pgtable.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386
  1. /*
  2. * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
  3. * Copyright 2003 PathScale, Inc.
  4. * Derived from include/asm-i386/pgtable.h
  5. * Licensed under the GPL
  6. */
  7. #ifndef __UM_PGTABLE_H
  8. #define __UM_PGTABLE_H
  9. #include "linux/sched.h"
  10. #include "linux/linkage.h"
  11. #include "asm/processor.h"
  12. #include "asm/page.h"
  13. #include "asm/fixmap.h"
  14. #define _PAGE_PRESENT 0x001
  15. #define _PAGE_NEWPAGE 0x002
  16. #define _PAGE_NEWPROT 0x004
  17. #define _PAGE_FILE 0x008 /* set:pagecache unset:swap */
  18. #define _PAGE_PROTNONE 0x010 /* If not present */
  19. #define _PAGE_RW 0x020
  20. #define _PAGE_USER 0x040
  21. #define _PAGE_ACCESSED 0x080
  22. #define _PAGE_DIRTY 0x100
  23. #ifdef CONFIG_3_LEVEL_PGTABLES
  24. #include "asm/pgtable-3level.h"
  25. #else
  26. #include "asm/pgtable-2level.h"
  27. #endif
  28. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  29. extern void *um_virt_to_phys(struct task_struct *task, unsigned long virt,
  30. pte_t *pte_out);
  31. /* zero page used for uninitialized stuff */
  32. extern unsigned long *empty_zero_page;
  33. #define pgtable_cache_init() do ; while (0)
  34. /*
  35. * pgd entries used up by user/kernel:
  36. */
  37. #define USER_PGD_PTRS (TASK_SIZE >> PGDIR_SHIFT)
  38. #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
  39. #ifndef __ASSEMBLY__
  40. /* Just any arbitrary offset to the start of the vmalloc VM area: the
  41. * current 8MB value just means that there will be a 8MB "hole" after the
  42. * physical memory until the kernel virtual memory starts. That means that
  43. * any out-of-bounds memory accesses will hopefully be caught.
  44. * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  45. * area for the same reason. ;)
  46. */
  47. extern unsigned long end_iomem;
  48. #define VMALLOC_OFFSET (__va_space)
  49. #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
  50. #ifdef CONFIG_HIGHMEM
  51. # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
  52. #else
  53. # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
  54. #endif
  55. #define REGION_SHIFT (sizeof(pte_t) * 8 - 4)
  56. #define REGION_MASK (((unsigned long) 0xf) << REGION_SHIFT)
  57. #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
  58. #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
  59. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
  60. #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
  61. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
  62. #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  63. #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  64. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
  65. #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)
  66. /*
  67. * The i386 can't do page protection for execute, and considers that the same are read.
  68. * Also, write permissions imply read permissions. This is the closest we can get..
  69. */
  70. #define __P000 PAGE_NONE
  71. #define __P001 PAGE_READONLY
  72. #define __P010 PAGE_COPY
  73. #define __P011 PAGE_COPY
  74. #define __P100 PAGE_READONLY
  75. #define __P101 PAGE_READONLY
  76. #define __P110 PAGE_COPY
  77. #define __P111 PAGE_COPY
  78. #define __S000 PAGE_NONE
  79. #define __S001 PAGE_READONLY
  80. #define __S010 PAGE_SHARED
  81. #define __S011 PAGE_SHARED
  82. #define __S100 PAGE_READONLY
  83. #define __S101 PAGE_READONLY
  84. #define __S110 PAGE_SHARED
  85. #define __S111 PAGE_SHARED
  86. /*
  87. * Define this if things work differently on an i386 and an i486:
  88. * it will (on an i486) warn about kernel memory accesses that are
  89. * done without a 'access_ok(VERIFY_WRITE,..)'
  90. */
  91. #undef TEST_VERIFY_AREA
  92. /* page table for 0-4MB for everybody */
  93. extern unsigned long pg0[1024];
  94. /*
  95. * BAD_PAGETABLE is used when we need a bogus page-table, while
  96. * BAD_PAGE is used for a bogus page.
