rmap.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_sem (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem
  24. *
  25. * When a page fault occurs in writing from user to file, down_read
  26. * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
  27. * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
  28. * taken together; in truncation, i_sem is taken outermost.
  29. *
  30. * mm->mmap_sem
  31. * page->flags PG_locked (lock_page)
  32. * mapping->i_mmap_lock
  33. * anon_vma->lock
  34. * mm->page_table_lock
  35. * zone->lru_lock (in mark_page_accessed)
  36. * swap_list_lock (in swap_free etc's swap_info_get)
  37. * mmlist_lock (in mmput, drain_mmlist and others)
  38. * swap_device_lock (in swap_duplicate, swap_info_get)
  39. * mapping->private_lock (in __set_page_dirty_buffers)
  40. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  41. * sb_lock (within inode_lock in fs/fs-writeback.c)
  42. * mapping->tree_lock (widely used, in set_page_dirty,
  43. * in arch-dependent flush_dcache_mmap_lock,
  44. * within inode_lock in __sync_single_inode)
  45. */
  46. #include <linux/mm.h>
  47. #include <linux/pagemap.h>
  48. #include <linux/swap.h>
  49. #include <linux/swapops.h>
  50. #include <linux/slab.h>
  51. #include <linux/init.h>
  52. #include <linux/rmap.h>
  53. #include <linux/rcupdate.h>
  54. #include <asm/tlbflush.h>
  55. //#define RMAP_DEBUG /* can be enabled only for debugging */
  56. kmem_cache_t *anon_vma_cachep;
  57. static inline void validate_anon_vma(struct vm_area_struct *find_vma)
  58. {
  59. #ifdef RMAP_DEBUG
  60. struct anon_vma *anon_vma = find_vma->anon_vma;
  61. struct vm_area_struct *vma;
  62. unsigned int mapcount = 0;
  63. int found = 0;
  64. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  65. mapcount++;
  66. BUG_ON(mapcount > 100000);
  67. if (vma == find_vma)
  68. found = 1;
  69. }
  70. BUG_ON(!found);
  71. #endif
  72. }
  73. /* This must be called under the mmap_sem. */
  74. int anon_vma_prepare(struct vm_area_struct *vma)
  75. {
  76. struct anon_vma *anon_vma = vma->anon_vma;
  77. might_sleep();
  78. if (unlikely(!anon_vma)) {
  79. struct mm_struct *mm = vma->vm_mm;
  80. struct anon_vma *allocated, *locked;
  81. anon_vma = find_mergeable_anon_vma(vma);
  82. if (anon_vma) {
  83. allocated = NULL;
  84. locked = anon_vma;
  85. spin_lock(&locked->lock);
  86. } else {
  87. anon_vma = anon_vma_alloc();
  88. if (unlikely(!anon_vma))
  89. return -ENOMEM;
  90. allocated = anon_vma;
  91. locked = NULL;
  92. }
  93. /* page_table_lock to protect against threads */
  94. spin_lock(&mm->page_table_lock);
  95. if (likely(!vma->anon_vma)) {
  96. vma->anon_vma = anon_vma;
  97. list_add(&vma->anon_vma_node, &anon_vma->head);
  98. allocated = NULL;
  99. }
  100. spin_unlock(&mm->page_table_lock);
  101. if (locked)
  102. spin_unlock(&locked->lock);
  103. if (unlikely(allocated))
  104. anon_vma_free(allocated);
  105. }
  106. return 0;
  107. }
  108. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  109. {
  110. BUG_ON(vma->anon_vma != next->anon_vma);
  111. list_del(&next->anon_vma_node);
  112. }
  113. void __anon_vma_link(struct vm_area_struct *vma)
  114. {
  115. struct anon_vma *anon_vma = vma->anon_vma;
  116. if (anon_vma) {
  117. list_add(&vma->anon_vma_node, &anon_vma->head);
  118. validate_anon_vma(vma);
  119. }
  120. }
  121. void anon_vma_link(struct vm_area_struct *vma)
  122. {
