page-writeback.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <trace/events/writeback.h>
  37. /*
  38. * Sleep at most 200ms at a time in balance_dirty_pages().
  39. */
  40. #define MAX_PAUSE max(HZ/5, 1)
  41. /*
  42. * Estimate write bandwidth at 200ms intervals.
  43. */
  44. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  45. #define RATELIMIT_CALC_SHIFT 10
  46. /*
  47. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  48. * will look to see if it needs to force writeback or throttling.
  49. */
  50. static long ratelimit_pages = 32;
  51. /* The following parameters are exported via /proc/sys/vm */
  52. /*
  53. * Start background writeback (via writeback threads) at this percentage
  54. */
  55. int dirty_background_ratio = 10;
  56. /*
  57. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  58. * dirty_background_ratio * the amount of dirtyable memory
  59. */
  60. unsigned long dirty_background_bytes;
  61. /*
  62. * free highmem will not be subtracted from the total free memory
  63. * for calculating free ratios if vm_highmem_is_dirtyable is true
  64. */
  65. int vm_highmem_is_dirtyable;
  66. /*
  67. * The generator of dirty data starts writeback at this percentage
  68. */
  69. int vm_dirty_ratio = 20;
  70. /*
  71. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  72. * vm_dirty_ratio * the amount of dirtyable memory
  73. */
  74. unsigned long vm_dirty_bytes;
  75. /*
  76. * The interval between `kupdate'-style writebacks
  77. */
  78. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  79. /*
  80. * The longest time for which data is allowed to remain dirty
  81. */
  82. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  83. /*
  84. * Flag that makes the machine dump writes/reads and block dirtyings.
  85. */
  86. int block_dump;
  87. /*
  88. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  89. * a full sync is triggered after this time elapses without any disk activity.
  90. */
  91. int laptop_mode;
  92. EXPORT_SYMBOL(laptop_mode);
  93. /* End of sysctl-exported parameters */
  94. unsigned long global_dirty_limit;
  95. /*
  96. * Scale the writeback cache size proportional to the relative writeout speeds.
  97. *
  98. * We do this by keeping a floating proportion between BDIs, based on page
  99. * writeback completions [end_page_writeback()]. Those devices that write out
  100. * pages fastest will get the larger share, while the slower will get a smaller
  101. * share.
  102. *
  103. * We use page writeout completions because we are interested in getting rid of
  104. * dirty pages. Having them written out is the primary goal.
  105. *
  106. * We introduce a concept of time, a period over which we measure these events,
  107. * because demand can/will vary over time. The length of this period itself is
  108. * measured in page writeback completions.
  109. *
  110. */
  111. static struct prop_descriptor vm_completions;
  112. /*
  113. * Work out the current dirty-memory clamping and background writeout
  114. * thresholds.
  115. *
  116. * The main aim here is to lower them aggressively if there is a lot of mapped
  117. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  118. * pages. It is better to clamp down on writers than to start swapping, and
  119. * performing lots of scanning.
  120. *
  121. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  122. *
  123. * We don't permit the clamping level to fall below 5% - that is getting rather
  124. * excessive.
  125. *
  126. * We make sure that the background writeout level is below the adjusted
  127. * clamping level.
  128. */
  129. static unsigned long highmem_dirtyable_memory(unsigned long total)
  130. {
  131. #ifdef CONFIG_HIGHMEM
  132. int node;
  133. unsigned long x = 0;
  134. for_each_node_state(node, N_HIGH_MEMORY) {
  135. struct zone *z =
  136. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  137. x += zone_page_state(z, NR_FREE_PAGES) +
  138. zone_reclaimable_pages(z);
  139. }
  140. /*
  141. * Make sure that the number of highmem pages is never larger
  142. * than the number of the total dirtyable memory. This can only
  143. * occur in very strange VM situations but we want to make sure
  144. * that this does not occur.
  145. */
  146. return min(x, total);
  147. #else
  148. return 0;
  149. #endif
  150. }
  151. /**
  152. * determine_dirtyable_memory - amount of memory that may be used
  153. *
  154. * Returns the numebr of pages that can currently be freed and used
  155. * by the kernel for direct mappings.
  156. */
  157. static unsigned long determine_dirtyable_memory(void)
  158. {
  159. unsigned long x;
  160. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  161. if (!vm_highmem_is_dirtyable)
  162. x -= highmem_dirtyable_memory(x);
  163. return x + 1; /* Ensure that we never return 0 */
  164. }
  165. /*
  166. * couple the period to the dirty_ratio:
  167. *
  168. * period/2 ~ roundup_pow_of_two(dirty limit)
  169. */
  170. static int calc_period_shift(void)
  171. {
  172. unsigned long dirty_total;
  173. if (vm_dirty_bytes)
  174. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  175. else
  176. dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
  177. 100;
  178. return 2 + ilog2(dirty_total - 1);
  179. }
  180. /*
  181. * update the period when the dirty threshold changes.
  182. */
  183. static void update_completion_period(void)
  184. {
  185. int shift = calc_period_shift();
  186. prop_change_shift(&vm_completions, shift);
  187. writeback_set_ratelimit();
  188. }
  189. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  190. void __user *buffer, size_t *lenp,
  191. loff_t *ppos)
  192. {
  193. int ret;
  194. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  195. if (ret == 0 && write)
  196. dirty_background_bytes = 0;
  197. return ret;
  198. }
  199. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  200. void __user *buffer, size_t *lenp,
  201. loff_t *ppos)
  202. {
  203. int ret;
  204. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  205. if (ret == 0 && write)
  206. dirty_background_ratio = 0;
  207. return ret;
  208. }
  209. int dirty_ratio_handler(struct ctl_table *table, int write,
  210. void __user *buffer, size_t *lenp,
  211. loff_t *ppos)
  212. {
  213. int old_ratio = vm_dirty_ratio;
  214. int ret;
  215. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  216. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  217. update_completion_period();
  218. vm_dirty_bytes = 0;
  219. }
  220. return ret;
  221. }
  222. int dirty_bytes_handler(struct ctl_table *table, int write,
  223. void __user *buffer, size_t *lenp,
  224. loff_t *ppos)
  225. {
  226. unsigned long old_bytes = vm_dirty_bytes;
  227. int ret;
  228. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  229. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  230. update_completion_period();
  231. vm_dirty_ratio = 0;
  232. }
  233. return ret;
  234. }
  235. /*
  236. * Increment the BDI's writeout completion count and the global writeout
  237. * completion count. Called from test_clear_page_writeback().
  238. */
  239. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  240. {
  241. __inc_bdi_stat(bdi, BDI_WRITTEN);
  242. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  243. bdi->max_prop_frac);
  244. }
  245. void bdi_writeout_inc(struct backing_dev_info *bdi)
  246. {
  247. unsigned long flags;
  248. local_irq_save(flags);
  249. __bdi_writeout_inc(bdi);
  250. local_irq_restore(flags);
  251. }
  252. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  253. /*
  254. * Obtain an accurate fraction of the BDI's portion.
  255. */
  256. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  257. long *numerator, long *denominator)
  258. {
  259. prop_fraction_percpu(&vm_completions, &bdi->completions,
  260. numerator, denominator);
  261. }
  262. /*
  263. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  264. * registered backing devices, which, for obvious reasons, can not
  265. * exceed 100%.