  97. *
  98. * ZERO_PAGE is a global shared page that is always zero: used
  99. * for zero-mapped memory areas etc..
  100. */
  101. extern pte_t __bad_page(void);
  102. extern pte_t * __bad_pagetable(void);
  103. #define BAD_PAGETABLE __bad_pagetable()
  104. #define BAD_PAGE __bad_page()
  105. #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
  106. /* number of bits that fit into a memory pointer */
  107. #define BITS_PER_PTR (8*sizeof(unsigned long))
  108. /* to align the pointer to a pointer address */
  109. #define PTR_MASK (~(sizeof(void*)-1))
  110. /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
  111. /* 64-bit machines, beware! SRB. */
  112. #define SIZEOF_PTR_LOG2 3
  113. /* to find an entry in a page-table */
  114. #define PAGE_PTR(address) \
  115. ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
  116. #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
  117. #define pmd_none(x) (!(pmd_val(x) & ~_PAGE_NEWPAGE))
  118. #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
  119. #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
  120. #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
  121. #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
  122. #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
  123. #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
  124. #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
  125. #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
  126. #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
  127. #define pte_address(x) (__va(pte_val(x) & PAGE_MASK))
  128. #define mk_phys(a, r) ((a) + (((unsigned long) r) << REGION_SHIFT))
  129. #define phys_addr(p) ((p) & ~REGION_MASK)
  130. /*
  131. * The following only work if pte_present() is true.
  132. * Undefined behaviour if not..
  133. */
  134. static inline int pte_user(pte_t pte)
  135. {
  136. return((pte_get_bits(pte, _PAGE_USER)) &&
  137. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  138. }
  139. static inline int pte_read(pte_t pte)
  140. {
  141. return((pte_get_bits(pte, _PAGE_USER)) &&
  142. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  143. }
  144. static inline int pte_exec(pte_t pte){
  145. return((pte_get_bits(pte, _PAGE_USER)) &&
  146. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  147. }
  148. static inline int pte_write(pte_t pte)
  149. {
  150. return((pte_get_bits(pte, _PAGE_RW)) &&
  151. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  152. }
  153. /*
  154. * The following only works if pte_present() is not true.
  155. */
  156. static inline int pte_file(pte_t pte)
  157. {
  158. return pte_get_bits(pte, _PAGE_FILE);
  159. }
  160. static inline int pte_dirty(pte_t pte)
  161. {
  162. return pte_get_bits(pte, _PAGE_DIRTY);
  163. }
  164. static inline int pte_young(pte_t pte)
  165. {
  166. return pte_get_bits(pte, _PAGE_ACCESSED);
  167. }
  168. static inline int pte_newpage(pte_t pte)
  169. {
  170. return pte_get_bits(pte, _PAGE_NEWPAGE);
  171. }
  172. static inline int pte_newprot(pte_t pte)
  173. {
  174. return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
  175. }
  176. static inline pte_t pte_rdprotect(pte_t pte)
  177. {
  178. pte_clear_bits(pte, _PAGE_USER);
  179. return(pte_mknewprot(pte));
  180. }
  181. static inline pte_t pte_exprotect(pte_t pte)
  182. {
  183. pte_clear_bits(pte, _PAGE_USER);
  184. return(pte_mknewprot(pte));
  185. }
  186. static inline pte_t pte_mkclean(pte_t pte)
  187. {
  188. pte_clear_bits(pte, _PAGE_DIRTY);
  189. return(pte);
  190. }
  191. static inline pte_t pte_mkold(pte_t pte)
  192. {
  193. pte_clear_bits(pte, _PAGE_ACCESSED);
  194. return(pte);
  195. }
  196. static inline pte_t pte_wrprotect(pte_t pte)
  197. {
  198. pte_clear_bits(pte, _PAGE_RW);
  199. return(pte_mknewprot(pte));
  200. }
  201. static inline pte_t pte_mkread(pte_t pte)
  202. {
  203. pte_set_bits(pte, _PAGE_RW);
  204. return(pte_mknewprot(pte));
  205. }
  206. static inline pte_t pte_mkexec(pte_t pte)
  207. {
  208. pte_set_bits(pte, _PAGE_USER);
