skbuff.h 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/cache.h>
  20. #include <linux/atomic.h>
  21. #include <asm/types.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/net.h>
  24. #include <linux/textsearch.h>
  25. #include <net/checksum.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/hrtimer.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/netdev_features.h>
  31. /* Don't change this without changing skb_csum_unnecessary! */
  32. #define CHECKSUM_NONE 0
  33. #define CHECKSUM_UNNECESSARY 1
  34. #define CHECKSUM_COMPLETE 2
  35. #define CHECKSUM_PARTIAL 3
  36. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  37. ~(SMP_CACHE_BYTES - 1))
  38. #define SKB_WITH_OVERHEAD(X) \
  39. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  40. #define SKB_MAX_ORDER(X, ORDER) \
  41. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  42. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  43. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  44. /* return minimum truesize of one skb containing X bytes of data */
  45. #define SKB_TRUESIZE(X) ((X) + \
  46. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  47. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  48. /* A. Checksumming of received packets by device.
  49. *
  50. * NONE: device failed to checksum this packet.
  51. * skb->csum is undefined.
  52. *
  53. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  54. * skb->csum is undefined.
  55. * It is bad option, but, unfortunately, many of vendors do this.
  56. * Apparently with secret goal to sell you new device, when you
  57. * will add new protocol to your host. F.e. IPv6. 8)
  58. *
  59. * COMPLETE: the most generic way. Device supplied checksum of _all_
  60. * the packet as seen by netif_rx in skb->csum.
  61. * NOTE: Even if device supports only some protocols, but
  62. * is able to produce some skb->csum, it MUST use COMPLETE,
  63. * not UNNECESSARY.
  64. *
  65. * PARTIAL: identical to the case for output below. This may occur
  66. * on a packet received directly from another Linux OS, e.g.,
  67. * a virtualised Linux kernel on the same host. The packet can
  68. * be treated in the same way as UNNECESSARY except that on
  69. * output (i.e., forwarding) the checksum must be filled in
  70. * by the OS or the hardware.
  71. *
  72. * B. Checksumming on output.
  73. *
  74. * NONE: skb is checksummed by protocol or csum is not required.
  75. *
  76. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  77. * from skb->csum_start to the end and to record the checksum
  78. * at skb->csum_start + skb->csum_offset.
  79. *
  80. * Device must show its capabilities in dev->features, set
  81. * at device setup time.
  82. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  83. * everything.
  84. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  85. * TCP/UDP over IPv4. Sigh. Vendors like this
  86. * way by an unknown reason. Though, see comment above
  87. * about CHECKSUM_UNNECESSARY. 8)
  88. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  89. *
  90. * Any questions? No questions, good. --ANK
  91. */
  92. struct net_device;
  93. struct scatterlist;
  94. struct pipe_inode_info;
  95. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  96. struct nf_conntrack {
  97. atomic_t use;
  98. };
  99. #endif
  100. #ifdef CONFIG_BRIDGE_NETFILTER
  101. struct nf_bridge_info {
  102. atomic_t use;
  103. struct net_device *physindev;
  104. struct net_device *physoutdev;
  105. unsigned int mask;
  106. unsigned long data[32 / sizeof(unsigned long)];
  107. };
  108. #endif
  109. struct sk_buff_head {
  110. /* These two members must be first. */
  111. struct sk_buff *next;
  112. struct sk_buff *prev;
  113. __u32 qlen;
  114. spinlock_t lock;
  115. };
  116. struct sk_buff;
  117. /* To allow 64K frame to be packed as single skb without frag_list. Since
  118. * GRO uses frags we allocate at least 16 regardless of page size.
  119. */
  120. #if (65536/PAGE_SIZE + 2) < 16
  121. #define MAX_SKB_FRAGS 16UL
  122. #else
  123. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  124. #endif
  125. typedef struct skb_frag_struct skb_frag_t;
  126. struct skb_frag_struct {
  127. struct {
  128. struct page *p;
  129. } page;
  130. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  131. __u32 page_offset;
  132. __u32 size;
  133. #else
  134. __u16 page_offset;
  135. __u16 size;
  136. #endif
  137. };
  138. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  139. {
  140. return frag->size;
  141. }
  142. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  143. {
  144. frag->size = size;
  145. }
  146. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  147. {
  148. frag->size += delta;
  149. }
  150. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  151. {
  152. frag->size -= delta;
  153. }
  154. #define HAVE_HW_TIME_STAMP
  155. /**
  156. * struct skb_shared_hwtstamps - hardware time stamps
  157. * @hwtstamp: hardware time stamp transformed into duration
  158. * since arbitrary point in time
  159. * @syststamp: hwtstamp transformed to system time base
  160. *
  161. * Software time stamps generated by ktime_get_real() are stored in
  162. * skb->tstamp. The relation between the different kinds of time
  163. * stamps is as follows:
  164. *
  165. * syststamp and tstamp can be compared against each other in
  166. * arbitrary combinations. The accuracy of a
  167. * syststamp/tstamp/"syststamp from other device" comparison is
  168. * limited by the accuracy of the transformation into system time
  169. * base. This depends on the device driver and its underlying
  170. * hardware.
  171. *
  172. * hwtstamps can only be compared against other hwtstamps from
  173. * the same device.
  174. *
  175. * This structure is attached to packets as part of the
  176. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  177. */
  178. struct skb_shared_hwtstamps {
  179. ktime_t hwtstamp;
  180. ktime_t syststamp;
  181. };
  182. /* Definitions for tx_flags in struct skb_shared_info */
  183. enum {
  184. /* generate hardware time stamp */
  185. SKBTX_HW_TSTAMP = 1 << 0,
  186. /* generate software time stamp */
  187. SKBTX_SW_TSTAMP = 1 << 1,
  188. /* device driver is going to provide hardware time stamp */
  189. SKBTX_IN_PROGRESS = 1 << 2,
  190. /* ensure the originating sk reference is available on driver level */
  191. SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
  192. /* device driver supports TX zero-copy buffers */
  193. SKBTX_DEV_ZEROCOPY = 1 << 4,
  194. /* generate wifi status information (where possible) */
  195. SKBTX_WIFI_STATUS = 1 << 5,
  196. };
  197. /*
  198. * The callback notifies userspace to release buffers when skb DMA is done in
  199. * lower device, the skb last reference should be 0 when calling this.
  200. * The desc is used to track userspace buffer index.
  201. */
  202. struct ubuf_info {
  203. void (*callback)(void *);
  204. void *arg;
  205. unsigned long desc;
  206. };
  207. /* This data is invariant across clones and lives at
  208. * the end of the header data, ie. at skb->end.
  209. */
  210. struct skb_shared_info {
  211. unsigned short nr_frags;
  212. unsigned short gso_size;
  213. /* Warning: this field is not always filled in (UFO)! */
  214. unsigned short gso_segs;
  215. unsigned short gso_type;
  216. __be32 ip6_frag_id;
  217. __u8 tx_flags;
  218. struct sk_buff *frag_list;
  219. struct skb_shared_hwtstamps hwtstamps;
  220. /*
  221. * Warning : all fields before dataref are cleared in __alloc_skb()
  222. */
  223. atomic_t dataref;
  224. /* Intermediate layers must ensure that destructor_arg
  225. * remains valid until skb destructor */
  226. void * destructor_arg;
  227. /* must be last field, see pskb_expand_head() */
  228. skb_frag_t frags[MAX_SKB_FRAGS];
  229. };
  230. /* We divide dataref into two halves. The higher 16 bits hold references
  231. * to the payload part of skb->data. The lower 16 bits hold references to
  232. * the entire skb->data. A clone of a headerless skb holds the length of
  233. * the header in skb->hdr_len.
  234. *
  235. * All users must obey the rule that the skb->data reference count must be
  236. * greater than or equal to the payload reference count.
  237. *
  238. * Holding a reference to the payload part means that the user does not
  239. * care about modifications to the header part of skb->data.
