write.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744
  1. /*
  2. * linux/fs/nfs/write.c
  3. *
  4. * Write file data over NFS.
  5. *
  6. * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/file.h>
  13. #include <linux/writeback.h>
  14. #include <linux/swap.h>
  15. #include <linux/migrate.h>
  16. #include <linux/sunrpc/clnt.h>
  17. #include <linux/nfs_fs.h>
  18. #include <linux/nfs_mount.h>
  19. #include <linux/nfs_page.h>
  20. #include <linux/backing-dev.h>
  21. #include <asm/uaccess.h>
  22. #include "delegation.h"
  23. #include "internal.h"
  24. #include "iostat.h"
  25. #include "nfs4_fs.h"
  26. #include "fscache.h"
  27. #include "pnfs.h"
  28. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  29. #define MIN_POOL_WRITE (32)
  30. #define MIN_POOL_COMMIT (4)
  31. /*
  32. * Local function declarations
  33. */
  34. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
  35. struct inode *inode, int ioflags);
  36. static void nfs_redirty_request(struct nfs_page *req);
  37. static const struct rpc_call_ops nfs_write_partial_ops;
  38. static const struct rpc_call_ops nfs_write_full_ops;
  39. static const struct rpc_call_ops nfs_commit_ops;
  40. static struct kmem_cache *nfs_wdata_cachep;
  41. static mempool_t *nfs_wdata_mempool;
  42. static mempool_t *nfs_commit_mempool;
  43. struct nfs_write_data *nfs_commitdata_alloc(void)
  44. {
  45. struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  46. if (p) {
  47. memset(p, 0, sizeof(*p));
  48. INIT_LIST_HEAD(&p->pages);
  49. }
  50. return p;
  51. }
  52. EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
  53. void nfs_commit_free(struct nfs_write_data *p)
  54. {
  55. if (p && (p->pagevec != &p->page_array[0]))
  56. kfree(p->pagevec);
  57. mempool_free(p, nfs_commit_mempool);
  58. }
  59. EXPORT_SYMBOL_GPL(nfs_commit_free);
  60. struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
  61. {
  62. struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  63. if (p) {
  64. memset(p, 0, sizeof(*p));
  65. INIT_LIST_HEAD(&p->pages);
  66. p->npages = pagecount;
  67. if (pagecount <= ARRAY_SIZE(p->page_array))
  68. p->pagevec = p->page_array;
  69. else {
  70. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  71. if (!p->pagevec) {
  72. mempool_free(p, nfs_wdata_mempool);
  73. p = NULL;
  74. }
  75. }
  76. }
  77. return p;
  78. }
  79. void nfs_writedata_free(struct nfs_write_data *p)
  80. {
  81. if (p && (p->pagevec != &p->page_array[0]))
  82. kfree(p->pagevec);
  83. mempool_free(p, nfs_wdata_mempool);
  84. }
  85. static void nfs_writedata_release(struct nfs_write_data *wdata)
  86. {
  87. put_lseg(wdata->lseg);
  88. put_nfs_open_context(wdata->args.context);
  89. nfs_writedata_free(wdata);
  90. }
  91. static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
  92. {
  93. ctx->error = error;
  94. smp_wmb();
  95. set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  96. }
  97. static struct nfs_page *nfs_page_find_request_locked(struct page *page)
  98. {
  99. struct nfs_page *req = NULL;
  100. if (PagePrivate(page)) {
  101. req = (struct nfs_page *)page_private(page);
  102. if (req != NULL)
  103. kref_get(&req->wb_kref);
  104. }
  105. return req;
  106. }
  107. static struct nfs_page *nfs_page_find_request(struct page *page)
  108. {
  109. struct inode *inode = page->mapping->host;
  110. struct nfs_page *req = NULL;
  111. spin_lock(&inode->i_lock);
  112. req = nfs_page_find_request_locked(page);
  113. spin_unlock(&inode->i_lock);
  114. return req;
  115. }
  116. /* Adjust the file length if we're writing beyond the end */
  117. static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
  118. {
  119. struct inode *inode = page->mapping->host;
  120. loff_t end, i_size;
  121. pgoff_t end_index;
  122. spin_lock(&inode->i_lock);
  123. i_size = i_size_read(inode);
  124. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  125. if (i_size > 0 && page->index < end_index)
  126. goto out;
  127. end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
  128. if (i_size >= end)
  129. goto out;
  130. i_size_write(inode, end);
  131. nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
  132. out:
  133. spin_unlock(&inode->i_lock);
  134. }
  135. /* A writeback failed: mark the page as bad, and invalidate the page cache */
  136. static void nfs_set_pageerror(struct page *page)
  137. {
  138. SetPageError(page);
  139. nfs_zap_mapping(page->mapping->host, page->mapping);
  140. }
  141. /* We can set the PG_uptodate flag if we see that a write request
  142. * covers the full page.
  143. */
  144. static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
  145. {
  146. if (PageUptodate(page))
  147. return;
  148. if (base != 0)
  149. return;
  150. if (count != nfs_page_length(page))
  151. return;
  152. SetPageUptodate(page);
  153. }
  154. static int wb_priority(struct writeback_control *wbc)
  155. {
  156. if (wbc->for_reclaim)
  157. return FLUSH_HIGHPRI | FLUSH_STABLE;
  158. if (wbc->for_kupdate || wbc->for_background)
  159. return FLUSH_LOWPRI | FLUSH_COND_STABLE;
  160. return FLUSH_COND_STABLE;
  161. }
  162. /*
  163. * NFS congestion control
  164. */
  165. int nfs_congestion_kb;
  166. #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
  167. #define NFS_CONGESTION_OFF_THRESH \
  168. (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
  169. static int nfs_set_page_writeback(struct page *page)
  170. {
  171. int ret = test_set_page_writeback(page);
  172. if (!ret) {
  173. struct inode *inode = page->mapping->host;
  174. struct nfs_server *nfss = NFS_SERVER(inode);
  175. page_cache_get(page);
  176. if (atomic_long_inc_return(&nfss->writeback) >
  177. NFS_CONGESTION_ON_THRESH) {
  178. set_bdi_congested(&nfss->backing_dev_info,
  179. BLK_RW_ASYNC);
  180. }
  181. }
  182. return ret;
  183. }
  184. static void nfs_end_page_writeback(struct page *page)
  185. {
  186. struct inode *inode = page->mapping->host;
  187. struct nfs_server *nfss = NFS_SERVER(inode);
  188. end_page_writeback(page);
  189. page_cache_release(page);
  190. if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
  191. clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
  192. }
  193. static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
  194. {
  195. struct inode *inode = page->mapping->host;
  196. struct nfs_page *req;
  197. int ret;
  198. spin_lock(&inode->i_lock);
  199. for (;;) {
  200. req = nfs_page_find_request_locked(page);
  201. if (req == NULL)
  202. break;
  203. if (nfs_set_page_tag_locked(req))
  204. break;
  205. /* Note: If we hold the page lock, as is the case in nfs_writepage,
  206. * then the call to nfs_set_page_tag_locked() will always
  207. * succeed provided that someone hasn't already marked the
  208. * request as dirty (in which case we don't care).