  266. */
  267. static unsigned int bdi_min_ratio;
  268. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  269. {
  270. int ret = 0;
  271. spin_lock_bh(&bdi_lock);
  272. if (min_ratio > bdi->max_ratio) {
  273. ret = -EINVAL;
  274. } else {
  275. min_ratio -= bdi->min_ratio;
  276. if (bdi_min_ratio + min_ratio < 100) {
  277. bdi_min_ratio += min_ratio;
  278. bdi->min_ratio += min_ratio;
  279. } else {
  280. ret = -EINVAL;
  281. }
  282. }
  283. spin_unlock_bh(&bdi_lock);
  284. return ret;
  285. }
  286. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  287. {
  288. int ret = 0;
  289. if (max_ratio > 100)
  290. return -EINVAL;
  291. spin_lock_bh(&bdi_lock);
  292. if (bdi->min_ratio > max_ratio) {
  293. ret = -EINVAL;
  294. } else {
  295. bdi->max_ratio = max_ratio;
  296. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  297. }
  298. spin_unlock_bh(&bdi_lock);
  299. return ret;
  300. }
  301. EXPORT_SYMBOL(bdi_set_max_ratio);
  302. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  303. unsigned long bg_thresh)
  304. {
  305. return (thresh + bg_thresh) / 2;
  306. }
  307. static unsigned long hard_dirty_limit(unsigned long thresh)
  308. {
  309. return max(thresh, global_dirty_limit);
  310. }
  311. /*
  312. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  313. *
  314. * Calculate the dirty thresholds based on sysctl parameters
  315. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  316. * - vm.dirty_ratio or vm.dirty_bytes
  317. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  318. * real-time tasks.
  319. */
  320. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  321. {
  322. unsigned long background;
  323. unsigned long dirty;
  324. unsigned long uninitialized_var(available_memory);
  325. struct task_struct *tsk;
  326. if (!vm_dirty_bytes || !dirty_background_bytes)
  327. available_memory = determine_dirtyable_memory();
  328. if (vm_dirty_bytes)
  329. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  330. else
  331. dirty = (vm_dirty_ratio * available_memory) / 100;
  332. if (dirty_background_bytes)
  333. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  334. else
  335. background = (dirty_background_ratio * available_memory) / 100;
  336. if (background >= dirty)
  337. background = dirty / 2;
  338. tsk = current;
  339. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  340. background += background / 4;
  341. dirty += dirty / 4;
  342. }
  343. *pbackground = background;
  344. *pdirty = dirty;
  345. trace_global_dirty_state(background, dirty);
  346. }
  347. /**
  348. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  349. * @bdi: the backing_dev_info to query
  350. * @dirty: global dirty limit in pages
  351. *
  352. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  353. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  354. *
  355. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  356. * when sleeping max_pause per page is not enough to keep the dirty pages under
  357. * control. For example, when the device is completely stalled due to some error
  358. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  359. * In the other normal situations, it acts more gently by throttling the tasks
  360. * more (rather than completely block them) when the bdi dirty pages go high.
  361. *
  362. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  363. * - starving fast devices
  364. * - piling up dirty pages (that will take long time to sync) on slow devices
  365. *
  366. * The bdi's share of dirty limit will be adapting to its throughput and
  367. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  368. */
  369. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  370. {
  371. u64 bdi_dirty;
  372. long numerator, denominator;
  373. /*
  374. * Calculate this BDI's share of the dirty ratio.
  375. */
  376. bdi_writeout_fraction(bdi, &numerator, &denominator);
  377. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  378. bdi_dirty *= numerator;
  379. do_div(bdi_dirty, denominator);
  380. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  381. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  382. bdi_dirty = dirty * bdi->max_ratio / 100;
  383. return bdi_dirty;
  384. }
  385. /*
  386. * Dirty position control.
  387. *
  388. * (o) global/bdi setpoints
  389. *
  390. * We want the dirty pages be balanced around the global/bdi setpoints.
  391. * When the number of dirty pages is higher/lower than the setpoint, the
  392. * dirty position control ratio (and hence task dirty ratelimit) will be
  393. * decreased/increased to bring the dirty pages back to the setpoint.
  394. *
  395. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  396. *
  397. * if (dirty < setpoint) scale up pos_ratio
  398. * if (dirty > setpoint) scale down pos_ratio
  399. *
  400. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  401. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  402. *
  403. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  404. *
  405. * (o) global control line
  406. *
  407. * ^ pos_ratio
  408. * |
  409. * | |<===== global dirty control scope ======>|
  410. * 2.0 .............*
  411. * | .*
  412. * | . *
  413. * | . *
  414. * | . *
  415. * | . *
  416. * | . *
  417. * 1.0 ................................*
  418. * | . . *
  419. * | . . *
  420. * | . . *
  421. * | . . *
  422. * | . . *
  423. * 0 +------------.------------------.----------------------*------------->
  424. * freerun^ setpoint^ limit^ dirty pages
  425. *
  426. * (o) bdi control line
  427. *
  428. * ^ pos_ratio
  429. * |
  430. * | *
  431. * | *
  432. * | *
  433. * | *
  434. * | * |<=========== span ============>|
  435. * 1.0 .......................*
  436. * | . *
  437. * | . *
  438. * | . *
  439. * | . *
  440. * | . *
  441. * | . *
  442. * | . *
  443. * | . *
  444. * | . *
  445. * | . *
  446. * | . *
  447. * 1/4 ...............................................* * * * * * * * * * * *
  448. * | . .
  449. * | . .
  450. * | . .
  451. * 0 +----------------------.-------------------------------.------------->
  452. * bdi_setpoint^ x_intercept^
  453. *
  454. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  455. * be smoothly throttled down to normal if it starts high in situations like
  456. * - start writing to a slow SD card and a fast disk at the same time. The SD
  457. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  458. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  459. */
  460. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  461. unsigned long thresh,
  462. unsigned long bg_thresh,
  463. unsigned long dirty,
  464. unsigned long bdi_thresh,
  465. unsigned long bdi_dirty)
  466. {
  467. unsigned long write_bw = bdi->avg_write_bandwidth;
  468. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  469. unsigned long limit = hard_dirty_limit(thresh);
  470. unsigned long x_intercept;
  471. unsigned long setpoint; /* dirty pages' target balance point */
  472. unsigned long bdi_setpoint;
  473. unsigned long span;
  474. long long pos_ratio; /* for scaling up/down the rate limit */
  475. long x;
  476. if (unlikely(dirty >= limit))
  477. return 0;
  478. /*
  479. * global setpoint
  480. *
  481. * setpoint - dirty 3
  482. * f(dirty) := 1.0 + (----------------)
  483. * limit - setpoint
  484. *
  485. * it's a 3rd order polynomial that subjects to
  486. *
  487. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  488. * (2) f(setpoint) = 1.0 => the balance point
  489. * (3) f(limit) = 0 => the hard limit
  490. * (4) df/dx <= 0 => negative feedback control
  491. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  492. * => fast response on large errors; small oscillation near setpoint
  493. */
  494. setpoint = (freerun + limit) / 2;
  495. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  496. limit - setpoint + 1);
  497. pos_ratio = x;
  498. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  499. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  500. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  501. /*
  502. * We have computed basic pos_ratio above based on global situation. If
  503. * the bdi is over/under its share of dirty pages, we want to scale
  504. * pos_ratio further down/up. That is done by the following mechanism.
  505. */
  506. /*
  507. * bdi setpoint
  508. *
  509. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  510. *
  511. * x_intercept - bdi_dirty
  512. * := --------------------------
  513. * x_intercept - bdi_setpoint
  514. *
  515. * The main bdi control line is a linear function that subjects to
  516. *
  517. * (1) f(bdi_setpoint) = 1.0
  518. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  519. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  520. *
  521. * For single bdi case, the dirty pages are observed to fluctuate
  522. * regularly within range
  523. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  524. * for various filesystems, where (2) can yield in a reasonable 12.5%
  525. * fluctuation range for pos_ratio.
  526. *
  527. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  528. * own size, so move the slope over accordingly and choose a slope that
  529. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  530. */
  531. if (unlikely(bdi_thresh > thresh))
  532. bdi_thresh = thresh;
  533. /*
  534. * It's very possible that bdi_thresh is close to 0 not because the
  535. * device is slow, but that it has remained inactive for long time.
