hugetlbpage.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. /*
  2. * SPARC64 Huge TLB page support.
  3. *
  4. * Copyright (C) 2002, 2003 David S. Miller (davem@redhat.com)
  5. */
  6. #include <linux/config.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/fs.h>
  10. #include <linux/mm.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/slab.h>
  15. #include <linux/sysctl.h>
  16. #include <asm/mman.h>
  17. #include <asm/pgalloc.h>
  18. #include <asm/tlb.h>
  19. #include <asm/tlbflush.h>
  20. #include <asm/cacheflush.h>
  21. #include <asm/mmu_context.h>
  22. static pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
  23. {
  24. pgd_t *pgd;
  25. pud_t *pud;
  26. pmd_t *pmd;
  27. pte_t *pte = NULL;
  28. pgd = pgd_offset(mm, addr);
  29. if (pgd) {
  30. pud = pud_offset(pgd, addr);
  31. if (pud) {
  32. pmd = pmd_alloc(mm, pud, addr);
  33. if (pmd)
  34. pte = pte_alloc_map(mm, pmd, addr);
  35. }
  36. }
  37. return pte;
  38. }
  39. static pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  40. {
  41. pgd_t *pgd;
  42. pud_t *pud;
  43. pmd_t *pmd;
  44. pte_t *pte = NULL;
  45. pgd = pgd_offset(mm, addr);
  46. if (pgd) {
  47. pud = pud_offset(pgd, addr);
  48. if (pud) {
  49. pmd = pmd_offset(pud, addr);
  50. if (pmd)
  51. pte = pte_offset_map(pmd, addr);
  52. }
  53. }
  54. return pte;
  55. }
  56. #define mk_pte_huge(entry) do { pte_val(entry) |= _PAGE_SZHUGE; } while (0)
  57. static void set_huge_pte(struct mm_struct *mm, struct vm_area_struct *vma,
  58. unsigned long addr,
  59. struct page *page, pte_t * page_table, int write_access)
  60. {
  61. unsigned long i;
  62. pte_t entry;
  63. add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE);
  64. if (write_access)
  65. entry = pte_mkwrite(pte_mkdirty(mk_pte(page,
  66. vma->vm_page_prot)));
  67. else
  68. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  69. entry = pte_mkyoung(entry);
  70. mk_pte_huge(entry);
  71. for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
  72. set_pte_at(mm, addr, page_table, entry);
  73. page_table++;
  74. addr += PAGE_SIZE;
  75. pte_val(entry) += PAGE_SIZE;
  76. }
  77. }
  78. /*
  79. * This function checks for proper alignment of input addr and len parameters.
  80. */
  81. int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
  82. {
  83. if (len & ~HPAGE_MASK)
  84. return -EINVAL;
  85. if (addr & ~HPAGE_MASK)
  86. return -EINVAL;
  87. return 0;
  88. }
  89. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  90. struct vm_area_struct *vma)
  91. {
  92. pte_t *src_pte, *dst_pte, entry;
  93. struct page *ptepage;
  94. unsigned long addr = vma->vm_start;
  95. unsigned long end = vma->vm_end;
  96. int i;
  97. while (addr < end) {
  98. dst_pte = huge_pte_alloc(dst, addr);
  99. if (!dst_pte)
  100. goto nomem;
  101. src_pte = huge_pte_offset(src, addr);
  102. BUG_ON(!src_pte || pte_none(*src_pte));
  103. entry = *src_pte;
  104. ptepage = pte_page(entry);
  105. get_page(ptepage);
  106. for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
  107. set_pte_at(dst, addr, dst_pte, entry);
  108. pte_val(entry) += PAGE_SIZE;
  109. dst_pte++;
  110. addr += PAGE_SIZE;
  111. }
  112. add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE);
  113. }
  114. return 0;
  115. nomem:
  116. return -ENOMEM;
  117. }
  118. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  119. struct page **pages, struct vm_area_struct **vmas,
  120. unsigned long *position, int *length, int i)
  121. {
  122. unsigned long vaddr = *position;
  123. int remainder = *length;
  124. WARN_ON(!is_vm_hugetlb_page(vma));
  125. while (vaddr < vma->vm_end && remainder) {
  126. if (pages) {
  127. pte_t *pte;
  128. struct page *page;
  129. pte = huge_pte_offset(mm, vaddr);
  130. /* hugetlb should be locked, and hence, prefaulted */
  131. BUG_ON(!pte || pte_none(*pte));
  132. page = pte_page(*pte);
  133. WARN_ON(!PageCompound(page));