  209. */
  210. spin_unlock(&inode->i_lock);
  211. if (!nonblock)
  212. ret = nfs_wait_on_request(req);
  213. else
  214. ret = -EAGAIN;
  215. nfs_release_request(req);
  216. if (ret != 0)
  217. return ERR_PTR(ret);
  218. spin_lock(&inode->i_lock);
  219. }
  220. spin_unlock(&inode->i_lock);
  221. return req;
  222. }
  223. /*
  224. * Find an associated nfs write request, and prepare to flush it out
  225. * May return an error if the user signalled nfs_wait_on_request().
  226. */
  227. static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
  228. struct page *page, bool nonblock)
  229. {
  230. struct nfs_page *req;
  231. int ret = 0;
  232. req = nfs_find_and_lock_request(page, nonblock);
  233. if (!req)
  234. goto out;
  235. ret = PTR_ERR(req);
  236. if (IS_ERR(req))
  237. goto out;
  238. ret = nfs_set_page_writeback(page);
  239. BUG_ON(ret != 0);
  240. BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
  241. if (!nfs_pageio_add_request(pgio, req)) {
  242. nfs_redirty_request(req);
  243. ret = pgio->pg_error;
  244. }
  245. out:
  246. return ret;
  247. }
  248. static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
  249. {
  250. struct inode *inode = page->mapping->host;
  251. int ret;
  252. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
  253. nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
  254. nfs_pageio_cond_complete(pgio, page->index);
  255. ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
  256. if (ret == -EAGAIN) {
  257. redirty_page_for_writepage(wbc, page);
  258. ret = 0;
  259. }
  260. return ret;
  261. }
  262. /*
  263. * Write an mmapped page to the server.
  264. */
  265. static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
  266. {
  267. struct nfs_pageio_descriptor pgio;
  268. int err;
  269. nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
  270. err = nfs_do_writepage(page, wbc, &pgio);
  271. nfs_pageio_complete(&pgio);
  272. if (err < 0)
  273. return err;
  274. if (pgio.pg_error < 0)
  275. return pgio.pg_error;
  276. return 0;
  277. }
  278. int nfs_writepage(struct page *page, struct writeback_control *wbc)
  279. {
  280. int ret;
  281. ret = nfs_writepage_locked(page, wbc);
  282. unlock_page(page);
  283. return ret;
  284. }
  285. static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
  286. {
  287. int ret;
  288. ret = nfs_do_writepage(page, wbc, data);
  289. unlock_page(page);
  290. return ret;
  291. }
  292. int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
  293. {
  294. struct inode *inode = mapping->host;
  295. unsigned long *bitlock = &NFS_I(inode)->flags;
  296. struct nfs_pageio_descriptor pgio;
  297. int err;
  298. /* Stop dirtying of new pages while we sync */
  299. err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
  300. nfs_wait_bit_killable, TASK_KILLABLE);
  301. if (err)
  302. goto out_err;
  303. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
  304. nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
  305. err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
  306. nfs_pageio_complete(&pgio);
  307. clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
  308. smp_mb__after_clear_bit();
  309. wake_up_bit(bitlock, NFS_INO_FLUSHING);
  310. if (err < 0)
  311. goto out_err;
  312. err = pgio.pg_error;
  313. if (err < 0)
  314. goto out_err;
  315. return 0;
  316. out_err:
  317. return err;
  318. }
  319. /*
  320. * Insert a write request into an inode
  321. */
  322. static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
  323. {
  324. struct nfs_inode *nfsi = NFS_I(inode);
  325. int error;
  326. error = radix_tree_preload(GFP_NOFS);
  327. if (error != 0)
  328. goto out;
  329. /* Lock the request! */
  330. nfs_lock_request_dontget(req);
  331. spin_lock(&inode->i_lock);
  332. error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
  333. BUG_ON(error);
  334. if (!nfsi->npages) {
  335. igrab(inode);
  336. if (nfs_have_delegation(inode, FMODE_WRITE))
  337. nfsi->change_attr++;
  338. }
  339. set_bit(PG_MAPPED, &req->wb_flags);
  340. SetPagePrivate(req->wb_page);
  341. set_page_private(req->wb_page, (unsigned long)req);
  342. nfsi->npages++;
  343. kref_get(&req->wb_kref);
  344. radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
  345. NFS_PAGE_TAG_LOCKED);
  346. spin_unlock(&inode->i_lock);
  347. radix_tree_preload_end();
  348. out:
  349. return error;
  350. }
  351. /*
  352. * Remove a write request from an inode
  353. */
  354. static void nfs_inode_remove_request(struct nfs_page *req)
  355. {
  356. struct inode *inode = req->wb_context->path.dentry->d_inode;
  357. struct nfs_inode *nfsi = NFS_I(inode);
  358. BUG_ON (!NFS_WBACK_BUSY(req));
  359. spin_lock(&inode->i_lock);
  360. set_page_private(req->wb_page, 0);
  361. ClearPagePrivate(req->wb_page);
  362. clear_bit(PG_MAPPED, &req->wb_flags);
  363. radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
  364. nfsi->npages--;
  365. if (!nfsi->npages) {
  366. spin_unlock(&inode->i_lock);
  367. iput(inode);
  368. } else
  369. spin_unlock(&inode->i_lock);
  370. nfs_release_request(req);
  371. }
  372. static void
  373. nfs_mark_request_dirty(struct nfs_page *req)
  374. {
  375. __set_page_dirty_nobuffers(req->wb_page);
  376. __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
  377. }
  378. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  379. /*
  380. * Add a request to the inode's commit list.
