n");
  2678. kvm_inject_gp(vcpu, 0);
  2679. return 1;
  2680. }
  2681. vcpu->run->io.count = now;
  2682. vcpu->arch.pio.cur_count = now;
  2683. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2684. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2685. vcpu->arch.pio.guest_gva = address;
  2686. if (!vcpu->arch.pio.in) {
  2687. /* string PIO write */
  2688. ret = pio_copy_data(vcpu);
  2689. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2690. kvm_inject_gp(vcpu, 0);
  2691. return 1;
  2692. }
  2693. if (ret == 0 && !pio_string_write(vcpu)) {
  2694. complete_pio(vcpu);
  2695. if (vcpu->arch.pio.count == 0)
  2696. ret = 1;
  2697. }
  2698. }
  2699. /* no string PIO read support yet */
  2700. return ret;
  2701. }
  2702. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2703. static void bounce_off(void *info)
  2704. {
  2705. /* nothing */
  2706. }
  2707. static unsigned int ref_freq;
  2708. static unsigned long tsc_khz_ref;
  2709. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2710. void *data)
  2711. {
  2712. struct cpufreq_freqs *freq = data;
  2713. struct kvm *kvm;
  2714. struct kvm_vcpu *vcpu;
  2715. int i, send_ipi = 0;
  2716. if (!ref_freq)
  2717. ref_freq = freq->old;
  2718. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2719. return 0;
  2720. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2721. return 0;
  2722. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2723. spin_lock(&kvm_lock);
  2724. list_for_each_entry(kvm, &vm_list, vm_list) {
  2725. kvm_for_each_vcpu(i, vcpu, kvm) {
  2726. if (vcpu->cpu != freq->cpu)
  2727. continue;
  2728. if (!kvm_request_guest_time_update(vcpu))
  2729. continue;
  2730. if (vcpu->cpu != smp_processor_id())
  2731. send_ipi++;
  2732. }
  2733. }
  2734. spin_unlock(&kvm_lock);
  2735. if (freq->old < freq->new && send_ipi) {
  2736. /*
  2737. * We upscale the frequency. Must make the guest
  2738. * doesn't see old kvmclock values while running with
  2739. * the new frequency, otherwise we risk the guest sees
  2740. * time go backwards.
  2741. *
  2742. * In case we update the frequency for another cpu
  2743. * (which might be in guest context) send an interrupt
  2744. * to kick the cpu out of guest context. Next time
  2745. * guest context is entered kvmclock will be updated,
  2746. * so the guest will not see stale values.
  2747. */
  2748. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2749. }
  2750. return 0;
  2751. }
  2752. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2753. .notifier_call = kvmclock_cpufreq_notifier
  2754. };
  2755. int kvm_arch_init(void *opaque)
  2756. {
  2757. int r, cpu;
  2758. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2759. if (kvm_x86_ops) {
  2760. printk(KERN_ERR "kvm: already loaded the other module\n");
  2761. r = -EEXIST;
  2762. goto out;
  2763. }
  2764. if (!ops->cpu_has_kvm_support()) {
  2765. printk(KERN_ERR "kvm: no hardware support\n");
  2766. r = -EOPNOTSUPP;
  2767. goto out;
  2768. }
  2769. if (ops->disabled_by_bios()) {
  2770. printk(KERN_ERR "kvm: disabled by bios\n");
  2771. r = -EOPNOTSUPP;
  2772. goto out;
  2773. }
  2774. r = kvm_mmu_module_init();
  2775. if (r)
  2776. goto out;
  2777. kvm_init_msr_list();
  2778. kvm_x86_ops = ops;
  2779. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2780. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2781. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2782. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2783. for_each_possible_cpu(cpu)
  2784. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2785. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2786. tsc_khz_ref = tsc_khz;
  2787. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2788. CPUFREQ_TRANSITION_NOTIFIER);
  2789. }
  2790. return 0;
  2791. out:
  2792. return r;
  2793. }
  2794. void kvm_arch_exit(void)
  2795. {
  2796. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2797. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2798. CPUFREQ_TRANSITION_NOTIFIER);
  2799. kvm_x86_ops = NULL;
  2800. kvm_mmu_module_exit();
  2801. }
  2802. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2803. {
  2804. ++vcpu->stat.halt_exits;
  2805. if (irqchip_in_kernel(vcpu->kvm)) {
  2806. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2807. return 1;
  2808. } else {
  2809. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2810. return 0;
  2811. }
  2812. }
  2813. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2814. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2815. unsigned long a1)
  2816. {
  2817. if (is_long_mode(vcpu))
  2818. return a0;
  2819. else
  2820. return a0 | ((gpa_t)a1 << 32);
  2821. }
  2822. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2823. {
  2824. unsigned long nr, a0, a1, a2, a3, ret;
  2825. int r = 1;
  2826. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2827. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2828. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2829. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2830. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2831. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2832. if (!is_long_mode(vcpu)) {
  2833. nr &= 0xFFFFFFFF;
  2834. a0 &= 0xFFFFFFFF;
  2835. a1 &= 0xFFFFFFFF;
  2836. a2 &= 0xFFFFFFFF;
  2837. a3 &= 0xFFFFFFFF;
  2838. }
  2839. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  2840. ret = -KVM_EPERM;
  2841. goto out;
  2842. }
  2843. switch (nr) {
  2844. case KVM_HC_VAPIC_POLL_IRQ:
  2845. ret = 0;
  2846. break;
  2847. case KVM_HC_MMU_OP:
  2848. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2849. break;
  2850. default:
  2851. ret = -KVM_ENOSYS;
  2852. break;
  2853. }
  2854. out:
  2855. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2856. ++vcpu->stat.hypercalls;
  2857. return r;
  2858. }
  2859. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2860. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2861. {
  2862. char instruction[3];
  2863. int ret = 0;
  2864. unsigned long rip = kvm_rip_read(vcpu);
  2865. /*
  2866. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2867. * to ensure that the updated hypercall appears atomically across all
  2868. * VCPUs.