  536. * Honour such devices a reasonable good (hopefully IO efficient)
  537. * threshold, so that the occasional writes won't be blocked and active
  538. * writes can rampup the threshold quickly.
  539. */
  540. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  541. /*
  542. * scale global setpoint to bdi's:
  543. * bdi_setpoint = setpoint * bdi_thresh / thresh
  544. */
  545. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  546. bdi_setpoint = setpoint * (u64)x >> 16;
  547. /*
  548. * Use span=(8*write_bw) in single bdi case as indicated by
  549. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  550. *
  551. * bdi_thresh thresh - bdi_thresh
  552. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  553. * thresh thresh
  554. */
  555. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  556. x_intercept = bdi_setpoint + span;
  557. if (bdi_dirty < x_intercept - span / 4) {
  558. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  559. x_intercept - bdi_setpoint + 1);
  560. } else
  561. pos_ratio /= 4;
  562. /*
  563. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  564. * It may push the desired control point of global dirty pages higher
  565. * than setpoint.
  566. */
  567. x_intercept = bdi_thresh / 2;
  568. if (bdi_dirty < x_intercept) {
  569. if (bdi_dirty > x_intercept / 8)
  570. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  571. else
  572. pos_ratio *= 8;
  573. }
  574. return pos_ratio;
  575. }
  576. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  577. unsigned long elapsed,
  578. unsigned long written)
  579. {
  580. const unsigned long period = roundup_pow_of_two(3 * HZ);
  581. unsigned long avg = bdi->avg_write_bandwidth;
  582. unsigned long old = bdi->write_bandwidth;
  583. u64 bw;
  584. /*
  585. * bw = written * HZ / elapsed
  586. *
  587. * bw * elapsed + write_bandwidth * (period - elapsed)
  588. * write_bandwidth = ---------------------------------------------------
  589. * period
  590. */
  591. bw = written - bdi->written_stamp;
  592. bw *= HZ;
  593. if (unlikely(elapsed > period)) {
  594. do_div(bw, elapsed);
  595. avg = bw;
  596. goto out;
  597. }
  598. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  599. bw >>= ilog2(period);
  600. /*
  601. * one more level of smoothing, for filtering out sudden spikes
  602. */
  603. if (avg > old && old >= (unsigned long)bw)
  604. avg -= (avg - old) >> 3;
  605. if (avg < old && old <= (unsigned long)bw)
  606. avg += (old - avg) >> 3;
  607. out:
  608. bdi->write_bandwidth = bw;
  609. bdi->avg_write_bandwidth = avg;
  610. }
  611. /*
  612. * The global dirtyable memory and dirty threshold could be suddenly knocked
  613. * down by a large amount (eg. on the startup of KVM in a swapless system).
  614. * This may throw the system into deep dirty exceeded state and throttle
  615. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  616. * global_dirty_limit for tracking slowly down to the knocked down dirty
  617. * threshold.
  618. */
  619. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  620. {
  621. unsigned long limit = global_dirty_limit;
  622. /*
  623. * Follow up in one step.
  624. */
  625. if (limit < thresh) {
  626. limit = thresh;
  627. goto update;
  628. }
  629. /*
  630. * Follow down slowly. Use the higher one as the target, because thresh
  631. * may drop below dirty. This is exactly the reason to introduce
  632. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  633. */
  634. thresh = max(thresh, dirty);
  635. if (limit > thresh) {
  636. limit -= (limit - thresh) >> 5;
  637. goto update;
  638. }
  639. return;
  640. update:
  641. global_dirty_limit = limit;
  642. }
  643. static void global_update_bandwidth(unsigned long thresh,
  644. unsigned long dirty,
  645. unsigned long now)
  646. {
  647. static DEFINE_SPINLOCK(dirty_lock);
  648. static unsigned long update_time;
  649. /*
  650. * check locklessly first to optimize away locking for the most time
  651. */
  652. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  653. return;
  654. spin_lock(&dirty_lock);
  655. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  656. update_dirty_limit(thresh, dirty);
  657. update_time = now;
  658. }
  659. spin_unlock(&dirty_lock);
  660. }
  661. /*
  662. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  663. *
  664. * Normal bdi tasks will be curbed at or below it in long term.
  665. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  666. */
  667. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  668. unsigned long thresh,
  669. unsigned long bg_thresh,
  670. unsigned long dirty,
  671. unsigned long bdi_thresh,
  672. unsigned long bdi_dirty,
  673. unsigned long dirtied,
  674. unsigned long elapsed)
  675. {
  676. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  677. unsigned long limit = hard_dirty_limit(thresh);
  678. unsigned long setpoint = (freerun + limit) / 2;
  679. unsigned long write_bw = bdi->avg_write_bandwidth;
  680. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  681. unsigned long dirty_rate;
  682. unsigned long task_ratelimit;
  683. unsigned long balanced_dirty_ratelimit;
  684. unsigned long pos_ratio;
  685. unsigned long step;
  686. unsigned long x;
  687. /*
  688. * The dirty rate will match the writeout rate in long term, except
  689. * when dirty pages are truncated by userspace or re-dirtied by FS.
  690. */
  691. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  692. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  693. bdi_thresh, bdi_dirty);
  694. /*
  695. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  696. */
  697. task_ratelimit = (u64)dirty_ratelimit *
  698. pos_ratio >> RATELIMIT_CALC_SHIFT;
  699. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  700. /*
  701. * A linear estimation of the "balanced" throttle rate. The theory is,
  702. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  703. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  704. * formula will yield the balanced rate limit (write_bw / N).
  705. *
  706. * Note that the expanded form is not a pure rate feedback:
  707. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  708. * but also takes pos_ratio into account:
  709. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  710. *
  711. * (1) is not realistic because pos_ratio also takes part in balancing
  712. * the dirty rate. Consider the state
  713. * pos_ratio = 0.5 (3)
  714. * rate = 2 * (write_bw / N) (4)
  715. * If (1) is used, it will stuck in that state! Because each dd will
  716. * be throttled at
  717. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  718. * yielding
  719. * dirty_rate = N * task_ratelimit = write_bw (6)
  720. * put (6) into (1) we get
  721. * rate_(i+1) = rate_(i) (7)
  722. *
  723. * So we end up using (2) to always keep
  724. * rate_(i+1) ~= (write_bw / N) (8)
  725. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  726. * pos_ratio is able to drive itself to 1.0, which is not only where
  727. * the dirty count meet the setpoint, but also where the slope of
  728. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  729. */
  730. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  731. dirty_rate | 1);
  732. /*
  733. * We could safely do this and return immediately:
  734. *
  735. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  736. *
  737. * However to get a more stable dirty_ratelimit, the below elaborated
  738. * code makes use of task_ratelimit to filter out sigular points and
  739. * limit the step size.
  740. *
  741. * The below code essentially only uses the relative value of
  742. *
  743. * task_ratelimit - dirty_ratelimit
  744. * = (pos_ratio - 1) * dirty_ratelimit
  745. *
  746. * which reflects the direction and size of dirty position error.
  747. */
  748. /*
  749. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  750. * task_ratelimit is on the same side of dirty_ratelimit, too.
  751. * For example, when
  752. * - dirty_ratelimit > balanced_dirty_ratelimit
  753. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  754. * lowering dirty_ratelimit will help meet both the position and rate
  755. * control targets. Otherwise, don't update dirty_ratelimit if it will
  756. * only help meet the rate target. After all, what the users ultimately
  757. * feel and care are stable dirty rate and small position error.
  758. *
  759. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  760. * and filter out the sigular points of balanced_dirty_ratelimit. Which
  761. * keeps jumping around randomly and can even leap far away at times
  762. * due to the small 200ms estimation period of dirty_rate (we want to
  763. * keep that period small to reduce time lags).