  123. struct anon_vma *anon_vma = vma->anon_vma;
  124. if (anon_vma) {
  125. spin_lock(&anon_vma->lock);
  126. list_add(&vma->anon_vma_node, &anon_vma->head);
  127. validate_anon_vma(vma);
  128. spin_unlock(&anon_vma->lock);
  129. }
  130. }
  131. void anon_vma_unlink(struct vm_area_struct *vma)
  132. {
  133. struct anon_vma *anon_vma = vma->anon_vma;
  134. int empty;
  135. if (!anon_vma)
  136. return;
  137. spin_lock(&anon_vma->lock);
  138. validate_anon_vma(vma);
  139. list_del(&vma->anon_vma_node);
  140. /* We must garbage collect the anon_vma if it's empty */
  141. empty = list_empty(&anon_vma->head);
  142. spin_unlock(&anon_vma->lock);
  143. if (empty)
  144. anon_vma_free(anon_vma);
  145. }
  146. static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
  147. {
  148. if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
  149. SLAB_CTOR_CONSTRUCTOR) {
  150. struct anon_vma *anon_vma = data;
  151. spin_lock_init(&anon_vma->lock);
  152. INIT_LIST_HEAD(&anon_vma->head);
  153. }
  154. }
  155. void __init anon_vma_init(void)
  156. {
  157. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  158. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
  159. }
  160. /*
  161. * Getting a lock on a stable anon_vma from a page off the LRU is
  162. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  163. */
  164. static struct anon_vma *page_lock_anon_vma(struct page *page)
  165. {
  166. struct anon_vma *anon_vma = NULL;
  167. unsigned long anon_mapping;
  168. rcu_read_lock();
  169. anon_mapping = (unsigned long) page->mapping;
  170. if (!(anon_mapping & PAGE_MAPPING_ANON))
  171. goto out;
  172. if (!page_mapped(page))
  173. goto out;
  174. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  175. spin_lock(&anon_vma->lock);
  176. out:
  177. rcu_read_unlock();
  178. return anon_vma;
  179. }
  180. /*
  181. * At what user virtual address is page expected in vma?
  182. */
  183. static inline unsigned long
  184. vma_address(struct page *page, struct vm_area_struct *vma)
  185. {
  186. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  187. unsigned long address;
  188. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  189. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  190. /* page should be within any vma from prio_tree_next */
  191. BUG_ON(!PageAnon(page));
  192. return -EFAULT;
  193. }
  194. return address;
  195. }
  196. /*
  197. * At what user virtual address is page expected in vma? checking that the
  198. * page matches the vma: currently only used by unuse_process, on anon pages.
  199. */
  200. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  201. {
  202. if (PageAnon(page)) {
  203. if ((void *)vma->anon_vma !=
  204. (void *)page->mapping - PAGE_MAPPING_ANON)
  205. return -EFAULT;
  206. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  207. if (vma->vm_file->f_mapping != page->mapping)
  208. return -EFAULT;
  209. } else
  210. return -EFAULT;
  211. return vma_address(page, vma);
  212. }
  213. /*
  214. * Check that @page is mapped at @address into @mm.
  215. *
  216. * On success returns with mapped pte and locked mm->page_table_lock.
  217. */
  218. static pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  219. unsigned long address)
  220. {
  221. pgd_t *pgd;
  222. pud_t *pud;
  223. pmd_t *pmd;
  224. pte_t *pte;
  225. /*
  226. * We need the page_table_lock to protect us from page faults,
  227. * munmap, fork, etc...