  381. */
  382. static void
  383. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  384. {
  385. struct inode *inode = req->wb_context->path.dentry->d_inode;
  386. struct nfs_inode *nfsi = NFS_I(inode);
  387. spin_lock(&inode->i_lock);
  388. set_bit(PG_CLEAN, &(req)->wb_flags);
  389. radix_tree_tag_set(&nfsi->nfs_page_tree,
  390. req->wb_index,
  391. NFS_PAGE_TAG_COMMIT);
  392. nfsi->ncommit++;
  393. spin_unlock(&inode->i_lock);
  394. pnfs_mark_request_commit(req, lseg);
  395. inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  396. inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  397. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  398. }
  399. static int
  400. nfs_clear_request_commit(struct nfs_page *req)
  401. {
  402. struct page *page = req->wb_page;
  403. if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
  404. dec_zone_page_state(page, NR_UNSTABLE_NFS);
  405. dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  406. return 1;
  407. }
  408. return 0;
  409. }
  410. static inline
  411. int nfs_write_need_commit(struct nfs_write_data *data)
  412. {
  413. if (data->verf.committed == NFS_DATA_SYNC)
  414. return data->lseg == NULL;
  415. else
  416. return data->verf.committed != NFS_FILE_SYNC;
  417. }
  418. static inline
  419. int nfs_reschedule_unstable_write(struct nfs_page *req,
  420. struct nfs_write_data *data)
  421. {
  422. if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  423. nfs_mark_request_commit(req, data->lseg);
  424. return 1;
  425. }
  426. if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  427. nfs_mark_request_dirty(req);
  428. return 1;
  429. }
  430. return 0;
  431. }
  432. #else
  433. static inline void
  434. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  435. {
  436. }
  437. static inline int
  438. nfs_clear_request_commit(struct nfs_page *req)
  439. {
  440. return 0;
  441. }
  442. static inline
  443. int nfs_write_need_commit(struct nfs_write_data *data)
  444. {
  445. return 0;
  446. }
  447. static inline
  448. int nfs_reschedule_unstable_write(struct nfs_page *req,
  449. struct nfs_write_data *data)
  450. {
  451. return 0;
  452. }
  453. #endif
  454. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  455. static int
  456. nfs_need_commit(struct nfs_inode *nfsi)
  457. {
  458. return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
  459. }
  460. /*
  461. * nfs_scan_commit - Scan an inode for commit requests
  462. * @inode: NFS inode to scan
  463. * @dst: destination list
  464. * @idx_start: lower bound of page->index to scan.
  465. * @npages: idx_start + npages sets the upper bound to scan.
  466. *
  467. * Moves requests from the inode's 'commit' request list.
  468. * The requests are *not* checked to ensure that they form a contiguous set.
  469. */
  470. static int
  471. nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  472. {
  473. struct nfs_inode *nfsi = NFS_I(inode);
  474. int ret;
  475. if (!nfs_need_commit(nfsi))
  476. return 0;
  477. ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
  478. if (ret > 0)
  479. nfsi->ncommit -= ret;
  480. if (nfs_need_commit(NFS_I(inode)))
  481. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  482. return ret;
  483. }
  484. #else
  485. static inline int nfs_need_commit(struct nfs_inode *nfsi)
  486. {
  487. return 0;
  488. }
  489. static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  490. {
  491. return 0;
  492. }
  493. #endif
  494. /*
  495. * Search for an existing write request, and attempt to update
  496. * it to reflect a new dirty region on a given page.
  497. *
  498. * If the attempt fails, then the existing request is flushed out
  499. * to disk.
  500. */
  501. static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
  502. struct page *page,
  503. unsigned int offset,
  504. unsigned int bytes)
  505. {
  506. struct nfs_page *req;
  507. unsigned int rqend;
  508. unsigned int end;
  509. int error;
  510. if (!PagePrivate(page))
  511. return NULL;
  512. end = offset + bytes;
  513. spin_lock(&inode->i_lock);
  514. for (;;) {
  515. req = nfs_page_find_request_locked(page);
  516. if (req == NULL)
  517. goto out_unlock;
  518. rqend = req->wb_offset + req->wb_bytes;
  519. /*
  520. * Tell the caller to flush out the request if
  521. * the offsets are non-contiguous.
  522. * Note: nfs_flush_incompatible() will already
  523. * have flushed out requests having wrong owners.
  524. */
  525. if (offset > rqend
  526. || end < req->wb_offset)
  527. goto out_flushme;
  528. if (nfs_set_page_tag_locked(req))
  529. break;
  530. /* The request is locked, so wait and then retry */
  531. spin_unlock(&inode->i_lock);
  532. error = nfs_wait_on_request(req);
  533. nfs_release_request(req);
  534. if (error != 0)
  535. goto out_err;
  536. spin_lock(&inode->i_lock);
  537. }
  538. if (nfs_clear_request_commit(req) &&
  539. radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
  540. req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
  541. NFS_I(inode)->ncommit--;
  542. pnfs_clear_request_commit(req);
  543. }
  544. /* Okay, the request matches. Update the region */
  545. if (offset < req->wb_offset) {
  546. req->wb_offset = offset;
  547. req->wb_pgbase = offset;
  548. }
  549. if (end > rqend)
  550. req->wb_bytes = end - req->wb_offset;
  551. else
  552. req->wb_bytes = rqend - req->wb_offset;
  553. out_unlock:
  554. spin_unlock(&inode->i_lock);
  555. return req;
  556. out_flushme:
  557. spin_unlock(&inode->i_lock);
  558. nfs_release_request(req);
  559. error = nfs_wb_page(inode, page);
  560. out_err:
  561. return ERR_PTR(error);
  562. }
  563. /*
  564. * Try to update an existing write request, or create one if there is none.
  565. *
  566. * Note: Should always be called with the Page Lock held to prevent races
  567. * if we have to add a new request. Also assumes that the caller has
  568. * already called nfs_flush_incompatible() if necessary.
  569. */
  570. static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
  571. struct page *page, unsigned int offset, unsigned int bytes)
  572. {
  573. struct inode *inode = page->mapping->host;
  574. struct nfs_page *req;
  575. int error;
  576. req = nfs_try_to_update_request(inode, page, offset, bytes);
  577. if (req != NULL)
  578. goto out;
  579. req = nfs_create_request(ctx, inode, page, offset, bytes);
  580. if (IS_ERR(req))
  581. goto out;
  582. error = nfs_inode_add_request(inode, req);
  583. if (error != 0) {
  584. nfs_release_request(req);
  585. req = ERR_PTR(error);
  586. }
  587. out:
  588. return req;
  589. }
  590. static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
  591. unsigned int offset, unsigned int count)
  592. {
  593. struct nfs_page *req;
  594. req = nfs_setup_write_request(ctx, page, offset, count);
  595. if (IS_ERR(req))
  596. return PTR_ERR(req);
  597. nfs_mark_request_dirty(req);
  598. /* Update file length */
  599. nfs_grow_file(page, offset, count);
  600. nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
  601. nfs_mark_request_dirty(req);
  602. nfs_clear_page_tag_locked(req);
  603. return 0;
  604. }
  605. int nfs_flush_incompatible(struct file *file, struct page *page)
  606. {
  607. struct nfs_open_context *ctx = nfs_file_open_context(file);
  608. struct nfs_page *req;
  609. int do_flush, status;
  610. /*
  611. * Look for a request corresponding to this page. If there
  612. * is one, and it belongs to another file, we flush it out
  613. * before we try to copy anything into the page. Do this
  614. * due to the lack of an ACCESS-type call in NFSv2.
  615. * Also do the same if we find a request from an existing
  616. * dropped page.
