readwrite.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248
  1. /*
  2. * fs/logfs/readwrite.c
  3. *
  4. * As should be obvious for Linux kernel code, license is GPLv2
  5. *
  6. * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
  7. *
  8. *
  9. * Actually contains five sets of very similar functions:
  10. * read read blocks from a file
  11. * seek_hole find next hole
  12. * seek_data find next data block
  13. * valid check whether a block still belongs to a file
  14. * write write blocks to a file
  15. * delete delete a block (for directories and ifile)
  16. * rewrite move existing blocks of a file to a new location (gc helper)
  17. * truncate truncate a file
  18. */
  19. #include "logfs.h"
  20. #include <linux/sched.h>
  21. static u64 adjust_bix(u64 bix, level_t level)
  22. {
  23. switch (level) {
  24. case 0:
  25. return bix;
  26. case LEVEL(1):
  27. return max_t(u64, bix, I0_BLOCKS);
  28. case LEVEL(2):
  29. return max_t(u64, bix, I1_BLOCKS);
  30. case LEVEL(3):
  31. return max_t(u64, bix, I2_BLOCKS);
  32. case LEVEL(4):
  33. return max_t(u64, bix, I3_BLOCKS);
  34. case LEVEL(5):
  35. return max_t(u64, bix, I4_BLOCKS);
  36. default:
  37. WARN_ON(1);
  38. return bix;
  39. }
  40. }
  41. static inline u64 maxbix(u8 height)
  42. {
  43. return 1ULL << (LOGFS_BLOCK_BITS * height);
  44. }
  45. /**
  46. * The inode address space is cut in two halves. Lower half belongs to data
  47. * pages, upper half to indirect blocks. If the high bit (INDIRECT_BIT) is
  48. * set, the actual block index (bix) and level can be derived from the page
  49. * index.
  50. *
  51. * The lowest three bits of the block index are set to 0 after packing and
  52. * unpacking. Since the lowest n bits (9 for 4KiB blocksize) are ignored
  53. * anyway this is harmless.
  54. */
  55. #define ARCH_SHIFT (BITS_PER_LONG - 32)
  56. #define INDIRECT_BIT (0x80000000UL << ARCH_SHIFT)
  57. #define LEVEL_SHIFT (28 + ARCH_SHIFT)
  58. static inline pgoff_t first_indirect_block(void)
  59. {
  60. return INDIRECT_BIT | (1ULL << LEVEL_SHIFT);
  61. }
  62. pgoff_t logfs_pack_index(u64 bix, level_t level)
  63. {
  64. pgoff_t index;
  65. BUG_ON(bix >= INDIRECT_BIT);
  66. if (level == 0)
  67. return bix;
  68. index = INDIRECT_BIT;
  69. index |= (__force long)level << LEVEL_SHIFT;
  70. index |= bix >> ((__force u8)level * LOGFS_BLOCK_BITS);
  71. return index;
  72. }
  73. void logfs_unpack_index(pgoff_t index, u64 *bix, level_t *level)
  74. {
  75. u8 __level;
  76. if (!(index & INDIRECT_BIT)) {
  77. *bix = index;
  78. *level = 0;
  79. return;
  80. }
  81. __level = (index & ~INDIRECT_BIT) >> LEVEL_SHIFT;
  82. *level = LEVEL(__level);
  83. *bix = (index << (__level * LOGFS_BLOCK_BITS)) & ~INDIRECT_BIT;
  84. *bix = adjust_bix(*bix, *level);
  85. return;
  86. }
  87. #undef ARCH_SHIFT
  88. #undef INDIRECT_BIT
  89. #undef LEVEL_SHIFT
  90. /*
  91. * Time is stored as nanoseconds since the epoch.
  92. */
  93. static struct timespec be64_to_timespec(__be64 betime)
  94. {
  95. return ns_to_timespec(be64_to_cpu(betime));
  96. }
  97. static __be64 timespec_to_be64(struct timespec tsp)
  98. {
  99. return cpu_to_be64((u64)tsp.tv_sec * NSEC_PER_SEC + tsp.tv_nsec);
  100. }
  101. static void logfs_disk_to_inode(struct logfs_disk_inode *di, struct inode*inode)
  102. {
  103. struct logfs_inode *li = logfs_inode(inode);
  104. int i;
  105. inode->i_mode = be16_to_cpu(di->di_mode);
  106. li->li_height = di->di_height;
  107. li->li_flags = be32_to_cpu(di->di_flags);
  108. inode->i_uid = be32_to_cpu(di->di_uid);
  109. inode->i_gid = be32_to_cpu(di->di_gid);
  110. inode->i_size = be64_to_cpu(di->di_size);
  111. logfs_set_blocks(inode, be64_to_cpu(di->di_used_bytes));
  112. inode->i_atime = be64_to_timespec(di->di_atime);
  113. inode->i_ctime = be64_to_timespec(di->di_ctime);
  114. inode->i_mtime = be64_to_timespec(di->di_mtime);
  115. inode->i_nlink = be32_to_cpu(di->di_refcount);
  116. inode->i_generation = be32_to_cpu(di->di_generation);
  117. switch (inode->i_mode & S_IFMT) {
  118. case S_IFSOCK: /* fall through */
  119. case S_IFBLK: /* fall through */
  120. case S_IFCHR: /* fall through */
  121. case S_IFIFO:
  122. inode->i_rdev = be64_to_cpu(di->di_data[0]);
  123. break;
  124. case S_IFDIR: /* fall through */
  125. case S_IFREG: /* fall through */
  126. case S_IFLNK:
  127. for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
  128. li->li_data[i] = be64_to_cpu(di->di_data[i]);
  129. break;
  130. default:
  131. BUG();
  132. }
  133. }
  134. static void logfs_inode_to_disk(struct inode *inode, struct logfs_disk_inode*di)
  135. {
  136. struct logfs_inode *li = logfs_inode(inode);
  137. int i;
  138. di->di_mode = cpu_to_be16(inode->i_mode);
  139. di->di_height = li->li_height;
  140. di->di_pad = 0;
  141. di->di_flags = cpu_to_be32(li->li_flags);
  142. di->di_uid = cpu_to_be32(inode->i_uid);
  143. di->di_gid = cpu_to_be32(inode->i_gid);
  144. di->di_size = cpu_to_be64(i_size_read(inode));
  145. di->di_used_bytes = cpu_to_be64(li->li_used_bytes);
  146. di->di_atime = timespec_to_be64(inode->i_atime);
  147. di->di_ctime = timespec_to_be64(inode->i_ctime);
  148. di->di_mtime = timespec_to_be64(inode->i_mtime);
  149. di->di_refcount = cpu_to_be32(inode->i_nlink);
  150. di->di_generation = cpu_to_be32(inode->i_generation);
  151. switch (inode->i_mode & S_IFMT) {
  152. case S_IFSOCK: /* fall through */
  153. case S_IFBLK: /* fall through */
  154. case S_IFCHR: /* fall through */
  155. case S_IFIFO:
  156. di->di_data[0] = cpu_to_be64(inode->i_rdev);
  157. break;
  158. case S_IFDIR: /* fall through */
  159. case S_IFREG: /* fall through */
  160. case S_IFLNK:
  161. for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
  162. di->di_data[i] = cpu_to_be64(li->li_data[i]);
  163. break;
  164. default:
  165. BUG();
  166. }
  167. }
  168. static void __logfs_set_blocks(struct inode *inode)
  169. {
  170. struct super_block *sb = inode->i_sb;
  171. struct logfs_inode *li = logfs_inode(inode);
  172. inode->i_blocks = ULONG_MAX;
  173. if (li->li_used_bytes >> sb->s_blocksize_bits < ULONG_MAX)
  174. inode->i_blocks = ALIGN(li->li_used_bytes, 512) >> 9;
  175. }
  176. void logfs_set_blocks(struct inode *inode, u64 bytes)
  177. {
  178. struct logfs_inode *li = logfs_inode(inode);
  179. li->li_used_bytes = bytes;
  180. __logfs_set_blocks(inode);
  181. }
  182. static void prelock_page(struct super_block *sb, struct page *page, int lock)
  183. {
  184. struct logfs_super *super = logfs_super(sb);
  185. BUG_ON(!PageLocked(page));
  186. if (lock) {
  187. BUG_ON(PagePreLocked(page));
  188. SetPagePreLocked(page);
  189. } else {
  190. /* We are in GC path. */
  191. if (PagePreLocked(page))
  192. super->s_lock_count++;
  193. else
  194. SetPagePreLocked(page);
  195. }
  196. }
  197. static void preunlock_page(struct super_block *sb, struct page *page, int lock)
  198. {
  199. struct logfs_super *super = logfs_super(sb);
  200. BUG_ON(!PageLocked(page));
  201. if (lock)
  202. ClearPagePreLocked(page);
  203. else {
  204. /* We are in GC path. */
  205. BUG_ON(!PagePreLocked(page));
  206. if (super->s_lock_count)
  207. super->s_lock_count--;
  208. else
  209. ClearPagePreLocked(page);
  210. }
  211. }
  212. /*
  213. * Logfs is prone to an AB-BA deadlock where one task tries to acquire
  214. * s_write_mutex with a locked page and GC tries to get that page while holding
  215. * s_write_mutex.
  216. * To solve this issue logfs will ignore the page lock iff the page in question
  217. * is waiting for s_write_mutex. We annotate this fact by setting PG_pre_locked
  218. * in addition to PG_locked.