  228. */
  229. spin_lock(&mm->page_table_lock);
  230. pgd = pgd_offset(mm, address);
  231. if (likely(pgd_present(*pgd))) {
  232. pud = pud_offset(pgd, address);
  233. if (likely(pud_present(*pud))) {
  234. pmd = pmd_offset(pud, address);
  235. if (likely(pmd_present(*pmd))) {
  236. pte = pte_offset_map(pmd, address);
  237. if (likely(pte_present(*pte) &&
  238. page_to_pfn(page) == pte_pfn(*pte)))
  239. return pte;
  240. pte_unmap(pte);
  241. }
  242. }
  243. }
  244. spin_unlock(&mm->page_table_lock);
  245. return ERR_PTR(-ENOENT);
  246. }
  247. /*
  248. * Subfunctions of page_referenced: page_referenced_one called
  249. * repeatedly from either page_referenced_anon or page_referenced_file.
  250. */
  251. static int page_referenced_one(struct page *page,
  252. struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
  253. {
  254. struct mm_struct *mm = vma->vm_mm;
  255. unsigned long address;
  256. pte_t *pte;
  257. int referenced = 0;
  258. if (!get_mm_counter(mm, rss))
  259. goto out;
  260. address = vma_address(page, vma);
  261. if (address == -EFAULT)
  262. goto out;
  263. pte = page_check_address(page, mm, address);
  264. if (!IS_ERR(pte)) {
  265. if (ptep_clear_flush_young(vma, address, pte))
  266. referenced++;
  267. if (mm != current->mm && !ignore_token && has_swap_token(mm))
  268. referenced++;
  269. (*mapcount)--;
  270. pte_unmap(pte);
  271. spin_unlock(&mm->page_table_lock);
  272. }
  273. out:
  274. return referenced;
  275. }
  276. static int page_referenced_anon(struct page *page, int ignore_token)
  277. {
  278. unsigned int mapcount;
  279. struct anon_vma *anon_vma;
  280. struct vm_area_struct *vma;
  281. int referenced = 0;
  282. anon_vma = page_lock_anon_vma(page);
  283. if (!anon_vma)
  284. return referenced;
  285. mapcount = page_mapcount(page);
  286. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  287. referenced += page_referenced_one(page, vma, &mapcount,
  288. ignore_token);
  289. if (!mapcount)
  290. break;
  291. }
  292. spin_unlock(&anon_vma->lock);
  293. return referenced;
  294. }
  295. /**
  296. * page_referenced_file - referenced check for object-based rmap
  297. * @page: the page we're checking references on.
  298. *
  299. * For an object-based mapped page, find all the places it is mapped and
  300. * check/clear the referenced flag. This is done by following the page->mapping
  301. * pointer, then walking the chain of vmas it holds. It returns the number
  302. * of references it found.
  303. *
  304. * This function is only called from page_referenced for object-based pages.
  305. */
  306. static int page_referenced_file(struct page *page, int ignore_token)
  307. {
  308. unsigned int mapcount;
  309. struct address_space *mapping = page->mapping;
  310. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  311. struct vm_area_struct *vma;
  312. struct prio_tree_iter iter;
  313. int referenced = 0;
  314. /*
  315. * The caller's checks on page->mapping and !PageAnon have made
  316. * sure that this is a file page: the check for page->mapping
  317. * excludes the case just before it gets set on an anon page.
  318. */
  319. BUG_ON(PageAnon(page));
  320. /*
  321. * The page lock not only makes sure that page->mapping cannot
  322. * suddenly be NULLified by truncation, it makes sure that the
  323. * structure at mapping cannot be freed and reused yet,
  324. * so we can safely take mapping->i_mmap_lock.
  325. */
  326. BUG_ON(!PageLocked(page));
  327. spin_lock(&mapping->i_mmap_lock);
  328. /*
  329. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  330. * is more likely to be accurate if we note it after spinning.