  240. */
  241. #define SKB_DATAREF_SHIFT 16
  242. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  243. enum {
  244. SKB_FCLONE_UNAVAILABLE,
  245. SKB_FCLONE_ORIG,
  246. SKB_FCLONE_CLONE,
  247. };
  248. enum {
  249. SKB_GSO_TCPV4 = 1 << 0,
  250. SKB_GSO_UDP = 1 << 1,
  251. /* This indicates the skb is from an untrusted source. */
  252. SKB_GSO_DODGY = 1 << 2,
  253. /* This indicates the tcp segment has CWR set. */
  254. SKB_GSO_TCP_ECN = 1 << 3,
  255. SKB_GSO_TCPV6 = 1 << 4,
  256. SKB_GSO_FCOE = 1 << 5,
  257. };
  258. #if BITS_PER_LONG > 32
  259. #define NET_SKBUFF_DATA_USES_OFFSET 1
  260. #endif
  261. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  262. typedef unsigned int sk_buff_data_t;
  263. #else
  264. typedef unsigned char *sk_buff_data_t;
  265. #endif
  266. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  267. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  268. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  269. #endif
  270. /**
  271. * struct sk_buff - socket buffer
  272. * @next: Next buffer in list
  273. * @prev: Previous buffer in list
  274. * @tstamp: Time we arrived
  275. * @sk: Socket we are owned by
  276. * @dev: Device we arrived on/are leaving by
  277. * @cb: Control buffer. Free for use by every layer. Put private vars here
  278. * @_skb_refdst: destination entry (with norefcount bit)
  279. * @sp: the security path, used for xfrm
  280. * @len: Length of actual data
  281. * @data_len: Data length
  282. * @mac_len: Length of link layer header
  283. * @hdr_len: writable header length of cloned skb
  284. * @csum: Checksum (must include start/offset pair)
  285. * @csum_start: Offset from skb->head where checksumming should start
  286. * @csum_offset: Offset from csum_start where checksum should be stored
  287. * @priority: Packet queueing priority
  288. * @local_df: allow local fragmentation
  289. * @cloned: Head may be cloned (check refcnt to be sure)
  290. * @ip_summed: Driver fed us an IP checksum
  291. * @nohdr: Payload reference only, must not modify header
  292. * @nfctinfo: Relationship of this skb to the connection
  293. * @pkt_type: Packet class
  294. * @fclone: skbuff clone status
  295. * @ipvs_property: skbuff is owned by ipvs
  296. * @peeked: this packet has been seen already, so stats have been
  297. * done for it, don't do them again
  298. * @nf_trace: netfilter packet trace flag
  299. * @protocol: Packet protocol from driver
  300. * @destructor: Destruct function
  301. * @nfct: Associated connection, if any
  302. * @nfct_reasm: netfilter conntrack re-assembly pointer
  303. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  304. * @skb_iif: ifindex of device we arrived on
  305. * @tc_index: Traffic control index
  306. * @tc_verd: traffic control verdict
  307. * @rxhash: the packet hash computed on receive
  308. * @queue_mapping: Queue mapping for multiqueue devices
  309. * @ndisc_nodetype: router type (from link layer)
  310. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  311. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  312. * ports.
  313. * @wifi_acked_valid: wifi_acked was set
  314. * @wifi_acked: whether frame was acked on wifi or not
  315. * @dma_cookie: a cookie to one of several possible DMA operations
  316. * done by skb DMA functions
  317. * @secmark: security marking
  318. * @mark: Generic packet mark
  319. * @dropcount: total number of sk_receive_queue overflows
  320. * @vlan_tci: vlan tag control information
  321. * @transport_header: Transport layer header
  322. * @network_header: Network layer header
  323. * @mac_header: Link layer header
  324. * @tail: Tail pointer
  325. * @end: End pointer
  326. * @head: Head of buffer
  327. * @data: Data head pointer
  328. * @truesize: Buffer size
  329. * @users: User count - see {datagram,tcp}.c
  330. */
  331. struct sk_buff {
  332. /* These two members must be first. */
  333. struct sk_buff *next;
  334. struct sk_buff *prev;
  335. ktime_t tstamp;
  336. struct sock *sk;
  337. struct net_device *dev;
  338. /*
  339. * This is the control buffer. It is free to use for every
  340. * layer. Please put your private variables there. If you
  341. * want to keep them across layers you have to do a skb_clone()
  342. * first. This is owned by whoever has the skb queued ATM.
  343. */
  344. char cb[48] __aligned(8);
  345. unsigned long _skb_refdst;
  346. #ifdef CONFIG_XFRM
  347. struct sec_path *sp;
  348. #endif
  349. unsigned int len,
  350. data_len;
  351. __u16 mac_len,
  352. hdr_len;
  353. union {
  354. __wsum csum;
  355. struct {
  356. __u16 csum_start;
  357. __u16 csum_offset;
  358. };
  359. };
  360. __u32 priority;
  361. kmemcheck_bitfield_begin(flags1);
  362. __u8 local_df:1,
  363. cloned:1,
  364. ip_summed:2,
  365. nohdr:1,
  366. nfctinfo:3;
  367. __u8 pkt_type:3,
  368. fclone:2,
  369. ipvs_property:1,
  370. peeked:1,
  371. nf_trace:1;
  372. kmemcheck_bitfield_end(flags1);
  373. __be16 protocol;
  374. void (*destructor)(struct sk_buff *skb);
  375. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  376. struct nf_conntrack *nfct;
  377. #endif
  378. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  379. struct sk_buff *nfct_reasm;
  380. #endif
  381. #ifdef CONFIG_BRIDGE_NETFILTER
  382. struct nf_bridge_info *nf_bridge;
  383. #endif
  384. int skb_iif;
  385. #ifdef CONFIG_NET_SCHED
  386. __u16 tc_index; /* traffic control index */
  387. #ifdef CONFIG_NET_CLS_ACT
  388. __u16 tc_verd; /* traffic control verdict */
  389. #endif
  390. #endif
  391. __u32 rxhash;
  392. __u16 queue_mapping;
  393. kmemcheck_bitfield_begin(flags2);
  394. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  395. __u8 ndisc_nodetype:2;
  396. #endif
  397. __u8 ooo_okay:1;
  398. __u8 l4_rxhash:1;
  399. __u8 wifi_acked_valid:1;
  400. __u8 wifi_acked:1;
  401. /* 10/12 bit hole (depending on ndisc_nodetype presence) */
  402. kmemcheck_bitfield_end(flags2);
  403. #ifdef CONFIG_NET_DMA
  404. dma_cookie_t dma_cookie;
  405. #endif
  406. #ifdef CONFIG_NETWORK_SECMARK
  407. __u32 secmark;
  408. #endif
  409. union {
  410. __u32 mark;
  411. __u32 dropcount;
  412. };
  413. __u16 vlan_tci;
  414. sk_buff_data_t transport_header;
  415. sk_buff_data_t network_header;
  416. sk_buff_data_t mac_header;
  417. /* These elements must be at the end, see alloc_skb() for details. */
  418. sk_buff_data_t tail;
  419. sk_buff_data_t end;
  420. unsigned char *head,
  421. *data;
  422. unsigned int truesize;
  423. atomic_t users;
  424. };
  425. #ifdef __KERNEL__
  426. /*
  427. * Handling routines are only of interest to the kernel
  428. */
  429. #include <linux/slab.h>
  430. #include <asm/system.h>
  431. /*
  432. * skb might have a dst pointer attached, refcounted or not.
  433. * _skb_refdst low order bit is set if refcount was _not_ taken
  434. */
  435. #define SKB_DST_NOREF 1UL
  436. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  437. /**
  438. * skb_dst - returns skb dst_entry
  439. * @skb: buffer
  440. *
  441. * Returns skb dst_entry, regardless of reference taken or not.