  2869. */
  2870. kvm_mmu_zap_all(vcpu->kvm);
  2871. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2872. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2873. != X86EMUL_CONTINUE)
  2874. ret = -EFAULT;
  2875. return ret;
  2876. }
  2877. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2878. {
  2879. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2880. }
  2881. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2882. {
  2883. struct descriptor_table dt = { limit, base };
  2884. kvm_x86_ops->set_gdt(vcpu, &dt);
  2885. }
  2886. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2887. {
  2888. struct descriptor_table dt = { limit, base };
  2889. kvm_x86_ops->set_idt(vcpu, &dt);
  2890. }
  2891. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2892. unsigned long *rflags)
  2893. {
  2894. kvm_lmsw(vcpu, msw);
  2895. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2896. }
  2897. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2898. {
  2899. unsigned long value;
  2900. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2901. switch (cr) {
  2902. case 0:
  2903. value = vcpu->arch.cr0;
  2904. break;
  2905. case 2:
  2906. value = vcpu->arch.cr2;
  2907. break;
  2908. case 3:
  2909. value = vcpu->arch.cr3;
  2910. break;
  2911. case 4:
  2912. value = vcpu->arch.cr4;
  2913. break;
  2914. case 8:
  2915. value = kvm_get_cr8(vcpu);
  2916. break;
  2917. default:
  2918. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2919. return 0;
  2920. }
  2921. return value;
  2922. }
  2923. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2924. unsigned long *rflags)
  2925. {
  2926. switch (cr) {
  2927. case 0:
  2928. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2929. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2930. break;
  2931. case 2:
  2932. vcpu->arch.cr2 = val;
  2933. break;
  2934. case 3:
  2935. kvm_set_cr3(vcpu, val);
  2936. break;
  2937. case 4:
  2938. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2939. break;
  2940. case 8:
  2941. kvm_set_cr8(vcpu, val & 0xfUL);
  2942. break;
  2943. default:
  2944. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2945. }
  2946. }
  2947. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2948. {
  2949. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2950. int j, nent = vcpu->arch.cpuid_nent;
  2951. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2952. /* when no next entry is found, the current entry[i] is reselected */
  2953. for (j = i + 1; ; j = (j + 1) % nent) {
  2954. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2955. if (ej->function == e->function) {
  2956. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2957. return j;
  2958. }
  2959. }
  2960. return 0; /* silence gcc, even though control never reaches here */
  2961. }
  2962. /* find an entry with matching function, matching index (if needed), and that
  2963. * should be read next (if it's stateful) */
  2964. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2965. u32 function, u32 index)
  2966. {
  2967. if (e->function != function)
  2968. return 0;
  2969. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2970. return 0;
  2971. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2972. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2973. return 0;
  2974. return 1;
  2975. }
  2976. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2977. u32 function, u32 index)
  2978. {
  2979. int i;
  2980. struct kvm_cpuid_entry2 *best = NULL;
  2981. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2982. struct kvm_cpuid_entry2 *e;
  2983. e = &vcpu->arch.cpuid_entries[i];
  2984. if (is_matching_cpuid_entry(e, function, index)) {
  2985. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2986. move_to_next_stateful_cpuid_entry(vcpu, i);
  2987. best = e;
  2988. break;
  2989. }
  2990. /*
  2991. * Both basic or both extended?
  2992. */
  2993. if (((e->function ^ function) & 0x80000000) == 0)
  2994. if (!best || e->function > best->function)
  2995. best = e;
  2996. }
  2997. return best;
  2998. }
  2999. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3000. {
  3001. struct kvm_cpuid_entry2 *best;
  3002. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3003. if (best)
  3004. return best->eax & 0xff;
  3005. return 36;
  3006. }
  3007. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3008. {
  3009. u32 function, index;
  3010. struct kvm_cpuid_entry2 *best;
  3011. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3012. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3013. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3014. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3015. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3016. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3017. best = kvm_find_cpuid_entry(vcpu, function, index);
  3018. if (best) {
  3019. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3020. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3021. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3022. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3023. }
  3024. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3025. trace_kvm_cpuid(function,
  3026. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3027. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3028. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3029. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3030. }
  3031. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3032. /*
  3033. * Check if userspace requested an interrupt window, and that the
  3034. * interrupt window is open.
  3035. *
  3036. * No need to exit to userspace if we already have an interrupt queued.
  3037. */
  3038. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  3039. struct kvm_run *kvm_run)
  3040. {
  3041. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3042. kvm_run->request_interrupt_window &&
  3043. kvm_arch_interrupt_allowed(vcpu));
  3044. }
  3045. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  3046. struct kvm_run *kvm_run)
  3047. {
  3048. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3049. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3050. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3051. if (irqchip_in_kernel(vcpu->kvm))
  3052. kvm_run->ready_for_interrupt_injection = 1;
  3053. else
  3054. kvm_run->ready_for_interrupt_injection =
  3055. kvm_arch_interrupt_allowed(vcpu) &&
  3056. !kvm_cpu_has_interrupt(vcpu) &&
  3057. !kvm_event_needs_reinjection(vcpu);
  3058. }
  3059. static void vapic_enter(struct kvm_vcpu *vcpu)
  3060. {
  3061. struct kvm_lapic *apic = vcpu->arch.apic;
  3062. struct page *page;
  3063. if (!apic || !apic->vapic_addr)
  3064. return;
  3065. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3066. vcpu->arch.apic->vapic_page = page;
  3067. }
  3068. static void vapic_exit(struct kvm_vcpu *vcpu)
  3069. {
  3070. struct kvm_lapic *apic = vcpu->arch.apic;
  3071. if (!apic || !apic->vapic_addr)
  3072. return;
  3073. down_read(&vcpu->kvm->slots_lock);
  3074. kvm_release_page_dirty(apic->vapic_page);
  3075. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3076. up_read(&vcpu->kvm->slots_lock);
  3077. }
  3078. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3079. {
  3080. int max_irr, tpr;
  3081. if (!kvm_x86_ops->update_cr8_intercept)
  3082. return;
  3083. if (!vcpu->arch.apic->vapic_addr)
  3084. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3085. else
  3086. max_irr = -1;
  3087. if (max_irr != -1)
  3088. max_irr >>= 4;
  3089. tpr = kvm_lapic_get_cr8(vcpu);
  3090. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3091. }
  3092. static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3093. {
  3094. /* try to reinject previous events if any */
  3095. if (vcpu->arch.exception.pending) {
  3096. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3097. vcpu->arch.exception.has_error_code,
  3098. vcpu->arch.exception.error_code);
  3099. return;
  3100. }
  3101. if (vcpu->arch.nmi_injected) {
  3102. kvm_x86_ops->set_nmi(vcpu);
  3103. return;
  3104. }