  331. */
  332. mapcount = page_mapcount(page);
  333. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  334. if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
  335. == (VM_LOCKED|VM_MAYSHARE)) {
  336. referenced++;
  337. break;
  338. }
  339. referenced += page_referenced_one(page, vma, &mapcount,
  340. ignore_token);
  341. if (!mapcount)
  342. break;
  343. }
  344. spin_unlock(&mapping->i_mmap_lock);
  345. return referenced;
  346. }
  347. /**
  348. * page_referenced - test if the page was referenced
  349. * @page: the page to test
  350. * @is_locked: caller holds lock on the page
  351. *
  352. * Quick test_and_clear_referenced for all mappings to a page,
  353. * returns the number of ptes which referenced the page.
  354. */
  355. int page_referenced(struct page *page, int is_locked, int ignore_token)
  356. {
  357. int referenced = 0;
  358. if (!swap_token_default_timeout)
  359. ignore_token = 1;
  360. if (page_test_and_clear_young(page))
  361. referenced++;
  362. if (TestClearPageReferenced(page))
  363. referenced++;
  364. if (page_mapped(page) && page->mapping) {
  365. if (PageAnon(page))
  366. referenced += page_referenced_anon(page, ignore_token);
  367. else if (is_locked)
  368. referenced += page_referenced_file(page, ignore_token);
  369. else if (TestSetPageLocked(page))
  370. referenced++;
  371. else {
  372. if (page->mapping)
  373. referenced += page_referenced_file(page,
  374. ignore_token);
  375. unlock_page(page);
  376. }
  377. }
  378. return referenced;
  379. }
  380. /**
  381. * page_add_anon_rmap - add pte mapping to an anonymous page
  382. * @page: the page to add the mapping to
  383. * @vma: the vm area in which the mapping is added
  384. * @address: the user virtual address mapped
  385. *
  386. * The caller needs to hold the mm->page_table_lock.
  387. */
  388. void page_add_anon_rmap(struct page *page,
  389. struct vm_area_struct *vma, unsigned long address)
  390. {
  391. struct anon_vma *anon_vma = vma->anon_vma;
  392. pgoff_t index;
  393. BUG_ON(PageReserved(page));
  394. BUG_ON(!anon_vma);
  395. inc_mm_counter(vma->vm_mm, anon_rss);
  396. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  397. index = (address - vma->vm_start) >> PAGE_SHIFT;
  398. index += vma->vm_pgoff;
  399. index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
  400. if (atomic_inc_and_test(&page->_mapcount)) {
  401. page->index = index;
  402. page->mapping = (struct address_space *) anon_vma;
  403. inc_page_state(nr_mapped);
  404. }
  405. /* else checking page index and mapping is racy */
  406. }
  407. /**
  408. * page_add_file_rmap - add pte mapping to a file page
  409. * @page: the page to add the mapping to
  410. *
  411. * The caller needs to hold the mm->page_table_lock.
  412. */
  413. void page_add_file_rmap(struct page *page)
  414. {
  415. BUG_ON(PageAnon(page));
  416. if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
  417. return;
  418. if (atomic_inc_and_test(&page->_mapcount))
  419. inc_page_state(nr_mapped);
  420. }
  421. /**
  422. * page_remove_rmap - take down pte mapping from a page
  423. * @page: page to remove mapping from
  424. *
  425. * Caller needs to hold the mm->page_table_lock.
  426. */
  427. void page_remove_rmap(struct page *page)
  428. {
  429. BUG_ON(PageReserved(page));
  430. if (atomic_add_negative(-1, &page->_mapcount)) {
  431. BUG_ON(page_mapcount(page) < 0);
  432. /*
  433. * It would be tidy to reset the PageAnon mapping here,
  434. * but that might overwrite a racing page_add_anon_rmap
  435. * which increments mapcount after us but sets mapping
  436. * before us: so leave the reset to free_hot_cold_page,
  437. * and remember that it's only reliable while mapped.
  438. * Leaving it set also helps swapoff to reinstate ptes
  439. * faster for those pages still in swapcache.