  617. */
  618. do {
  619. req = nfs_page_find_request(page);
  620. if (req == NULL)
  621. return 0;
  622. do_flush = req->wb_page != page || req->wb_context != ctx ||
  623. req->wb_lock_context->lockowner != current->files ||
  624. req->wb_lock_context->pid != current->tgid;
  625. nfs_release_request(req);
  626. if (!do_flush)
  627. return 0;
  628. status = nfs_wb_page(page->mapping->host, page);
  629. } while (status == 0);
  630. return status;
  631. }
  632. /*
  633. * If the page cache is marked as unsafe or invalid, then we can't rely on
  634. * the PageUptodate() flag. In this case, we will need to turn off
  635. * write optimisations that depend on the page contents being correct.
  636. */
  637. static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
  638. {
  639. return PageUptodate(page) &&
  640. !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
  641. }
  642. /*
  643. * Update and possibly write a cached page of an NFS file.
  644. *
  645. * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
  646. * things with a page scheduled for an RPC call (e.g. invalidate it).
  647. */
  648. int nfs_updatepage(struct file *file, struct page *page,
  649. unsigned int offset, unsigned int count)
  650. {
  651. struct nfs_open_context *ctx = nfs_file_open_context(file);
  652. struct inode *inode = page->mapping->host;
  653. int status = 0;
  654. nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
  655. dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
  656. file->f_path.dentry->d_parent->d_name.name,
  657. file->f_path.dentry->d_name.name, count,
  658. (long long)(page_offset(page) + offset));
  659. /* If we're not using byte range locks, and we know the page
  660. * is up to date, it may be more efficient to extend the write
  661. * to cover the entire page in order to avoid fragmentation
  662. * inefficiencies.
  663. */
  664. if (nfs_write_pageuptodate(page, inode) &&
  665. inode->i_flock == NULL &&
  666. !(file->f_flags & O_DSYNC)) {
  667. count = max(count + offset, nfs_page_length(page));
  668. offset = 0;
  669. }
  670. status = nfs_writepage_setup(ctx, page, offset, count);
  671. if (status < 0)
  672. nfs_set_pageerror(page);
  673. dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
  674. status, (long long)i_size_read(inode));
  675. return status;
  676. }
  677. static void nfs_writepage_release(struct nfs_page *req,
  678. struct nfs_write_data *data)
  679. {
  680. struct page *page = req->wb_page;
  681. if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
  682. nfs_inode_remove_request(req);
  683. nfs_clear_page_tag_locked(req);
  684. nfs_end_page_writeback(page);
  685. }
  686. static int flush_task_priority(int how)
  687. {
  688. switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
  689. case FLUSH_HIGHPRI:
  690. return RPC_PRIORITY_HIGH;
  691. case FLUSH_LOWPRI:
  692. return RPC_PRIORITY_LOW;
  693. }
  694. return RPC_PRIORITY_NORMAL;
  695. }
  696. int nfs_initiate_write(struct nfs_write_data *data,
  697. struct rpc_clnt *clnt,
  698. const struct rpc_call_ops *call_ops,
  699. int how)
  700. {
  701. struct inode *inode = data->inode;
  702. int priority = flush_task_priority(how);
  703. struct rpc_task *task;
  704. struct rpc_message msg = {
  705. .rpc_argp = &data->args,
  706. .rpc_resp = &data->res,
  707. .rpc_cred = data->cred,
  708. };
  709. struct rpc_task_setup task_setup_data = {
  710. .rpc_client = clnt,
  711. .task = &data->task,
  712. .rpc_message = &msg,
  713. .callback_ops = call_ops,
  714. .callback_data = data,
  715. .workqueue = nfsiod_workqueue,
  716. .flags = RPC_TASK_ASYNC,
  717. .priority = priority,
  718. };
  719. int ret = 0;
  720. /* Set up the initial task struct. */
  721. NFS_PROTO(inode)->write_setup(data, &msg);
  722. dprintk("NFS: %5u initiated write call "
  723. "(req %s/%lld, %u bytes @ offset %llu)\n",
  724. data->task.tk_pid,
  725. inode->i_sb->s_id,
  726. (long long)NFS_FILEID(inode),
  727. data->args.count,
  728. (unsigned long long)data->args.offset);
  729. task = rpc_run_task(&task_setup_data);
  730. if (IS_ERR(task)) {
  731. ret = PTR_ERR(task);
  732. goto out;
  733. }
  734. if (how & FLUSH_SYNC) {
  735. ret = rpc_wait_for_completion_task(task);
  736. if (ret == 0)
  737. ret = task->tk_status;
  738. }
  739. rpc_put_task(task);
  740. out:
  741. return ret;
  742. }
  743. EXPORT_SYMBOL_GPL(nfs_initiate_write);
  744. /*
  745. * Set up the argument/result storage required for the RPC call.
  746. */
  747. static int nfs_write_rpcsetup(struct nfs_page *req,
  748. struct nfs_write_data *data,
  749. const struct rpc_call_ops *call_ops,
  750. unsigned int count, unsigned int offset,
  751. struct pnfs_layout_segment *lseg,
  752. int how)
  753. {
  754. struct inode *inode = req->wb_context->path.dentry->d_inode;
  755. /* Set up the RPC argument and reply structs
  756. * NB: take care not to mess about with data->commit et al. */
  757. data->req = req;
  758. data->inode = inode = req->wb_context->path.dentry->d_inode;
  759. data->cred = req->wb_context->cred;
  760. data->lseg = get_lseg(lseg);
  761. data->args.fh = NFS_FH(inode);
  762. data->args.offset = req_offset(req) + offset;
  763. data->args.pgbase = req->wb_pgbase + offset;
  764. data->args.pages = data->pagevec;
  765. data->args.count = count;
  766. data->args.context = get_nfs_open_context(req->wb_context);
  767. data->args.lock_context = req->wb_lock_context;
  768. data->args.stable = NFS_UNSTABLE;
  769. if (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
  770. data->args.stable = NFS_DATA_SYNC;
  771. if (!nfs_need_commit(NFS_I(inode)))
  772. data->args.stable = NFS_FILE_SYNC;
  773. }
  774. data->res.fattr = &data->fattr;
  775. data->res.count = count;
  776. data->res.verf = &data->verf;
  777. nfs_fattr_init(&data->fattr);
  778. if (data->lseg &&
  779. (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED))
  780. return 0;
  781. return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
  782. }
  783. /* If a nfs_flush_* function fails, it should remove reqs from @head and
  784. * call this on each, which will prepare them to be retried on next
  785. * writeback using standard nfs.
  786. */
  787. static void nfs_redirty_request(struct nfs_page *req)
  788. {
  789. struct page *page = req->wb_page;
  790. nfs_mark_request_dirty(req);
  791. nfs_clear_page_tag_locked(req);
  792. nfs_end_page_writeback(page);
  793. }
  794. /*
  795. * Generate multiple small requests to write out a single
  796. * contiguous dirty area on one page.