  3105. if (vcpu->arch.interrupt.pending) {
  3106. kvm_x86_ops->set_irq(vcpu);
  3107. return;
  3108. }
  3109. /* try to inject new event if pending */
  3110. if (vcpu->arch.nmi_pending) {
  3111. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3112. vcpu->arch.nmi_pending = false;
  3113. vcpu->arch.nmi_injected = true;
  3114. kvm_x86_ops->set_nmi(vcpu);
  3115. }
  3116. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3117. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3118. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3119. false);
  3120. kvm_x86_ops->set_irq(vcpu);
  3121. }
  3122. }
  3123. }
  3124. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3125. {
  3126. int r;
  3127. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3128. kvm_run->request_interrupt_window;
  3129. if (vcpu->requests)
  3130. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3131. kvm_mmu_unload(vcpu);
  3132. r = kvm_mmu_reload(vcpu);
  3133. if (unlikely(r))
  3134. goto out;
  3135. if (vcpu->requests) {
  3136. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3137. __kvm_migrate_timers(vcpu);
  3138. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3139. kvm_write_guest_time(vcpu);
  3140. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3141. kvm_mmu_sync_roots(vcpu);
  3142. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3143. kvm_x86_ops->tlb_flush(vcpu);
  3144. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3145. &vcpu->requests)) {
  3146. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3147. r = 0;
  3148. goto out;
  3149. }
  3150. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3151. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  3152. r = 0;
  3153. goto out;
  3154. }
  3155. }
  3156. preempt_disable();
  3157. kvm_x86_ops->prepare_guest_switch(vcpu);
  3158. kvm_load_guest_fpu(vcpu);
  3159. local_irq_disable();
  3160. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3161. smp_mb__after_clear_bit();
  3162. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3163. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3164. local_irq_enable();
  3165. preempt_enable();
  3166. r = 1;
  3167. goto out;
  3168. }
  3169. inject_pending_event(vcpu, kvm_run);
  3170. /* enable NMI/IRQ window open exits if needed */
  3171. if (vcpu->arch.nmi_pending)
  3172. kvm_x86_ops->enable_nmi_window(vcpu);
  3173. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3174. kvm_x86_ops->enable_irq_window(vcpu);
  3175. if (kvm_lapic_enabled(vcpu)) {
  3176. update_cr8_intercept(vcpu);
  3177. kvm_lapic_sync_to_vapic(vcpu);
  3178. }
  3179. up_read(&vcpu->kvm->slots_lock);
  3180. kvm_guest_enter();
  3181. get_debugreg(vcpu->arch.host_dr6, 6);
  3182. get_debugreg(vcpu->arch.host_dr7, 7);
  3183. if (unlikely(vcpu->arch.switch_db_regs)) {
  3184. get_debugreg(vcpu->arch.host_db[0], 0);
  3185. get_debugreg(vcpu->arch.host_db[1], 1);
  3186. get_debugreg(vcpu->arch.host_db[2], 2);
  3187. get_debugreg(vcpu->arch.host_db[3], 3);
  3188. set_debugreg(0, 7);
  3189. set_debugreg(vcpu->arch.eff_db[0], 0);
  3190. set_debugreg(vcpu->arch.eff_db[1], 1);
  3191. set_debugreg(vcpu->arch.eff_db[2], 2);
  3192. set_debugreg(vcpu->arch.eff_db[3], 3);
  3193. }
  3194. trace_kvm_entry(vcpu->vcpu_id);
  3195. kvm_x86_ops->run(vcpu, kvm_run);
  3196. if (unlikely(vcpu->arch.switch_db_regs)) {
  3197. set_debugreg(0, 7);
  3198. set_debugreg(vcpu->arch.host_db[0], 0);
  3199. set_debugreg(vcpu->arch.host_db[1], 1);
  3200. set_debugreg(vcpu->arch.host_db[2], 2);
  3201. set_debugreg(vcpu->arch.host_db[3], 3);
  3202. }
  3203. set_debugreg(vcpu->arch.host_dr6, 6);
  3204. set_debugreg(vcpu->arch.host_dr7, 7);
  3205. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3206. local_irq_enable();
  3207. ++vcpu->stat.exits;
  3208. /*
  3209. * We must have an instruction between local_irq_enable() and
  3210. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3211. * the interrupt shadow. The stat.exits increment will do nicely.
  3212. * But we need to prevent reordering, hence this barrier():
  3213. */
  3214. barrier();
  3215. kvm_guest_exit();
  3216. preempt_enable();
  3217. down_read(&vcpu->kvm->slots_lock);
  3218. /*
  3219. * Profile KVM exit RIPs:
  3220. */
  3221. if (unlikely(prof_on == KVM_PROFILING)) {
  3222. unsigned long rip = kvm_rip_read(vcpu);
  3223. profile_hit(KVM_PROFILING, (void *)rip);
  3224. }
  3225. kvm_lapic_sync_from_vapic(vcpu);
  3226. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  3227. out:
  3228. return r;
  3229. }
  3230. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3231. {
  3232. int r;
  3233. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3234. pr_debug("vcpu %d received sipi with vector # %x\n",
  3235. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3236. kvm_lapic_reset(vcpu);
  3237. r = kvm_arch_vcpu_reset(vcpu);
  3238. if (r)
  3239. return r;
  3240. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3241. }
  3242. down_read(&vcpu->kvm->slots_lock);
  3243. vapic_enter(vcpu);
  3244. r = 1;
  3245. while (r > 0) {
  3246. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3247. r = vcpu_enter_guest(vcpu, kvm_run);
  3248. else {
  3249. up_read(&vcpu->kvm->slots_lock);
  3250. kvm_vcpu_block(vcpu);
  3251. down_read(&vcpu->kvm->slots_lock);
  3252. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3253. {
  3254. switch(vcpu->arch.mp_state) {
  3255. case KVM_MP_STATE_HALTED:
  3256. vcpu->arch.mp_state =
  3257. KVM_MP_STATE_RUNNABLE;
  3258. case KVM_MP_STATE_RUNNABLE:
  3259. break;
  3260. case KVM_MP_STATE_SIPI_RECEIVED:
  3261. default:
  3262. r = -EINTR;
  3263. break;
  3264. }
  3265. }
  3266. }
  3267. if (r <= 0)
  3268. break;
  3269. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3270. if (kvm_cpu_has_pending_timer(vcpu))
  3271. kvm_inject_pending_timer_irqs(vcpu);
  3272. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  3273. r = -EINTR;
  3274. kvm_run->exit_reason = KVM_EXIT_INTR;
  3275. ++vcpu->stat.request_irq_exits;
  3276. }
  3277. if (signal_pending(current)) {
  3278. r = -EINTR;
  3279. kvm_run->exit_reason = KVM_EXIT_INTR;
  3280. ++vcpu->stat.signal_exits;
  3281. }
  3282. if (need_resched()) {
  3283. up_read(&vcpu->kvm->slots_lock);
  3284. kvm_resched(vcpu);
  3285. down_read(&vcpu->kvm->slots_lock);
  3286. }
  3287. }
  3288. up_read(&vcpu->kvm->slots_lock);
  3289. post_kvm_run_save(vcpu, kvm_run);
  3290. vapic_exit(vcpu);
  3291. return r;
  3292. }
  3293. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3294. {
  3295. int r;
  3296. sigset_t sigsaved;
  3297. vcpu_load(vcpu);
  3298. if (vcpu->sigset_active)
  3299. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3300. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3301. kvm_vcpu_block(vcpu);
  3302. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3303. r = -EAGAIN;
  3304. goto out;
  3305. }
  3306. /* re-sync apic's tpr */
  3307. if (!irqchip_in_kernel(vcpu->kvm))
  3308. kvm_set_cr8(vcpu, kvm_run->cr8);
  3309. if (vcpu->arch.pio.cur_count) {
  3310. r = complete_pio(vcpu);
  3311. if (r)
  3312. goto out;
  3313. }
  3314. #if CONFIG_HAS_IOMEM
  3315. if (vcpu->mmio_needed) {
  3316. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3317. vcpu->mmio_read_completed = 1;
  3318. vcpu->mmio_needed = 0;
  3319. down_read(&vcpu->kvm->slots_lock);
  3320. r = emulate_instruction(vcpu, kvm_run,
  3321. vcpu->arch.mmio_fault_cr2, 0,
  3322. EMULTYPE_NO_DECODE);
  3323. up_read(&vcpu->kvm->slots_lock);
  3324. if (r == EMULATE_DO_MMIO) {
  3325. /*
  3326. * Read-modify-write. Back to userspace.
  3327. */
  3328. r = 0;
  3329. goto out;
  3330. }
  3331. }
  3332. #endif
  3333. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3334. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3335. kvm_run->hypercall.ret);
  3336. r = __vcpu_run(vcpu, kvm_run);
  3337. out:
  3338. if (vcpu->sigset_active)
  3339. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3340. vcpu_put(vcpu);
  3341. return r;
  3342. }
  3343. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3344. {