  440. */
  441. if (page_test_and_clear_dirty(page))
  442. set_page_dirty(page);
  443. dec_page_state(nr_mapped);
  444. }
  445. }
  446. /*
  447. * Subfunctions of try_to_unmap: try_to_unmap_one called
  448. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  449. */
  450. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
  451. {
  452. struct mm_struct *mm = vma->vm_mm;
  453. unsigned long address;
  454. pte_t *pte;
  455. pte_t pteval;
  456. int ret = SWAP_AGAIN;
  457. if (!get_mm_counter(mm, rss))
  458. goto out;
  459. address = vma_address(page, vma);
  460. if (address == -EFAULT)
  461. goto out;
  462. pte = page_check_address(page, mm, address);
  463. if (IS_ERR(pte))
  464. goto out;
  465. /*
  466. * If the page is mlock()d, we cannot swap it out.
  467. * If it's recently referenced (perhaps page_referenced
  468. * skipped over this mm) then we should reactivate it.
  469. */
  470. if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
  471. ptep_clear_flush_young(vma, address, pte)) {
  472. ret = SWAP_FAIL;
  473. goto out_unmap;
  474. }
  475. /*
  476. * Don't pull an anonymous page out from under get_user_pages.
  477. * GUP carefully breaks COW and raises page count (while holding
  478. * page_table_lock, as we have here) to make sure that the page
  479. * cannot be freed. If we unmap that page here, a user write
  480. * access to the virtual address will bring back the page, but
  481. * its raised count will (ironically) be taken to mean it's not
  482. * an exclusive swap page, do_wp_page will replace it by a copy
  483. * page, and the user never get to see the data GUP was holding
  484. * the original page for.
  485. *
  486. * This test is also useful for when swapoff (unuse_process) has
  487. * to drop page lock: its reference to the page stops existing
  488. * ptes from being unmapped, so swapoff can make progress.
  489. */
  490. if (PageSwapCache(page) &&
  491. page_count(page) != page_mapcount(page) + 2) {
  492. ret = SWAP_FAIL;
  493. goto out_unmap;
  494. }
  495. /* Nuke the page table entry. */
  496. flush_cache_page(vma, address, page_to_pfn(page));
  497. pteval = ptep_clear_flush(vma, address, pte);
  498. /* Move the dirty bit to the physical page now the pte is gone. */
  499. if (pte_dirty(pteval))
  500. set_page_dirty(page);
  501. if (PageAnon(page)) {
  502. swp_entry_t entry = { .val = page->private };
  503. /*
  504. * Store the swap location in the pte.
  505. * See handle_pte_fault() ...
  506. */
  507. BUG_ON(!PageSwapCache(page));
  508. swap_duplicate(entry);
  509. if (list_empty(&mm->mmlist)) {
  510. spin_lock(&mmlist_lock);
  511. list_add(&mm->mmlist, &init_mm.mmlist);
  512. spin_unlock(&mmlist_lock);
  513. }
  514. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  515. BUG_ON(pte_file(*pte));
  516. dec_mm_counter(mm, anon_rss);
  517. }
  518. inc_mm_counter(mm, rss);
  519. page_remove_rmap(page);
  520. page_cache_release(page);
  521. out_unmap:
  522. pte_unmap(pte);
  523. spin_unlock(&mm->page_table_lock);
  524. out:
  525. return ret;
  526. }
  527. /*
  528. * objrmap doesn't work for nonlinear VMAs because the assumption that
  529. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  530. * Consequently, given a particular page and its ->index, we cannot locate the
  531. * ptes which are mapping that page without an exhaustive linear search.
  532. *
  533. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  534. * maps the file to which the target page belongs. The ->vm_private_data field
  535. * holds the current cursor into that scan. Successive searches will circulate
  536. * around the vma's virtual address space.
  537. *
  538. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  539. * more scanning pressure is placed against them as well. Eventually pages
  540. * will become fully unmapped and are eligible for eviction.