  442. */
  443. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  444. {
  445. /* If refdst was not refcounted, check we still are in a
  446. * rcu_read_lock section
  447. */
  448. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  449. !rcu_read_lock_held() &&
  450. !rcu_read_lock_bh_held());
  451. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  452. }
  453. /**
  454. * skb_dst_set - sets skb dst
  455. * @skb: buffer
  456. * @dst: dst entry
  457. *
  458. * Sets skb dst, assuming a reference was taken on dst and should
  459. * be released by skb_dst_drop()
  460. */
  461. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  462. {
  463. skb->_skb_refdst = (unsigned long)dst;
  464. }
  465. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  466. /**
  467. * skb_dst_is_noref - Test if skb dst isn't refcounted
  468. * @skb: buffer
  469. */
  470. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  471. {
  472. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  473. }
  474. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  475. {
  476. return (struct rtable *)skb_dst(skb);
  477. }
  478. extern void kfree_skb(struct sk_buff *skb);
  479. extern void consume_skb(struct sk_buff *skb);
  480. extern void __kfree_skb(struct sk_buff *skb);
  481. extern struct sk_buff *__alloc_skb(unsigned int size,
  482. gfp_t priority, int fclone, int node);
  483. extern struct sk_buff *build_skb(void *data);
  484. static inline struct sk_buff *alloc_skb(unsigned int size,
  485. gfp_t priority)
  486. {
  487. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  488. }
  489. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  490. gfp_t priority)
  491. {
  492. return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
  493. }
  494. extern void skb_recycle(struct sk_buff *skb);
  495. extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
  496. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  497. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  498. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  499. gfp_t priority);
  500. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  501. gfp_t priority);
  502. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  503. gfp_t gfp_mask);
  504. extern int pskb_expand_head(struct sk_buff *skb,
  505. int nhead, int ntail,
  506. gfp_t gfp_mask);
  507. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  508. unsigned int headroom);
  509. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  510. int newheadroom, int newtailroom,
  511. gfp_t priority);
  512. extern int skb_to_sgvec(struct sk_buff *skb,
  513. struct scatterlist *sg, int offset,
  514. int len);
  515. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  516. struct sk_buff **trailer);
  517. extern int skb_pad(struct sk_buff *skb, int pad);
  518. #define dev_kfree_skb(a) consume_skb(a)
  519. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  520. int getfrag(void *from, char *to, int offset,
  521. int len,int odd, struct sk_buff *skb),
  522. void *from, int length);
  523. struct skb_seq_state {
  524. __u32 lower_offset;
  525. __u32 upper_offset;
  526. __u32 frag_idx;
  527. __u32 stepped_offset;
  528. struct sk_buff *root_skb;
  529. struct sk_buff *cur_skb;
  530. __u8 *frag_data;
  531. };
  532. extern void skb_prepare_seq_read(struct sk_buff *skb,
  533. unsigned int from, unsigned int to,
  534. struct skb_seq_state *st);
  535. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  536. struct skb_seq_state *st);
  537. extern void skb_abort_seq_read(struct skb_seq_state *st);
  538. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  539. unsigned int to, struct ts_config *config,
  540. struct ts_state *state);
  541. extern void __skb_get_rxhash(struct sk_buff *skb);
  542. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  543. {
  544. if (!skb->rxhash)
  545. __skb_get_rxhash(skb);
  546. return skb->rxhash;
  547. }
  548. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  549. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  550. {
  551. return skb->head + skb->end;
  552. }
  553. #else
  554. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  555. {
  556. return skb->end;
  557. }
  558. #endif
  559. /* Internal */
  560. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  561. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  562. {
  563. return &skb_shinfo(skb)->hwtstamps;
  564. }
  565. /**
  566. * skb_queue_empty - check if a queue is empty
  567. * @list: queue head
  568. *
  569. * Returns true if the queue is empty, false otherwise.
  570. */
  571. static inline int skb_queue_empty(const struct sk_buff_head *list)
  572. {
  573. return list->next == (struct sk_buff *)list;
  574. }
  575. /**
  576. * skb_queue_is_last - check if skb is the last entry in the queue
  577. * @list: queue head
  578. * @skb: buffer
  579. *
  580. * Returns true if @skb is the last buffer on the list.
  581. */
  582. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  583. const struct sk_buff *skb)
  584. {
  585. return skb->next == (struct sk_buff *)list;
  586. }
  587. /**
  588. * skb_queue_is_first - check if skb is the first entry in the queue
  589. * @list: queue head
  590. * @skb: buffer
  591. *
  592. * Returns true if @skb is the first buffer on the list.
  593. */
  594. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  595. const struct sk_buff *skb)
  596. {
  597. return skb->prev == (struct sk_buff *)list;
  598. }
  599. /**
  600. * skb_queue_next - return the next packet in the queue
  601. * @list: queue head
  602. * @skb: current buffer
  603. *
  604. * Return the next packet in @list after @skb. It is only valid to
  605. * call this if skb_queue_is_last() evaluates to false.
  606. */
  607. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  608. const struct sk_buff *skb)
  609. {
  610. /* This BUG_ON may seem severe, but if we just return then we
  611. * are going to dereference garbage.
  612. */
  613. BUG_ON(skb_queue_is_last(list, skb));
  614. return skb->next;
  615. }
  616. /**
  617. * skb_queue_prev - return the prev packet in the queue
  618. * @list: queue head
  619. * @skb: current buffer
  620. *
  621. * Return the prev packet in @list before @skb. It is only valid to
  622. * call this if skb_queue_is_first() evaluates to false.
  623. */
  624. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  625. const struct sk_buff *skb)
  626. {
  627. /* This BUG_ON may seem severe, but if we just return then we
  628. * are going to dereference garbage.
  629. */
  630. BUG_ON(skb_queue_is_first(list, skb));
  631. return skb->prev;
  632. }
  633. /**
  634. * skb_get - reference buffer
  635. * @skb: buffer to reference
  636. *
  637. * Makes another reference to a socket buffer and returns a pointer
  638. * to the buffer.
  639. */
  640. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  641. {
  642. atomic_inc(&skb->users);
  643. return skb;
  644. }
  645. /*
  646. * If users == 1, we are the only owner and are can avoid redundant
  647. * atomic change.
  648. */
  649. /**
  650. * skb_cloned - is the buffer a clone
  651. * @skb: buffer to check
  652. *
  653. * Returns true if the buffer was generated with skb_clone() and is
  654. * one of multiple shared copies of the buffer. Cloned buffers are
  655. * shared data so must not be written to under normal circumstances.
  656. */
  657. static inline int skb_cloned(const struct sk_buff *skb)
  658. {
  659. return skb->cloned &&
  660. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  661. }
  662. /**
  663. * skb_header_cloned - is the header a clone
  664. * @skb: buffer to check
  665. *
  666. * Returns true if modifying the header part of the buffer requires
  667. * the data to be copied.
  668. */
  669. static inline int skb_header_cloned(const struct sk_buff *skb)
  670. {
  671. int dataref;
  672. if (!skb->cloned)
  673. return 0;
  674. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  675. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  676. return dataref != 1;
  677. }
  678. /**
  679. * skb_header_release - release reference to header
  680. * @skb: buffer to operate on
  681. *
  682. * Drop a reference to the header part of the buffer. This is done
  683. * by acquiring a payload reference. You must not read from the header
  684. * part of skb->data after this.
  685. */
  686. static inline void skb_header_release(struct sk_buff *skb)
  687. {
  688. BUG_ON(skb->nohdr);
  689. skb->nohdr = 1;
  690. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  691. }
  692. /**
  693. * skb_shared - is the buffer shared
  694. * @skb: buffer to check
  695. *
  696. * Returns true if more than one person has a reference to this
  697. * buffer.
  698. */
  699. static inline int skb_shared(const struct sk_buff *skb)
  700. {
  701. return atomic_read(&skb->users) != 1;
  702. }
  703. /**
  704. * skb_share_check - check if buffer is shared and if so clone it
  705. * @skb: buffer to check
  706. * @pri: priority for memory allocation
  707. *
  708. * If the buffer is shared the buffer is cloned and the old copy
  709. * drops a reference. A new clone with a single reference is returned.
  710. * If the buffer is not shared the original buffer is returned. When
  711. * being called from interrupt status or with spinlocks held pri must
  712. * be GFP_ATOMIC.
  713. *
  714. * NULL is returned on a memory allocation failure.
  715. */
  716. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  717. gfp_t pri)
  718. {
  719. might_sleep_if(pri & __GFP_WAIT);
  720. if (skb_shared(skb)) {
  721. struct sk_buff *nskb = skb_clone(skb, pri);
  722. kfree_skb(skb);
  723. skb = nskb;
  724. }
  725. return skb;
  726. }
  727. /*
  728. * Copy shared buffers into a new sk_buff. We effectively do COW on
  729. * packets to handle cases where we have a local reader and forward
  730. * and a couple of other messy ones. The normal one is tcpdumping
  731. * a packet thats being forwarded.
  732. */
  733. /**
  734. * skb_unshare - make a copy of a shared buffer
  735. * @skb: buffer to check
  736. * @pri: priority for memory allocation
  737. *
  738. * If the socket buffer is a clone then this function creates a new
  739. * copy of the data, drops a reference count on the old copy and returns
  740. * the new copy with the reference count at 1. If the buffer is not a clone
  741. * the original buffer is returned. When called with a spinlock held or
  742. * from interrupt state @pri must be %GFP_ATOMIC
  743. *
  744. * %NULL is returned on a memory allocation failure.
  745. */
  746. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  747. gfp_t pri)
  748. {
  749. might_sleep_if(pri & __GFP_WAIT);
  750. if (skb_cloned(skb)) {
  751. struct sk_buff *nskb = skb_copy(skb, pri);
  752. kfree_skb(skb); /* Free our shared copy */
  753. skb = nskb;
  754. }
  755. return skb;
  756. }
  757. /**
  758. * skb_peek - peek at the head of an &sk_buff_head
  759. * @list_: list to peek at
  760. *
  761. * Peek an &sk_buff. Unlike most other operations you _MUST_
  762. * be careful with this one. A peek leaves the buffer on the
  763. * list and someone else may run off with it. You must hold
  764. * the appropriate locks or have a private queue to do this.
  765. *
  766. * Returns %NULL for an empty list or a pointer to the head element.
  767. * The reference count is not incremented and the reference is therefore
  768. * volatile. Use with caution.