  3345. vcpu_load(vcpu);
  3346. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3347. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3348. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3349. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3350. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3351. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3352. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3353. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3354. #ifdef CONFIG_X86_64
  3355. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3356. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3357. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3358. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3359. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3360. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3361. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3362. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3363. #endif
  3364. regs->rip = kvm_rip_read(vcpu);
  3365. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3366. /*
  3367. * Don't leak debug flags in case they were set for guest debugging
  3368. */
  3369. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3370. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3371. vcpu_put(vcpu);
  3372. return 0;
  3373. }
  3374. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3375. {
  3376. vcpu_load(vcpu);
  3377. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3378. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3379. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3380. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3381. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3382. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3383. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3384. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3385. #ifdef CONFIG_X86_64
  3386. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3387. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3388. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3389. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3390. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3391. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3392. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3393. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3394. #endif
  3395. kvm_rip_write(vcpu, regs->rip);
  3396. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3397. vcpu->arch.exception.pending = false;
  3398. vcpu_put(vcpu);
  3399. return 0;
  3400. }
  3401. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3402. struct kvm_segment *var, int seg)
  3403. {
  3404. kvm_x86_ops->get_segment(vcpu, var, seg);
  3405. }
  3406. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3407. {
  3408. struct kvm_segment cs;
  3409. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3410. *db = cs.db;
  3411. *l = cs.l;
  3412. }
  3413. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3414. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3415. struct kvm_sregs *sregs)
  3416. {
  3417. struct descriptor_table dt;
  3418. vcpu_load(vcpu);
  3419. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3420. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3421. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3422. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3423. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3424. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3425. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3426. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3427. kvm_x86_ops->get_idt(vcpu, &dt);
  3428. sregs->idt.limit = dt.limit;
  3429. sregs->idt.base = dt.base;
  3430. kvm_x86_ops->get_gdt(vcpu, &dt);
  3431. sregs->gdt.limit = dt.limit;
  3432. sregs->gdt.base = dt.base;
  3433. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3434. sregs->cr0 = vcpu->arch.cr0;
  3435. sregs->cr2 = vcpu->arch.cr2;
  3436. sregs->cr3 = vcpu->arch.cr3;
  3437. sregs->cr4 = vcpu->arch.cr4;
  3438. sregs->cr8 = kvm_get_cr8(vcpu);
  3439. sregs->efer = vcpu->arch.shadow_efer;
  3440. sregs->apic_base = kvm_get_apic_base(vcpu);
  3441. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3442. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3443. set_bit(vcpu->arch.interrupt.nr,
  3444. (unsigned long *)sregs->interrupt_bitmap);
  3445. vcpu_put(vcpu);
  3446. return 0;
  3447. }
  3448. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3449. struct kvm_mp_state *mp_state)
  3450. {
  3451. vcpu_load(vcpu);
  3452. mp_state->mp_state = vcpu->arch.mp_state;
  3453. vcpu_put(vcpu);
  3454. return 0;
  3455. }
  3456. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3457. struct kvm_mp_state *mp_state)
  3458. {
  3459. vcpu_load(vcpu);
  3460. vcpu->arch.mp_state = mp_state->mp_state;
  3461. vcpu_put(vcpu);
  3462. return 0;
  3463. }
  3464. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3465. struct kvm_segment *var, int seg)
  3466. {
  3467. kvm_x86_ops->set_segment(vcpu, var, seg);
  3468. }
  3469. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3470. struct kvm_segment *kvm_desct)
  3471. {
  3472. kvm_desct->base = get_desc_base(seg_desc);
  3473. kvm_desct->limit = get_desc_limit(seg_desc);
  3474. if (seg_desc->g) {
  3475. kvm_desct->limit <<= 12;
  3476. kvm_desct->limit |= 0xfff;
  3477. }
  3478. kvm_desct->selector = selector;
  3479. kvm_desct->type = seg_desc->type;
  3480. kvm_desct->present = seg_desc->p;
  3481. kvm_desct->dpl = seg_desc->dpl;
  3482. kvm_desct->db = seg_desc->d;
  3483. kvm_desct->s = seg_desc->s;
  3484. kvm_desct->l = seg_desc->l;
  3485. kvm_desct->g = seg_desc->g;
  3486. kvm_desct->avl = seg_desc->avl;
  3487. if (!selector)
  3488. kvm_desct->unusable = 1;
  3489. else
  3490. kvm_desct->unusable = 0;
  3491. kvm_desct->padding = 0;
  3492. }
  3493. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3494. u16 selector,
  3495. struct descriptor_table *dtable)
  3496. {
  3497. if (selector & 1 << 2) {
  3498. struct kvm_segment kvm_seg;
  3499. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3500. if (kvm_seg.unusable)
  3501. dtable->limit = 0;
  3502. else
  3503. dtable->limit = kvm_seg.limit;
  3504. dtable->base = kvm_seg.base;
  3505. }
  3506. else
  3507. kvm_x86_ops->get_gdt(vcpu, dtable);
  3508. }
  3509. /* allowed just for 8 bytes segments */
  3510. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3511. struct desc_struct *seg_desc)
  3512. {
  3513. gpa_t gpa;
  3514. struct descriptor_table dtable;
  3515. u16 index = selector >> 3;
  3516. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3517. if (dtable.limit < index * 8 + 7) {
  3518. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3519. return 1;
  3520. }
  3521. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3522. gpa += index * 8;
  3523. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3524. }
  3525. /* allowed just for 8 bytes segments */
  3526. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3527. struct desc_struct *seg_desc)
  3528. {
  3529. gpa_t gpa;
  3530. struct descriptor_table dtable;
  3531. u16 index = selector >> 3;
  3532. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3533. if (dtable.limit < index * 8 + 7)
  3534. return 1;
  3535. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3536. gpa += index * 8;
  3537. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3538. }
  3539. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3540. struct desc_struct *seg_desc)
  3541. {
  3542. u32 base_addr = get_desc_base(seg_desc);
  3543. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3544. }
  3545. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3546. {
  3547. struct kvm_segment kvm_seg;
  3548. kvm_get_segment(vcpu, &kvm_seg, seg);
  3549. return kvm_seg.selector;
  3550. }
  3551. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3552. u16 selector,
  3553. struct kvm_segment *kvm_seg)
  3554. {
  3555. struct desc_struct seg_desc;
  3556. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3557. return 1;