  541. *
  542. * For very sparsely populated VMAs this is a little inefficient - chances are
  543. * there there won't be many ptes located within the scan cluster. In this case
  544. * maybe we could scan further - to the end of the pte page, perhaps.
  545. */
  546. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  547. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  548. static void try_to_unmap_cluster(unsigned long cursor,
  549. unsigned int *mapcount, struct vm_area_struct *vma)
  550. {
  551. struct mm_struct *mm = vma->vm_mm;
  552. pgd_t *pgd;
  553. pud_t *pud;
  554. pmd_t *pmd;
  555. pte_t *pte;
  556. pte_t pteval;
  557. struct page *page;
  558. unsigned long address;
  559. unsigned long end;
  560. unsigned long pfn;
  561. /*
  562. * We need the page_table_lock to protect us from page faults,
  563. * munmap, fork, etc...
  564. */
  565. spin_lock(&mm->page_table_lock);
  566. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  567. end = address + CLUSTER_SIZE;
  568. if (address < vma->vm_start)
  569. address = vma->vm_start;
  570. if (end > vma->vm_end)
  571. end = vma->vm_end;
  572. pgd = pgd_offset(mm, address);
  573. if (!pgd_present(*pgd))
  574. goto out_unlock;
  575. pud = pud_offset(pgd, address);
  576. if (!pud_present(*pud))
  577. goto out_unlock;
  578. pmd = pmd_offset(pud, address);
  579. if (!pmd_present(*pmd))
  580. goto out_unlock;
  581. for (pte = pte_offset_map(pmd, address);
  582. address < end; pte++, address += PAGE_SIZE) {
  583. if (!pte_present(*pte))
  584. continue;
  585. pfn = pte_pfn(*pte);
  586. if (!pfn_valid(pfn))
  587. continue;
  588. page = pfn_to_page(pfn);
  589. BUG_ON(PageAnon(page));
  590. if (PageReserved(page))
  591. continue;
  592. if (ptep_clear_flush_young(vma, address, pte))
  593. continue;
  594. /* Nuke the page table entry. */
  595. flush_cache_page(vma, address, pfn);
  596. pteval = ptep_clear_flush(vma, address, pte);
  597. /* If nonlinear, store the file page offset in the pte. */
  598. if (page->index != linear_page_index(vma, address))
  599. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  600. /* Move the dirty bit to the physical page now the pte is gone. */
  601. if (pte_dirty(pteval))
  602. set_page_dirty(page);
  603. page_remove_rmap(page);
  604. page_cache_release(page);
  605. dec_mm_counter(mm, rss);
  606. (*mapcount)--;
  607. }
  608. pte_unmap(pte);
  609. out_unlock:
  610. spin_unlock(&mm->page_table_lock);
  611. }
  612. static int try_to_unmap_anon(struct page *page)
  613. {
  614. struct anon_vma *anon_vma;
  615. struct vm_area_struct *vma;
  616. int ret = SWAP_AGAIN;
  617. anon_vma = page_lock_anon_vma(page);
  618. if (!anon_vma)
  619. return ret;
  620. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  621. ret = try_to_unmap_one(page, vma);
  622. if (ret == SWAP_FAIL || !page_mapped(page))
  623. break;
  624. }
  625. spin_unlock(&anon_vma->lock);
  626. return ret;
  627. }
  628. /**
  629. * try_to_unmap_file - unmap file page using the object-based rmap method
  630. * @page: the page to unmap
  631. *
  632. * Find all the mappings of a page using the mapping pointer and the vma chains
  633. * contained in the address_space struct it points to.
  634. *
  635. * This function is only called from try_to_unmap for object-based pages.