  769. */
  770. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  771. {
  772. struct sk_buff *list = ((const struct sk_buff *)list_)->next;
  773. if (list == (struct sk_buff *)list_)
  774. list = NULL;
  775. return list;
  776. }
  777. /**
  778. * skb_peek_tail - peek at the tail of an &sk_buff_head
  779. * @list_: list to peek at
  780. *
  781. * Peek an &sk_buff. Unlike most other operations you _MUST_
  782. * be careful with this one. A peek leaves the buffer on the
  783. * list and someone else may run off with it. You must hold
  784. * the appropriate locks or have a private queue to do this.
  785. *
  786. * Returns %NULL for an empty list or a pointer to the tail element.
  787. * The reference count is not incremented and the reference is therefore
  788. * volatile. Use with caution.
  789. */
  790. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  791. {
  792. struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
  793. if (list == (struct sk_buff *)list_)
  794. list = NULL;
  795. return list;
  796. }
  797. /**
  798. * skb_queue_len - get queue length
  799. * @list_: list to measure
  800. *
  801. * Return the length of an &sk_buff queue.
  802. */
  803. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  804. {
  805. return list_->qlen;
  806. }
  807. /**
  808. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  809. * @list: queue to initialize
  810. *
  811. * This initializes only the list and queue length aspects of
  812. * an sk_buff_head object. This allows to initialize the list
  813. * aspects of an sk_buff_head without reinitializing things like
  814. * the spinlock. It can also be used for on-stack sk_buff_head
  815. * objects where the spinlock is known to not be used.
  816. */
  817. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  818. {
  819. list->prev = list->next = (struct sk_buff *)list;
  820. list->qlen = 0;
  821. }
  822. /*
  823. * This function creates a split out lock class for each invocation;
  824. * this is needed for now since a whole lot of users of the skb-queue
  825. * infrastructure in drivers have different locking usage (in hardirq)
  826. * than the networking core (in softirq only). In the long run either the
  827. * network layer or drivers should need annotation to consolidate the
  828. * main types of usage into 3 classes.
  829. */
  830. static inline void skb_queue_head_init(struct sk_buff_head *list)
  831. {
  832. spin_lock_init(&list->lock);
  833. __skb_queue_head_init(list);
  834. }
  835. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  836. struct lock_class_key *class)
  837. {
  838. skb_queue_head_init(list);
  839. lockdep_set_class(&list->lock, class);
  840. }
  841. /*
  842. * Insert an sk_buff on a list.
  843. *
  844. * The "__skb_xxxx()" functions are the non-atomic ones that
  845. * can only be called with interrupts disabled.
  846. */
  847. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  848. static inline void __skb_insert(struct sk_buff *newsk,
  849. struct sk_buff *prev, struct sk_buff *next,
  850. struct sk_buff_head *list)
  851. {
  852. newsk->next = next;
  853. newsk->prev = prev;
  854. next->prev = prev->next = newsk;
  855. list->qlen++;
  856. }
  857. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  858. struct sk_buff *prev,
  859. struct sk_buff *next)
  860. {
  861. struct sk_buff *first = list->next;
  862. struct sk_buff *last = list->prev;
  863. first->prev = prev;
  864. prev->next = first;
  865. last->next = next;
  866. next->prev = last;
  867. }
  868. /**
  869. * skb_queue_splice - join two skb lists, this is designed for stacks
  870. * @list: the new list to add
  871. * @head: the place to add it in the first list
  872. */
  873. static inline void skb_queue_splice(const struct sk_buff_head *list,
  874. struct sk_buff_head *head)
  875. {
  876. if (!skb_queue_empty(list)) {
  877. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  878. head->qlen += list->qlen;
  879. }
  880. }
  881. /**
  882. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  883. * @list: the new list to add
  884. * @head: the place to add it in the first list
  885. *
  886. * The list at @list is reinitialised
  887. */
  888. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  889. struct sk_buff_head *head)
  890. {
  891. if (!skb_queue_empty(list)) {
  892. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  893. head->qlen += list->qlen;
  894. __skb_queue_head_init(list);
  895. }
  896. }
  897. /**
  898. * skb_queue_splice_tail - join two skb lists, each list being a queue
  899. * @list: the new list to add
  900. * @head: the place to add it in the first list
  901. */
  902. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  903. struct sk_buff_head *head)
  904. {
  905. if (!skb_queue_empty(list)) {
  906. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  907. head->qlen += list->qlen;
  908. }
  909. }
  910. /**
  911. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  912. * @list: the new list to add
  913. * @head: the place to add it in the first list
  914. *
  915. * Each of the lists is a queue.
  916. * The list at @list is reinitialised
  917. */
  918. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  919. struct sk_buff_head *head)
  920. {
  921. if (!skb_queue_empty(list)) {
  922. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  923. head->qlen += list->qlen;
  924. __skb_queue_head_init(list);
  925. }
  926. }
  927. /**
  928. * __skb_queue_after - queue a buffer at the list head
  929. * @list: list to use
  930. * @prev: place after this buffer
  931. * @newsk: buffer to queue
  932. *
  933. * Queue a buffer int the middle of a list. This function takes no locks
  934. * and you must therefore hold required locks before calling it.
  935. *
  936. * A buffer cannot be placed on two lists at the same time.
  937. */
  938. static inline void __skb_queue_after(struct sk_buff_head *list,
  939. struct sk_buff *prev,
  940. struct sk_buff *newsk)
  941. {
  942. __skb_insert(newsk, prev, prev->next, list);
  943. }
  944. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  945. struct sk_buff_head *list);
  946. static inline void __skb_queue_before(struct sk_buff_head *list,
  947. struct sk_buff *next,
  948. struct sk_buff *newsk)
  949. {
  950. __skb_insert(newsk, next->prev, next, list);
  951. }
  952. /**
  953. * __skb_queue_head - queue a buffer at the list head
  954. * @list: list to use
  955. * @newsk: buffer to queue
  956. *
  957. * Queue a buffer at the start of a list. This function takes no locks
  958. * and you must therefore hold required locks before calling it.
  959. *
  960. * A buffer cannot be placed on two lists at the same time.
  961. */
  962. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  963. static inline void __skb_queue_head(struct sk_buff_head *list,
  964. struct sk_buff *newsk)
  965. {
  966. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  967. }
  968. /**
  969. * __skb_queue_tail - queue a buffer at the list tail
  970. * @list: list to use
  971. * @newsk: buffer to queue
  972. *
  973. * Queue a buffer at the end of a list. This function takes no locks
  974. * and you must therefore hold required locks before calling it.
  975. *
  976. * A buffer cannot be placed on two lists at the same time.
  977. */
  978. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  979. static inline void __skb_queue_tail(struct sk_buff_head *list,
  980. struct sk_buff *newsk)
  981. {
  982. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  983. }
  984. /*
  985. * remove sk_buff from list. _Must_ be called atomically, and with
  986. * the list known..
  987. */
  988. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  989. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  990. {
  991. struct sk_buff *next, *prev;
  992. list->qlen--;
  993. next = skb->next;
  994. prev = skb->prev;
  995. skb->next = skb->prev = NULL;
  996. next->prev = prev;
  997. prev->next = next;
  998. }
  999. /**
  1000. * __skb_dequeue - remove from the head of the queue
  1001. * @list: list to dequeue from
  1002. *
  1003. * Remove the head of the list. This function does not take any locks
  1004. * so must be used with appropriate locks held only. The head item is
  1005. * returned or %NULL if the list is empty.
  1006. */
  1007. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1008. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1009. {
  1010. struct sk_buff *skb = skb_peek(list);
  1011. if (skb)
  1012. __skb_unlink(skb, list);
  1013. return skb;
  1014. }
  1015. /**
  1016. * __skb_dequeue_tail - remove from the tail of the queue
  1017. * @list: list to dequeue from
  1018. *
  1019. * Remove the tail of the list. This function does not take any locks
  1020. * so must be used with appropriate locks held only. The tail item is
  1021. * returned or %NULL if the list is empty.
  1022. */
  1023. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1024. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1025. {
  1026. struct sk_buff *skb = skb_peek_tail(list);
  1027. if (skb)
  1028. __skb_unlink(skb, list);
  1029. return skb;
  1030. }
  1031. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  1032. {
  1033. return skb->data_len;
  1034. }
  1035. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1036. {
  1037. return skb->len - skb->data_len;
  1038. }
  1039. static inline int skb_pagelen(const struct sk_buff *skb)
  1040. {
  1041. int i, len = 0;
  1042. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1043. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1044. return len + skb_headlen(skb);
  1045. }
  1046. /**
  1047. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1048. * @skb: buffer containing fragment to be initialised
  1049. * @i: paged fragment index to initialise
  1050. * @page: the page to use for this fragment
  1051. * @off: the offset to the data with @page
  1052. * @size: the length of the data
  1053. *
  1054. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1055. * offset @off within @page.