  3558. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3559. return 0;
  3560. }
  3561. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3562. {
  3563. struct kvm_segment segvar = {
  3564. .base = selector << 4,
  3565. .limit = 0xffff,
  3566. .selector = selector,
  3567. .type = 3,
  3568. .present = 1,
  3569. .dpl = 3,
  3570. .db = 0,
  3571. .s = 1,
  3572. .l = 0,
  3573. .g = 0,
  3574. .avl = 0,
  3575. .unusable = 0,
  3576. };
  3577. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3578. return 0;
  3579. }
  3580. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3581. int type_bits, int seg)
  3582. {
  3583. struct kvm_segment kvm_seg;
  3584. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3585. return kvm_load_realmode_segment(vcpu, selector, seg);
  3586. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3587. return 1;
  3588. kvm_seg.type |= type_bits;
  3589. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3590. seg != VCPU_SREG_LDTR)
  3591. if (!kvm_seg.s)
  3592. kvm_seg.unusable = 1;
  3593. kvm_set_segment(vcpu, &kvm_seg, seg);
  3594. return 0;
  3595. }
  3596. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3597. struct tss_segment_32 *tss)
  3598. {
  3599. tss->cr3 = vcpu->arch.cr3;
  3600. tss->eip = kvm_rip_read(vcpu);
  3601. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3602. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3603. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3604. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3605. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3606. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3607. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3608. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3609. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3610. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3611. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3612. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3613. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3614. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3615. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3616. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3617. }
  3618. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3619. struct tss_segment_32 *tss)
  3620. {
  3621. kvm_set_cr3(vcpu, tss->cr3);
  3622. kvm_rip_write(vcpu, tss->eip);
  3623. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3624. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3625. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3626. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3627. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3628. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3629. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3630. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3631. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3632. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3633. return 1;
  3634. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3635. return 1;
  3636. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3637. return 1;
  3638. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3639. return 1;
  3640. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3641. return 1;
  3642. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3643. return 1;
  3644. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3645. return 1;
  3646. return 0;
  3647. }
  3648. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3649. struct tss_segment_16 *tss)
  3650. {
  3651. tss->ip = kvm_rip_read(vcpu);
  3652. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3653. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3654. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3655. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3656. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3657. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3658. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3659. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3660. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3661. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3662. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3663. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3664. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3665. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3666. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3667. }
  3668. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3669. struct tss_segment_16 *tss)
  3670. {
  3671. kvm_rip_write(vcpu, tss->ip);
  3672. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3673. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3674. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3675. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3676. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3677. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3678. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3679. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3680. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3681. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3682. return 1;
  3683. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3684. return 1;
  3685. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3686. return 1;
  3687. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3688. return 1;
  3689. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3690. return 1;
  3691. return 0;
  3692. }
  3693. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3694. u16 old_tss_sel, u32 old_tss_base,
  3695. struct desc_struct *nseg_desc)
  3696. {
  3697. struct tss_segment_16 tss_segment_16;
  3698. int ret = 0;
  3699. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3700. sizeof tss_segment_16))
  3701. goto out;
  3702. save_state_to_tss16(vcpu, &tss_segment_16);
  3703. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3704. sizeof tss_segment_16))
  3705. goto out;
  3706. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3707. &tss_segment_16, sizeof tss_segment_16))
  3708. goto out;
  3709. if (old_tss_sel != 0xffff) {
  3710. tss_segment_16.prev_task_link = old_tss_sel;
  3711. if (kvm_write_guest(vcpu->kvm,
  3712. get_tss_base_addr(vcpu, nseg_desc),
  3713. &tss_segment_16.prev_task_link,
  3714. sizeof tss_segment_16.prev_task_link))
  3715. goto out;
  3716. }
  3717. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3718. goto out;
  3719. ret = 1;
  3720. out:
  3721. return ret;
  3722. }
  3723. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3724. u16 old_tss_sel, u32 old_tss_base,
  3725. struct desc_struct *nseg_desc)
  3726. {
  3727. struct tss_segment_32 tss_segment_32;
  3728. int ret = 0;
  3729. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3730. sizeof tss_segment_32))
  3731. goto out;
  3732. save_state_to_tss32(vcpu, &tss_segment_32);
  3733. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3734. sizeof tss_segment_32))
  3735. goto out;
  3736. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3737. &tss_segment_32, sizeof tss_segment_32))
  3738. goto out;
  3739. if (old_tss_sel != 0xffff) {
  3740. tss_segment_32.prev_task_link = old_tss_sel;
  3741. if (kvm_write_guest(vcpu->kvm,
  3742. get_tss_base_addr(vcpu, nseg_desc),
  3743. &tss_segment_32.prev_task_link,
  3744. sizeof tss_segment_32.prev_task_link))
  3745. goto out;
  3746. }
  3747. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3748. goto out;
  3749. ret = 1;
  3750. out:
  3751. return ret;
  3752. }
  3753. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3754. {
  3755. struct kvm_segment tr_seg;
  3756. struct desc_struct cseg_desc;
  3757. struct desc_struct nseg_desc;
  3758. int ret = 0;
  3759. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3760. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3761. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3762. /* FIXME: Handle errors. Failure to read either TSS or their
  3763. * descriptors should generate a pagefault.