  797. */
  798. static int nfs_flush_multi(struct nfs_pageio_descriptor *desc)
  799. {
  800. struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
  801. struct page *page = req->wb_page;
  802. struct nfs_write_data *data;
  803. size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
  804. unsigned int offset;
  805. int requests = 0;
  806. int ret = 0;
  807. struct pnfs_layout_segment *lseg;
  808. LIST_HEAD(list);
  809. nfs_list_remove_request(req);
  810. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  811. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
  812. desc->pg_count > wsize))
  813. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  814. nbytes = desc->pg_count;
  815. do {
  816. size_t len = min(nbytes, wsize);
  817. data = nfs_writedata_alloc(1);
  818. if (!data)
  819. goto out_bad;
  820. list_add(&data->pages, &list);
  821. requests++;
  822. nbytes -= len;
  823. } while (nbytes != 0);
  824. atomic_set(&req->wb_complete, requests);
  825. BUG_ON(desc->pg_lseg);
  826. lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
  827. ClearPageError(page);
  828. offset = 0;
  829. nbytes = desc->pg_count;
  830. do {
  831. int ret2;
  832. data = list_entry(list.next, struct nfs_write_data, pages);
  833. list_del_init(&data->pages);
  834. data->pagevec[0] = page;
  835. if (nbytes < wsize)
  836. wsize = nbytes;
  837. ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
  838. wsize, offset, lseg, desc->pg_ioflags);
  839. if (ret == 0)
  840. ret = ret2;
  841. offset += wsize;
  842. nbytes -= wsize;
  843. } while (nbytes != 0);
  844. put_lseg(lseg);
  845. desc->pg_lseg = NULL;
  846. return ret;
  847. out_bad:
  848. while (!list_empty(&list)) {
  849. data = list_entry(list.next, struct nfs_write_data, pages);
  850. list_del(&data->pages);
  851. nfs_writedata_free(data);
  852. }
  853. nfs_redirty_request(req);
  854. return -ENOMEM;
  855. }
  856. /*
  857. * Create an RPC task for the given write request and kick it.
  858. * The page must have been locked by the caller.
  859. *
  860. * It may happen that the page we're passed is not marked dirty.
  861. * This is the case if nfs_updatepage detects a conflicting request
  862. * that has been written but not committed.
  863. */
  864. static int nfs_flush_one(struct nfs_pageio_descriptor *desc)
  865. {
  866. struct nfs_page *req;
  867. struct page **pages;
  868. struct nfs_write_data *data;
  869. struct list_head *head = &desc->pg_list;
  870. struct pnfs_layout_segment *lseg = desc->pg_lseg;
  871. int ret;
  872. data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
  873. desc->pg_count));
  874. if (!data) {
  875. while (!list_empty(head)) {
  876. req = nfs_list_entry(head->next);
  877. nfs_list_remove_request(req);
  878. nfs_redirty_request(req);
  879. }
  880. ret = -ENOMEM;
  881. goto out;
  882. }
  883. pages = data->pagevec;
  884. while (!list_empty(head)) {
  885. req = nfs_list_entry(head->next);
  886. nfs_list_remove_request(req);
  887. nfs_list_add_request(req, &data->pages);
  888. ClearPageError(req->wb_page);
  889. *pages++ = req->wb_page;
  890. }
  891. req = nfs_list_entry(data->pages.next);
  892. if ((!lseg) && list_is_singular(&data->pages))
  893. lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
  894. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  895. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
  896. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  897. /* Set up the argument struct */
  898. ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags);
  899. out:
  900. put_lseg(lseg); /* Cleans any gotten in ->pg_test */
  901. desc->pg_lseg = NULL;
  902. return ret;
  903. }
  904. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
  905. struct inode *inode, int ioflags)
  906. {
  907. size_t wsize = NFS_SERVER(inode)->wsize;
  908. pnfs_pageio_init_write(pgio, inode);
  909. if (wsize < PAGE_CACHE_SIZE)
  910. nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
  911. else
  912. nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
  913. }
  914. /*
  915. * Handle a write reply that flushed part of a page.
  916. */
  917. static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
  918. {
  919. struct nfs_write_data *data = calldata;
  920. dprintk("NFS: %5u write(%s/%lld %d@%lld)",
  921. task->tk_pid,
  922. data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
  923. (long long)
  924. NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
  925. data->req->wb_bytes, (long long)req_offset(data->req));
  926. nfs_writeback_done(task, data);
  927. }
  928. static void nfs_writeback_release_partial(void *calldata)
  929. {
  930. struct nfs_write_data *data = calldata;
  931. struct nfs_page *req = data->req;
  932. struct page *page = req->wb_page;
  933. int status = data->task.tk_status;
  934. if (status < 0) {
  935. nfs_set_pageerror(page);
  936. nfs_context_set_write_error(req->wb_context, status);
  937. dprintk(", error = %d\n", status);
  938. goto out;
  939. }
  940. if (nfs_write_need_commit(data)) {
  941. struct inode *inode = page->mapping->host;
  942. spin_lock(&inode->i_lock);
  943. if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  944. /* Do nothing we need to resend the writes */
  945. } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  946. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  947. dprintk(" defer commit\n");
  948. } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
  949. set_bit(PG_NEED_RESCHED, &req->wb_flags);
  950. clear_bit(PG_NEED_COMMIT, &req->wb_flags);
  951. dprintk(" server reboot detected\n");
  952. }
  953. spin_unlock(&inode->i_lock);
  954. } else
  955. dprintk(" OK\n");
  956. out:
  957. if (atomic_dec_and_test(&req->wb_complete))
  958. nfs_writepage_release(req, data);
  959. nfs_writedata_release(calldata);
  960. }
  961. #if defined(CONFIG_NFS_V4_1)
  962. void nfs_write_prepare(struct rpc_task *task, void *calldata)
  963. {
  964. struct nfs_write_data *data = calldata;
  965. if (nfs4_setup_sequence(NFS_SERVER(data->inode),
  966. &data->args.seq_args,
  967. &data->res.seq_res, 1, task))
  968. return;
  969. rpc_call_start(task);
  970. }
  971. #endif /* CONFIG_NFS_V4_1 */
  972. static const struct rpc_call_ops nfs_write_partial_ops = {
  973. #if defined(CONFIG_NFS_V4_1)
  974. .rpc_call_prepare = nfs_write_prepare,
  975. #endif /* CONFIG_NFS_V4_1 */
  976. .rpc_call_done = nfs_writeback_done_partial,
  977. .rpc_release = nfs_writeback_release_partial,
  978. };
  979. /*
  980. * Handle a write reply that flushes a whole page.
  981. *
  982. * FIXME: There is an inherent race with invalidate_inode_pages and
  983. * writebacks since the page->count is kept > 1 for as long
  984. * as the page has a write request pending.