  219. */
  220. static void logfs_get_wblocks(struct super_block *sb, struct page *page,
  221. int lock)
  222. {
  223. struct logfs_super *super = logfs_super(sb);
  224. if (page)
  225. prelock_page(sb, page, lock);
  226. if (lock) {
  227. mutex_lock(&super->s_write_mutex);
  228. logfs_gc_pass(sb);
  229. /* FIXME: We also have to check for shadowed space
  230. * and mempool fill grade */
  231. }
  232. }
  233. static void logfs_put_wblocks(struct super_block *sb, struct page *page,
  234. int lock)
  235. {
  236. struct logfs_super *super = logfs_super(sb);
  237. if (page)
  238. preunlock_page(sb, page, lock);
  239. /* Order matters - we must clear PG_pre_locked before releasing
  240. * s_write_mutex or we could race against another task. */
  241. if (lock)
  242. mutex_unlock(&super->s_write_mutex);
  243. }
  244. static struct page *logfs_get_read_page(struct inode *inode, u64 bix,
  245. level_t level)
  246. {
  247. return find_or_create_page(inode->i_mapping,
  248. logfs_pack_index(bix, level), GFP_NOFS);
  249. }
  250. static void logfs_put_read_page(struct page *page)
  251. {
  252. unlock_page(page);
  253. page_cache_release(page);
  254. }
  255. static void logfs_lock_write_page(struct page *page)
  256. {
  257. int loop = 0;
  258. while (unlikely(!trylock_page(page))) {
  259. if (loop++ > 0x1000) {
  260. /* Has been observed once so far... */
  261. printk(KERN_ERR "stack at %p\n", &loop);
  262. BUG();
  263. }
  264. if (PagePreLocked(page)) {
  265. /* Holder of page lock is waiting for us, it
  266. * is safe to use this page. */
  267. break;
  268. }
  269. /* Some other process has this page locked and has
  270. * nothing to do with us. Wait for it to finish.
  271. */
  272. schedule();
  273. }
  274. BUG_ON(!PageLocked(page));
  275. }
  276. static struct page *logfs_get_write_page(struct inode *inode, u64 bix,
  277. level_t level)
  278. {
  279. struct address_space *mapping = inode->i_mapping;
  280. pgoff_t index = logfs_pack_index(bix, level);
  281. struct page *page;
  282. int err;
  283. repeat:
  284. page = find_get_page(mapping, index);
  285. if (!page) {
  286. page = __page_cache_alloc(GFP_NOFS);
  287. if (!page)
  288. return NULL;
  289. err = add_to_page_cache_lru(page, mapping, index, GFP_NOFS);
  290. if (unlikely(err)) {
  291. page_cache_release(page);
  292. if (err == -EEXIST)
  293. goto repeat;
  294. return NULL;
  295. }
  296. } else logfs_lock_write_page(page);
  297. BUG_ON(!PageLocked(page));
  298. return page;
  299. }
  300. static void logfs_unlock_write_page(struct page *page)
  301. {
  302. if (!PagePreLocked(page))
  303. unlock_page(page);
  304. }
  305. static void logfs_put_write_page(struct page *page)
  306. {
  307. logfs_unlock_write_page(page);
  308. page_cache_release(page);
  309. }
  310. static struct page *logfs_get_page(struct inode *inode, u64 bix, level_t level,
  311. int rw)
  312. {
  313. if (rw == READ)
  314. return logfs_get_read_page(inode, bix, level);
  315. else
  316. return logfs_get_write_page(inode, bix, level);
  317. }
  318. static void logfs_put_page(struct page *page, int rw)
  319. {
  320. if (rw == READ)
  321. logfs_put_read_page(page);
  322. else
  323. logfs_put_write_page(page);
  324. }
  325. static unsigned long __get_bits(u64 val, int skip, int no)
  326. {
  327. u64 ret = val;
  328. ret >>= skip * no;
  329. ret <<= 64 - no;
  330. ret >>= 64 - no;
  331. return ret;
  332. }
  333. static unsigned long get_bits(u64 val, level_t skip)
  334. {
  335. return __get_bits(val, (__force int)skip, LOGFS_BLOCK_BITS);
  336. }
  337. static inline void init_shadow_tree(struct super_block *sb,
  338. struct shadow_tree *tree)
  339. {
  340. struct logfs_super *super = logfs_super(sb);
  341. btree_init_mempool64(&tree->new, super->s_btree_pool);
  342. btree_init_mempool64(&tree->old, super->s_btree_pool);
  343. }
  344. static void indirect_write_block(struct logfs_block *block)
  345. {
  346. struct page *page;
  347. struct inode *inode;
  348. int ret;
  349. page = block->page;
  350. inode = page->mapping->host;
  351. logfs_lock_write_page(page);
  352. ret = logfs_write_buf(inode, page, 0);
  353. logfs_unlock_write_page(page);
  354. /*
  355. * This needs some rework. Unless you want your filesystem to run
  356. * completely synchronously (you don't), the filesystem will always
  357. * report writes as 'successful' before the actual work has been
  358. * done. The actual work gets done here and this is where any errors
  359. * will show up. And there isn't much we can do about it, really.
  360. *
  361. * Some attempts to fix the errors (move from bad blocks, retry io,...)
  362. * have already been done, so anything left should be either a broken
  363. * device or a bug somewhere in logfs itself. Being relatively new,
  364. * the odds currently favor a bug, so for now the line below isn't
  365. * entirely tasteles.
  366. */
  367. BUG_ON(ret);
  368. }
  369. static void inode_write_block(struct logfs_block *block)
  370. {
  371. struct inode *inode;
  372. int ret;
  373. inode = block->inode;
  374. if (inode->i_ino == LOGFS_INO_MASTER)
  375. logfs_write_anchor(inode->i_sb);
  376. else {
  377. ret = __logfs_write_inode(inode, 0);
  378. /* see indirect_write_block comment */
  379. BUG_ON(ret);
  380. }
  381. }
  382. /*
  383. * This silences a false, yet annoying gcc warning. I hate it when my editor
  384. * jumps into bitops.h each time I recompile this file.
  385. * TODO: Complain to gcc folks about this and upgrade compiler.
  386. */
  387. static unsigned long fnb(const unsigned long *addr,
  388. unsigned long size, unsigned long offset)
  389. {
  390. return find_next_bit(addr, size, offset);
  391. }
  392. static __be64 inode_val0(struct inode *inode)
  393. {
  394. struct logfs_inode *li = logfs_inode(inode);
  395. u64 val;
  396. /*
  397. * Explicit shifting generates good code, but must match the format
  398. * of the structure. Add some paranoia just in case.
  399. */
  400. BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_mode) != 0);
  401. BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_height) != 2);
  402. BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_flags) != 4);
  403. val = (u64)inode->i_mode << 48 |
  404. (u64)li->li_height << 40 |
  405. (u64)li->li_flags;
  406. return cpu_to_be64(val);
  407. }
  408. static int inode_write_alias(struct super_block *sb,
  409. struct logfs_block *block, write_alias_t *write_one_alias)
  410. {
  411. struct inode *inode = block->inode;
  412. struct logfs_inode *li = logfs_inode(inode);
  413. unsigned long pos;
  414. u64 ino , bix;
  415. __be64 val;
  416. level_t level;
  417. int err;
  418. for (pos = 0; ; pos++) {
  419. pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos);
  420. if (pos >= LOGFS_EMBEDDED_FIELDS + INODE_POINTER_OFS)
  421. return 0;
  422. switch (pos) {
  423. case INODE_HEIGHT_OFS:
  424. val = inode_val0(inode);
  425. break;
  426. case INODE_USED_OFS:
  427. val = cpu_to_be64(li->li_used_bytes);;
  428. break;
  429. case INODE_SIZE_OFS:
  430. val = cpu_to_be64(i_size_read(inode));
  431. break;
  432. case INODE_POINTER_OFS ... INODE_POINTER_OFS + LOGFS_EMBEDDED_FIELDS - 1:
  433. val = cpu_to_be64(li->li_data[pos - INODE_POINTER_OFS]);
  434. break;
  435. default:
  436. BUG();
  437. }
  438. ino = LOGFS_INO_MASTER;
  439. bix = inode->i_ino;
  440. level = LEVEL(0);
  441. err = write_one_alias(sb, ino, bix, level, pos, val);
  442. if (err)
  443. return err;
  444. }
  445. }
  446. static int indirect_write_alias(struct super_block *sb,
  447. struct logfs_block *block, write_alias_t *write_one_alias)
  448. {
  449. unsigned long pos;
  450. struct page *page = block->page;
  451. u64 ino , bix;
  452. __be64 *child, val;
  453. level_t level;
  454. int err;
  455. for (pos = 0; ; pos++) {
  456. pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos);
  457. if (pos >= LOGFS_BLOCK_FACTOR)
  458. return 0;
  459. ino = page->mapping->host->i_ino;
  460. logfs_unpack_index(page->index, &bix, &level);
  461. child = kmap_atomic(page, KM_USER0);
  462. val = child[pos];
  463. kunmap_atomic(child, KM_USER0);
  464. err = write_one_alias(sb, ino, bix, level, pos, val);
  465. if (err)
  466. return err;
  467. }
  468. }
  469. int logfs_write_obj_aliases_pagecache(struct super_block *sb)
  470. {
  471. struct logfs_super *super = logfs_super(sb);
  472. struct logfs_block *block;
  473. int err;
  474. list_for_each_entry(block, &super->s_object_alias, alias_list) {
  475. err = block->ops->write_alias(sb, block, write_alias_journal);
  476. if (err)
  477. return err;
  478. }
  479. return 0;
  480. }
  481. void __free_block(struct super_block *sb, struct logfs_block *block)
  482. {
  483. BUG_ON(!list_empty(&block->item_list));
  484. list_del(&block->alias_list);
  485. mempool_free(block, logfs_super(sb)->s_block_pool);
  486. }
  487. static void inode_free_block(struct super_block *sb, struct logfs_block *block)
  488. {
  489. struct inode *inode = block->inode;
  490. logfs_inode(inode)->li_block = NULL;
  491. __free_block(sb, block);
  492. }
  493. static void indirect_free_block(struct super_block *sb,
  494. struct logfs_block *block)
  495. {
  496. ClearPagePrivate(block->page);
  497. block->page->private = 0;
  498. __free_block(sb, block);