  3764. */
  3765. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3766. goto out;
  3767. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3768. goto out;
  3769. if (reason != TASK_SWITCH_IRET) {
  3770. int cpl;
  3771. cpl = kvm_x86_ops->get_cpl(vcpu);
  3772. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3773. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3774. return 1;
  3775. }
  3776. }
  3777. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  3778. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3779. return 1;
  3780. }
  3781. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3782. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3783. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3784. }
  3785. if (reason == TASK_SWITCH_IRET) {
  3786. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3787. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3788. }
  3789. /* set back link to prev task only if NT bit is set in eflags
  3790. note that old_tss_sel is not used afetr this point */
  3791. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3792. old_tss_sel = 0xffff;
  3793. /* set back link to prev task only if NT bit is set in eflags
  3794. note that old_tss_sel is not used afetr this point */
  3795. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3796. old_tss_sel = 0xffff;
  3797. if (nseg_desc.type & 8)
  3798. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3799. old_tss_base, &nseg_desc);
  3800. else
  3801. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3802. old_tss_base, &nseg_desc);
  3803. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3804. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3805. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3806. }
  3807. if (reason != TASK_SWITCH_IRET) {
  3808. nseg_desc.type |= (1 << 1);
  3809. save_guest_segment_descriptor(vcpu, tss_selector,
  3810. &nseg_desc);
  3811. }
  3812. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3813. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3814. tr_seg.type = 11;
  3815. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3816. out:
  3817. return ret;
  3818. }
  3819. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3820. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3821. struct kvm_sregs *sregs)
  3822. {
  3823. int mmu_reset_needed = 0;
  3824. int pending_vec, max_bits;
  3825. struct descriptor_table dt;
  3826. vcpu_load(vcpu);
  3827. dt.limit = sregs->idt.limit;
  3828. dt.base = sregs->idt.base;
  3829. kvm_x86_ops->set_idt(vcpu, &dt);
  3830. dt.limit = sregs->gdt.limit;
  3831. dt.base = sregs->gdt.base;
  3832. kvm_x86_ops->set_gdt(vcpu, &dt);
  3833. vcpu->arch.cr2 = sregs->cr2;
  3834. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3835. vcpu->arch.cr3 = sregs->cr3;
  3836. kvm_set_cr8(vcpu, sregs->cr8);
  3837. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3838. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3839. kvm_set_apic_base(vcpu, sregs->apic_base);
  3840. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3841. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3842. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3843. vcpu->arch.cr0 = sregs->cr0;
  3844. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3845. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3846. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3847. load_pdptrs(vcpu, vcpu->arch.cr3);
  3848. if (mmu_reset_needed)
  3849. kvm_mmu_reset_context(vcpu);
  3850. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3851. pending_vec = find_first_bit(
  3852. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3853. if (pending_vec < max_bits) {
  3854. kvm_queue_interrupt(vcpu, pending_vec, false);
  3855. pr_debug("Set back pending irq %d\n", pending_vec);
  3856. if (irqchip_in_kernel(vcpu->kvm))
  3857. kvm_pic_clear_isr_ack(vcpu->kvm);
  3858. }
  3859. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3860. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3861. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3862. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3863. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3864. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3865. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3866. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3867. update_cr8_intercept(vcpu);
  3868. /* Older userspace won't unhalt the vcpu on reset. */
  3869. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3870. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3871. !(vcpu->arch.cr0 & X86_CR0_PE))
  3872. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3873. vcpu_put(vcpu);
  3874. return 0;
  3875. }
  3876. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3877. struct kvm_guest_debug *dbg)
  3878. {
  3879. int i, r;
  3880. vcpu_load(vcpu);
  3881. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3882. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3883. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3884. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3885. vcpu->arch.switch_db_regs =
  3886. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3887. } else {
  3888. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3889. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3890. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3891. }
  3892. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3893. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3894. kvm_queue_exception(vcpu, DB_VECTOR);
  3895. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3896. kvm_queue_exception(vcpu, BP_VECTOR);
  3897. vcpu_put(vcpu);
  3898. return r;
  3899. }
  3900. /*
  3901. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3902. * we have asm/x86/processor.h
  3903. */
  3904. struct fxsave {
  3905. u16 cwd;
  3906. u16 swd;
  3907. u16 twd;
  3908. u16 fop;
  3909. u64 rip;
  3910. u64 rdp;
  3911. u32 mxcsr;
  3912. u32 mxcsr_mask;
  3913. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3914. #ifdef CONFIG_X86_64
  3915. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3916. #else
  3917. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3918. #endif
  3919. };
  3920. /*
  3921. * Translate a guest virtual address to a guest physical address.