  985. */
  986. static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
  987. {
  988. struct nfs_write_data *data = calldata;
  989. nfs_writeback_done(task, data);
  990. }
  991. static void nfs_writeback_release_full(void *calldata)
  992. {
  993. struct nfs_write_data *data = calldata;
  994. int status = data->task.tk_status;
  995. /* Update attributes as result of writeback. */
  996. while (!list_empty(&data->pages)) {
  997. struct nfs_page *req = nfs_list_entry(data->pages.next);
  998. struct page *page = req->wb_page;
  999. nfs_list_remove_request(req);
  1000. dprintk("NFS: %5u write (%s/%lld %d@%lld)",
  1001. data->task.tk_pid,
  1002. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  1003. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  1004. req->wb_bytes,
  1005. (long long)req_offset(req));
  1006. if (status < 0) {
  1007. nfs_set_pageerror(page);
  1008. nfs_context_set_write_error(req->wb_context, status);
  1009. dprintk(", error = %d\n", status);
  1010. goto remove_request;
  1011. }
  1012. if (nfs_write_need_commit(data)) {
  1013. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  1014. nfs_mark_request_commit(req, data->lseg);
  1015. dprintk(" marked for commit\n");
  1016. goto next;
  1017. }
  1018. dprintk(" OK\n");
  1019. remove_request:
  1020. nfs_inode_remove_request(req);
  1021. next:
  1022. nfs_clear_page_tag_locked(req);
  1023. nfs_end_page_writeback(page);
  1024. }
  1025. nfs_writedata_release(calldata);
  1026. }
  1027. static const struct rpc_call_ops nfs_write_full_ops = {
  1028. #if defined(CONFIG_NFS_V4_1)
  1029. .rpc_call_prepare = nfs_write_prepare,
  1030. #endif /* CONFIG_NFS_V4_1 */
  1031. .rpc_call_done = nfs_writeback_done_full,
  1032. .rpc_release = nfs_writeback_release_full,
  1033. };
  1034. /*
  1035. * This function is called when the WRITE call is complete.
  1036. */
  1037. void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
  1038. {
  1039. struct nfs_writeargs *argp = &data->args;
  1040. struct nfs_writeres *resp = &data->res;
  1041. struct nfs_server *server = NFS_SERVER(data->inode);
  1042. int status;
  1043. dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
  1044. task->tk_pid, task->tk_status);
  1045. /*
  1046. * ->write_done will attempt to use post-op attributes to detect
  1047. * conflicting writes by other clients. A strict interpretation
  1048. * of close-to-open would allow us to continue caching even if
  1049. * another writer had changed the file, but some applications
  1050. * depend on tighter cache coherency when writing.
  1051. */
  1052. status = NFS_PROTO(data->inode)->write_done(task, data);
  1053. if (status != 0)
  1054. return;
  1055. nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
  1056. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1057. if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
  1058. /* We tried a write call, but the server did not
  1059. * commit data to stable storage even though we
  1060. * requested it.
  1061. * Note: There is a known bug in Tru64 < 5.0 in which
  1062. * the server reports NFS_DATA_SYNC, but performs
  1063. * NFS_FILE_SYNC. We therefore implement this checking
  1064. * as a dprintk() in order to avoid filling syslog.
  1065. */
  1066. static unsigned long complain;
  1067. /* Note this will print the MDS for a DS write */
  1068. if (time_before(complain, jiffies)) {
  1069. dprintk("NFS: faulty NFS server %s:"
  1070. " (committed = %d) != (stable = %d)\n",
  1071. server->nfs_client->cl_hostname,
  1072. resp->verf->committed, argp->stable);
  1073. complain = jiffies + 300 * HZ;
  1074. }
  1075. }
  1076. #endif
  1077. /* Is this a short write? */
  1078. if (task->tk_status >= 0 && resp->count < argp->count) {
  1079. static unsigned long complain;
  1080. nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
  1081. /* Has the server at least made some progress? */
  1082. if (resp->count != 0) {
  1083. /* Was this an NFSv2 write or an NFSv3 stable write? */
  1084. if (resp->verf->committed != NFS_UNSTABLE) {
  1085. /* Resend from where the server left off */
  1086. data->mds_offset += resp->count;
  1087. argp->offset += resp->count;
  1088. argp->pgbase += resp->count;
  1089. argp->count -= resp->count;
  1090. } else {
  1091. /* Resend as a stable write in order to avoid
  1092. * headaches in the case of a server crash.
  1093. */
  1094. argp->stable = NFS_FILE_SYNC;
  1095. }
  1096. nfs_restart_rpc(task, server->nfs_client);
  1097. return;
  1098. }
  1099. if (time_before(complain, jiffies)) {
  1100. printk(KERN_WARNING
  1101. "NFS: Server wrote zero bytes, expected %u.\n",
  1102. argp->count);
  1103. complain = jiffies + 300 * HZ;
  1104. }
  1105. /* Can't do anything about it except throw an error. */
  1106. task->tk_status = -EIO;
  1107. }
  1108. return;
  1109. }
  1110. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1111. static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
  1112. {
  1113. int ret;
  1114. if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
  1115. return 1;
  1116. if (!may_wait)
  1117. return 0;
  1118. ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
  1119. NFS_INO_COMMIT,
  1120. nfs_wait_bit_killable,
  1121. TASK_KILLABLE);
  1122. return (ret < 0) ? ret : 1;
  1123. }
  1124. void nfs_commit_clear_lock(struct nfs_inode *nfsi)
  1125. {
  1126. clear_bit(NFS_INO_COMMIT, &nfsi->flags);
  1127. smp_mb__after_clear_bit();
  1128. wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
  1129. }
  1130. EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
  1131. void nfs_commitdata_release(void *data)
  1132. {
  1133. struct nfs_write_data *wdata = data;
  1134. put_lseg(wdata->lseg);
  1135. put_nfs_open_context(wdata->args.context);
  1136. nfs_commit_free(wdata);
  1137. }
  1138. EXPORT_SYMBOL_GPL(nfs_commitdata_release);
  1139. int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
  1140. const struct rpc_call_ops *call_ops,
  1141. int how)
  1142. {
  1143. struct rpc_task *task;
  1144. int priority = flush_task_priority(how);
  1145. struct rpc_message msg = {
  1146. .rpc_argp = &data->args,
  1147. .rpc_resp = &data->res,
  1148. .rpc_cred = data->cred,
  1149. };
  1150. struct rpc_task_setup task_setup_data = {
  1151. .task = &data->task,
  1152. .rpc_client = clnt,
  1153. .rpc_message = &msg,
  1154. .callback_ops = call_ops,
  1155. .callback_data = data,
  1156. .workqueue = nfsiod_workqueue,
  1157. .flags = RPC_TASK_ASYNC,
  1158. .priority = priority,
  1159. };
  1160. /* Set up the initial task struct. */
  1161. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  1162. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  1163. task = rpc_run_task(&task_setup_data);
  1164. if (IS_ERR(task))
  1165. return PTR_ERR(task);
  1166. if (how & FLUSH_SYNC)
  1167. rpc_wait_for_completion_task(task);
  1168. rpc_put_task(task);
  1169. return 0;
  1170. }
  1171. EXPORT_SYMBOL_GPL(nfs_initiate_commit);
  1172. /*
  1173. * Set up the argument/result storage required for the RPC call.