  499. }
  500. static struct logfs_block_ops inode_block_ops = {
  501. .write_block = inode_write_block,
  502. .free_block = inode_free_block,
  503. .write_alias = inode_write_alias,
  504. };
  505. struct logfs_block_ops indirect_block_ops = {
  506. .write_block = indirect_write_block,
  507. .free_block = indirect_free_block,
  508. .write_alias = indirect_write_alias,
  509. };
  510. struct logfs_block *__alloc_block(struct super_block *sb,
  511. u64 ino, u64 bix, level_t level)
  512. {
  513. struct logfs_super *super = logfs_super(sb);
  514. struct logfs_block *block;
  515. block = mempool_alloc(super->s_block_pool, GFP_NOFS);
  516. memset(block, 0, sizeof(*block));
  517. INIT_LIST_HEAD(&block->alias_list);
  518. INIT_LIST_HEAD(&block->item_list);
  519. block->sb = sb;
  520. block->ino = ino;
  521. block->bix = bix;
  522. block->level = level;
  523. return block;
  524. }
  525. static void alloc_inode_block(struct inode *inode)
  526. {
  527. struct logfs_inode *li = logfs_inode(inode);
  528. struct logfs_block *block;
  529. if (li->li_block)
  530. return;
  531. block = __alloc_block(inode->i_sb, LOGFS_INO_MASTER, inode->i_ino, 0);
  532. block->inode = inode;
  533. li->li_block = block;
  534. block->ops = &inode_block_ops;
  535. }
  536. void initialize_block_counters(struct page *page, struct logfs_block *block,
  537. __be64 *array, int page_is_empty)
  538. {
  539. u64 ptr;
  540. int i, start;
  541. block->partial = 0;
  542. block->full = 0;
  543. start = 0;
  544. if (page->index < first_indirect_block()) {
  545. /* Counters are pointless on level 0 */
  546. return;
  547. }
  548. if (page->index == first_indirect_block()) {
  549. /* Skip unused pointers */
  550. start = I0_BLOCKS;
  551. block->full = I0_BLOCKS;
  552. }
  553. if (!page_is_empty) {
  554. for (i = start; i < LOGFS_BLOCK_FACTOR; i++) {
  555. ptr = be64_to_cpu(array[i]);
  556. if (ptr)
  557. block->partial++;
  558. if (ptr & LOGFS_FULLY_POPULATED)
  559. block->full++;
  560. }
  561. }
  562. }
  563. static void alloc_data_block(struct inode *inode, struct page *page)
  564. {
  565. struct logfs_block *block;
  566. u64 bix;
  567. level_t level;
  568. if (PagePrivate(page))
  569. return;
  570. logfs_unpack_index(page->index, &bix, &level);
  571. block = __alloc_block(inode->i_sb, inode->i_ino, bix, level);
  572. block->page = page;
  573. SetPagePrivate(page);
  574. page->private = (unsigned long)block;
  575. block->ops = &indirect_block_ops;
  576. }
  577. static void alloc_indirect_block(struct inode *inode, struct page *page,
  578. int page_is_empty)
  579. {
  580. struct logfs_block *block;
  581. __be64 *array;
  582. if (PagePrivate(page))
  583. return;
  584. alloc_data_block(inode, page);
  585. block = logfs_block(page);
  586. array = kmap_atomic(page, KM_USER0);
  587. initialize_block_counters(page, block, array, page_is_empty);
  588. kunmap_atomic(array, KM_USER0);
  589. }
  590. static void block_set_pointer(struct page *page, int index, u64 ptr)
  591. {
  592. struct logfs_block *block = logfs_block(page);
  593. __be64 *array;
  594. u64 oldptr;
  595. BUG_ON(!block);
  596. array = kmap_atomic(page, KM_USER0);
  597. oldptr = be64_to_cpu(array[index]);
  598. array[index] = cpu_to_be64(ptr);
  599. kunmap_atomic(array, KM_USER0);
  600. SetPageUptodate(page);
  601. block->full += !!(ptr & LOGFS_FULLY_POPULATED)
  602. - !!(oldptr & LOGFS_FULLY_POPULATED);
  603. block->partial += !!ptr - !!oldptr;
  604. }
  605. static u64 block_get_pointer(struct page *page, int index)
  606. {
  607. __be64 *block;
  608. u64 ptr;
  609. block = kmap_atomic(page, KM_USER0);
  610. ptr = be64_to_cpu(block[index]);
  611. kunmap_atomic(block, KM_USER0);
  612. return ptr;
  613. }
  614. static int logfs_read_empty(struct page *page)
  615. {
  616. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  617. return 0;
  618. }
  619. static int logfs_read_direct(struct inode *inode, struct page *page)
  620. {
  621. struct logfs_inode *li = logfs_inode(inode);
  622. pgoff_t index = page->index;
  623. u64 block;
  624. block = li->li_data[index];
  625. if (!block)
  626. return logfs_read_empty(page);
  627. return logfs_segment_read(inode, page, block, index, 0);
  628. }
  629. static int logfs_read_loop(struct inode *inode, struct page *page,
  630. int rw_context)
  631. {
  632. struct logfs_inode *li = logfs_inode(inode);
  633. u64 bix, bofs = li->li_data[INDIRECT_INDEX];
  634. level_t level, target_level;
  635. int ret;
  636. struct page *ipage;
  637. logfs_unpack_index(page->index, &bix, &target_level);
  638. if (!bofs)
  639. return logfs_read_empty(page);
  640. if (bix >= maxbix(li->li_height))
  641. return logfs_read_empty(page);
  642. for (level = LEVEL(li->li_height);
  643. (__force u8)level > (__force u8)target_level;
  644. level = SUBLEVEL(level)){
  645. ipage = logfs_get_page(inode, bix, level, rw_context);
  646. if (!ipage)
  647. return -ENOMEM;
  648. ret = logfs_segment_read(inode, ipage, bofs, bix, level);
  649. if (ret) {
  650. logfs_put_read_page(ipage);
  651. return ret;
  652. }
  653. bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level)));
  654. logfs_put_page(ipage, rw_context);
  655. if (!bofs)
  656. return logfs_read_empty(page);
  657. }
  658. return logfs_segment_read(inode, page, bofs, bix, 0);
  659. }
  660. static int logfs_read_block(struct inode *inode, struct page *page,
  661. int rw_context)
  662. {
  663. pgoff_t index = page->index;
  664. if (index < I0_BLOCKS)
  665. return logfs_read_direct(inode, page);
  666. return logfs_read_loop(inode, page, rw_context);
  667. }
  668. static int logfs_exist_loop(struct inode *inode, u64 bix)
  669. {
  670. struct logfs_inode *li = logfs_inode(inode);
  671. u64 bofs = li->li_data[INDIRECT_INDEX];
  672. level_t level;
  673. int ret;
  674. struct page *ipage;
  675. if (!bofs)
  676. return 0;
  677. if (bix >= maxbix(li->li_height))
  678. return 0;
  679. for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) {
  680. ipage = logfs_get_read_page(inode, bix, level);
  681. if (!ipage)
  682. return -ENOMEM;
  683. ret = logfs_segment_read(inode, ipage, bofs, bix, level);
  684. if (ret) {
  685. logfs_put_read_page(ipage);
  686. return ret;
  687. }
  688. bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level)));
  689. logfs_put_read_page(ipage);
  690. if (!bofs)
  691. return 0;
  692. }
  693. return 1;
  694. }
  695. int logfs_exist_block(struct inode *inode, u64 bix)
  696. {
  697. struct logfs_inode *li = logfs_inode(inode);
  698. if (bix < I0_BLOCKS)
  699. return !!li->li_data[bix];
  700. return logfs_exist_loop(inode, bix);
  701. }
  702. static u64 seek_holedata_direct(struct inode *inode, u64 bix, int data)
  703. {
  704. struct logfs_inode *li = logfs_inode(inode);
  705. for (; bix < I0_BLOCKS; bix++)
  706. if (data ^ (li->li_data[bix] == 0))
  707. return bix;
  708. return I0_BLOCKS;
  709. }
  710. static u64 seek_holedata_loop(struct inode *inode, u64 bix, int data)
  711. {
  712. struct logfs_inode *li = logfs_inode(inode);
  713. __be64 *rblock;
  714. u64 increment, bofs = li->li_data[INDIRECT_INDEX];
  715. level_t level;
  716. int ret, slot;
  717. struct page *page;
  718. BUG_ON(!bofs);
  719. for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) {
  720. increment = 1 << (LOGFS_BLOCK_BITS * ((__force u8)level-1));
  721. page = logfs_get_read_page(inode, bix, level);
  722. if (!page)
  723. return bix;
  724. ret = logfs_segment_read(inode, page, bofs, bix, level);
  725. if (ret) {
  726. logfs_put_read_page(page);
  727. return bix;
  728. }
  729. slot = get_bits(bix, SUBLEVEL(level));
  730. rblock = kmap_atomic(page, KM_USER0);
  731. while (slot < LOGFS_BLOCK_FACTOR) {
  732. if (data && (rblock[slot] != 0))
  733. break;
  734. if (!data && !(be64_to_cpu(rblock[slot]) & LOGFS_FULLY_POPULATED))
  735. break;
  736. slot++;
  737. bix += increment;
  738. bix &= ~(increment - 1);
  739. }
  740. if (slot >= LOGFS_BLOCK_FACTOR) {
  741. kunmap_atomic(rblock, KM_USER0);
  742. logfs_put_read_page(page);
  743. return bix;
  744. }
  745. bofs = be64_to_cpu(rblock[slot]);
  746. kunmap_atomic(rblock, KM_USER0);
  747. logfs_put_read_page(page);
  748. if (!bofs) {
  749. BUG_ON(data);
  750. return bix;
  751. }
  752. }
  753. return bix;
  754. }
  755. /**
  756. * logfs_seek_hole - find next hole starting at a given block index
  757. * @inode: inode to search in
  758. * @bix: block index to start searching
  759. *
  760. * Returns next hole. If the file doesn't contain any further holes, the
  761. * block address next to eof is returned instead.
  762. */
  763. u64 logfs_seek_hole(struct inode *inode, u64 bix)
  764. {
  765. struct logfs_inode *li = logfs_inode(inode);
  766. if (bix < I0_BLOCKS) {
  767. bix = seek_holedata_direct(inode, bix, 0);
  768. if (bix < I0_BLOCKS)
  769. return bix;
  770. }
  771. if (!li->li_data[INDIRECT_INDEX])
  772. return bix;
  773. else if (li->li_data[INDIRECT_INDEX] & LOGFS_FULLY_POPULATED)
  774. bix = maxbix(li->li_height);
  775. else {
  776. bix = seek_holedata_loop(inode, bix, 0);
  777. if (bix < maxbix(li->li_height))
  778. return bix;
  779. /* Should not happen anymore. But if some port writes semi-
  780. * corrupt images (as this one used to) we might run into it.
