kprobes_32.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771
  1. /*
  2. * Kernel Probes (KProbes)
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright (C) IBM Corporation, 2002, 2004
  19. *
  20. * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  21. * Probes initial implementation ( includes contributions from
  22. * Rusty Russell).
  23. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  24. * interface to access function arguments.
  25. * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  26. * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  27. * <prasanna@in.ibm.com> added function-return probes.
  28. */
  29. #include <linux/kprobes.h>
  30. #include <linux/ptrace.h>
  31. #include <linux/preempt.h>
  32. #include <linux/kdebug.h>
  33. #include <asm/cacheflush.h>
  34. #include <asm/desc.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/alternative.h>
  37. void jprobe_return_end(void);
  38. DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  39. DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  40. struct kretprobe_blackpoint kretprobe_blacklist[] = {
  41. {"__switch_to", }, /* This function switches only current task, but
  42. doesn't switch kernel stack.*/
  43. {NULL, NULL} /* Terminator */
  44. };
  45. const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
  46. /* insert a jmp code */
  47. static __always_inline void set_jmp_op(void *from, void *to)
  48. {
  49. struct __arch_jmp_op {
  50. char op;
  51. long raddr;
  52. } __attribute__((packed)) *jop;
  53. jop = (struct __arch_jmp_op *)from;
  54. jop->raddr = (long)(to) - ((long)(from) + 5);
  55. jop->op = RELATIVEJUMP_INSTRUCTION;
  56. }
  57. /*
  58. * returns non-zero if opcodes can be boosted.
  59. */
  60. static __always_inline int can_boost(kprobe_opcode_t *opcodes)
  61. {
  62. #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
  63. (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
  64. (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
  65. (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
  66. (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
  67. << (row % 32))
  68. /*
  69. * Undefined/reserved opcodes, conditional jump, Opcode Extension
  70. * Groups, and some special opcodes can not be boost.
  71. */
  72. static const unsigned long twobyte_is_boostable[256 / 32] = {
  73. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  74. /* ------------------------------- */
  75. W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
  76. W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
  77. W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
  78. W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
  79. W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
  80. W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
  81. W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
  82. W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
  83. W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
  84. W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
  85. W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
  86. W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
  87. W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
  88. W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
  89. W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
  90. W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0) /* f0 */
  91. /* ------------------------------- */
  92. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  93. };
  94. #undef W
  95. kprobe_opcode_t opcode;
  96. kprobe_opcode_t *orig_opcodes = opcodes;
  97. retry:
  98. if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
  99. return 0;
  100. opcode = *(opcodes++);
  101. /* 2nd-byte opcode */
  102. if (opcode == 0x0f) {
  103. if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
  104. return 0;
  105. return test_bit(*opcodes, twobyte_is_boostable);
  106. }
  107. switch (opcode & 0xf0) {
  108. case 0x60:
  109. if (0x63 < opcode && opcode < 0x67)
  110. goto retry; /* prefixes */
  111. /* can't boost Address-size override and bound */
  112. return (opcode != 0x62 && opcode != 0x67);
  113. case 0x70:
  114. return 0; /* can't boost conditional jump */
  115. case 0xc0:
  116. /* can't boost software-interruptions */
  117. return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
  118. case 0xd0:
  119. /* can boost AA* and XLAT */
  120. return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
  121. case 0xe0:
  122. /* can boost in/out and absolute jmps */
  123. return ((opcode & 0x04) || opcode == 0xea);
  124. case 0xf0:
  125. if ((opcode & 0x0c) == 0 && opcode != 0xf1)
  126. goto retry; /* lock/rep(ne) prefix */
  127. /* clear and set flags can be boost */
  128. return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
  129. default:
  130. if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
  131. goto retry; /* prefixes */
  132. /* can't boost CS override and call */
  133. return (opcode != 0x2e && opcode != 0x9a);
  134. }
  135. }
  136. /*
  137. * returns non-zero if opcode modifies the interrupt flag.