  1174. */
  1175. void nfs_init_commit(struct nfs_write_data *data,
  1176. struct list_head *head,
  1177. struct pnfs_layout_segment *lseg)
  1178. {
  1179. struct nfs_page *first = nfs_list_entry(head->next);
  1180. struct inode *inode = first->wb_context->path.dentry->d_inode;
  1181. /* Set up the RPC argument and reply structs
  1182. * NB: take care not to mess about with data->commit et al. */
  1183. list_splice_init(head, &data->pages);
  1184. data->inode = inode;
  1185. data->cred = first->wb_context->cred;
  1186. data->lseg = lseg; /* reference transferred */
  1187. data->mds_ops = &nfs_commit_ops;
  1188. data->args.fh = NFS_FH(data->inode);
  1189. /* Note: we always request a commit of the entire inode */
  1190. data->args.offset = 0;
  1191. data->args.count = 0;
  1192. data->args.context = get_nfs_open_context(first->wb_context);
  1193. data->res.count = 0;
  1194. data->res.fattr = &data->fattr;
  1195. data->res.verf = &data->verf;
  1196. nfs_fattr_init(&data->fattr);
  1197. }
  1198. EXPORT_SYMBOL_GPL(nfs_init_commit);
  1199. void nfs_retry_commit(struct list_head *page_list,
  1200. struct pnfs_layout_segment *lseg)
  1201. {
  1202. struct nfs_page *req;
  1203. while (!list_empty(page_list)) {
  1204. req = nfs_list_entry(page_list->next);
  1205. nfs_list_remove_request(req);
  1206. nfs_mark_request_commit(req, lseg);
  1207. dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  1208. dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
  1209. BDI_RECLAIMABLE);
  1210. nfs_clear_page_tag_locked(req);
  1211. }
  1212. }
  1213. EXPORT_SYMBOL_GPL(nfs_retry_commit);
  1214. /*
  1215. * Commit dirty pages
  1216. */
  1217. static int
  1218. nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1219. {
  1220. struct nfs_write_data *data;
  1221. data = nfs_commitdata_alloc();
  1222. if (!data)
  1223. goto out_bad;
  1224. /* Set up the argument struct */
  1225. nfs_init_commit(data, head, NULL);
  1226. return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
  1227. out_bad:
  1228. nfs_retry_commit(head, NULL);
  1229. nfs_commit_clear_lock(NFS_I(inode));
  1230. return -ENOMEM;
  1231. }
  1232. /*
  1233. * COMMIT call returned
  1234. */
  1235. static void nfs_commit_done(struct rpc_task *task, void *calldata)
  1236. {
  1237. struct nfs_write_data *data = calldata;
  1238. dprintk("NFS: %5u nfs_commit_done (status %d)\n",
  1239. task->tk_pid, task->tk_status);
  1240. /* Call the NFS version-specific code */
  1241. if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
  1242. return;
  1243. }
  1244. void nfs_commit_release_pages(struct nfs_write_data *data)
  1245. {
  1246. struct nfs_page *req;
  1247. int status = data->task.tk_status;
  1248. while (!list_empty(&data->pages)) {
  1249. req = nfs_list_entry(data->pages.next);
  1250. nfs_list_remove_request(req);
  1251. nfs_clear_request_commit(req);
  1252. dprintk("NFS: commit (%s/%lld %d@%lld)",
  1253. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  1254. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  1255. req->wb_bytes,
  1256. (long long)req_offset(req));
  1257. if (status < 0) {
  1258. nfs_context_set_write_error(req->wb_context, status);
  1259. nfs_inode_remove_request(req);
  1260. dprintk(", error = %d\n", status);
  1261. goto next;
  1262. }
  1263. /* Okay, COMMIT succeeded, apparently. Check the verifier
  1264. * returned by the server against all stored verfs. */
  1265. if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
  1266. /* We have a match */
  1267. nfs_inode_remove_request(req);
  1268. dprintk(" OK\n");
  1269. goto next;
  1270. }
  1271. /* We have a mismatch. Write the page again */
  1272. dprintk(" mismatch\n");
  1273. nfs_mark_request_dirty(req);
  1274. next:
  1275. nfs_clear_page_tag_locked(req);
  1276. }
  1277. }
  1278. EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
  1279. static void nfs_commit_release(void *calldata)
  1280. {
  1281. struct nfs_write_data *data = calldata;
  1282. nfs_commit_release_pages(data);
  1283. nfs_commit_clear_lock(NFS_I(data->inode));
  1284. nfs_commitdata_release(calldata);
  1285. }
  1286. static const struct rpc_call_ops nfs_commit_ops = {
  1287. #if defined(CONFIG_NFS_V4_1)
  1288. .rpc_call_prepare = nfs_write_prepare,
  1289. #endif /* CONFIG_NFS_V4_1 */
  1290. .rpc_call_done = nfs_commit_done,
  1291. .rpc_release = nfs_commit_release,
  1292. };
  1293. int nfs_commit_inode(struct inode *inode, int how)
  1294. {
  1295. LIST_HEAD(head);
  1296. int may_wait = how & FLUSH_SYNC;
  1297. int res;
  1298. res = nfs_commit_set_lock(NFS_I(inode), may_wait);
  1299. if (res <= 0)
  1300. goto out_mark_dirty;
  1301. spin_lock(&inode->i_lock);
  1302. res = nfs_scan_commit(inode, &head, 0, 0);
  1303. spin_unlock(&inode->i_lock);
  1304. if (res) {
  1305. int error;
  1306. error = pnfs_commit_list(inode, &head, how);
  1307. if (error == PNFS_NOT_ATTEMPTED)
  1308. error = nfs_commit_list(inode, &head, how);
  1309. if (error < 0)
  1310. return error;
  1311. if (!may_wait)
  1312. goto out_mark_dirty;
  1313. error = wait_on_bit(&NFS_I(inode)->flags,
  1314. NFS_INO_COMMIT,
  1315. nfs_wait_bit_killable,
  1316. TASK_KILLABLE);
  1317. if (error < 0)
  1318. return error;
  1319. } else
  1320. nfs_commit_clear_lock(NFS_I(inode));
  1321. return res;
  1322. /* Note: If we exit without ensuring that the commit is complete,
  1323. * we must mark the inode as dirty. Otherwise, future calls to
  1324. * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
  1325. * that the data is on the disk.