  781. */
  782. WARN_ON_ONCE(bix == maxbix(li->li_height));
  783. }
  784. return bix;
  785. }
  786. static u64 __logfs_seek_data(struct inode *inode, u64 bix)
  787. {
  788. struct logfs_inode *li = logfs_inode(inode);
  789. if (bix < I0_BLOCKS) {
  790. bix = seek_holedata_direct(inode, bix, 1);
  791. if (bix < I0_BLOCKS)
  792. return bix;
  793. }
  794. if (bix < maxbix(li->li_height)) {
  795. if (!li->li_data[INDIRECT_INDEX])
  796. bix = maxbix(li->li_height);
  797. else
  798. return seek_holedata_loop(inode, bix, 1);
  799. }
  800. return bix;
  801. }
  802. /**
  803. * logfs_seek_data - find next data block after a given block index
  804. * @inode: inode to search in
  805. * @bix: block index to start searching
  806. *
  807. * Returns next data block. If the file doesn't contain any further data
  808. * blocks, the last block in the file is returned instead.
  809. */
  810. u64 logfs_seek_data(struct inode *inode, u64 bix)
  811. {
  812. struct super_block *sb = inode->i_sb;
  813. u64 ret, end;
  814. ret = __logfs_seek_data(inode, bix);
  815. end = i_size_read(inode) >> sb->s_blocksize_bits;
  816. if (ret >= end)
  817. ret = max(bix, end);
  818. return ret;
  819. }
  820. static int logfs_is_valid_direct(struct logfs_inode *li, u64 bix, u64 ofs)
  821. {
  822. return pure_ofs(li->li_data[bix]) == ofs;
  823. }
  824. static int __logfs_is_valid_loop(struct inode *inode, u64 bix,
  825. u64 ofs, u64 bofs)
  826. {
  827. struct logfs_inode *li = logfs_inode(inode);
  828. level_t level;
  829. int ret;
  830. struct page *page;
  831. for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)){
  832. page = logfs_get_write_page(inode, bix, level);
  833. BUG_ON(!page);
  834. ret = logfs_segment_read(inode, page, bofs, bix, level);
  835. if (ret) {
  836. logfs_put_write_page(page);
  837. return 0;
  838. }
  839. bofs = block_get_pointer(page, get_bits(bix, SUBLEVEL(level)));
  840. logfs_put_write_page(page);
  841. if (!bofs)
  842. return 0;
  843. if (pure_ofs(bofs) == ofs)
  844. return 1;
  845. }
  846. return 0;
  847. }
  848. static int logfs_is_valid_loop(struct inode *inode, u64 bix, u64 ofs)
  849. {
  850. struct logfs_inode *li = logfs_inode(inode);
  851. u64 bofs = li->li_data[INDIRECT_INDEX];
  852. if (!bofs)
  853. return 0;
  854. if (bix >= maxbix(li->li_height))
  855. return 0;
  856. if (pure_ofs(bofs) == ofs)
  857. return 1;
  858. return __logfs_is_valid_loop(inode, bix, ofs, bofs);
  859. }
  860. static int __logfs_is_valid_block(struct inode *inode, u64 bix, u64 ofs)
  861. {
  862. struct logfs_inode *li = logfs_inode(inode);
  863. if ((inode->i_nlink == 0) && atomic_read(&inode->i_count) == 1)
  864. return 0;
  865. if (bix < I0_BLOCKS)
  866. return logfs_is_valid_direct(li, bix, ofs);
  867. return logfs_is_valid_loop(inode, bix, ofs);
  868. }
  869. /**
  870. * logfs_is_valid_block - check whether this block is still valid
  871. *
  872. * @sb - superblock
  873. * @ofs - block physical offset
  874. * @ino - block inode number
  875. * @bix - block index
  876. * @level - block level
  877. *
  878. * Returns 0 if the block is invalid, 1 if it is valid and 2 if it will
  879. * become invalid once the journal is written.
  880. */
  881. int logfs_is_valid_block(struct super_block *sb, u64 ofs, u64 ino, u64 bix,
  882. gc_level_t gc_level)
  883. {
  884. struct logfs_super *super = logfs_super(sb);
  885. struct inode *inode;
  886. int ret, cookie;
  887. /* Umount closes a segment with free blocks remaining. Those
  888. * blocks are by definition invalid. */
  889. if (ino == -1)
  890. return 0;
  891. LOGFS_BUG_ON((u64)(u_long)ino != ino, sb);
  892. inode = logfs_safe_iget(sb, ino, &cookie);
  893. if (IS_ERR(inode))
  894. goto invalid;
  895. ret = __logfs_is_valid_block(inode, bix, ofs);
  896. logfs_safe_iput(inode, cookie);
  897. if (ret)
  898. return ret;
  899. invalid:
  900. /* Block is nominally invalid, but may still sit in the shadow tree,
  901. * waiting for a journal commit.
  902. */
  903. if (btree_lookup64(&super->s_shadow_tree.old, ofs))
  904. return 2;
  905. return 0;
  906. }
  907. int logfs_readpage_nolock(struct page *page)
  908. {
  909. struct inode *inode = page->mapping->host;
  910. int ret = -EIO;
  911. ret = logfs_read_block(inode, page, READ);
  912. if (ret) {
  913. ClearPageUptodate(page);
  914. SetPageError(page);
  915. } else {
  916. SetPageUptodate(page);
  917. ClearPageError(page);
  918. }
  919. flush_dcache_page(page);
  920. return ret;
  921. }
  922. static int logfs_reserve_bytes(struct inode *inode, int bytes)
  923. {
  924. struct logfs_super *super = logfs_super(inode->i_sb);
  925. u64 available = super->s_free_bytes + super->s_dirty_free_bytes
  926. - super->s_dirty_used_bytes - super->s_dirty_pages;
  927. if (!bytes)
  928. return 0;
  929. if (available < bytes)
  930. return -ENOSPC;
  931. if (available < bytes + super->s_root_reserve &&
  932. !capable(CAP_SYS_RESOURCE))
  933. return -ENOSPC;
  934. return 0;
  935. }
  936. int get_page_reserve(struct inode *inode, struct page *page)
  937. {
  938. struct logfs_super *super = logfs_super(inode->i_sb);
  939. int ret;
  940. if (logfs_block(page) && logfs_block(page)->reserved_bytes)
  941. return 0;
  942. logfs_get_wblocks(inode->i_sb, page, WF_LOCK);
  943. ret = logfs_reserve_bytes(inode, 6 * LOGFS_MAX_OBJECTSIZE);
  944. if (!ret) {
  945. alloc_data_block(inode, page);
  946. logfs_block(page)->reserved_bytes += 6 * LOGFS_MAX_OBJECTSIZE;
  947. super->s_dirty_pages += 6 * LOGFS_MAX_OBJECTSIZE;
  948. }
  949. logfs_put_wblocks(inode->i_sb, page, WF_LOCK);
  950. return ret;
  951. }
  952. /*
  953. * We are protected by write lock. Push victims up to superblock level
  954. * and release transaction when appropriate.
  955. */
  956. /* FIXME: This is currently called from the wrong spots. */
  957. static void logfs_handle_transaction(struct inode *inode,
  958. struct logfs_transaction *ta)
  959. {
  960. struct logfs_super *super = logfs_super(inode->i_sb);
  961. if (!ta)
  962. return;
  963. logfs_inode(inode)->li_block->ta = NULL;
  964. if (inode->i_ino != LOGFS_INO_MASTER) {
  965. BUG(); /* FIXME: Yes, this needs more thought */
  966. /* just remember the transaction until inode is written */
  967. //BUG_ON(logfs_inode(inode)->li_transaction);
  968. //logfs_inode(inode)->li_transaction = ta;
  969. return;
  970. }
  971. switch (ta->state) {
  972. case CREATE_1: /* fall through */
  973. case UNLINK_1:
  974. BUG_ON(super->s_victim_ino);
  975. super->s_victim_ino = ta->ino;
  976. break;
  977. case CREATE_2: /* fall through */
  978. case UNLINK_2:
  979. BUG_ON(super->s_victim_ino != ta->ino);
  980. super->s_victim_ino = 0;
  981. /* transaction ends here - free it */
  982. kfree(ta);
  983. break;
  984. case CROSS_RENAME_1:
  985. BUG_ON(super->s_rename_dir);
  986. BUG_ON(super->s_rename_pos);
  987. super->s_rename_dir = ta->dir;
  988. super->s_rename_pos = ta->pos;
  989. break;
  990. case CROSS_RENAME_2:
  991. BUG_ON(super->s_rename_dir != ta->dir);
  992. BUG_ON(super->s_rename_pos != ta->pos);
  993. super->s_rename_dir = 0;
  994. super->s_rename_pos = 0;
  995. kfree(ta);
  996. break;
  997. case TARGET_RENAME_1:
  998. BUG_ON(super->s_rename_dir);
  999. BUG_ON(super->s_rename_pos);
  1000. BUG_ON(super->s_victim_ino);
  1001. super->s_rename_dir = ta->dir;
  1002. super->s_rename_pos = ta->pos;
  1003. super->s_victim_ino = ta->ino;
  1004. break;
  1005. case TARGET_RENAME_2:
  1006. BUG_ON(super->s_rename_dir != ta->dir);
  1007. BUG_ON(super->s_rename_pos != ta->pos);
  1008. BUG_ON(super->s_victim_ino != ta->ino);
  1009. super->s_rename_dir = 0;
  1010. super->s_rename_pos = 0;
  1011. break;
  1012. case TARGET_RENAME_3:
  1013. BUG_ON(super->s_rename_dir);
  1014. BUG_ON(super->s_rename_pos);
  1015. BUG_ON(super->s_victim_ino != ta->ino);
  1016. super->s_victim_ino = 0;
  1017. kfree(ta);
  1018. break;
  1019. default:
  1020. BUG();
  1021. }
  1022. }
  1023. /*
  1024. * Not strictly a reservation, but rather a check that we still have enough
  1025. * space to satisfy the write.