  764. */
  765. step = 0;
  766. if (dirty < setpoint) {
  767. x = min(bdi->balanced_dirty_ratelimit,
  768. min(balanced_dirty_ratelimit, task_ratelimit));
  769. if (dirty_ratelimit < x)
  770. step = x - dirty_ratelimit;
  771. } else {
  772. x = max(bdi->balanced_dirty_ratelimit,
  773. max(balanced_dirty_ratelimit, task_ratelimit));
  774. if (dirty_ratelimit > x)
  775. step = dirty_ratelimit - x;
  776. }
  777. /*
  778. * Don't pursue 100% rate matching. It's impossible since the balanced
  779. * rate itself is constantly fluctuating. So decrease the track speed
  780. * when it gets close to the target. Helps eliminate pointless tremors.
  781. */
  782. step >>= dirty_ratelimit / (2 * step + 1);
  783. /*
  784. * Limit the tracking speed to avoid overshooting.
  785. */
  786. step = (step + 7) / 8;
  787. if (dirty_ratelimit < balanced_dirty_ratelimit)
  788. dirty_ratelimit += step;
  789. else
  790. dirty_ratelimit -= step;
  791. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  792. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  793. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  794. }
  795. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  796. unsigned long thresh,
  797. unsigned long bg_thresh,
  798. unsigned long dirty,
  799. unsigned long bdi_thresh,
  800. unsigned long bdi_dirty,
  801. unsigned long start_time)
  802. {
  803. unsigned long now = jiffies;
  804. unsigned long elapsed = now - bdi->bw_time_stamp;
  805. unsigned long dirtied;
  806. unsigned long written;
  807. /*
  808. * rate-limit, only update once every 200ms.
  809. */
  810. if (elapsed < BANDWIDTH_INTERVAL)
  811. return;
  812. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  813. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  814. /*
  815. * Skip quiet periods when disk bandwidth is under-utilized.
  816. * (at least 1s idle time between two flusher runs)
  817. */
  818. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  819. goto snapshot;
  820. if (thresh) {
  821. global_update_bandwidth(thresh, dirty, now);
  822. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  823. bdi_thresh, bdi_dirty,
  824. dirtied, elapsed);
  825. }
  826. bdi_update_write_bandwidth(bdi, elapsed, written);
  827. snapshot:
  828. bdi->dirtied_stamp = dirtied;
  829. bdi->written_stamp = written;
  830. bdi->bw_time_stamp = now;
  831. }
  832. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  833. unsigned long thresh,
  834. unsigned long bg_thresh,
  835. unsigned long dirty,
  836. unsigned long bdi_thresh,
  837. unsigned long bdi_dirty,
  838. unsigned long start_time)
  839. {
  840. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  841. return;
  842. spin_lock(&bdi->wb.list_lock);
  843. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  844. bdi_thresh, bdi_dirty, start_time);
  845. spin_unlock(&bdi->wb.list_lock);
  846. }
  847. /*
  848. * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
  849. * will look to see if it needs to start dirty throttling.
  850. *
  851. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  852. * global_page_state() too often. So scale it near-sqrt to the safety margin
  853. * (the number of pages we may dirty without exceeding the dirty limits).
  854. */
  855. static unsigned long dirty_poll_interval(unsigned long dirty,
  856. unsigned long thresh)
  857. {
  858. if (thresh > dirty)
  859. return 1UL << (ilog2(thresh - dirty) >> 1);
  860. return 1;
  861. }
  862. static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
  863. unsigned long bdi_dirty)
  864. {
  865. unsigned long bw = bdi->avg_write_bandwidth;
  866. unsigned long hi = ilog2(bw);
  867. unsigned long lo = ilog2(bdi->dirty_ratelimit);
  868. unsigned long t;
  869. /* target for 20ms max pause on 1-dd case */
  870. t = HZ / 50;
  871. /*
  872. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  873. * overheads.
  874. *
  875. * (N * 20ms) on 2^N concurrent tasks.
  876. */
  877. if (hi > lo)
  878. t += (hi - lo) * (20 * HZ) / 1024;
  879. /*
  880. * Limit pause time for small memory systems. If sleeping for too long
  881. * time, a small pool of dirty/writeback pages may go empty and disk go
  882. * idle.
  883. *
  884. * 8 serves as the safety ratio.
  885. */
  886. t = min(t, bdi_dirty * HZ / (8 * bw + 1));
  887. /*
  888. * The pause time will be settled within range (max_pause/4, max_pause).
  889. * Apply a minimal value of 4 to get a non-zero max_pause/4.
  890. */
  891. return clamp_val(t, 4, MAX_PAUSE);
  892. }
  893. /*
  894. * balance_dirty_pages() must be called by processes which are generating dirty
  895. * data. It looks at the number of dirty pages in the machine and will force
  896. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  897. * If we're over `background_thresh' then the writeback threads are woken to
  898. * perform some writeout.
  899. */
  900. static void balance_dirty_pages(struct address_space *mapping,
  901. unsigned long pages_dirtied)
  902. {
  903. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  904. unsigned long bdi_reclaimable;
  905. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  906. unsigned long bdi_dirty;
  907. unsigned long freerun;
  908. unsigned long background_thresh;
  909. unsigned long dirty_thresh;
  910. unsigned long bdi_thresh;
  911. long pause = 0;
  912. long uninitialized_var(max_pause);
  913. bool dirty_exceeded = false;
  914. unsigned long task_ratelimit;
  915. unsigned long uninitialized_var(dirty_ratelimit);
  916. unsigned long pos_ratio;
  917. struct backing_dev_info *bdi = mapping->backing_dev_info;
  918. unsigned long start_time = jiffies;
  919. for (;;) {
  920. /*
  921. * Unstable writes are a feature of certain networked
  922. * filesystems (i.e. NFS) in which data may have been
  923. * written to the server's write cache, but has not yet
  924. * been flushed to permanent storage.
  925. */
  926. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  927. global_page_state(NR_UNSTABLE_NFS);
  928. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  929. global_dirty_limits(&background_thresh, &dirty_thresh);
  930. /*
  931. * Throttle it only when the background writeback cannot
  932. * catch-up. This avoids (excessively) small writeouts
  933. * when the bdi limits are ramping up.
  934. */
  935. freerun = dirty_freerun_ceiling(dirty_thresh,
  936. background_thresh);
  937. if (nr_dirty <= freerun)
  938. break;
  939. if (unlikely(!writeback_in_progress(bdi)))
  940. bdi_start_background_writeback(bdi);
  941. /*
  942. * bdi_thresh is not treated as some limiting factor as
  943. * dirty_thresh, due to reasons
  944. * - in JBOD setup, bdi_thresh can fluctuate a lot
  945. * - in a system with HDD and USB key, the USB key may somehow
  946. * go into state (bdi_dirty >> bdi_thresh) either because
  947. * bdi_dirty starts high, or because bdi_thresh drops low.
  948. * In this case we don't want to hard throttle the USB key
  949. * dirtiers for 100 seconds until bdi_dirty drops under
  950. * bdi_thresh. Instead the auxiliary bdi control line in
  951. * bdi_position_ratio() will let the dirtier task progress
  952. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  953. */
  954. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  955. /*
  956. * In order to avoid the stacked BDI deadlock we need
  957. * to ensure we accurately count the 'dirty' pages when
  958. * the threshold is low.
  959. *
  960. * Otherwise it would be possible to get thresh+n pages
  961. * reported dirty, even though there are thresh-m pages
  962. * actually dirty; with m+n sitting in the percpu
  963. * deltas.