  1326. */
  1327. out_mark_dirty:
  1328. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1329. return res;
  1330. }
  1331. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1332. {
  1333. struct nfs_inode *nfsi = NFS_I(inode);
  1334. int flags = FLUSH_SYNC;
  1335. int ret = 0;
  1336. if (wbc->sync_mode == WB_SYNC_NONE) {
  1337. /* Don't commit yet if this is a non-blocking flush and there
  1338. * are a lot of outstanding writes for this mapping.
  1339. */
  1340. if (nfsi->ncommit <= (nfsi->npages >> 1))
  1341. goto out_mark_dirty;
  1342. /* don't wait for the COMMIT response */
  1343. flags = 0;
  1344. }
  1345. ret = nfs_commit_inode(inode, flags);
  1346. if (ret >= 0) {
  1347. if (wbc->sync_mode == WB_SYNC_NONE) {
  1348. if (ret < wbc->nr_to_write)
  1349. wbc->nr_to_write -= ret;
  1350. else
  1351. wbc->nr_to_write = 0;
  1352. }
  1353. return 0;
  1354. }
  1355. out_mark_dirty:
  1356. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1357. return ret;
  1358. }
  1359. #else
  1360. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1361. {
  1362. return 0;
  1363. }
  1364. #endif
  1365. int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  1366. {
  1367. int ret;
  1368. ret = nfs_commit_unstable_pages(inode, wbc);
  1369. if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
  1370. int status;
  1371. bool sync = true;
  1372. if (wbc->sync_mode == WB_SYNC_NONE || wbc->nonblocking ||
  1373. wbc->for_background)
  1374. sync = false;
  1375. status = pnfs_layoutcommit_inode(inode, sync);
  1376. if (status < 0)
  1377. return status;
  1378. }
  1379. return ret;
  1380. }
  1381. /*
  1382. * flush the inode to disk.
  1383. */
  1384. int nfs_wb_all(struct inode *inode)
  1385. {
  1386. struct writeback_control wbc = {
  1387. .sync_mode = WB_SYNC_ALL,
  1388. .nr_to_write = LONG_MAX,
  1389. .range_start = 0,
  1390. .range_end = LLONG_MAX,
  1391. };
  1392. return sync_inode(inode, &wbc);
  1393. }
  1394. int nfs_wb_page_cancel(struct inode *inode, struct page *page)
  1395. {
  1396. struct nfs_page *req;
  1397. int ret = 0;
  1398. BUG_ON(!PageLocked(page));
  1399. for (;;) {
  1400. wait_on_page_writeback(page);
  1401. req = nfs_page_find_request(page);
  1402. if (req == NULL)
  1403. break;
  1404. if (nfs_lock_request_dontget(req)) {
  1405. nfs_inode_remove_request(req);
  1406. /*
  1407. * In case nfs_inode_remove_request has marked the
  1408. * page as being dirty
  1409. */
  1410. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  1411. nfs_unlock_request(req);
  1412. break;
  1413. }
  1414. ret = nfs_wait_on_request(req);
  1415. nfs_release_request(req);
  1416. if (ret < 0)
  1417. break;
  1418. }
  1419. return ret;
  1420. }
  1421. /*
  1422. * Write back all requests on one page - we do this before reading it.
  1423. */
  1424. int nfs_wb_page(struct inode *inode, struct page *page)
  1425. {
  1426. loff_t range_start = page_offset(page);
  1427. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1428. struct writeback_control wbc = {
  1429. .sync_mode = WB_SYNC_ALL,
  1430. .nr_to_write = 0,
  1431. .range_start = range_start,
  1432. .range_end = range_end,
  1433. };
  1434. int ret;
  1435. for (;;) {
  1436. wait_on_page_writeback(page);
  1437. if (clear_page_dirty_for_io(page)) {
  1438. ret = nfs_writepage_locked(page, &wbc);
  1439. if (ret < 0)
  1440. goto out_error;
  1441. continue;
  1442. }
  1443. if (!PagePrivate(page))
  1444. break;
  1445. ret = nfs_commit_inode(inode, FLUSH_SYNC);
  1446. if (ret < 0)
  1447. goto out_error;
  1448. }
  1449. return 0;
  1450. out_error:
  1451. return ret;
  1452. }
  1453. #ifdef CONFIG_MIGRATION
  1454. int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
  1455. struct page *page)
  1456. {
  1457. struct nfs_page *req;
  1458. int ret;
  1459. nfs_fscache_release_page(page, GFP_KERNEL);
  1460. req = nfs_find_and_lock_request(page, false);
  1461. ret = PTR_ERR(req);
  1462. if (IS_ERR(req))
  1463. goto out;
  1464. ret = migrate_page(mapping, newpage, page);
  1465. if (!req)
  1466. goto out;
  1467. if (ret)
  1468. goto out_unlock;
  1469. page_cache_get(newpage);
  1470. spin_lock(&mapping->host->i_lock);
  1471. req->wb_page = newpage;
  1472. SetPagePrivate(newpage);
  1473. set_page_private(newpage, (unsigned long)req);
  1474. ClearPagePrivate(page);
  1475. set_page_private(page, 0);
  1476. spin_unlock(&mapping->host->i_lock);
  1477. page_cache_release(page);
  1478. out_unlock:
  1479. nfs_clear_page_tag_locked(req);
  1480. out:
  1481. return ret;
  1482. }
  1483. #endif
  1484. int __init nfs_init_writepagecache(void)
  1485. {
  1486. nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
  1487. sizeof(struct nfs_write_data),
  1488. 0, SLAB_HWCACHE_ALIGN,
  1489. NULL);
  1490. if (nfs_wdata_cachep == NULL)
  1491. return -ENOMEM;
  1492. nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
  1493. nfs_wdata_cachep);
  1494. if (nfs_wdata_mempool == NULL)
  1495. return -ENOMEM;
  1496. nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
  1497. nfs_wdata_cachep);
  1498. if (nfs_commit_mempool == NULL)
  1499. return -ENOMEM;
  1500. /*
  1501. * NFS congestion size, scale with available memory.
  1502. *
  1503. * 64MB: 8192k
  1504. * 128MB: 11585k
  1505. * 256MB: 16384k
  1506. * 512MB: 23170k
  1507. * 1GB: 32768k
  1508. * 2GB: 46340k
  1509. * 4GB: 65536k
  1510. * 8GB: 92681k
  1511. * 16GB: 131072k
  1512. *
  1513. * This allows larger machines to have larger/more transfers.
  1514. * Limit the default to 256M
  1515. */
  1516. nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
  1517. if (nfs_congestion_kb > 256*1024)
  1518. nfs_congestion_kb = 256*1024;
  1519. return 0;
  1520. }
  1521. void nfs_destroy_writepagecache(void)
  1522. {
  1523. mempool_destroy(nfs_commit_mempool);
  1524. mempool_destroy(nfs_wdata_mempool);
  1525. kmem_cache_destroy(nfs_wdata_cachep);
  1526. }