  138. */
  139. static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
  140. {
  141. switch (opcode) {
  142. case 0xfa: /* cli */
  143. case 0xfb: /* sti */
  144. case 0xcf: /* iret/iretd */
  145. case 0x9d: /* popf/popfd */
  146. return 1;
  147. }
  148. return 0;
  149. }
  150. int __kprobes arch_prepare_kprobe(struct kprobe *p)
  151. {
  152. /* insn: must be on special executable page on i386. */
  153. p->ainsn.insn = get_insn_slot();
  154. if (!p->ainsn.insn)
  155. return -ENOMEM;
  156. memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
  157. p->opcode = *p->addr;
  158. if (can_boost(p->addr)) {
  159. p->ainsn.boostable = 0;
  160. } else {
  161. p->ainsn.boostable = -1;
  162. }
  163. return 0;
  164. }
  165. void __kprobes arch_arm_kprobe(struct kprobe *p)
  166. {
  167. text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
  168. }
  169. void __kprobes arch_disarm_kprobe(struct kprobe *p)
  170. {
  171. text_poke(p->addr, &p->opcode, 1);
  172. }
  173. void __kprobes arch_remove_kprobe(struct kprobe *p)
  174. {
  175. mutex_lock(&kprobe_mutex);
  176. free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
  177. mutex_unlock(&kprobe_mutex);
  178. }
  179. static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
  180. {
  181. kcb->prev_kprobe.kp = kprobe_running();
  182. kcb->prev_kprobe.status = kcb->kprobe_status;
  183. kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
  184. kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
  185. }
  186. static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  187. {
  188. __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  189. kcb->kprobe_status = kcb->prev_kprobe.status;
  190. kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
  191. kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
  192. }
  193. static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  194. struct kprobe_ctlblk *kcb)
  195. {
  196. __get_cpu_var(current_kprobe) = p;
  197. kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
  198. = (regs->eflags & (TF_MASK | IF_MASK));
  199. if (is_IF_modifier(p->opcode))
  200. kcb->kprobe_saved_eflags &= ~IF_MASK;
  201. }
  202. static __always_inline void clear_btf(void)
  203. {
  204. if (test_thread_flag(TIF_DEBUGCTLMSR))
  205. wrmsr(MSR_IA32_DEBUGCTLMSR, 0, 0);
  206. }
  207. static __always_inline void restore_btf(void)
  208. {
  209. if (test_thread_flag(TIF_DEBUGCTLMSR))
  210. wrmsr(MSR_IA32_DEBUGCTLMSR, current->thread.debugctlmsr, 0);
  211. }
  212. static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
  213. {
  214. clear_btf();
  215. regs->eflags |= TF_MASK;
  216. regs->eflags &= ~IF_MASK;
  217. /*single step inline if the instruction is an int3*/
  218. if (p->opcode == BREAKPOINT_INSTRUCTION)
  219. regs->eip = (unsigned long)p->addr;
  220. else
  221. regs->eip = (unsigned long)p->ainsn.insn;
  222. }
  223. /* Called with kretprobe_lock held */
  224. void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
  225. struct pt_regs *regs)
  226. {
  227. unsigned long *sara = (unsigned long *)&regs->esp;
  228. ri->ret_addr = (kprobe_opcode_t *) *sara;
  229. /* Replace the return addr with trampoline addr */
  230. *sara = (unsigned long) &kretprobe_trampoline;
  231. }
  232. /*
  233. * Interrupts are disabled on entry as trap3 is an interrupt gate and they
  234. * remain disabled thorough out this function.
  235. */
  236. static int __kprobes kprobe_handler(struct pt_regs *regs)
  237. {
  238. struct kprobe *p;
  239. int ret = 0;
  240. kprobe_opcode_t *addr;
  241. struct kprobe_ctlblk *kcb;
  242. addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
  243. /*
  244. * We don't want to be preempted for the entire
  245. * duration of kprobe processing
  246. */
  247. preempt_disable();
  248. kcb = get_kprobe_ctlblk();
  249. /* Check we're not actually recursing */
  250. if (kprobe_running()) {
  251. p = get_kprobe(addr);
  252. if (p) {
  253. if (kcb->kprobe_status == KPROBE_HIT_SS &&
  254. *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
  255. regs->eflags &= ~TF_MASK;
  256. regs->eflags |= kcb->kprobe_saved_eflags;
  257. goto no_kprobe;
  258. }
  259. /* We have reentered the kprobe_handler(), since
  260. * another probe was hit while within the handler.
  261. * We here save the original kprobes variables and
  262. * just single step on the instruction of the new probe
  263. * without calling any user handlers.
  264. */
  265. save_previous_kprobe(kcb);
  266. set_current_kprobe(p, regs, kcb);
  267. kprobes_inc_nmissed_count(p);
  268. prepare_singlestep(p, regs);
  269. kcb->kprobe_status = KPROBE_REENTER;
  270. return 1;
  271. } else {
  272. if (*addr != BREAKPOINT_INSTRUCTION) {
  273. /* The breakpoint instruction was removed by
  274. * another cpu right after we hit, no further
  275. * handling of this interrupt is appropriate
  276. */
  277. regs->eip -= sizeof(kprobe_opcode_t);
  278. ret = 1;
  279. goto no_kprobe;
  280. }
  281. p = __get_cpu_var(current_kprobe);
  282. if (p->break_handler && p->break_handler(p, regs)) {
  283. goto ss_probe;
  284. }
  285. }
  286. goto no_kprobe;
  287. }
  288. p = get_kprobe(addr);
  289. if (!p) {
  290. if (*addr != BREAKPOINT_INSTRUCTION) {
  291. /*
  292. * The breakpoint instruction was removed right
  293. * after we hit it. Another cpu has removed
  294. * either a probepoint or a debugger breakpoint
  295. * at this address. In either case, no further
  296. * handling of this interrupt is appropriate.