  964. */
  965. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  966. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  967. bdi_dirty = bdi_reclaimable +
  968. bdi_stat_sum(bdi, BDI_WRITEBACK);
  969. } else {
  970. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  971. bdi_dirty = bdi_reclaimable +
  972. bdi_stat(bdi, BDI_WRITEBACK);
  973. }
  974. dirty_exceeded = (bdi_dirty > bdi_thresh) ||
  975. (nr_dirty > dirty_thresh);
  976. if (dirty_exceeded && !bdi->dirty_exceeded)
  977. bdi->dirty_exceeded = 1;
  978. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  979. nr_dirty, bdi_thresh, bdi_dirty,
  980. start_time);
  981. max_pause = bdi_max_pause(bdi, bdi_dirty);
  982. dirty_ratelimit = bdi->dirty_ratelimit;
  983. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  984. background_thresh, nr_dirty,
  985. bdi_thresh, bdi_dirty);
  986. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  987. RATELIMIT_CALC_SHIFT;
  988. if (unlikely(task_ratelimit == 0)) {
  989. pause = max_pause;
  990. goto pause;
  991. }
  992. pause = HZ * pages_dirtied / task_ratelimit;
  993. if (unlikely(pause <= 0)) {
  994. trace_balance_dirty_pages(bdi,
  995. dirty_thresh,
  996. background_thresh,
  997. nr_dirty,
  998. bdi_thresh,
  999. bdi_dirty,
  1000. dirty_ratelimit,
  1001. task_ratelimit,
  1002. pages_dirtied,
  1003. pause,
  1004. start_time);
  1005. pause = 1; /* avoid resetting nr_dirtied_pause below */
  1006. break;
  1007. }
  1008. pause = min(pause, max_pause);
  1009. pause:
  1010. trace_balance_dirty_pages(bdi,
  1011. dirty_thresh,
  1012. background_thresh,
  1013. nr_dirty,
  1014. bdi_thresh,
  1015. bdi_dirty,
  1016. dirty_ratelimit,
  1017. task_ratelimit,
  1018. pages_dirtied,
  1019. pause,
  1020. start_time);
  1021. __set_current_state(TASK_KILLABLE);
  1022. io_schedule_timeout(pause);
  1023. /*
  1024. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1025. * also keep "1000+ dd on a slow USB stick" under control.
  1026. */
  1027. if (task_ratelimit)
  1028. break;
  1029. /*
  1030. * In the case of an unresponding NFS server and the NFS dirty
  1031. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1032. * to go through, so that tasks on them still remain responsive.
  1033. *
  1034. * In theory 1 page is enough to keep the comsumer-producer
  1035. * pipe going: the flusher cleans 1 page => the task dirties 1
  1036. * more page. However bdi_dirty has accounting errors. So use
  1037. * the larger and more IO friendly bdi_stat_error.
  1038. */
  1039. if (bdi_dirty <= bdi_stat_error(bdi))
  1040. break;
  1041. if (fatal_signal_pending(current))
  1042. break;
  1043. }
  1044. if (!dirty_exceeded && bdi->dirty_exceeded)
  1045. bdi->dirty_exceeded = 0;
  1046. current->nr_dirtied = 0;
  1047. if (pause == 0) { /* in freerun area */
  1048. current->nr_dirtied_pause =
  1049. dirty_poll_interval(nr_dirty, dirty_thresh);
  1050. } else if (pause <= max_pause / 4 &&
  1051. pages_dirtied >= current->nr_dirtied_pause) {
  1052. current->nr_dirtied_pause = clamp_val(
  1053. dirty_ratelimit * (max_pause / 2) / HZ,
  1054. pages_dirtied + pages_dirtied / 8,
  1055. pages_dirtied * 4);
  1056. } else if (pause >= max_pause) {
  1057. current->nr_dirtied_pause = 1 | clamp_val(
  1058. dirty_ratelimit * (max_pause / 2) / HZ,
  1059. pages_dirtied / 4,
  1060. pages_dirtied - pages_dirtied / 8);
  1061. }
  1062. if (writeback_in_progress(bdi))
  1063. return;
  1064. /*
  1065. * In laptop mode, we wait until hitting the higher threshold before
  1066. * starting background writeout, and then write out all the way down
  1067. * to the lower threshold. So slow writers cause minimal disk activity.
  1068. *
  1069. * In normal mode, we start background writeout at the lower
  1070. * background_thresh, to keep the amount of dirty memory low.
  1071. */
  1072. if (laptop_mode)
  1073. return;
  1074. if (nr_reclaimable > background_thresh)
  1075. bdi_start_background_writeback(bdi);
  1076. }
  1077. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1078. {
  1079. if (set_page_dirty(page) || page_mkwrite) {
  1080. struct address_space *mapping = page_mapping(page);
  1081. if (mapping)
  1082. balance_dirty_pages_ratelimited(mapping);
  1083. }
  1084. }
  1085. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1086. /**
  1087. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  1088. * @mapping: address_space which was dirtied
  1089. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  1090. *
  1091. * Processes which are dirtying memory should call in here once for each page
  1092. * which was newly dirtied. The function will periodically check the system's
  1093. * dirty state and will initiate writeback if needed.
  1094. *
  1095. * On really big machines, get_writeback_state is expensive, so try to avoid
  1096. * calling it too often (ratelimiting). But once we're over the dirty memory
  1097. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1098. * from overshooting the limit by (ratelimit_pages) each.
  1099. */
  1100. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  1101. unsigned long nr_pages_dirtied)
  1102. {
  1103. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1104. int ratelimit;
  1105. int *p;
  1106. if (!bdi_cap_account_dirty(bdi))
  1107. return;
  1108. ratelimit = current->nr_dirtied_pause;
  1109. if (bdi->dirty_exceeded)
  1110. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1111. current->nr_dirtied += nr_pages_dirtied;
  1112. preempt_disable();
  1113. /*
  1114. * This prevents one CPU to accumulate too many dirtied pages without
  1115. * calling into balance_dirty_pages(), which can happen when there are
  1116. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1117. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1118. */
  1119. p = &__get_cpu_var(bdp_ratelimits);
  1120. if (unlikely(current->nr_dirtied >= ratelimit))
  1121. *p = 0;
  1122. else {
  1123. *p += nr_pages_dirtied;
  1124. if (unlikely(*p >= ratelimit_pages)) {
  1125. *p = 0;
  1126. ratelimit = 0;
  1127. }
  1128. }
  1129. preempt_enable();
  1130. if (unlikely(current->nr_dirtied >= ratelimit))
  1131. balance_dirty_pages(mapping, current->nr_dirtied);
  1132. }
  1133. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  1134. void throttle_vm_writeout(gfp_t gfp_mask)
  1135. {
  1136. unsigned long background_thresh;
  1137. unsigned long dirty_thresh;
  1138. for ( ; ; ) {
  1139. global_dirty_limits(&background_thresh, &dirty_thresh);
  1140. /*
  1141. * Boost the allowable dirty threshold a bit for page
  1142. * allocators so they don't get DoS'ed by heavy writers
  1143. */
  1144. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1145. if (global_page_state(NR_UNSTABLE_NFS) +
  1146. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1147. break;
  1148. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1149. /*
  1150. * The caller might hold locks which can prevent IO completion
  1151. * or progress in the filesystem. So we cannot just sit here
  1152. * waiting for IO to complete.