  1056. *
  1057. * Does not take any additional reference on the fragment.
  1058. */
  1059. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1060. struct page *page, int off, int size)
  1061. {
  1062. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1063. frag->page.p = page;
  1064. frag->page_offset = off;
  1065. skb_frag_size_set(frag, size);
  1066. }
  1067. /**
  1068. * skb_fill_page_desc - initialise a paged fragment in an skb
  1069. * @skb: buffer containing fragment to be initialised
  1070. * @i: paged fragment index to initialise
  1071. * @page: the page to use for this fragment
  1072. * @off: the offset to the data with @page
  1073. * @size: the length of the data
  1074. *
  1075. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1076. * @skb to point to &size bytes at offset @off within @page. In
  1077. * addition updates @skb such that @i is the last fragment.
  1078. *
  1079. * Does not take any additional reference on the fragment.
  1080. */
  1081. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1082. struct page *page, int off, int size)
  1083. {
  1084. __skb_fill_page_desc(skb, i, page, off, size);
  1085. skb_shinfo(skb)->nr_frags = i + 1;
  1086. }
  1087. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1088. int off, int size);
  1089. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1090. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1091. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1092. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1093. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1094. {
  1095. return skb->head + skb->tail;
  1096. }
  1097. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1098. {
  1099. skb->tail = skb->data - skb->head;
  1100. }
  1101. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1102. {
  1103. skb_reset_tail_pointer(skb);
  1104. skb->tail += offset;
  1105. }
  1106. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1107. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1108. {
  1109. return skb->tail;
  1110. }
  1111. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1112. {
  1113. skb->tail = skb->data;
  1114. }
  1115. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1116. {
  1117. skb->tail = skb->data + offset;
  1118. }
  1119. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1120. /*
  1121. * Add data to an sk_buff
  1122. */
  1123. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1124. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1125. {
  1126. unsigned char *tmp = skb_tail_pointer(skb);
  1127. SKB_LINEAR_ASSERT(skb);
  1128. skb->tail += len;
  1129. skb->len += len;
  1130. return tmp;
  1131. }
  1132. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1133. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1134. {
  1135. skb->data -= len;
  1136. skb->len += len;
  1137. return skb->data;
  1138. }
  1139. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1140. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1141. {
  1142. skb->len -= len;
  1143. BUG_ON(skb->len < skb->data_len);
  1144. return skb->data += len;
  1145. }
  1146. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1147. {
  1148. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1149. }
  1150. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1151. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1152. {
  1153. if (len > skb_headlen(skb) &&
  1154. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1155. return NULL;
  1156. skb->len -= len;
  1157. return skb->data += len;
  1158. }
  1159. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1160. {
  1161. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1162. }
  1163. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1164. {
  1165. if (likely(len <= skb_headlen(skb)))
  1166. return 1;
  1167. if (unlikely(len > skb->len))
  1168. return 0;
  1169. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1170. }
  1171. /**
  1172. * skb_headroom - bytes at buffer head
  1173. * @skb: buffer to check
  1174. *
  1175. * Return the number of bytes of free space at the head of an &sk_buff.
  1176. */
  1177. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1178. {
  1179. return skb->data - skb->head;
  1180. }
  1181. /**
  1182. * skb_tailroom - bytes at buffer end
  1183. * @skb: buffer to check
  1184. *
  1185. * Return the number of bytes of free space at the tail of an sk_buff
  1186. */
  1187. static inline int skb_tailroom(const struct sk_buff *skb)
  1188. {
  1189. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1190. }
  1191. /**
  1192. * skb_reserve - adjust headroom
  1193. * @skb: buffer to alter
  1194. * @len: bytes to move
  1195. *
  1196. * Increase the headroom of an empty &sk_buff by reducing the tail
  1197. * room. This is only allowed for an empty buffer.
  1198. */
  1199. static inline void skb_reserve(struct sk_buff *skb, int len)
  1200. {
  1201. skb->data += len;
  1202. skb->tail += len;
  1203. }
  1204. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1205. {
  1206. skb->mac_len = skb->network_header - skb->mac_header;
  1207. }
  1208. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1209. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1210. {
  1211. return skb->head + skb->transport_header;
  1212. }
  1213. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1214. {
  1215. skb->transport_header = skb->data - skb->head;
  1216. }
  1217. static inline void skb_set_transport_header(struct sk_buff *skb,
  1218. const int offset)
  1219. {
  1220. skb_reset_transport_header(skb);
  1221. skb->transport_header += offset;
  1222. }
  1223. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1224. {
  1225. return skb->head + skb->network_header;
  1226. }
  1227. static inline void skb_reset_network_header(struct sk_buff *skb)
  1228. {
  1229. skb->network_header = skb->data - skb->head;
  1230. }
  1231. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1232. {
  1233. skb_reset_network_header(skb);
  1234. skb->network_header += offset;
  1235. }
  1236. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1237. {
  1238. return skb->head + skb->mac_header;
  1239. }
  1240. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1241. {
  1242. return skb->mac_header != ~0U;
  1243. }
  1244. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1245. {
  1246. skb->mac_header = skb->data - skb->head;
  1247. }
  1248. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1249. {
  1250. skb_reset_mac_header(skb);
  1251. skb->mac_header += offset;
  1252. }
  1253. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1254. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1255. {
  1256. return skb->transport_header;
  1257. }
  1258. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1259. {
  1260. skb->transport_header = skb->data;
  1261. }
  1262. static inline void skb_set_transport_header(struct sk_buff *skb,
  1263. const int offset)
  1264. {
  1265. skb->transport_header = skb->data + offset;
  1266. }
  1267. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1268. {
  1269. return skb->network_header;
  1270. }
  1271. static inline void skb_reset_network_header(struct sk_buff *skb)
  1272. {
  1273. skb->network_header = skb->data;
  1274. }
  1275. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1276. {
  1277. skb->network_header = skb->data + offset;
  1278. }
  1279. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1280. {
  1281. return skb->mac_header;
  1282. }
  1283. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1284. {
  1285. return skb->mac_header != NULL;
  1286. }
  1287. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1288. {
  1289. skb->mac_header = skb->data;
  1290. }
  1291. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1292. {
  1293. skb->mac_header = skb->data + offset;
  1294. }
  1295. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1296. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1297. {
  1298. return skb->csum_start - skb_headroom(skb);
  1299. }
  1300. static inline int skb_transport_offset(const struct sk_buff *skb)
  1301. {
  1302. return skb_transport_header(skb) - skb->data;
  1303. }
  1304. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1305. {
  1306. return skb->transport_header - skb->network_header;
  1307. }
  1308. static inline int skb_network_offset(const struct sk_buff *skb)
  1309. {
  1310. return skb_network_header(skb) - skb->data;
  1311. }
  1312. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1313. {
  1314. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1315. }
  1316. /*
  1317. * CPUs often take a performance hit when accessing unaligned memory
  1318. * locations. The actual performance hit varies, it can be small if the
  1319. * hardware handles it or large if we have to take an exception and fix it
  1320. * in software.
  1321. *
  1322. * Since an ethernet header is 14 bytes network drivers often end up with
  1323. * the IP header at an unaligned offset. The IP header can be aligned by
  1324. * shifting the start of the packet by 2 bytes. Drivers should do this
  1325. * with:
  1326. *
  1327. * skb_reserve(skb, NET_IP_ALIGN);
  1328. *
  1329. * The downside to this alignment of the IP header is that the DMA is now
  1330. * unaligned. On some architectures the cost of an unaligned DMA is high
  1331. * and this cost outweighs the gains made by aligning the IP header.
  1332. *
  1333. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1334. * to be overridden.
  1335. */
  1336. #ifndef NET_IP_ALIGN
  1337. #define NET_IP_ALIGN 2
  1338. #endif
  1339. /*
  1340. * The networking layer reserves some headroom in skb data (via
  1341. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1342. * the header has to grow. In the default case, if the header has to grow
  1343. * 32 bytes or less we avoid the reallocation.
  1344. *
  1345. * Unfortunately this headroom changes the DMA alignment of the resulting
  1346. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1347. * on some architectures. An architecture can override this value,
  1348. * perhaps setting it to a cacheline in size (since that will maintain
  1349. * cacheline alignment of the DMA). It must be a power of 2.
  1350. *
  1351. * Various parts of the networking layer expect at least 32 bytes of
  1352. * headroom, you should not reduce this.
  1353. *
  1354. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1355. * to reduce average number of cache lines per packet.