  1026. */
  1027. static int logfs_reserve_blocks(struct inode *inode, int blocks)
  1028. {
  1029. return logfs_reserve_bytes(inode, blocks * LOGFS_MAX_OBJECTSIZE);
  1030. }
  1031. struct write_control {
  1032. u64 ofs;
  1033. long flags;
  1034. };
  1035. static struct logfs_shadow *alloc_shadow(struct inode *inode, u64 bix,
  1036. level_t level, u64 old_ofs)
  1037. {
  1038. struct logfs_super *super = logfs_super(inode->i_sb);
  1039. struct logfs_shadow *shadow;
  1040. shadow = mempool_alloc(super->s_shadow_pool, GFP_NOFS);
  1041. memset(shadow, 0, sizeof(*shadow));
  1042. shadow->ino = inode->i_ino;
  1043. shadow->bix = bix;
  1044. shadow->gc_level = expand_level(inode->i_ino, level);
  1045. shadow->old_ofs = old_ofs & ~LOGFS_FULLY_POPULATED;
  1046. return shadow;
  1047. }
  1048. static void free_shadow(struct inode *inode, struct logfs_shadow *shadow)
  1049. {
  1050. struct logfs_super *super = logfs_super(inode->i_sb);
  1051. mempool_free(shadow, super->s_shadow_pool);
  1052. }
  1053. static void mark_segment(struct shadow_tree *tree, u32 segno)
  1054. {
  1055. int err;
  1056. if (!btree_lookup32(&tree->segment_map, segno)) {
  1057. err = btree_insert32(&tree->segment_map, segno, (void *)1,
  1058. GFP_NOFS);
  1059. BUG_ON(err);
  1060. tree->no_shadowed_segments++;
  1061. }
  1062. }
  1063. /**
  1064. * fill_shadow_tree - Propagate shadow tree changes due to a write
  1065. * @inode: Inode owning the page
  1066. * @page: Struct page that was written
  1067. * @shadow: Shadow for the current write
  1068. *
  1069. * Writes in logfs can result in two semi-valid objects. The old object
  1070. * is still valid as long as it can be reached by following pointers on
  1071. * the medium. Only when writes propagate all the way up to the journal
  1072. * has the new object safely replaced the old one.
  1073. *
  1074. * To handle this problem, a struct logfs_shadow is used to represent
  1075. * every single write. It is attached to the indirect block, which is
  1076. * marked dirty. When the indirect block is written, its shadows are
  1077. * handed up to the next indirect block (or inode). Untimately they
  1078. * will reach the master inode and be freed upon journal commit.
  1079. *
  1080. * This function handles a single step in the propagation. It adds the
  1081. * shadow for the current write to the tree, along with any shadows in
  1082. * the page's tree, in case it was an indirect block. If a page is
  1083. * written, the inode parameter is left NULL, if an inode is written,
  1084. * the page parameter is left NULL.
  1085. */
  1086. static void fill_shadow_tree(struct inode *inode, struct page *page,
  1087. struct logfs_shadow *shadow)
  1088. {
  1089. struct logfs_super *super = logfs_super(inode->i_sb);
  1090. struct logfs_block *block = logfs_block(page);
  1091. struct shadow_tree *tree = &super->s_shadow_tree;
  1092. if (PagePrivate(page)) {
  1093. if (block->alias_map)
  1094. super->s_no_object_aliases -= bitmap_weight(
  1095. block->alias_map, LOGFS_BLOCK_FACTOR);
  1096. logfs_handle_transaction(inode, block->ta);
  1097. block->ops->free_block(inode->i_sb, block);
  1098. }
  1099. if (shadow) {
  1100. if (shadow->old_ofs)
  1101. btree_insert64(&tree->old, shadow->old_ofs, shadow,
  1102. GFP_NOFS);
  1103. else
  1104. btree_insert64(&tree->new, shadow->new_ofs, shadow,
  1105. GFP_NOFS);
  1106. super->s_dirty_used_bytes += shadow->new_len;
  1107. super->s_dirty_free_bytes += shadow->old_len;
  1108. mark_segment(tree, shadow->old_ofs >> super->s_segshift);
  1109. mark_segment(tree, shadow->new_ofs >> super->s_segshift);
  1110. }
  1111. }
  1112. static void logfs_set_alias(struct super_block *sb, struct logfs_block *block,
  1113. long child_no)
  1114. {
  1115. struct logfs_super *super = logfs_super(sb);
  1116. if (block->inode && block->inode->i_ino == LOGFS_INO_MASTER) {
  1117. /* Aliases in the master inode are pointless. */
  1118. return;
  1119. }
  1120. if (!test_bit(child_no, block->alias_map)) {
  1121. set_bit(child_no, block->alias_map);
  1122. super->s_no_object_aliases++;
  1123. }
  1124. list_move_tail(&block->alias_list, &super->s_object_alias);
  1125. }
  1126. /*
  1127. * Object aliases can and often do change the size and occupied space of a
  1128. * file. So not only do we have to change the pointers, we also have to
  1129. * change inode->i_size and li->li_used_bytes. Which is done by setting
  1130. * another two object aliases for the inode itself.
  1131. */
  1132. static void set_iused(struct inode *inode, struct logfs_shadow *shadow)
  1133. {
  1134. struct logfs_inode *li = logfs_inode(inode);
  1135. if (shadow->new_len == shadow->old_len)
  1136. return;
  1137. alloc_inode_block(inode);
  1138. li->li_used_bytes += shadow->new_len - shadow->old_len;
  1139. __logfs_set_blocks(inode);
  1140. logfs_set_alias(inode->i_sb, li->li_block, INODE_USED_OFS);
  1141. logfs_set_alias(inode->i_sb, li->li_block, INODE_SIZE_OFS);
  1142. }
  1143. static int logfs_write_i0(struct inode *inode, struct page *page,
  1144. struct write_control *wc)
  1145. {
  1146. struct logfs_shadow *shadow;
  1147. u64 bix;
  1148. level_t level;
  1149. int full, err = 0;
  1150. logfs_unpack_index(page->index, &bix, &level);
  1151. if (wc->ofs == 0)
  1152. if (logfs_reserve_blocks(inode, 1))
  1153. return -ENOSPC;
  1154. shadow = alloc_shadow(inode, bix, level, wc->ofs);
  1155. if (wc->flags & WF_WRITE)
  1156. err = logfs_segment_write(inode, page, shadow);
  1157. if (wc->flags & WF_DELETE)
  1158. logfs_segment_delete(inode, shadow);
  1159. if (err) {
  1160. free_shadow(inode, shadow);
  1161. return err;
  1162. }
  1163. set_iused(inode, shadow);
  1164. full = 1;
  1165. if (level != 0) {
  1166. alloc_indirect_block(inode, page, 0);
  1167. full = logfs_block(page)->full == LOGFS_BLOCK_FACTOR;
  1168. }
  1169. fill_shadow_tree(inode, page, shadow);
  1170. wc->ofs = shadow->new_ofs;
  1171. if (wc->ofs && full)
  1172. wc->ofs |= LOGFS_FULLY_POPULATED;
  1173. return 0;
  1174. }
  1175. static int logfs_write_direct(struct inode *inode, struct page *page,
  1176. long flags)
  1177. {
  1178. struct logfs_inode *li = logfs_inode(inode);
  1179. struct write_control wc = {
  1180. .ofs = li->li_data[page->index],
  1181. .flags = flags,
  1182. };
  1183. int err;
  1184. alloc_inode_block(inode);
  1185. err = logfs_write_i0(inode, page, &wc);
  1186. if (err)
  1187. return err;
  1188. li->li_data[page->index] = wc.ofs;
  1189. logfs_set_alias(inode->i_sb, li->li_block,
  1190. page->index + INODE_POINTER_OFS);
  1191. return 0;
  1192. }
  1193. static int ptr_change(u64 ofs, struct page *page)
  1194. {
  1195. struct logfs_block *block = logfs_block(page);
  1196. int empty0, empty1, full0, full1;
  1197. empty0 = ofs == 0;
  1198. empty1 = block->partial == 0;
  1199. if (empty0 != empty1)
  1200. return 1;
  1201. /* The !! is necessary to shrink result to int */
  1202. full0 = !!(ofs & LOGFS_FULLY_POPULATED);
  1203. full1 = block->full == LOGFS_BLOCK_FACTOR;
  1204. if (full0 != full1)
  1205. return 1;
  1206. return 0;
  1207. }
  1208. static int __logfs_write_rec(struct inode *inode, struct page *page,
  1209. struct write_control *this_wc,
  1210. pgoff_t bix, level_t target_level, level_t level)
  1211. {
  1212. int ret, page_empty = 0;
  1213. int child_no = get_bits(bix, SUBLEVEL(level));
  1214. struct page *ipage;
  1215. struct write_control child_wc = {
  1216. .flags = this_wc->flags,
  1217. };
  1218. ipage = logfs_get_write_page(inode, bix, level);
  1219. if (!ipage)
  1220. return -ENOMEM;
  1221. if (this_wc->ofs) {
  1222. ret = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level);
  1223. if (ret)
  1224. goto out;