  1153. */
  1154. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1155. break;
  1156. }
  1157. }
  1158. /*
  1159. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1160. */
  1161. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1162. void __user *buffer, size_t *length, loff_t *ppos)
  1163. {
  1164. proc_dointvec(table, write, buffer, length, ppos);
  1165. bdi_arm_supers_timer();
  1166. return 0;
  1167. }
  1168. #ifdef CONFIG_BLOCK
  1169. void laptop_mode_timer_fn(unsigned long data)
  1170. {
  1171. struct request_queue *q = (struct request_queue *)data;
  1172. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1173. global_page_state(NR_UNSTABLE_NFS);
  1174. /*
  1175. * We want to write everything out, not just down to the dirty
  1176. * threshold
  1177. */
  1178. if (bdi_has_dirty_io(&q->backing_dev_info))
  1179. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1180. WB_REASON_LAPTOP_TIMER);
  1181. }
  1182. /*
  1183. * We've spun up the disk and we're in laptop mode: schedule writeback
  1184. * of all dirty data a few seconds from now. If the flush is already scheduled
  1185. * then push it back - the user is still using the disk.
  1186. */
  1187. void laptop_io_completion(struct backing_dev_info *info)
  1188. {
  1189. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1190. }
  1191. /*
  1192. * We're in laptop mode and we've just synced. The sync's writes will have
  1193. * caused another writeback to be scheduled by laptop_io_completion.
  1194. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1195. */
  1196. void laptop_sync_completion(void)
  1197. {
  1198. struct backing_dev_info *bdi;
  1199. rcu_read_lock();
  1200. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1201. del_timer(&bdi->laptop_mode_wb_timer);
  1202. rcu_read_unlock();
  1203. }
  1204. #endif
  1205. /*
  1206. * If ratelimit_pages is too high then we can get into dirty-data overload
  1207. * if a large number of processes all perform writes at the same time.
  1208. * If it is too low then SMP machines will call the (expensive)
  1209. * get_writeback_state too often.
  1210. *
  1211. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1212. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1213. * thresholds.
  1214. */
  1215. void writeback_set_ratelimit(void)
  1216. {
  1217. unsigned long background_thresh;
  1218. unsigned long dirty_thresh;
  1219. global_dirty_limits(&background_thresh, &dirty_thresh);
  1220. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1221. if (ratelimit_pages < 16)
  1222. ratelimit_pages = 16;
  1223. }
  1224. static int __cpuinit
  1225. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  1226. {
  1227. writeback_set_ratelimit();
  1228. return NOTIFY_DONE;
  1229. }
  1230. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1231. .notifier_call = ratelimit_handler,
  1232. .next = NULL,
  1233. };
  1234. /*
  1235. * Called early on to tune the page writeback dirty limits.
  1236. *
  1237. * We used to scale dirty pages according to how total memory
  1238. * related to pages that could be allocated for buffers (by
  1239. * comparing nr_free_buffer_pages() to vm_total_pages.
  1240. *
  1241. * However, that was when we used "dirty_ratio" to scale with
  1242. * all memory, and we don't do that any more. "dirty_ratio"
  1243. * is now applied to total non-HIGHPAGE memory (by subtracting
  1244. * totalhigh_pages from vm_total_pages), and as such we can't
  1245. * get into the old insane situation any more where we had
  1246. * large amounts of dirty pages compared to a small amount of
  1247. * non-HIGHMEM memory.
  1248. *
  1249. * But we might still want to scale the dirty_ratio by how
  1250. * much memory the box has..
  1251. */
  1252. void __init page_writeback_init(void)
  1253. {
  1254. int shift;
  1255. writeback_set_ratelimit();
  1256. register_cpu_notifier(&ratelimit_nb);
  1257. shift = calc_period_shift();
  1258. prop_descriptor_init(&vm_completions, shift);
  1259. }
  1260. /**
  1261. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1262. * @mapping: address space structure to write
  1263. * @start: starting page index
  1264. * @end: ending page index (inclusive)
  1265. *
  1266. * This function scans the page range from @start to @end (inclusive) and tags
  1267. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1268. * that write_cache_pages (or whoever calls this function) will then use
  1269. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1270. * used to avoid livelocking of writeback by a process steadily creating new
  1271. * dirty pages in the file (thus it is important for this function to be quick
  1272. * so that it can tag pages faster than a dirtying process can create them).
  1273. */
  1274. /*
  1275. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1276. */
  1277. void tag_pages_for_writeback(struct address_space *mapping,
  1278. pgoff_t start, pgoff_t end)
  1279. {
  1280. #define WRITEBACK_TAG_BATCH 4096
  1281. unsigned long tagged;
  1282. do {
  1283. spin_lock_irq(&mapping->tree_lock);
  1284. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1285. &start, end, WRITEBACK_TAG_BATCH,
  1286. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1287. spin_unlock_irq(&mapping->tree_lock);
  1288. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1289. cond_resched();
  1290. /* We check 'start' to handle wrapping when end == ~0UL */
  1291. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1292. }
  1293. EXPORT_SYMBOL(tag_pages_for_writeback);
  1294. /**
  1295. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1296. * @mapping: address space structure to write
  1297. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1298. * @writepage: function called for each page
  1299. * @data: data passed to writepage function
  1300. *
  1301. * If a page is already under I/O, write_cache_pages() skips it, even
  1302. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1303. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1304. * and msync() need to guarantee that all the data which was dirty at the time
  1305. * the call was made get new I/O started against them. If wbc->sync_mode is
  1306. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1307. * existing IO to complete.
  1308. *
  1309. * To avoid livelocks (when other process dirties new pages), we first tag
  1310. * pages which should be written back with TOWRITE tag and only then start
  1311. * writing them. For data-integrity sync we have to be careful so that we do
  1312. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1313. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1314. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1315. */
  1316. int write_cache_pages(struct address_space *mapping,
  1317. struct writeback_control *wbc, writepage_t writepage,
  1318. void *data)
  1319. {
  1320. int ret = 0;
  1321. int done = 0;
  1322. struct pagevec pvec;
  1323. int nr_pages;
  1324. pgoff_t uninitialized_var(writeback_index);
  1325. pgoff_t index;
  1326. pgoff_t end; /* Inclusive */
  1327. pgoff_t done_index;
  1328. int cycled;
  1329. int range_whole = 0;
  1330. int tag;
  1331. pagevec_init(&pvec, 0);
  1332. if (wbc->range_cyclic) {
  1333. writeback_index = mapping->writeback_index; /* prev offset */
  1334. index = writeback_index;
  1335. if (index == 0)
  1336. cycled = 1;
  1337. else
  1338. cycled = 0;
  1339. end = -1;
  1340. } else {
  1341. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1342. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1343. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1344. range_whole = 1;
  1345. cycled = 1; /* ignore range_cyclic tests */
  1346. }
  1347. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1348. tag = PAGECACHE_TAG_TOWRITE;
  1349. else
  1350. tag = PAGECACHE_TAG_DIRTY;
  1351. retry:
  1352. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1353. tag_pages_for_writeback(mapping, index, end);
  1354. done_index = index;
  1355. while (!done && (index <= end)) {
  1356. int i;
  1357. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1358. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1359. if (nr_pages == 0)
  1360. break;
  1361. for (i = 0; i < nr_pages; i++) {
  1362. struct page *page = pvec.pages[i];
  1363. /*
  1364. * At this point, the page may be truncated or
  1365. * invalidated (changing page->mapping to NULL), or
  1366. * even swizzled back from swapper_space to tmpfs file
  1367. * mapping. However, page->index will not change
  1368. * because we have a reference on the page.
  1369. */
  1370. if (page->index > end) {
  1371. /*
  1372. * can't be range_cyclic (1st pass) because
  1373. * end == -1 in that case.
  1374. */
  1375. done = 1;
  1376. break;
  1377. }
  1378. done_index = page->index;
  1379. lock_page(page);
  1380. /*
  1381. * Page truncated or invalidated. We can freely skip it
  1382. * then, even for data integrity operations: the page
  1383. * has disappeared concurrently, so there could be no
  1384. * real expectation of this data interity operation
  1385. * even if there is now a new, dirty page at the same
  1386. * pagecache address.