  3922. */
  3923. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3924. struct kvm_translation *tr)
  3925. {
  3926. unsigned long vaddr = tr->linear_address;
  3927. gpa_t gpa;
  3928. vcpu_load(vcpu);
  3929. down_read(&vcpu->kvm->slots_lock);
  3930. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3931. up_read(&vcpu->kvm->slots_lock);
  3932. tr->physical_address = gpa;
  3933. tr->valid = gpa != UNMAPPED_GVA;
  3934. tr->writeable = 1;
  3935. tr->usermode = 0;
  3936. vcpu_put(vcpu);
  3937. return 0;
  3938. }
  3939. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3940. {
  3941. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3942. vcpu_load(vcpu);
  3943. memcpy(fpu->fpr, fxsave->st_space, 128);
  3944. fpu->fcw = fxsave->cwd;
  3945. fpu->fsw = fxsave->swd;
  3946. fpu->ftwx = fxsave->twd;
  3947. fpu->last_opcode = fxsave->fop;
  3948. fpu->last_ip = fxsave->rip;
  3949. fpu->last_dp = fxsave->rdp;
  3950. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3951. vcpu_put(vcpu);
  3952. return 0;
  3953. }
  3954. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3955. {
  3956. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3957. vcpu_load(vcpu);
  3958. memcpy(fxsave->st_space, fpu->fpr, 128);
  3959. fxsave->cwd = fpu->fcw;
  3960. fxsave->swd = fpu->fsw;
  3961. fxsave->twd = fpu->ftwx;
  3962. fxsave->fop = fpu->last_opcode;
  3963. fxsave->rip = fpu->last_ip;
  3964. fxsave->rdp = fpu->last_dp;
  3965. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3966. vcpu_put(vcpu);
  3967. return 0;
  3968. }
  3969. void fx_init(struct kvm_vcpu *vcpu)
  3970. {
  3971. unsigned after_mxcsr_mask;
  3972. /*
  3973. * Touch the fpu the first time in non atomic context as if
  3974. * this is the first fpu instruction the exception handler
  3975. * will fire before the instruction returns and it'll have to
  3976. * allocate ram with GFP_KERNEL.
  3977. */
  3978. if (!used_math())
  3979. kvm_fx_save(&vcpu->arch.host_fx_image);
  3980. /* Initialize guest FPU by resetting ours and saving into guest's */
  3981. preempt_disable();
  3982. kvm_fx_save(&vcpu->arch.host_fx_image);
  3983. kvm_fx_finit();
  3984. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3985. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3986. preempt_enable();
  3987. vcpu->arch.cr0 |= X86_CR0_ET;
  3988. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3989. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3990. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3991. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3992. }
  3993. EXPORT_SYMBOL_GPL(fx_init);
  3994. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3995. {
  3996. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3997. return;
  3998. vcpu->guest_fpu_loaded = 1;
  3999. kvm_fx_save(&vcpu->arch.host_fx_image);
  4000. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4001. }
  4002. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4003. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4004. {
  4005. if (!vcpu->guest_fpu_loaded)
  4006. return;
  4007. vcpu->guest_fpu_loaded = 0;
  4008. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4009. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4010. ++vcpu->stat.fpu_reload;
  4011. }
  4012. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4013. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4014. {
  4015. if (vcpu->arch.time_page) {
  4016. kvm_release_page_dirty(vcpu->arch.time_page);
  4017. vcpu->arch.time_page = NULL;
  4018. }
  4019. kvm_x86_ops->vcpu_free(vcpu);
  4020. }
  4021. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4022. unsigned int id)
  4023. {
  4024. return kvm_x86_ops->vcpu_create(kvm, id);
  4025. }
  4026. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4027. {
  4028. int r;
  4029. /* We do fxsave: this must be aligned. */
  4030. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4031. vcpu->arch.mtrr_state.have_fixed = 1;
  4032. vcpu_load(vcpu);
  4033. r = kvm_arch_vcpu_reset(vcpu);
  4034. if (r == 0)
  4035. r = kvm_mmu_setup(vcpu);
  4036. vcpu_put(vcpu);
  4037. if (r < 0)
  4038. goto free_vcpu;
  4039. return 0;
  4040. free_vcpu:
  4041. kvm_x86_ops->vcpu_free(vcpu);
  4042. return r;
  4043. }
  4044. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4045. {
  4046. vcpu_load(vcpu);
  4047. kvm_mmu_unload(vcpu);
  4048. vcpu_put(vcpu);
  4049. kvm_x86_ops->vcpu_free(vcpu);
  4050. }
  4051. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4052. {
  4053. vcpu->arch.nmi_pending = false;
  4054. vcpu->arch.nmi_injected = false;
  4055. vcpu->arch.switch_db_regs = 0;
  4056. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4057. vcpu->arch.dr6 = DR6_FIXED_1;
  4058. vcpu->arch.dr7 = DR7_FIXED_1;
  4059. return kvm_x86_ops->vcpu_reset(vcpu);
  4060. }
  4061. void kvm_arch_hardware_enable(void *garbage)
  4062. {
  4063. kvm_x86_ops->hardware_enable(garbage);
  4064. }
  4065. void kvm_arch_hardware_disable(void *garbage)
  4066. {
  4067. kvm_x86_ops->hardware_disable(garbage);
  4068. }
  4069. int kvm_arch_hardware_setup(void)
  4070. {
  4071. return kvm_x86_ops->hardware_setup();
  4072. }
  4073. void kvm_arch_hardware_unsetup(void)
  4074. {
  4075. kvm_x86_ops->hardware_unsetup();
  4076. }
  4077. void kvm_arch_check_processor_compat(void *rtn)
  4078. {
  4079. kvm_x86_ops->check_processor_compatibility(rtn);
  4080. }
  4081. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4082. {
  4083. struct page *page;
  4084. struct kvm *kvm;
  4085. int r;
  4086. BUG_ON(vcpu->kvm == NULL);
  4087. kvm = vcpu->kvm;
  4088. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4089. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4090. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4091. else
  4092. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4093. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4094. if (!page) {
  4095. r = -ENOMEM;
  4096. goto fail;
  4097. }
  4098. vcpu->arch.pio_data = page_address(page);
  4099. r = kvm_mmu_create(vcpu);
  4100. if (r < 0)
  4101. goto fail_free_pio_data;
  4102. if (irqchip_in_kernel(kvm)) {
  4103. r = kvm_create_lapic(vcpu);
  4104. if (r < 0)
  4105. goto fail_mmu_destroy;
  4106. }
  4107. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4108. GFP_KERNEL);
  4109. if (!vcpu->arch.mce_banks) {
  4110. r = -ENOMEM;
  4111. goto fail_mmu_destroy;
  4112. }
  4113. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4114. return 0;
  4115. fail_mmu_destroy:
  4116. kvm_mmu_destroy(vcpu);
  4117. fail_free_pio_data:
  4118. free_page((unsigned long)vcpu->arch.pio_data);
  4119. fail:
  4120. return r;
  4121. }
  4122. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4123. {
  4124. kvm_free_lapic(vcpu);
  4125. down_read(&vcpu->kvm->slots_lock);
  4126. kvm_mmu_destroy(vcpu);
  4127. up_read(&vcpu->kvm->slots_lock);
  4128. free_page((unsigned long)vcpu->arch.pio_data);
  4129. }
  4130. struct kvm *kvm_arch_create_vm(void)
  4131. {
  4132. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4133. if (!kvm)
  4134. return ERR_PTR(-ENOMEM);
  4135. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4136. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4137. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4138. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4139. rdtscll(kvm->arch.vm_init_tsc);
  4140. return kvm;
  4141. }
  4142. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4143. {
  4144. vcpu_load(vcpu);
  4145. kvm_mmu_unload(vcpu);
  4146. vcpu_put(vcpu);
  4147. }
  4148. static void kvm_free_vcpus(struct kvm *kvm)
  4149. {
  4150. unsigned int i;
  4151. struct kvm_vcpu *vcpu;
  4152. /*
  4153. * Unpin any mmu pages first.