  134. get_page(page);
  135. pages[i] = page;
  136. }
  137. if (vmas)
  138. vmas[i] = vma;
  139. vaddr += PAGE_SIZE;
  140. --remainder;
  141. ++i;
  142. }
  143. *length = remainder;
  144. *position = vaddr;
  145. return i;
  146. }
  147. struct page *follow_huge_addr(struct mm_struct *mm,
  148. unsigned long address, int write)
  149. {
  150. return ERR_PTR(-EINVAL);
  151. }
  152. int pmd_huge(pmd_t pmd)
  153. {
  154. return 0;
  155. }
  156. struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  157. pmd_t *pmd, int write)
  158. {
  159. return NULL;
  160. }
  161. void unmap_hugepage_range(struct vm_area_struct *vma,
  162. unsigned long start, unsigned long end)
  163. {
  164. struct mm_struct *mm = vma->vm_mm;
  165. unsigned long address;
  166. pte_t *pte;
  167. struct page *page;
  168. int i;
  169. BUG_ON(start & (HPAGE_SIZE - 1));
  170. BUG_ON(end & (HPAGE_SIZE - 1));
  171. for (address = start; address < end; address += HPAGE_SIZE) {
  172. pte = huge_pte_offset(mm, address);
  173. BUG_ON(!pte);
  174. if (pte_none(*pte))
  175. continue;
  176. page = pte_page(*pte);
  177. put_page(page);
  178. for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
  179. pte_clear(mm, address+(i*PAGE_SIZE), pte);
  180. pte++;
  181. }
  182. }
  183. add_mm_counter(mm, rss, -((end - start) >> PAGE_SHIFT));
  184. flush_tlb_range(vma, start, end);
  185. }
  186. static void context_reload(void *__data)
  187. {
  188. struct mm_struct *mm = __data;
  189. if (mm == current->mm)
  190. load_secondary_context(mm);
  191. }
  192. int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
  193. {
  194. struct mm_struct *mm = current->mm;
  195. unsigned long addr;
  196. int ret = 0;
  197. /* On UltraSPARC-III+ and later, configure the second half of
  198. * the Data-TLB for huge pages.
  199. */
  200. if (tlb_type == cheetah_plus) {
  201. unsigned long ctx;
  202. spin_lock(&ctx_alloc_lock);
  203. ctx = mm->context.sparc64_ctx_val;
  204. ctx &= ~CTX_PGSZ_MASK;
  205. ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
  206. ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
  207. if (ctx != mm->context.sparc64_ctx_val) {
  208. /* When changing the page size fields, we
  209. * must perform a context flush so that no
  210. * stale entries match. This flush must
  211. * occur with the original context register
  212. * settings.
  213. */
  214. do_flush_tlb_mm(mm);
  215. /* Reload the context register of all processors
  216. * also executing in this address space.
  217. */
  218. mm->context.sparc64_ctx_val = ctx;
  219. on_each_cpu(context_reload, mm, 0, 0);
  220. }
  221. spin_unlock(&ctx_alloc_lock);
  222. }
  223. BUG_ON(vma->vm_start & ~HPAGE_MASK);
  224. BUG_ON(vma->vm_end & ~HPAGE_MASK);
  225. spin_lock(&mm->page_table_lock);
  226. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  227. unsigned long idx;
  228. pte_t *pte = huge_pte_alloc(mm, addr);
  229. struct page *page;
  230. if (!pte) {
  231. ret = -ENOMEM;
  232. goto out;
  233. }
  234. if (!pte_none(*pte))
  235. continue;
  236. idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
  237. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  238. page = find_get_page(mapping, idx);
  239. if (!page) {
  240. /* charge the fs quota first */
  241. if (hugetlb_get_quota(mapping)) {
  242. ret = -ENOMEM;
  243. goto out;
  244. }
  245. page = alloc_huge_page();
  246. if (!page) {
  247. hugetlb_put_quota(mapping);
  248. ret = -ENOMEM;
  249. goto out;
  250. }
  251. ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
  252. if (! ret) {
  253. unlock_page(page);
  254. } else {
  255. hugetlb_put_quota(mapping);
  256. free_huge_page(page);
  257. goto out;
  258. }
  259. }
  260. set_huge_pte(mm, vma, addr, page, pte, vma->vm_flags & VM_WRITE);
  261. }
  262. out:
  263. spin_unlock(&mm->page_table_lock);
  264. return ret;
  265. }