  1356. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1357. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1358. */
  1359. #ifndef NET_SKB_PAD
  1360. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1361. #endif
  1362. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1363. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1364. {
  1365. if (unlikely(skb_is_nonlinear(skb))) {
  1366. WARN_ON(1);
  1367. return;
  1368. }
  1369. skb->len = len;
  1370. skb_set_tail_pointer(skb, len);
  1371. }
  1372. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1373. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1374. {
  1375. if (skb->data_len)
  1376. return ___pskb_trim(skb, len);
  1377. __skb_trim(skb, len);
  1378. return 0;
  1379. }
  1380. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1381. {
  1382. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1383. }
  1384. /**
  1385. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1386. * @skb: buffer to alter
  1387. * @len: new length
  1388. *
  1389. * This is identical to pskb_trim except that the caller knows that
  1390. * the skb is not cloned so we should never get an error due to out-
  1391. * of-memory.
  1392. */
  1393. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1394. {
  1395. int err = pskb_trim(skb, len);
  1396. BUG_ON(err);
  1397. }
  1398. /**
  1399. * skb_orphan - orphan a buffer
  1400. * @skb: buffer to orphan
  1401. *
  1402. * If a buffer currently has an owner then we call the owner's
  1403. * destructor function and make the @skb unowned. The buffer continues
  1404. * to exist but is no longer charged to its former owner.
  1405. */
  1406. static inline void skb_orphan(struct sk_buff *skb)
  1407. {
  1408. if (skb->destructor)
  1409. skb->destructor(skb);
  1410. skb->destructor = NULL;
  1411. skb->sk = NULL;
  1412. }
  1413. /**
  1414. * __skb_queue_purge - empty a list
  1415. * @list: list to empty
  1416. *
  1417. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1418. * the list and one reference dropped. This function does not take the
  1419. * list lock and the caller must hold the relevant locks to use it.
  1420. */
  1421. extern void skb_queue_purge(struct sk_buff_head *list);
  1422. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1423. {
  1424. struct sk_buff *skb;
  1425. while ((skb = __skb_dequeue(list)) != NULL)
  1426. kfree_skb(skb);
  1427. }
  1428. /**
  1429. * __dev_alloc_skb - allocate an skbuff for receiving
  1430. * @length: length to allocate
  1431. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1432. *
  1433. * Allocate a new &sk_buff and assign it a usage count of one. The
  1434. * buffer has unspecified headroom built in. Users should allocate
  1435. * the headroom they think they need without accounting for the
  1436. * built in space. The built in space is used for optimisations.
  1437. *
  1438. * %NULL is returned if there is no free memory.
  1439. */
  1440. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1441. gfp_t gfp_mask)
  1442. {
  1443. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1444. if (likely(skb))
  1445. skb_reserve(skb, NET_SKB_PAD);
  1446. return skb;
  1447. }
  1448. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1449. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1450. unsigned int length, gfp_t gfp_mask);
  1451. /**
  1452. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1453. * @dev: network device to receive on
  1454. * @length: length to allocate
  1455. *
  1456. * Allocate a new &sk_buff and assign it a usage count of one. The
  1457. * buffer has unspecified headroom built in. Users should allocate
  1458. * the headroom they think they need without accounting for the
  1459. * built in space. The built in space is used for optimisations.
  1460. *
  1461. * %NULL is returned if there is no free memory. Although this function
  1462. * allocates memory it can be called from an interrupt.
  1463. */
  1464. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1465. unsigned int length)
  1466. {
  1467. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1468. }
  1469. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1470. unsigned int length, gfp_t gfp)
  1471. {
  1472. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1473. if (NET_IP_ALIGN && skb)
  1474. skb_reserve(skb, NET_IP_ALIGN);
  1475. return skb;
  1476. }
  1477. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1478. unsigned int length)
  1479. {
  1480. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1481. }
  1482. /**
  1483. * skb_frag_page - retrieve the page refered to by a paged fragment
  1484. * @frag: the paged fragment
  1485. *
  1486. * Returns the &struct page associated with @frag.
  1487. */
  1488. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1489. {
  1490. return frag->page.p;
  1491. }
  1492. /**
  1493. * __skb_frag_ref - take an addition reference on a paged fragment.
  1494. * @frag: the paged fragment
  1495. *
  1496. * Takes an additional reference on the paged fragment @frag.
  1497. */
  1498. static inline void __skb_frag_ref(skb_frag_t *frag)
  1499. {
  1500. get_page(skb_frag_page(frag));
  1501. }
  1502. /**
  1503. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1504. * @skb: the buffer
  1505. * @f: the fragment offset.
  1506. *
  1507. * Takes an additional reference on the @f'th paged fragment of @skb.
  1508. */
  1509. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1510. {
  1511. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1512. }
  1513. /**
  1514. * __skb_frag_unref - release a reference on a paged fragment.
  1515. * @frag: the paged fragment
  1516. *
  1517. * Releases a reference on the paged fragment @frag.
  1518. */
  1519. static inline void __skb_frag_unref(skb_frag_t *frag)
  1520. {
  1521. put_page(skb_frag_page(frag));
  1522. }
  1523. /**
  1524. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1525. * @skb: the buffer
  1526. * @f: the fragment offset
  1527. *
  1528. * Releases a reference on the @f'th paged fragment of @skb.
  1529. */
  1530. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1531. {
  1532. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1533. }
  1534. /**
  1535. * skb_frag_address - gets the address of the data contained in a paged fragment
  1536. * @frag: the paged fragment buffer
  1537. *
  1538. * Returns the address of the data within @frag. The page must already
  1539. * be mapped.
  1540. */
  1541. static inline void *skb_frag_address(const skb_frag_t *frag)
  1542. {
  1543. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1544. }
  1545. /**
  1546. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1547. * @frag: the paged fragment buffer
  1548. *
  1549. * Returns the address of the data within @frag. Checks that the page
  1550. * is mapped and returns %NULL otherwise.
  1551. */
  1552. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1553. {
  1554. void *ptr = page_address(skb_frag_page(frag));
  1555. if (unlikely(!ptr))
  1556. return NULL;
  1557. return ptr + frag->page_offset;
  1558. }
  1559. /**
  1560. * __skb_frag_set_page - sets the page contained in a paged fragment
  1561. * @frag: the paged fragment
  1562. * @page: the page to set
  1563. *
  1564. * Sets the fragment @frag to contain @page.
  1565. */
  1566. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1567. {
  1568. frag->page.p = page;
  1569. }
  1570. /**
  1571. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1572. * @skb: the buffer
  1573. * @f: the fragment offset
  1574. * @page: the page to set
  1575. *
  1576. * Sets the @f'th fragment of @skb to contain @page.
  1577. */
  1578. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1579. struct page *page)
  1580. {
  1581. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1582. }
  1583. /**
  1584. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1585. * @dev: the device to map the fragment to
  1586. * @frag: the paged fragment to map
  1587. * @offset: the offset within the fragment (starting at the
  1588. * fragment's own offset)
  1589. * @size: the number of bytes to map
  1590. * @dir: the direction of the mapping (%PCI_DMA_*)
  1591. *
  1592. * Maps the page associated with @frag to @device.
  1593. */
  1594. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1595. const skb_frag_t *frag,
  1596. size_t offset, size_t size,
  1597. enum dma_data_direction dir)
  1598. {
  1599. return dma_map_page(dev, skb_frag_page(frag),
  1600. frag->page_offset + offset, size, dir);
  1601. }
  1602. /**
  1603. * skb_clone_writable - is the header of a clone writable
  1604. * @skb: buffer to check
  1605. * @len: length up to which to write
  1606. *
  1607. * Returns true if modifying the header part of the cloned buffer
  1608. * does not requires the data to be copied.
  1609. */
  1610. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1611. {
  1612. return !skb_header_cloned(skb) &&
  1613. skb_headroom(skb) + len <= skb->hdr_len;
  1614. }
  1615. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1616. int cloned)
  1617. {
  1618. int delta = 0;
  1619. if (headroom < NET_SKB_PAD)
  1620. headroom = NET_SKB_PAD;
  1621. if (headroom > skb_headroom(skb))
  1622. delta = headroom - skb_headroom(skb);
  1623. if (delta || cloned)
  1624. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1625. GFP_ATOMIC);
  1626. return 0;
  1627. }
  1628. /**
  1629. * skb_cow - copy header of skb when it is required
  1630. * @skb: buffer to cow
  1631. * @headroom: needed headroom
  1632. *
  1633. * If the skb passed lacks sufficient headroom or its data part
  1634. * is shared, data is reallocated. If reallocation fails, an error
  1635. * is returned and original skb is not changed.
  1636. *
  1637. * The result is skb with writable area skb->head...skb->tail
  1638. * and at least @headroom of space at head.
  1639. */
  1640. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1641. {
  1642. return __skb_cow(skb, headroom, skb_cloned(skb));
  1643. }
  1644. /**
  1645. * skb_cow_head - skb_cow but only making the head writable
  1646. * @skb: buffer to cow
  1647. * @headroom: needed headroom
  1648. *
  1649. * This function is identical to skb_cow except that we replace the
  1650. * skb_cloned check by skb_header_cloned. It should be used when
  1651. * you only need to push on some header and do not need to modify
  1652. * the data.