  636. */
  637. static int try_to_unmap_file(struct page *page)
  638. {
  639. struct address_space *mapping = page->mapping;
  640. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  641. struct vm_area_struct *vma;
  642. struct prio_tree_iter iter;
  643. int ret = SWAP_AGAIN;
  644. unsigned long cursor;
  645. unsigned long max_nl_cursor = 0;
  646. unsigned long max_nl_size = 0;
  647. unsigned int mapcount;
  648. spin_lock(&mapping->i_mmap_lock);
  649. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  650. ret = try_to_unmap_one(page, vma);
  651. if (ret == SWAP_FAIL || !page_mapped(page))
  652. goto out;
  653. }
  654. if (list_empty(&mapping->i_mmap_nonlinear))
  655. goto out;
  656. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  657. shared.vm_set.list) {
  658. if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
  659. continue;
  660. cursor = (unsigned long) vma->vm_private_data;
  661. if (cursor > max_nl_cursor)
  662. max_nl_cursor = cursor;
  663. cursor = vma->vm_end - vma->vm_start;
  664. if (cursor > max_nl_size)
  665. max_nl_size = cursor;
  666. }
  667. if (max_nl_size == 0) { /* any nonlinears locked or reserved */
  668. ret = SWAP_FAIL;
  669. goto out;
  670. }
  671. /*
  672. * We don't try to search for this page in the nonlinear vmas,
  673. * and page_referenced wouldn't have found it anyway. Instead
  674. * just walk the nonlinear vmas trying to age and unmap some.
  675. * The mapcount of the page we came in with is irrelevant,
  676. * but even so use it as a guide to how hard we should try?
  677. */
  678. mapcount = page_mapcount(page);
  679. if (!mapcount)
  680. goto out;
  681. cond_resched_lock(&mapping->i_mmap_lock);
  682. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  683. if (max_nl_cursor == 0)
  684. max_nl_cursor = CLUSTER_SIZE;
  685. do {
  686. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  687. shared.vm_set.list) {
  688. if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
  689. continue;
  690. cursor = (unsigned long) vma->vm_private_data;
  691. while (get_mm_counter(vma->vm_mm, rss) &&
  692. cursor < max_nl_cursor &&
  693. cursor < vma->vm_end - vma->vm_start) {
  694. try_to_unmap_cluster(cursor, &mapcount, vma);
  695. cursor += CLUSTER_SIZE;
  696. vma->vm_private_data = (void *) cursor;
  697. if ((int)mapcount <= 0)
  698. goto out;
  699. }
  700. vma->vm_private_data = (void *) max_nl_cursor;
  701. }
  702. cond_resched_lock(&mapping->i_mmap_lock);
  703. max_nl_cursor += CLUSTER_SIZE;
  704. } while (max_nl_cursor <= max_nl_size);
  705. /*
  706. * Don't loop forever (perhaps all the remaining pages are
  707. * in locked vmas). Reset cursor on all unreserved nonlinear
  708. * vmas, now forgetting on which ones it had fallen behind.
  709. */
  710. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  711. shared.vm_set.list) {
  712. if (!(vma->vm_flags & VM_RESERVED))
  713. vma->vm_private_data = NULL;
  714. }
  715. out:
  716. spin_unlock(&mapping->i_mmap_lock);
  717. return ret;
  718. }
  719. /**
  720. * try_to_unmap - try to remove all page table mappings to a page
  721. * @page: the page to get unmapped
  722. *
  723. * Tries to remove all the page table entries which are mapping this
  724. * page, used in the pageout path. Caller must hold the page lock.
  725. * Return values are:
  726. *
  727. * SWAP_SUCCESS - we succeeded in removing all mappings
  728. * SWAP_AGAIN - we missed a mapping, try again later
  729. * SWAP_FAIL - the page is unswappable
  730. */
  731. int try_to_unmap(struct page *page)
  732. {
  733. int ret;
  734. BUG_ON(PageReserved(page));
  735. BUG_ON(!PageLocked(page));
  736. if (PageAnon(page))
  737. ret = try_to_unmap_anon(page);
  738. else
  739. ret = try_to_unmap_file(page);
  740. if (!page_mapped(page))
  741. ret = SWAP_SUCCESS;
  742. return ret;
  743. }