  1225. } else if (!PageUptodate(ipage)) {
  1226. page_empty = 1;
  1227. logfs_read_empty(ipage);
  1228. }
  1229. child_wc.ofs = block_get_pointer(ipage, child_no);
  1230. if ((__force u8)level-1 > (__force u8)target_level)
  1231. ret = __logfs_write_rec(inode, page, &child_wc, bix,
  1232. target_level, SUBLEVEL(level));
  1233. else
  1234. ret = logfs_write_i0(inode, page, &child_wc);
  1235. if (ret)
  1236. goto out;
  1237. alloc_indirect_block(inode, ipage, page_empty);
  1238. block_set_pointer(ipage, child_no, child_wc.ofs);
  1239. /* FIXME: first condition seems superfluous */
  1240. if (child_wc.ofs || logfs_block(ipage)->partial)
  1241. this_wc->flags |= WF_WRITE;
  1242. /* the condition on this_wc->ofs ensures that we won't consume extra
  1243. * space for indirect blocks in the future, which we cannot reserve */
  1244. if (!this_wc->ofs || ptr_change(this_wc->ofs, ipage))
  1245. ret = logfs_write_i0(inode, ipage, this_wc);
  1246. else
  1247. logfs_set_alias(inode->i_sb, logfs_block(ipage), child_no);
  1248. out:
  1249. logfs_put_write_page(ipage);
  1250. return ret;
  1251. }
  1252. static int logfs_write_rec(struct inode *inode, struct page *page,
  1253. pgoff_t bix, level_t target_level, long flags)
  1254. {
  1255. struct logfs_inode *li = logfs_inode(inode);
  1256. struct write_control wc = {
  1257. .ofs = li->li_data[INDIRECT_INDEX],
  1258. .flags = flags,
  1259. };
  1260. int ret;
  1261. alloc_inode_block(inode);
  1262. if (li->li_height > (__force u8)target_level)
  1263. ret = __logfs_write_rec(inode, page, &wc, bix, target_level,
  1264. LEVEL(li->li_height));
  1265. else
  1266. ret = logfs_write_i0(inode, page, &wc);
  1267. if (ret)
  1268. return ret;
  1269. if (li->li_data[INDIRECT_INDEX] != wc.ofs) {
  1270. li->li_data[INDIRECT_INDEX] = wc.ofs;
  1271. logfs_set_alias(inode->i_sb, li->li_block,
  1272. INDIRECT_INDEX + INODE_POINTER_OFS);
  1273. }
  1274. return ret;
  1275. }
  1276. void logfs_add_transaction(struct inode *inode, struct logfs_transaction *ta)
  1277. {
  1278. alloc_inode_block(inode);
  1279. logfs_inode(inode)->li_block->ta = ta;
  1280. }
  1281. void logfs_del_transaction(struct inode *inode, struct logfs_transaction *ta)
  1282. {
  1283. struct logfs_block *block = logfs_inode(inode)->li_block;
  1284. if (block && block->ta)
  1285. block->ta = NULL;
  1286. }
  1287. static int grow_inode(struct inode *inode, u64 bix, level_t level)
  1288. {
  1289. struct logfs_inode *li = logfs_inode(inode);
  1290. u8 height = (__force u8)level;
  1291. struct page *page;
  1292. struct write_control wc = {
  1293. .flags = WF_WRITE,
  1294. };
  1295. int err;
  1296. BUG_ON(height > 5 || li->li_height > 5);
  1297. while (height > li->li_height || bix >= maxbix(li->li_height)) {
  1298. page = logfs_get_write_page(inode, I0_BLOCKS + 1,
  1299. LEVEL(li->li_height + 1));
  1300. if (!page)
  1301. return -ENOMEM;
  1302. logfs_read_empty(page);
  1303. alloc_indirect_block(inode, page, 1);
  1304. block_set_pointer(page, 0, li->li_data[INDIRECT_INDEX]);
  1305. err = logfs_write_i0(inode, page, &wc);
  1306. logfs_put_write_page(page);
  1307. if (err)
  1308. return err;
  1309. li->li_data[INDIRECT_INDEX] = wc.ofs;
  1310. wc.ofs = 0;
  1311. li->li_height++;
  1312. logfs_set_alias(inode->i_sb, li->li_block, INODE_HEIGHT_OFS);
  1313. }
  1314. return 0;
  1315. }
  1316. static int __logfs_write_buf(struct inode *inode, struct page *page, long flags)
  1317. {
  1318. struct logfs_super *super = logfs_super(inode->i_sb);
  1319. pgoff_t index = page->index;
  1320. u64 bix;
  1321. level_t level;
  1322. int err;
  1323. flags |= WF_WRITE | WF_DELETE;
  1324. inode->i_ctime = inode->i_mtime = CURRENT_TIME;
  1325. logfs_unpack_index(index, &bix, &level);
  1326. if (logfs_block(page) && logfs_block(page)->reserved_bytes)
  1327. super->s_dirty_pages -= logfs_block(page)->reserved_bytes;
  1328. if (index < I0_BLOCKS)
  1329. return logfs_write_direct(inode, page, flags);
  1330. bix = adjust_bix(bix, level);
  1331. err = grow_inode(inode, bix, level);
  1332. if (err)
  1333. return err;
  1334. return logfs_write_rec(inode, page, bix, level, flags);
  1335. }
  1336. int logfs_write_buf(struct inode *inode, struct page *page, long flags)
  1337. {
  1338. struct super_block *sb = inode->i_sb;
  1339. int ret;
  1340. logfs_get_wblocks(sb, page, flags & WF_LOCK);
  1341. ret = __logfs_write_buf(inode, page, flags);
  1342. logfs_put_wblocks(sb, page, flags & WF_LOCK);
  1343. return ret;
  1344. }
  1345. static int __logfs_delete(struct inode *inode, struct page *page)
  1346. {
  1347. long flags = WF_DELETE;
  1348. inode->i_ctime = inode->i_mtime = CURRENT_TIME;
  1349. if (page->index < I0_BLOCKS)
  1350. return logfs_write_direct(inode, page, flags);
  1351. return logfs_write_rec(inode, page, page->index, 0, flags);
  1352. }
  1353. int logfs_delete(struct inode *inode, pgoff_t index,
  1354. struct shadow_tree *shadow_tree)
  1355. {
  1356. struct super_block *sb = inode->i_sb;
  1357. struct page *page;
  1358. int ret;
  1359. page = logfs_get_read_page(inode, index, 0);
  1360. if (!page)
  1361. return -ENOMEM;
  1362. logfs_get_wblocks(sb, page, 1);
  1363. ret = __logfs_delete(inode, page);
  1364. logfs_put_wblocks(sb, page, 1);
  1365. logfs_put_read_page(page);
  1366. return ret;
  1367. }
  1368. int logfs_rewrite_block(struct inode *inode, u64 bix, u64 ofs,
  1369. gc_level_t gc_level, long flags)
  1370. {
  1371. level_t level = shrink_level(gc_level);
  1372. struct page *page;
  1373. int err;
  1374. page = logfs_get_write_page(inode, bix, level);
  1375. if (!page)
  1376. return -ENOMEM;
  1377. err = logfs_segment_read(inode, page, ofs, bix, level);
  1378. if (!err) {
  1379. if (level != 0)
  1380. alloc_indirect_block(inode, page, 0);
  1381. err = logfs_write_buf(inode, page, flags);
  1382. if (!err && shrink_level(gc_level) == 0) {
  1383. /* Rewrite cannot mark the inode dirty but has to
  1384. * write it immediatly.
  1385. * Q: Can't we just create an alias for the inode
  1386. * instead? And if not, why not?
  1387. */
  1388. if (inode->i_ino == LOGFS_INO_MASTER)
  1389. logfs_write_anchor(inode->i_sb);
  1390. else {
  1391. err = __logfs_write_inode(inode, flags);
  1392. }
  1393. }
  1394. }
  1395. logfs_put_write_page(page);
  1396. return err;
  1397. }
  1398. static int truncate_data_block(struct inode *inode, struct page *page,
  1399. u64 ofs, struct logfs_shadow *shadow, u64 size)
  1400. {
  1401. loff_t pageofs = page->index << inode->i_sb->s_blocksize_bits;
  1402. u64 bix;
  1403. level_t level;
  1404. int err;
  1405. /* Does truncation happen within this page? */
  1406. if (size <= pageofs || size - pageofs >= PAGE_SIZE)
  1407. return 0;
  1408. logfs_unpack_index(page->index, &bix, &level);
  1409. BUG_ON(level != 0);
  1410. err = logfs_segment_read(inode, page, ofs, bix, level);
  1411. if (err)
  1412. return err;
  1413. zero_user_segment(page, size - pageofs, PAGE_CACHE_SIZE);
  1414. return logfs_segment_write(inode, page, shadow);
  1415. }
  1416. static int logfs_truncate_i0(struct inode *inode, struct page *page,
  1417. struct write_control *wc, u64 size)
  1418. {
  1419. struct logfs_shadow *shadow;
  1420. u64 bix;
  1421. level_t level;
  1422. int err = 0;
  1423. logfs_unpack_index(page->index, &bix, &level);
  1424. BUG_ON(level != 0);
  1425. shadow = alloc_shadow(inode, bix, level, wc->ofs);
  1426. err = truncate_data_block(inode, page, wc->ofs, shadow, size);
  1427. if (err) {
  1428. free_shadow(inode, shadow);
  1429. return err;
  1430. }
  1431. logfs_segment_delete(inode, shadow);
  1432. set_iused(inode, shadow);
  1433. fill_shadow_tree(inode, page, shadow);
  1434. wc->ofs = shadow->new_ofs;
  1435. return 0;