  1653. */
  1654. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1655. {
  1656. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1657. }
  1658. /**
  1659. * skb_padto - pad an skbuff up to a minimal size
  1660. * @skb: buffer to pad
  1661. * @len: minimal length
  1662. *
  1663. * Pads up a buffer to ensure the trailing bytes exist and are
  1664. * blanked. If the buffer already contains sufficient data it
  1665. * is untouched. Otherwise it is extended. Returns zero on
  1666. * success. The skb is freed on error.
  1667. */
  1668. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1669. {
  1670. unsigned int size = skb->len;
  1671. if (likely(size >= len))
  1672. return 0;
  1673. return skb_pad(skb, len - size);
  1674. }
  1675. static inline int skb_add_data(struct sk_buff *skb,
  1676. char __user *from, int copy)
  1677. {
  1678. const int off = skb->len;
  1679. if (skb->ip_summed == CHECKSUM_NONE) {
  1680. int err = 0;
  1681. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1682. copy, 0, &err);
  1683. if (!err) {
  1684. skb->csum = csum_block_add(skb->csum, csum, off);
  1685. return 0;
  1686. }
  1687. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1688. return 0;
  1689. __skb_trim(skb, off);
  1690. return -EFAULT;
  1691. }
  1692. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1693. const struct page *page, int off)
  1694. {
  1695. if (i) {
  1696. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1697. return page == skb_frag_page(frag) &&
  1698. off == frag->page_offset + skb_frag_size(frag);
  1699. }
  1700. return 0;
  1701. }
  1702. static inline int __skb_linearize(struct sk_buff *skb)
  1703. {
  1704. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1705. }
  1706. /**
  1707. * skb_linearize - convert paged skb to linear one
  1708. * @skb: buffer to linarize
  1709. *
  1710. * If there is no free memory -ENOMEM is returned, otherwise zero
  1711. * is returned and the old skb data released.
  1712. */
  1713. static inline int skb_linearize(struct sk_buff *skb)
  1714. {
  1715. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1716. }
  1717. /**
  1718. * skb_linearize_cow - make sure skb is linear and writable
  1719. * @skb: buffer to process
  1720. *
  1721. * If there is no free memory -ENOMEM is returned, otherwise zero
  1722. * is returned and the old skb data released.
  1723. */
  1724. static inline int skb_linearize_cow(struct sk_buff *skb)
  1725. {
  1726. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1727. __skb_linearize(skb) : 0;
  1728. }
  1729. /**
  1730. * skb_postpull_rcsum - update checksum for received skb after pull
  1731. * @skb: buffer to update
  1732. * @start: start of data before pull
  1733. * @len: length of data pulled
  1734. *
  1735. * After doing a pull on a received packet, you need to call this to
  1736. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1737. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1738. */
  1739. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1740. const void *start, unsigned int len)
  1741. {
  1742. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1743. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1744. }
  1745. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1746. /**
  1747. * pskb_trim_rcsum - trim received skb and update checksum
  1748. * @skb: buffer to trim
  1749. * @len: new length
  1750. *
  1751. * This is exactly the same as pskb_trim except that it ensures the
  1752. * checksum of received packets are still valid after the operation.
  1753. */
  1754. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1755. {
  1756. if (likely(len >= skb->len))
  1757. return 0;
  1758. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1759. skb->ip_summed = CHECKSUM_NONE;
  1760. return __pskb_trim(skb, len);
  1761. }
  1762. #define skb_queue_walk(queue, skb) \
  1763. for (skb = (queue)->next; \
  1764. skb != (struct sk_buff *)(queue); \
  1765. skb = skb->next)
  1766. #define skb_queue_walk_safe(queue, skb, tmp) \
  1767. for (skb = (queue)->next, tmp = skb->next; \
  1768. skb != (struct sk_buff *)(queue); \
  1769. skb = tmp, tmp = skb->next)
  1770. #define skb_queue_walk_from(queue, skb) \
  1771. for (; skb != (struct sk_buff *)(queue); \
  1772. skb = skb->next)
  1773. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1774. for (tmp = skb->next; \
  1775. skb != (struct sk_buff *)(queue); \
  1776. skb = tmp, tmp = skb->next)
  1777. #define skb_queue_reverse_walk(queue, skb) \
  1778. for (skb = (queue)->prev; \
  1779. skb != (struct sk_buff *)(queue); \
  1780. skb = skb->prev)
  1781. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  1782. for (skb = (queue)->prev, tmp = skb->prev; \
  1783. skb != (struct sk_buff *)(queue); \
  1784. skb = tmp, tmp = skb->prev)
  1785. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  1786. for (tmp = skb->prev; \
  1787. skb != (struct sk_buff *)(queue); \
  1788. skb = tmp, tmp = skb->prev)
  1789. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  1790. {
  1791. return skb_shinfo(skb)->frag_list != NULL;
  1792. }
  1793. static inline void skb_frag_list_init(struct sk_buff *skb)
  1794. {
  1795. skb_shinfo(skb)->frag_list = NULL;
  1796. }
  1797. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1798. {
  1799. frag->next = skb_shinfo(skb)->frag_list;
  1800. skb_shinfo(skb)->frag_list = frag;
  1801. }
  1802. #define skb_walk_frags(skb, iter) \
  1803. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1804. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1805. int *peeked, int *err);
  1806. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1807. int noblock, int *err);
  1808. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1809. struct poll_table_struct *wait);
  1810. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1811. int offset, struct iovec *to,
  1812. int size);
  1813. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1814. int hlen,
  1815. struct iovec *iov);
  1816. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1817. int offset,
  1818. const struct iovec *from,
  1819. int from_offset,
  1820. int len);
  1821. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1822. int offset,
  1823. const struct iovec *to,
  1824. int to_offset,
  1825. int size);
  1826. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1827. extern void skb_free_datagram_locked(struct sock *sk,
  1828. struct sk_buff *skb);
  1829. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1830. unsigned int flags);
  1831. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1832. int len, __wsum csum);
  1833. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1834. void *to, int len);
  1835. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1836. const void *from, int len);
  1837. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1838. int offset, u8 *to, int len,
  1839. __wsum csum);
  1840. extern int skb_splice_bits(struct sk_buff *skb,
  1841. unsigned int offset,
  1842. struct pipe_inode_info *pipe,
  1843. unsigned int len,
  1844. unsigned int flags);
  1845. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1846. extern void skb_split(struct sk_buff *skb,
  1847. struct sk_buff *skb1, const u32 len);
  1848. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1849. int shiftlen);
  1850. extern struct sk_buff *skb_segment(struct sk_buff *skb,
  1851. netdev_features_t features);
  1852. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1853. int len, void *buffer)
  1854. {
  1855. int hlen = skb_headlen(skb);
  1856. if (hlen - offset >= len)
  1857. return skb->data + offset;
  1858. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1859. return NULL;
  1860. return buffer;
  1861. }
  1862. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1863. void *to,
  1864. const unsigned int len)
  1865. {
  1866. memcpy(to, skb->data, len);
  1867. }
  1868. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1869. const int offset, void *to,
  1870. const unsigned int len)
  1871. {
  1872. memcpy(to, skb->data + offset, len);
  1873. }
  1874. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1875. const void *from,
  1876. const unsigned int len)
  1877. {
  1878. memcpy(skb->data, from, len);
  1879. }
  1880. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1881. const int offset,
  1882. const void *from,
  1883. const unsigned int len)
  1884. {
  1885. memcpy(skb->data + offset, from, len);
  1886. }
  1887. extern void skb_init(void);
  1888. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1889. {
  1890. return skb->tstamp;
  1891. }
  1892. /**
  1893. * skb_get_timestamp - get timestamp from a skb
  1894. * @skb: skb to get stamp from
  1895. * @stamp: pointer to struct timeval to store stamp in
  1896. *
  1897. * Timestamps are stored in the skb as offsets to a base timestamp.
  1898. * This function converts the offset back to a struct timeval and stores
  1899. * it in stamp.