  209. return(pte_mknewprot(pte));
  210. }
  211. static inline pte_t pte_mkdirty(pte_t pte)
  212. {
  213. pte_set_bits(pte, _PAGE_DIRTY);
  214. return(pte);
  215. }
  216. static inline pte_t pte_mkyoung(pte_t pte)
  217. {
  218. pte_set_bits(pte, _PAGE_ACCESSED);
  219. return(pte);
  220. }
  221. static inline pte_t pte_mkwrite(pte_t pte)
  222. {
  223. pte_set_bits(pte, _PAGE_RW);
  224. return(pte_mknewprot(pte));
  225. }
  226. static inline pte_t pte_mkuptodate(pte_t pte)
  227. {
  228. pte_clear_bits(pte, _PAGE_NEWPAGE);
  229. if(pte_present(pte))
  230. pte_clear_bits(pte, _PAGE_NEWPROT);
  231. return(pte);
  232. }
  233. extern phys_t page_to_phys(struct page *page);
  234. /*
  235. * Conversion functions: convert a page and protection to a page entry,
  236. * and a page entry and page directory to the page they refer to.
  237. */
  238. extern pte_t mk_pte(struct page *page, pgprot_t pgprot);
  239. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  240. {
  241. pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
  242. if(pte_present(pte)) pte = pte_mknewpage(pte_mknewprot(pte));
  243. return pte;
  244. }
  245. #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
  246. /*
  247. * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
  248. *
  249. * this macro returns the index of the entry in the pgd page which would
  250. * control the given virtual address
  251. */
  252. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  253. #define pgd_index_k(addr) pgd_index(addr)
  254. /*
  255. * pgd_offset() returns a (pgd_t *)
  256. * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
  257. */
  258. #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
  259. /*
  260. * a shortcut which implies the use of the kernel's pgd, instead
  261. * of a process's
  262. */
  263. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  264. /*
  265. * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
  266. *
  267. * this macro returns the index of the entry in the pmd page which would
  268. * control the given virtual address
  269. */
  270. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  271. /*
  272. * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
  273. *
  274. * this macro returns the index of the entry in the pte page which would
  275. * control the given virtual address
  276. */
  277. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  278. #define pte_offset_kernel(dir, address) \
  279. ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
  280. #define pte_offset_map(dir, address) \
  281. ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
  282. #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
  283. #define pte_unmap(pte) do { } while (0)
  284. #define pte_unmap_nested(pte) do { } while (0)
  285. #define update_mmu_cache(vma,address,pte) do ; while (0)
  286. /* Encode and de-code a swap entry */
  287. #define __swp_type(x) (((x).val >> 4) & 0x3f)
  288. #define __swp_offset(x) ((x).val >> 11)
  289. #define __swp_entry(type, offset) \
  290. ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
  291. #define __pte_to_swp_entry(pte) \
  292. ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
  293. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  294. #define kern_addr_valid(addr) (1)
  295. #include <asm-generic/pgtable.h>
  296. #include <asm-generic/pgtable-nopud.h>
  297. #endif
  298. #endif
  299. extern struct page *phys_to_page(const unsigned long phys);
  300. extern struct page *__virt_to_page(const unsigned long virt);
  301. #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
  302. /*
  303. * Overrides for Emacs so that we follow Linus's tabbing style.
  304. * Emacs will notice this stuff at the end of the file and automatically
  305. * adjust the settings for this buffer only. This must remain at the end
  306. * of the file.
  307. * ---------------------------------------------------------------------------
  308. * Local variables:
  309. * c-file-style: "linux"
  310. * End:
  311. */