  1436. }
  1437. static int logfs_truncate_direct(struct inode *inode, u64 size)
  1438. {
  1439. struct logfs_inode *li = logfs_inode(inode);
  1440. struct write_control wc;
  1441. struct page *page;
  1442. int e;
  1443. int err;
  1444. alloc_inode_block(inode);
  1445. for (e = I0_BLOCKS - 1; e >= 0; e--) {
  1446. if (size > (e+1) * LOGFS_BLOCKSIZE)
  1447. break;
  1448. wc.ofs = li->li_data[e];
  1449. if (!wc.ofs)
  1450. continue;
  1451. page = logfs_get_write_page(inode, e, 0);
  1452. if (!page)
  1453. return -ENOMEM;
  1454. err = logfs_segment_read(inode, page, wc.ofs, e, 0);
  1455. if (err) {
  1456. logfs_put_write_page(page);
  1457. return err;
  1458. }
  1459. err = logfs_truncate_i0(inode, page, &wc, size);
  1460. logfs_put_write_page(page);
  1461. if (err)
  1462. return err;
  1463. li->li_data[e] = wc.ofs;
  1464. }
  1465. return 0;
  1466. }
  1467. /* FIXME: these need to become per-sb once we support different blocksizes */
  1468. static u64 __logfs_step[] = {
  1469. 1,
  1470. I1_BLOCKS,
  1471. I2_BLOCKS,
  1472. I3_BLOCKS,
  1473. };
  1474. static u64 __logfs_start_index[] = {
  1475. I0_BLOCKS,
  1476. I1_BLOCKS,
  1477. I2_BLOCKS,
  1478. I3_BLOCKS
  1479. };
  1480. static inline u64 logfs_step(level_t level)
  1481. {
  1482. return __logfs_step[(__force u8)level];
  1483. }
  1484. static inline u64 logfs_factor(u8 level)
  1485. {
  1486. return __logfs_step[level] * LOGFS_BLOCKSIZE;
  1487. }
  1488. static inline u64 logfs_start_index(level_t level)
  1489. {
  1490. return __logfs_start_index[(__force u8)level];
  1491. }
  1492. static void logfs_unpack_raw_index(pgoff_t index, u64 *bix, level_t *level)
  1493. {
  1494. logfs_unpack_index(index, bix, level);
  1495. if (*bix <= logfs_start_index(SUBLEVEL(*level)))
  1496. *bix = 0;
  1497. }
  1498. static int __logfs_truncate_rec(struct inode *inode, struct page *ipage,
  1499. struct write_control *this_wc, u64 size)
  1500. {
  1501. int truncate_happened = 0;
  1502. int e, err = 0;
  1503. u64 bix, child_bix, next_bix;
  1504. level_t level;
  1505. struct page *page;
  1506. struct write_control child_wc = { /* FIXME: flags */ };
  1507. logfs_unpack_raw_index(ipage->index, &bix, &level);
  1508. err = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level);
  1509. if (err)
  1510. return err;
  1511. for (e = LOGFS_BLOCK_FACTOR - 1; e >= 0; e--) {
  1512. child_bix = bix + e * logfs_step(SUBLEVEL(level));
  1513. next_bix = child_bix + logfs_step(SUBLEVEL(level));
  1514. if (size > next_bix * LOGFS_BLOCKSIZE)
  1515. break;
  1516. child_wc.ofs = pure_ofs(block_get_pointer(ipage, e));
  1517. if (!child_wc.ofs)
  1518. continue;
  1519. page = logfs_get_write_page(inode, child_bix, SUBLEVEL(level));
  1520. if (!page)
  1521. return -ENOMEM;
  1522. if ((__force u8)level > 1)
  1523. err = __logfs_truncate_rec(inode, page, &child_wc, size);
  1524. else
  1525. err = logfs_truncate_i0(inode, page, &child_wc, size);
  1526. logfs_put_write_page(page);
  1527. if (err)
  1528. return err;
  1529. truncate_happened = 1;
  1530. alloc_indirect_block(inode, ipage, 0);
  1531. block_set_pointer(ipage, e, child_wc.ofs);
  1532. }
  1533. if (!truncate_happened) {
  1534. printk("ineffectual truncate (%lx, %lx, %llx)\n", inode->i_ino, ipage->index, size);
  1535. return 0;
  1536. }
  1537. this_wc->flags = WF_DELETE;
  1538. if (logfs_block(ipage)->partial)
  1539. this_wc->flags |= WF_WRITE;
  1540. return logfs_write_i0(inode, ipage, this_wc);
  1541. }
  1542. static int logfs_truncate_rec(struct inode *inode, u64 size)
  1543. {
  1544. struct logfs_inode *li = logfs_inode(inode);
  1545. struct write_control wc = {
  1546. .ofs = li->li_data[INDIRECT_INDEX],
  1547. };
  1548. struct page *page;
  1549. int err;
  1550. alloc_inode_block(inode);
  1551. if (!wc.ofs)
  1552. return 0;
  1553. page = logfs_get_write_page(inode, 0, LEVEL(li->li_height));
  1554. if (!page)
  1555. return -ENOMEM;
  1556. err = __logfs_truncate_rec(inode, page, &wc, size);
  1557. logfs_put_write_page(page);
  1558. if (err)
  1559. return err;
  1560. if (li->li_data[INDIRECT_INDEX] != wc.ofs)
  1561. li->li_data[INDIRECT_INDEX] = wc.ofs;
  1562. return 0;
  1563. }
  1564. static int __logfs_truncate(struct inode *inode, u64 size)
  1565. {
  1566. int ret;
  1567. if (size >= logfs_factor(logfs_inode(inode)->li_height))
  1568. return 0;
  1569. ret = logfs_truncate_rec(inode, size);
  1570. if (ret)
  1571. return ret;
  1572. return logfs_truncate_direct(inode, size);
  1573. }
  1574. int logfs_truncate(struct inode *inode, u64 size)
  1575. {
  1576. struct super_block *sb = inode->i_sb;
  1577. int err;
  1578. logfs_get_wblocks(sb, NULL, 1);
  1579. err = __logfs_truncate(inode, size);
  1580. if (!err)
  1581. err = __logfs_write_inode(inode, 0);
  1582. logfs_put_wblocks(sb, NULL, 1);
  1583. if (!err)
  1584. err = vmtruncate(inode, size);
  1585. /* I don't trust error recovery yet. */
  1586. WARN_ON(err);
  1587. return err;
  1588. }
  1589. static void move_page_to_inode(struct inode *inode, struct page *page)
  1590. {
  1591. struct logfs_inode *li = logfs_inode(inode);
  1592. struct logfs_block *block = logfs_block(page);
  1593. if (!block)
  1594. return;
  1595. log_blockmove("move_page_to_inode(%llx, %llx, %x)\n",
  1596. block->ino, block->bix, block->level);
  1597. BUG_ON(li->li_block);
  1598. block->ops = &inode_block_ops;
  1599. block->inode = inode;
  1600. li->li_block = block;
  1601. block->page = NULL;
  1602. page->private = 0;
  1603. ClearPagePrivate(page);
  1604. }
  1605. static void move_inode_to_page(struct page *page, struct inode *inode)
  1606. {
  1607. struct logfs_inode *li = logfs_inode(inode);
  1608. struct logfs_block *block = li->li_block;
  1609. if (!block)
  1610. return;
  1611. log_blockmove("move_inode_to_page(%llx, %llx, %x)\n",
  1612. block->ino, block->bix, block->level);
  1613. BUG_ON(PagePrivate(page));
  1614. block->ops = &indirect_block_ops;
  1615. block->page = page;
  1616. page->private = (unsigned long)block;
  1617. SetPagePrivate(page);
  1618. block->inode = NULL;
  1619. li->li_block = NULL;
  1620. }
  1621. int logfs_read_inode(struct inode *inode)
  1622. {
  1623. struct super_block *sb = inode->i_sb;
  1624. struct logfs_super *super = logfs_super(sb);
  1625. struct inode *master_inode = super->s_master_inode;
  1626. struct page *page;
  1627. struct logfs_disk_inode *di;
  1628. u64 ino = inode->i_ino;
  1629. if (ino << sb->s_blocksize_bits > i_size_read(master_inode))
  1630. return -ENODATA;
  1631. if (!logfs_exist_block(master_inode, ino))
  1632. return -ENODATA;
  1633. page = read_cache_page(master_inode->i_mapping, ino,
  1634. (filler_t *)logfs_readpage, NULL);
  1635. if (IS_ERR(page))
  1636. return PTR_ERR(page);
  1637. di = kmap_atomic(page, KM_USER0);
  1638. logfs_disk_to_inode(di, inode);
  1639. kunmap_atomic(di, KM_USER0);
  1640. move_page_to_inode(inode, page);
  1641. page_cache_release(page);
  1642. return 0;
  1643. }
  1644. /* Caller must logfs_put_write_page(page); */
  1645. static struct page *inode_to_page(struct inode *inode)
  1646. {
  1647. struct inode *master_inode = logfs_super(inode->i_sb)->s_master_inode;
  1648. struct logfs_disk_inode *di;
  1649. struct page *page;
  1650. BUG_ON(inode->i_ino == LOGFS_INO_MASTER);
  1651. page = logfs_get_write_page(master_inode, inode->i_ino, 0);
  1652. if (!page)
  1653. return NULL;
  1654. di = kmap_atomic(page, KM_USER0);
  1655. logfs_inode_to_disk(inode, di);
  1656. kunmap_atomic(di, KM_USER0);
  1657. move_inode_to_page(page, inode);
  1658. return page;
  1659. }
  1660. /* Cheaper version of write_inode. All changes are concealed in
  1661. * aliases, which are moved back. No write to the medium happens.