  1387. */
  1388. if (unlikely(page->mapping != mapping)) {
  1389. continue_unlock:
  1390. unlock_page(page);
  1391. continue;
  1392. }
  1393. if (!PageDirty(page)) {
  1394. /* someone wrote it for us */
  1395. goto continue_unlock;
  1396. }
  1397. if (PageWriteback(page)) {
  1398. if (wbc->sync_mode != WB_SYNC_NONE)
  1399. wait_on_page_writeback(page);
  1400. else
  1401. goto continue_unlock;
  1402. }
  1403. BUG_ON(PageWriteback(page));
  1404. if (!clear_page_dirty_for_io(page))
  1405. goto continue_unlock;
  1406. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1407. ret = (*writepage)(page, wbc, data);
  1408. if (unlikely(ret)) {
  1409. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1410. unlock_page(page);
  1411. ret = 0;
  1412. } else {
  1413. /*
  1414. * done_index is set past this page,
  1415. * so media errors will not choke
  1416. * background writeout for the entire
  1417. * file. This has consequences for
  1418. * range_cyclic semantics (ie. it may
  1419. * not be suitable for data integrity
  1420. * writeout).
  1421. */
  1422. done_index = page->index + 1;
  1423. done = 1;
  1424. break;
  1425. }
  1426. }
  1427. /*
  1428. * We stop writing back only if we are not doing
  1429. * integrity sync. In case of integrity sync we have to
  1430. * keep going until we have written all the pages
  1431. * we tagged for writeback prior to entering this loop.
  1432. */
  1433. if (--wbc->nr_to_write <= 0 &&
  1434. wbc->sync_mode == WB_SYNC_NONE) {
  1435. done = 1;
  1436. break;
  1437. }
  1438. }
  1439. pagevec_release(&pvec);
  1440. cond_resched();
  1441. }
  1442. if (!cycled && !done) {
  1443. /*
  1444. * range_cyclic:
  1445. * We hit the last page and there is more work to be done: wrap
  1446. * back to the start of the file
  1447. */
  1448. cycled = 1;
  1449. index = 0;
  1450. end = writeback_index - 1;
  1451. goto retry;
  1452. }
  1453. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1454. mapping->writeback_index = done_index;
  1455. return ret;
  1456. }
  1457. EXPORT_SYMBOL(write_cache_pages);
  1458. /*
  1459. * Function used by generic_writepages to call the real writepage
  1460. * function and set the mapping flags on error
  1461. */
  1462. static int __writepage(struct page *page, struct writeback_control *wbc,
  1463. void *data)
  1464. {
  1465. struct address_space *mapping = data;
  1466. int ret = mapping->a_ops->writepage(page, wbc);
  1467. mapping_set_error(mapping, ret);
  1468. return ret;
  1469. }
  1470. /**
  1471. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1472. * @mapping: address space structure to write
  1473. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1474. *
  1475. * This is a library function, which implements the writepages()
  1476. * address_space_operation.
  1477. */
  1478. int generic_writepages(struct address_space *mapping,
  1479. struct writeback_control *wbc)
  1480. {
  1481. struct blk_plug plug;
  1482. int ret;
  1483. /* deal with chardevs and other special file */
  1484. if (!mapping->a_ops->writepage)
  1485. return 0;
  1486. blk_start_plug(&plug);
  1487. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1488. blk_finish_plug(&plug);
  1489. return ret;
  1490. }
  1491. EXPORT_SYMBOL(generic_writepages);
  1492. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1493. {
  1494. int ret;
  1495. if (wbc->nr_to_write <= 0)
  1496. return 0;
  1497. if (mapping->a_ops->writepages)
  1498. ret = mapping->a_ops->writepages(mapping, wbc);
  1499. else
  1500. ret = generic_writepages(mapping, wbc);
  1501. return ret;
  1502. }
  1503. /**
  1504. * write_one_page - write out a single page and optionally wait on I/O
  1505. * @page: the page to write
  1506. * @wait: if true, wait on writeout
  1507. *
  1508. * The page must be locked by the caller and will be unlocked upon return.
  1509. *
  1510. * write_one_page() returns a negative error code if I/O failed.
  1511. */
  1512. int write_one_page(struct page *page, int wait)
  1513. {
  1514. struct address_space *mapping = page->mapping;
  1515. int ret = 0;
  1516. struct writeback_control wbc = {
  1517. .sync_mode = WB_SYNC_ALL,
  1518. .nr_to_write = 1,
  1519. };
  1520. BUG_ON(!PageLocked(page));
  1521. if (wait)
  1522. wait_on_page_writeback(page);
  1523. if (clear_page_dirty_for_io(page)) {
  1524. page_cache_get(page);
  1525. ret = mapping->a_ops->writepage(page, &wbc);
  1526. if (ret == 0 && wait) {
  1527. wait_on_page_writeback(page);
  1528. if (PageError(page))
  1529. ret = -EIO;
  1530. }
  1531. page_cache_release(page);
  1532. } else {
  1533. unlock_page(page);
  1534. }
  1535. return ret;
  1536. }
  1537. EXPORT_SYMBOL(write_one_page);
  1538. /*
  1539. * For address_spaces which do not use buffers nor write back.
  1540. */
  1541. int __set_page_dirty_no_writeback(struct page *page)
  1542. {
  1543. if (!PageDirty(page))
  1544. return !TestSetPageDirty(page);
  1545. return 0;
  1546. }
  1547. /*
  1548. * Helper function for set_page_dirty family.
  1549. * NOTE: This relies on being atomic wrt interrupts.
  1550. */
  1551. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1552. {
  1553. if (mapping_cap_account_dirty(mapping)) {
  1554. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1555. __inc_zone_page_state(page, NR_DIRTIED);
  1556. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1557. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1558. task_io_account_write(PAGE_CACHE_SIZE);
  1559. }
  1560. }
  1561. EXPORT_SYMBOL(account_page_dirtied);
  1562. /*
  1563. * Helper function for set_page_writeback family.
  1564. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1565. * wrt interrupts.
  1566. */
  1567. void account_page_writeback(struct page *page)
  1568. {
  1569. inc_zone_page_state(page, NR_WRITEBACK);
  1570. }
  1571. EXPORT_SYMBOL(account_page_writeback);
  1572. /*
  1573. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1574. * its radix tree.
  1575. *
  1576. * This is also used when a single buffer is being dirtied: we want to set the
  1577. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1578. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1579. *
  1580. * Most callers have locked the page, which pins the address_space in memory.
  1581. * But zap_pte_range() does not lock the page, however in that case the
  1582. * mapping is pinned by the vma's ->vm_file reference.
  1583. *
  1584. * We take care to handle the case where the page was truncated from the
  1585. * mapping by re-checking page_mapping() inside tree_lock.
  1586. */
  1587. int __set_page_dirty_nobuffers(struct page *page)
  1588. {
  1589. if (!TestSetPageDirty(page)) {
  1590. struct address_space *mapping = page_mapping(page);
  1591. struct address_space *mapping2;
  1592. if (!mapping)
  1593. return 1;
  1594. spin_lock_irq(&mapping->tree_lock);
  1595. mapping2 = page_mapping(page);
  1596. if (mapping2) { /* Race with truncate? */
  1597. BUG_ON(mapping2 != mapping);
  1598. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1599. account_page_dirtied(page, mapping);
  1600. radix_tree_tag_set(&mapping->page_tree,
  1601. page_index(page), PAGECACHE_TAG_DIRTY);
  1602. }
  1603. spin_unlock_irq(&mapping->tree_lock);
  1604. if (mapping->host) {
  1605. /* !PageAnon && !swapper_space */
  1606. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1607. }
  1608. return 1;
  1609. }
  1610. return 0;
  1611. }
  1612. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1613. /*
  1614. * When a writepage implementation decides that it doesn't want to write this
  1615. * page for some reason, it should redirty the locked page via
  1616. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1617. */
  1618. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1619. {
  1620. wbc->pages_skipped++;
  1621. return __set_page_dirty_nobuffers(page);
  1622. }
  1623. EXPORT_SYMBOL(redirty_page_for_writepage);
  1624. /*
  1625. * Dirty a page.