  4154. */
  4155. kvm_for_each_vcpu(i, vcpu, kvm)
  4156. kvm_unload_vcpu_mmu(vcpu);
  4157. kvm_for_each_vcpu(i, vcpu, kvm)
  4158. kvm_arch_vcpu_free(vcpu);
  4159. mutex_lock(&kvm->lock);
  4160. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4161. kvm->vcpus[i] = NULL;
  4162. atomic_set(&kvm->online_vcpus, 0);
  4163. mutex_unlock(&kvm->lock);
  4164. }
  4165. void kvm_arch_sync_events(struct kvm *kvm)
  4166. {
  4167. kvm_free_all_assigned_devices(kvm);
  4168. }
  4169. void kvm_arch_destroy_vm(struct kvm *kvm)
  4170. {
  4171. kvm_iommu_unmap_guest(kvm);
  4172. kvm_free_pit(kvm);
  4173. kfree(kvm->arch.vpic);
  4174. kfree(kvm->arch.vioapic);
  4175. kvm_free_vcpus(kvm);
  4176. kvm_free_physmem(kvm);
  4177. if (kvm->arch.apic_access_page)
  4178. put_page(kvm->arch.apic_access_page);
  4179. if (kvm->arch.ept_identity_pagetable)
  4180. put_page(kvm->arch.ept_identity_pagetable);
  4181. kfree(kvm);
  4182. }
  4183. int kvm_arch_set_memory_region(struct kvm *kvm,
  4184. struct kvm_userspace_memory_region *mem,
  4185. struct kvm_memory_slot old,
  4186. int user_alloc)
  4187. {
  4188. int npages = mem->memory_size >> PAGE_SHIFT;
  4189. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4190. /*To keep backward compatibility with older userspace,
  4191. *x86 needs to hanlde !user_alloc case.
  4192. */
  4193. if (!user_alloc) {
  4194. if (npages && !old.rmap) {
  4195. unsigned long userspace_addr;
  4196. down_write(&current->mm->mmap_sem);
  4197. userspace_addr = do_mmap(NULL, 0,
  4198. npages * PAGE_SIZE,
  4199. PROT_READ | PROT_WRITE,
  4200. MAP_PRIVATE | MAP_ANONYMOUS,
  4201. 0);
  4202. up_write(&current->mm->mmap_sem);
  4203. if (IS_ERR((void *)userspace_addr))
  4204. return PTR_ERR((void *)userspace_addr);
  4205. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4206. spin_lock(&kvm->mmu_lock);
  4207. memslot->userspace_addr = userspace_addr;
  4208. spin_unlock(&kvm->mmu_lock);
  4209. } else {
  4210. if (!old.user_alloc && old.rmap) {
  4211. int ret;
  4212. down_write(&current->mm->mmap_sem);
  4213. ret = do_munmap(current->mm, old.userspace_addr,
  4214. old.npages * PAGE_SIZE);
  4215. up_write(&current->mm->mmap_sem);
  4216. if (ret < 0)
  4217. printk(KERN_WARNING
  4218. "kvm_vm_ioctl_set_memory_region: "
  4219. "failed to munmap memory\n");
  4220. }
  4221. }
  4222. }
  4223. spin_lock(&kvm->mmu_lock);
  4224. if (!kvm->arch.n_requested_mmu_pages) {
  4225. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4226. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4227. }
  4228. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4229. spin_unlock(&kvm->mmu_lock);
  4230. kvm_flush_remote_tlbs(kvm);
  4231. return 0;
  4232. }
  4233. void kvm_arch_flush_shadow(struct kvm *kvm)
  4234. {
  4235. kvm_mmu_zap_all(kvm);
  4236. kvm_reload_remote_mmus(kvm);
  4237. }
  4238. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4239. {
  4240. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4241. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4242. || vcpu->arch.nmi_pending ||
  4243. (kvm_arch_interrupt_allowed(vcpu) &&
  4244. kvm_cpu_has_interrupt(vcpu));
  4245. }
  4246. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4247. {
  4248. int me;
  4249. int cpu = vcpu->cpu;
  4250. if (waitqueue_active(&vcpu->wq)) {
  4251. wake_up_interruptible(&vcpu->wq);
  4252. ++vcpu->stat.halt_wakeup;
  4253. }
  4254. me = get_cpu();
  4255. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4256. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4257. smp_send_reschedule(cpu);
  4258. put_cpu();
  4259. }
  4260. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4261. {
  4262. return kvm_x86_ops->interrupt_allowed(vcpu);
  4263. }
  4264. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4265. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4266. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4267. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4268. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);