  1662. */
  1663. void logfs_clear_inode(struct inode *inode)
  1664. {
  1665. struct super_block *sb = inode->i_sb;
  1666. struct logfs_inode *li = logfs_inode(inode);
  1667. struct logfs_block *block = li->li_block;
  1668. struct page *page;
  1669. /* Only deleted files may be dirty at this point */
  1670. BUG_ON(inode->i_state & I_DIRTY && inode->i_nlink);
  1671. if (!block)
  1672. return;
  1673. if ((logfs_super(sb)->s_flags & LOGFS_SB_FLAG_SHUTDOWN)) {
  1674. block->ops->free_block(inode->i_sb, block);
  1675. return;
  1676. }
  1677. BUG_ON(inode->i_ino < LOGFS_RESERVED_INOS);
  1678. page = inode_to_page(inode);
  1679. BUG_ON(!page); /* FIXME: Use emergency page */
  1680. logfs_put_write_page(page);
  1681. }
  1682. static int do_write_inode(struct inode *inode)
  1683. {
  1684. struct super_block *sb = inode->i_sb;
  1685. struct inode *master_inode = logfs_super(sb)->s_master_inode;
  1686. loff_t size = (inode->i_ino + 1) << inode->i_sb->s_blocksize_bits;
  1687. struct page *page;
  1688. int err;
  1689. BUG_ON(inode->i_ino == LOGFS_INO_MASTER);
  1690. /* FIXME: lock inode */
  1691. if (i_size_read(master_inode) < size)
  1692. i_size_write(master_inode, size);
  1693. /* TODO: Tell vfs this inode is clean now */
  1694. page = inode_to_page(inode);
  1695. if (!page)
  1696. return -ENOMEM;
  1697. /* FIXME: transaction is part of logfs_block now. Is that enough? */
  1698. err = logfs_write_buf(master_inode, page, 0);
  1699. logfs_put_write_page(page);
  1700. return err;
  1701. }
  1702. static void logfs_mod_segment_entry(struct super_block *sb, u32 segno,
  1703. int write,
  1704. void (*change_se)(struct logfs_segment_entry *, long),
  1705. long arg)
  1706. {
  1707. struct logfs_super *super = logfs_super(sb);
  1708. struct inode *inode;
  1709. struct page *page;
  1710. struct logfs_segment_entry *se;
  1711. pgoff_t page_no;
  1712. int child_no;
  1713. page_no = segno >> (sb->s_blocksize_bits - 3);
  1714. child_no = segno & ((sb->s_blocksize >> 3) - 1);
  1715. inode = super->s_segfile_inode;
  1716. page = logfs_get_write_page(inode, page_no, 0);
  1717. BUG_ON(!page); /* FIXME: We need some reserve page for this case */
  1718. if (!PageUptodate(page))
  1719. logfs_read_block(inode, page, WRITE);
  1720. if (write)
  1721. alloc_indirect_block(inode, page, 0);
  1722. se = kmap_atomic(page, KM_USER0);
  1723. change_se(se + child_no, arg);
  1724. if (write) {
  1725. logfs_set_alias(sb, logfs_block(page), child_no);
  1726. BUG_ON((int)be32_to_cpu(se[child_no].valid) > super->s_segsize);
  1727. }
  1728. kunmap_atomic(se, KM_USER0);
  1729. logfs_put_write_page(page);
  1730. }
  1731. static void __get_segment_entry(struct logfs_segment_entry *se, long _target)
  1732. {
  1733. struct logfs_segment_entry *target = (void *)_target;
  1734. *target = *se;
  1735. }
  1736. void logfs_get_segment_entry(struct super_block *sb, u32 segno,
  1737. struct logfs_segment_entry *se)
  1738. {
  1739. logfs_mod_segment_entry(sb, segno, 0, __get_segment_entry, (long)se);
  1740. }
  1741. static void __set_segment_used(struct logfs_segment_entry *se, long increment)
  1742. {
  1743. u32 valid;
  1744. valid = be32_to_cpu(se->valid);
  1745. valid += increment;
  1746. se->valid = cpu_to_be32(valid);
  1747. }
  1748. void logfs_set_segment_used(struct super_block *sb, u64 ofs, int increment)
  1749. {
  1750. struct logfs_super *super = logfs_super(sb);
  1751. u32 segno = ofs >> super->s_segshift;
  1752. if (!increment)
  1753. return;
  1754. logfs_mod_segment_entry(sb, segno, 1, __set_segment_used, increment);
  1755. }
  1756. static void __set_segment_erased(struct logfs_segment_entry *se, long ec_level)
  1757. {
  1758. se->ec_level = cpu_to_be32(ec_level);
  1759. }
  1760. void logfs_set_segment_erased(struct super_block *sb, u32 segno, u32 ec,
  1761. gc_level_t gc_level)
  1762. {
  1763. u32 ec_level = ec << 4 | (__force u8)gc_level;
  1764. logfs_mod_segment_entry(sb, segno, 1, __set_segment_erased, ec_level);
  1765. }
  1766. static void __set_segment_reserved(struct logfs_segment_entry *se, long ignore)
  1767. {
  1768. se->valid = cpu_to_be32(RESERVED);
  1769. }
  1770. void logfs_set_segment_reserved(struct super_block *sb, u32 segno)
  1771. {
  1772. logfs_mod_segment_entry(sb, segno, 1, __set_segment_reserved, 0);
  1773. }
  1774. static void __set_segment_unreserved(struct logfs_segment_entry *se,
  1775. long ec_level)
  1776. {
  1777. se->valid = 0;
  1778. se->ec_level = cpu_to_be32(ec_level);
  1779. }
  1780. void logfs_set_segment_unreserved(struct super_block *sb, u32 segno, u32 ec)
  1781. {
  1782. u32 ec_level = ec << 4;
  1783. logfs_mod_segment_entry(sb, segno, 1, __set_segment_unreserved,
  1784. ec_level);
  1785. }
  1786. int __logfs_write_inode(struct inode *inode, long flags)
  1787. {
  1788. struct super_block *sb = inode->i_sb;
  1789. int ret;
  1790. logfs_get_wblocks(sb, NULL, flags & WF_LOCK);
  1791. ret = do_write_inode(inode);
  1792. logfs_put_wblocks(sb, NULL, flags & WF_LOCK);
  1793. return ret;
  1794. }
  1795. static int do_delete_inode(struct inode *inode)
  1796. {
  1797. struct super_block *sb = inode->i_sb;
  1798. struct inode *master_inode = logfs_super(sb)->s_master_inode;
  1799. struct page *page;
  1800. int ret;
  1801. page = logfs_get_write_page(master_inode, inode->i_ino, 0);
  1802. if (!page)
  1803. return -ENOMEM;
  1804. move_inode_to_page(page, inode);
  1805. logfs_get_wblocks(sb, page, 1);
  1806. ret = __logfs_delete(master_inode, page);
  1807. logfs_put_wblocks(sb, page, 1);
  1808. logfs_put_write_page(page);
  1809. return ret;
  1810. }
  1811. /*
  1812. * ZOMBIE inodes have already been deleted before and should remain dead,
  1813. * if it weren't for valid checking. No need to kill them again here.
  1814. */
  1815. void logfs_delete_inode(struct inode *inode)
  1816. {
  1817. struct logfs_inode *li = logfs_inode(inode);
  1818. if (!(li->li_flags & LOGFS_IF_ZOMBIE)) {
  1819. li->li_flags |= LOGFS_IF_ZOMBIE;
  1820. if (i_size_read(inode) > 0)
  1821. logfs_truncate(inode, 0);
  1822. do_delete_inode(inode);
  1823. }
  1824. truncate_inode_pages(&inode->i_data, 0);
  1825. clear_inode(inode);
  1826. }
  1827. void btree_write_block(struct logfs_block *block)
  1828. {
  1829. struct inode *inode;
  1830. struct page *page;
  1831. int err, cookie;
  1832. inode = logfs_safe_iget(block->sb, block->ino, &cookie);
  1833. page = logfs_get_write_page(inode, block->bix, block->level);
  1834. err = logfs_readpage_nolock(page);
  1835. BUG_ON(err);
  1836. BUG_ON(!PagePrivate(page));
  1837. BUG_ON(logfs_block(page) != block);
  1838. err = __logfs_write_buf(inode, page, 0);
  1839. BUG_ON(err);
  1840. BUG_ON(PagePrivate(page) || page->private);
  1841. logfs_put_write_page(page);
  1842. logfs_safe_iput(inode, cookie);
  1843. }
  1844. /**
  1845. * logfs_inode_write - write inode or dentry objects
  1846. *
  1847. * @inode: parent inode (ifile or directory)
  1848. * @buf: object to write (inode or dentry)
  1849. * @n: object size
  1850. * @_pos: object number (file position in blocks/objects)
  1851. * @flags: write flags
  1852. * @lock: 0 if write lock is already taken, 1 otherwise
  1853. * @shadow_tree: shadow below this inode
  1854. *
  1855. * FIXME: All caller of this put a 200-300 byte variable on the stack,
  1856. * only to call here and do a memcpy from that stack variable. A good
  1857. * example of wasted performance and stack space.
  1858. */
  1859. int logfs_inode_write(struct inode *inode, const void *buf, size_t count,
  1860. loff_t bix, long flags, struct shadow_tree *shadow_tree)
  1861. {
  1862. loff_t pos = bix << inode->i_sb->s_blocksize_bits;
  1863. int err;
  1864. struct page *page;
  1865. void *pagebuf;
  1866. BUG_ON(pos & (LOGFS_BLOCKSIZE-1));
  1867. BUG_ON(count > LOGFS_BLOCKSIZE);
  1868. page = logfs_get_write_page(inode, bix, 0);
  1869. if (!page)
  1870. return -ENOMEM;
  1871. pagebuf = kmap_atomic(page, KM_USER0);
  1872. memcpy(pagebuf, buf, count);
  1873. flush_dcache_page(page);
  1874. kunmap_atomic(pagebuf, KM_USER0);
  1875. if (i_size_read(inode) < pos + LOGFS_BLOCKSIZE)
  1876. i_size_write(inode, pos + LOGFS_BLOCKSIZE);
  1877. err = logfs_write_buf(inode, page, flags);
  1878. logfs_put_write_page(page);
  1879. return err;
  1880. }
  1881. int logfs_open_segfile(struct super_block *sb)
  1882. {
  1883. struct logfs_super *super = logfs_super(sb);
  1884. struct inode *inode;
  1885. inode = logfs_read_meta_inode(sb, LOGFS_INO_SEGFILE);
  1886. if (IS_ERR(inode))
  1887. return PTR_ERR(inode);
  1888. super->s_segfile_inode = inode;
  1889. return 0;
  1890. }
  1891. int logfs_init_rw(struct super_block *sb)
  1892. {
  1893. struct logfs_super *super = logfs_super(sb);
  1894. int min_fill = 3 * super->s_no_blocks;
  1895. INIT_LIST_HEAD(&super->s_object_alias);
  1896. mutex_init(&super->s_write_mutex);
  1897. super->s_block_pool = mempool_create_kmalloc_pool(min_fill,
  1898. sizeof(struct logfs_block));
  1899. super->s_shadow_pool = mempool_create_kmalloc_pool(min_fill,
  1900. sizeof(struct logfs_shadow));
  1901. return 0;
  1902. }
  1903. void logfs_cleanup_rw(struct super_block *sb)
  1904. {
  1905. struct logfs_super *super = logfs_super(sb);
  1906. destroy_meta_inode(super->s_segfile_inode);
  1907. logfs_mempool_destroy(super->s_block_pool);
  1908. logfs_mempool_destroy(super->s_shadow_pool);
  1909. }