  1626. *
  1627. * For pages with a mapping this should be done under the page lock
  1628. * for the benefit of asynchronous memory errors who prefer a consistent
  1629. * dirty state. This rule can be broken in some special cases,
  1630. * but should be better not to.
  1631. *
  1632. * If the mapping doesn't provide a set_page_dirty a_op, then
  1633. * just fall through and assume that it wants buffer_heads.
  1634. */
  1635. int set_page_dirty(struct page *page)
  1636. {
  1637. struct address_space *mapping = page_mapping(page);
  1638. if (likely(mapping)) {
  1639. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1640. /*
  1641. * readahead/lru_deactivate_page could remain
  1642. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1643. * About readahead, if the page is written, the flags would be
  1644. * reset. So no problem.
  1645. * About lru_deactivate_page, if the page is redirty, the flag
  1646. * will be reset. So no problem. but if the page is used by readahead
  1647. * it will confuse readahead and make it restart the size rampup
  1648. * process. But it's a trivial problem.
  1649. */
  1650. ClearPageReclaim(page);
  1651. #ifdef CONFIG_BLOCK
  1652. if (!spd)
  1653. spd = __set_page_dirty_buffers;
  1654. #endif
  1655. return (*spd)(page);
  1656. }
  1657. if (!PageDirty(page)) {
  1658. if (!TestSetPageDirty(page))
  1659. return 1;
  1660. }
  1661. return 0;
  1662. }
  1663. EXPORT_SYMBOL(set_page_dirty);
  1664. /*
  1665. * set_page_dirty() is racy if the caller has no reference against
  1666. * page->mapping->host, and if the page is unlocked. This is because another
  1667. * CPU could truncate the page off the mapping and then free the mapping.
  1668. *
  1669. * Usually, the page _is_ locked, or the caller is a user-space process which
  1670. * holds a reference on the inode by having an open file.
  1671. *
  1672. * In other cases, the page should be locked before running set_page_dirty().
  1673. */
  1674. int set_page_dirty_lock(struct page *page)
  1675. {
  1676. int ret;
  1677. lock_page(page);
  1678. ret = set_page_dirty(page);
  1679. unlock_page(page);
  1680. return ret;
  1681. }
  1682. EXPORT_SYMBOL(set_page_dirty_lock);
  1683. /*
  1684. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1685. * Returns true if the page was previously dirty.
  1686. *
  1687. * This is for preparing to put the page under writeout. We leave the page
  1688. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1689. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1690. * implementation will run either set_page_writeback() or set_page_dirty(),
  1691. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1692. * back into sync.
  1693. *
  1694. * This incoherency between the page's dirty flag and radix-tree tag is
  1695. * unfortunate, but it only exists while the page is locked.
  1696. */
  1697. int clear_page_dirty_for_io(struct page *page)
  1698. {
  1699. struct address_space *mapping = page_mapping(page);
  1700. BUG_ON(!PageLocked(page));
  1701. if (mapping && mapping_cap_account_dirty(mapping)) {
  1702. /*
  1703. * Yes, Virginia, this is indeed insane.
  1704. *
  1705. * We use this sequence to make sure that
  1706. * (a) we account for dirty stats properly
  1707. * (b) we tell the low-level filesystem to
  1708. * mark the whole page dirty if it was
  1709. * dirty in a pagetable. Only to then
  1710. * (c) clean the page again and return 1 to
  1711. * cause the writeback.
  1712. *
  1713. * This way we avoid all nasty races with the
  1714. * dirty bit in multiple places and clearing
  1715. * them concurrently from different threads.
  1716. *
  1717. * Note! Normally the "set_page_dirty(page)"
  1718. * has no effect on the actual dirty bit - since
  1719. * that will already usually be set. But we
  1720. * need the side effects, and it can help us
  1721. * avoid races.
  1722. *
  1723. * We basically use the page "master dirty bit"
  1724. * as a serialization point for all the different
  1725. * threads doing their things.
  1726. */
  1727. if (page_mkclean(page))
  1728. set_page_dirty(page);
  1729. /*
  1730. * We carefully synchronise fault handlers against
  1731. * installing a dirty pte and marking the page dirty
  1732. * at this point. We do this by having them hold the
  1733. * page lock at some point after installing their
  1734. * pte, but before marking the page dirty.
  1735. * Pages are always locked coming in here, so we get
  1736. * the desired exclusion. See mm/memory.c:do_wp_page()
  1737. * for more comments.
  1738. */
  1739. if (TestClearPageDirty(page)) {
  1740. dec_zone_page_state(page, NR_FILE_DIRTY);
  1741. dec_bdi_stat(mapping->backing_dev_info,
  1742. BDI_RECLAIMABLE);
  1743. return 1;
  1744. }
  1745. return 0;
  1746. }
  1747. return TestClearPageDirty(page);
  1748. }
  1749. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1750. int test_clear_page_writeback(struct page *page)
  1751. {
  1752. struct address_space *mapping = page_mapping(page);
  1753. int ret;
  1754. if (mapping) {
  1755. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1756. unsigned long flags;
  1757. spin_lock_irqsave(&mapping->tree_lock, flags);
  1758. ret = TestClearPageWriteback(page);
  1759. if (ret) {
  1760. radix_tree_tag_clear(&mapping->page_tree,
  1761. page_index(page),
  1762. PAGECACHE_TAG_WRITEBACK);
  1763. if (bdi_cap_account_writeback(bdi)) {
  1764. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1765. __bdi_writeout_inc(bdi);
  1766. }
  1767. }
  1768. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1769. } else {
  1770. ret = TestClearPageWriteback(page);
  1771. }
  1772. if (ret) {
  1773. dec_zone_page_state(page, NR_WRITEBACK);
  1774. inc_zone_page_state(page, NR_WRITTEN);
  1775. }
  1776. return ret;
  1777. }
  1778. int test_set_page_writeback(struct page *page)
  1779. {
  1780. struct address_space *mapping = page_mapping(page);
  1781. int ret;
  1782. if (mapping) {
  1783. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1784. unsigned long flags;
  1785. spin_lock_irqsave(&mapping->tree_lock, flags);
  1786. ret = TestSetPageWriteback(page);
  1787. if (!ret) {
  1788. radix_tree_tag_set(&mapping->page_tree,
  1789. page_index(page),
  1790. PAGECACHE_TAG_WRITEBACK);
  1791. if (bdi_cap_account_writeback(bdi))
  1792. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1793. }
  1794. if (!PageDirty(page))
  1795. radix_tree_tag_clear(&mapping->page_tree,
  1796. page_index(page),
  1797. PAGECACHE_TAG_DIRTY);
  1798. radix_tree_tag_clear(&mapping->page_tree,
  1799. page_index(page),
  1800. PAGECACHE_TAG_TOWRITE);
  1801. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1802. } else {
  1803. ret = TestSetPageWriteback(page);
  1804. }
  1805. if (!ret)
  1806. account_page_writeback(page);
  1807. return ret;
  1808. }
  1809. EXPORT_SYMBOL(test_set_page_writeback);
  1810. /*
  1811. * Return true if any of the pages in the mapping are marked with the
  1812. * passed tag.
  1813. */
  1814. int mapping_tagged(struct address_space *mapping, int tag)
  1815. {
  1816. return radix_tree_tagged(&mapping->page_tree, tag);
  1817. }
  1818. EXPORT_SYMBOL(mapping_tagged);