  1900. */
  1901. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1902. struct timeval *stamp)
  1903. {
  1904. *stamp = ktime_to_timeval(skb->tstamp);
  1905. }
  1906. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1907. struct timespec *stamp)
  1908. {
  1909. *stamp = ktime_to_timespec(skb->tstamp);
  1910. }
  1911. static inline void __net_timestamp(struct sk_buff *skb)
  1912. {
  1913. skb->tstamp = ktime_get_real();
  1914. }
  1915. static inline ktime_t net_timedelta(ktime_t t)
  1916. {
  1917. return ktime_sub(ktime_get_real(), t);
  1918. }
  1919. static inline ktime_t net_invalid_timestamp(void)
  1920. {
  1921. return ktime_set(0, 0);
  1922. }
  1923. extern void skb_timestamping_init(void);
  1924. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  1925. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  1926. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  1927. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  1928. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  1929. {
  1930. }
  1931. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  1932. {
  1933. return false;
  1934. }
  1935. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  1936. /**
  1937. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  1938. *
  1939. * PHY drivers may accept clones of transmitted packets for
  1940. * timestamping via their phy_driver.txtstamp method. These drivers
  1941. * must call this function to return the skb back to the stack, with
  1942. * or without a timestamp.
  1943. *
  1944. * @skb: clone of the the original outgoing packet
  1945. * @hwtstamps: hardware time stamps, may be NULL if not available
  1946. *
  1947. */
  1948. void skb_complete_tx_timestamp(struct sk_buff *skb,
  1949. struct skb_shared_hwtstamps *hwtstamps);
  1950. /**
  1951. * skb_tstamp_tx - queue clone of skb with send time stamps
  1952. * @orig_skb: the original outgoing packet
  1953. * @hwtstamps: hardware time stamps, may be NULL if not available
  1954. *
  1955. * If the skb has a socket associated, then this function clones the
  1956. * skb (thus sharing the actual data and optional structures), stores
  1957. * the optional hardware time stamping information (if non NULL) or
  1958. * generates a software time stamp (otherwise), then queues the clone
  1959. * to the error queue of the socket. Errors are silently ignored.
  1960. */
  1961. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  1962. struct skb_shared_hwtstamps *hwtstamps);
  1963. static inline void sw_tx_timestamp(struct sk_buff *skb)
  1964. {
  1965. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  1966. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  1967. skb_tstamp_tx(skb, NULL);
  1968. }
  1969. /**
  1970. * skb_tx_timestamp() - Driver hook for transmit timestamping
  1971. *
  1972. * Ethernet MAC Drivers should call this function in their hard_xmit()
  1973. * function immediately before giving the sk_buff to the MAC hardware.
  1974. *
  1975. * @skb: A socket buffer.
  1976. */
  1977. static inline void skb_tx_timestamp(struct sk_buff *skb)
  1978. {
  1979. skb_clone_tx_timestamp(skb);
  1980. sw_tx_timestamp(skb);
  1981. }
  1982. /**
  1983. * skb_complete_wifi_ack - deliver skb with wifi status
  1984. *
  1985. * @skb: the original outgoing packet
  1986. * @acked: ack status
  1987. *
  1988. */
  1989. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  1990. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1991. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1992. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1993. {
  1994. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1995. }
  1996. /**
  1997. * skb_checksum_complete - Calculate checksum of an entire packet
  1998. * @skb: packet to process
  1999. *
  2000. * This function calculates the checksum over the entire packet plus
  2001. * the value of skb->csum. The latter can be used to supply the
  2002. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2003. * checksum.
  2004. *
  2005. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2006. * this function can be used to verify that checksum on received
  2007. * packets. In that case the function should return zero if the
  2008. * checksum is correct. In particular, this function will return zero
  2009. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2010. * hardware has already verified the correctness of the checksum.
  2011. */
  2012. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2013. {
  2014. return skb_csum_unnecessary(skb) ?
  2015. 0 : __skb_checksum_complete(skb);
  2016. }
  2017. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2018. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2019. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2020. {
  2021. if (nfct && atomic_dec_and_test(&nfct->use))
  2022. nf_conntrack_destroy(nfct);
  2023. }
  2024. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2025. {
  2026. if (nfct)
  2027. atomic_inc(&nfct->use);
  2028. }
  2029. #endif
  2030. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2031. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2032. {
  2033. if (skb)
  2034. atomic_inc(&skb->users);
  2035. }
  2036. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2037. {
  2038. if (skb)
  2039. kfree_skb(skb);
  2040. }
  2041. #endif
  2042. #ifdef CONFIG_BRIDGE_NETFILTER
  2043. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2044. {
  2045. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2046. kfree(nf_bridge);
  2047. }
  2048. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2049. {
  2050. if (nf_bridge)
  2051. atomic_inc(&nf_bridge->use);
  2052. }
  2053. #endif /* CONFIG_BRIDGE_NETFILTER */
  2054. static inline void nf_reset(struct sk_buff *skb)
  2055. {
  2056. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2057. nf_conntrack_put(skb->nfct);
  2058. skb->nfct = NULL;
  2059. #endif
  2060. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2061. nf_conntrack_put_reasm(skb->nfct_reasm);
  2062. skb->nfct_reasm = NULL;
  2063. #endif
  2064. #ifdef CONFIG_BRIDGE_NETFILTER
  2065. nf_bridge_put(skb->nf_bridge);
  2066. skb->nf_bridge = NULL;
  2067. #endif
  2068. }
  2069. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2070. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2071. {
  2072. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2073. dst->nfct = src->nfct;
  2074. nf_conntrack_get(src->nfct);
  2075. dst->nfctinfo = src->nfctinfo;
  2076. #endif
  2077. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2078. dst->nfct_reasm = src->nfct_reasm;
  2079. nf_conntrack_get_reasm(src->nfct_reasm);
  2080. #endif
  2081. #ifdef CONFIG_BRIDGE_NETFILTER
  2082. dst->nf_bridge = src->nf_bridge;
  2083. nf_bridge_get(src->nf_bridge);
  2084. #endif
  2085. }
  2086. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2087. {
  2088. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2089. nf_conntrack_put(dst->nfct);
  2090. #endif
  2091. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2092. nf_conntrack_put_reasm(dst->nfct_reasm);
  2093. #endif
  2094. #ifdef CONFIG_BRIDGE_NETFILTER
  2095. nf_bridge_put(dst->nf_bridge);
  2096. #endif
  2097. __nf_copy(dst, src);
  2098. }
  2099. #ifdef CONFIG_NETWORK_SECMARK
  2100. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2101. {
  2102. to->secmark = from->secmark;
  2103. }
  2104. static inline void skb_init_secmark(struct sk_buff *skb)
  2105. {
  2106. skb->secmark = 0;
  2107. }
  2108. #else
  2109. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2110. { }
  2111. static inline void skb_init_secmark(struct sk_buff *skb)
  2112. { }
  2113. #endif
  2114. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2115. {
  2116. skb->queue_mapping = queue_mapping;
  2117. }
  2118. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2119. {
  2120. return skb->queue_mapping;
  2121. }
  2122. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2123. {
  2124. to->queue_mapping = from->queue_mapping;
  2125. }
  2126. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2127. {
  2128. skb->queue_mapping = rx_queue + 1;
  2129. }
  2130. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2131. {
  2132. return skb->queue_mapping - 1;
  2133. }
  2134. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2135. {
  2136. return skb->queue_mapping != 0;
  2137. }
  2138. extern u16 __skb_tx_hash(const struct net_device *dev,
  2139. const struct sk_buff *skb,
  2140. unsigned int num_tx_queues);
  2141. #ifdef CONFIG_XFRM
  2142. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2143. {
  2144. return skb->sp;
  2145. }
  2146. #else
  2147. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2148. {
  2149. return NULL;
  2150. }
  2151. #endif
  2152. static inline int skb_is_gso(const struct sk_buff *skb)
  2153. {
  2154. return skb_shinfo(skb)->gso_size;
  2155. }
  2156. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  2157. {
  2158. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2159. }
  2160. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2161. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2162. {
  2163. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2164. * wanted then gso_type will be set. */
  2165. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2166. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2167. unlikely(shinfo->gso_type == 0)) {
  2168. __skb_warn_lro_forwarding(skb);
  2169. return true;
  2170. }
  2171. return false;
  2172. }
  2173. static inline void skb_forward_csum(struct sk_buff *skb)
  2174. {
  2175. /* Unfortunately we don't support this one. Any brave souls? */
  2176. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2177. skb->ip_summed = CHECKSUM_NONE;
  2178. }
  2179. /**
  2180. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2181. * @skb: skb to check
  2182. *
  2183. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2184. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2185. * use this helper, to document places where we make this assertion.
  2186. */
  2187. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2188. {
  2189. #ifdef DEBUG
  2190. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2191. #endif
  2192. }
  2193. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2194. static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
  2195. {
  2196. if (irqs_disabled())
  2197. return false;
  2198. if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
  2199. return false;
  2200. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  2201. return false;
  2202. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  2203. if (skb_end_pointer(skb) - skb->head < skb_size)
  2204. return false;
  2205. if (skb_shared(skb) || skb_cloned(skb))
  2206. return false;
  2207. return true;
  2208. }
  2209. #endif /* __KERNEL__ */
  2210. #endif /* _LINUX_SKBUFF_H */