  297. * Back up over the (now missing) int3 and run
  298. * the original instruction.
  299. */
  300. regs->eip -= sizeof(kprobe_opcode_t);
  301. ret = 1;
  302. }
  303. /* Not one of ours: let kernel handle it */
  304. goto no_kprobe;
  305. }
  306. set_current_kprobe(p, regs, kcb);
  307. kcb->kprobe_status = KPROBE_HIT_ACTIVE;
  308. if (p->pre_handler && p->pre_handler(p, regs))
  309. /* handler has already set things up, so skip ss setup */
  310. return 1;
  311. ss_probe:
  312. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
  313. if (p->ainsn.boostable == 1 && !p->post_handler){
  314. /* Boost up -- we can execute copied instructions directly */
  315. reset_current_kprobe();
  316. regs->eip = (unsigned long)p->ainsn.insn;
  317. preempt_enable_no_resched();
  318. return 1;
  319. }
  320. #endif
  321. prepare_singlestep(p, regs);
  322. kcb->kprobe_status = KPROBE_HIT_SS;
  323. return 1;
  324. no_kprobe:
  325. preempt_enable_no_resched();
  326. return ret;
  327. }
  328. /*
  329. * For function-return probes, init_kprobes() establishes a probepoint
  330. * here. When a retprobed function returns, this probe is hit and
  331. * trampoline_probe_handler() runs, calling the kretprobe's handler.
  332. */
  333. void __kprobes kretprobe_trampoline_holder(void)
  334. {
  335. asm volatile ( ".global kretprobe_trampoline\n"
  336. "kretprobe_trampoline: \n"
  337. " pushf\n"
  338. /* skip cs, eip, orig_eax */
  339. " subl $12, %esp\n"
  340. " pushl %fs\n"
  341. " pushl %ds\n"
  342. " pushl %es\n"
  343. " pushl %eax\n"
  344. " pushl %ebp\n"
  345. " pushl %edi\n"
  346. " pushl %esi\n"
  347. " pushl %edx\n"
  348. " pushl %ecx\n"
  349. " pushl %ebx\n"
  350. " movl %esp, %eax\n"
  351. " call trampoline_handler\n"
  352. /* move eflags to cs */
  353. " movl 52(%esp), %edx\n"
  354. " movl %edx, 48(%esp)\n"
  355. /* save true return address on eflags */
  356. " movl %eax, 52(%esp)\n"
  357. " popl %ebx\n"
  358. " popl %ecx\n"
  359. " popl %edx\n"
  360. " popl %esi\n"
  361. " popl %edi\n"
  362. " popl %ebp\n"
  363. " popl %eax\n"
  364. /* skip eip, orig_eax, es, ds, fs */
  365. " addl $20, %esp\n"
  366. " popf\n"
  367. " ret\n");
  368. }
  369. /*
  370. * Called from kretprobe_trampoline
  371. */
  372. fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
  373. {
  374. struct kretprobe_instance *ri = NULL;
  375. struct hlist_head *head, empty_rp;
  376. struct hlist_node *node, *tmp;
  377. unsigned long flags, orig_ret_address = 0;
  378. unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
  379. INIT_HLIST_HEAD(&empty_rp);
  380. spin_lock_irqsave(&kretprobe_lock, flags);
  381. head = kretprobe_inst_table_head(current);
  382. /* fixup registers */
  383. regs->xcs = __KERNEL_CS | get_kernel_rpl();
  384. regs->eip = trampoline_address;
  385. regs->orig_eax = 0xffffffff;
  386. /*
  387. * It is possible to have multiple instances associated with a given
  388. * task either because an multiple functions in the call path
  389. * have a return probe installed on them, and/or more then one return
  390. * return probe was registered for a target function.
  391. *
  392. * We can handle this because:
  393. * - instances are always inserted at the head of the list
  394. * - when multiple return probes are registered for the same
  395. * function, the first instance's ret_addr will point to the
  396. * real return address, and all the rest will point to
  397. * kretprobe_trampoline
  398. */
  399. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  400. if (ri->task != current)
  401. /* another task is sharing our hash bucket */
  402. continue;
  403. if (ri->rp && ri->rp->handler){
  404. __get_cpu_var(current_kprobe) = &ri->rp->kp;
  405. get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
  406. ri->rp->handler(ri, regs);
  407. __get_cpu_var(current_kprobe) = NULL;
  408. }
  409. orig_ret_address = (unsigned long)ri->ret_addr;
  410. recycle_rp_inst(ri, &empty_rp);
  411. if (orig_ret_address != trampoline_address)
  412. /*
  413. * This is the real return address. Any other
  414. * instances associated with this task are for
  415. * other calls deeper on the call stack
  416. */
  417. break;
  418. }
  419. kretprobe_assert(ri, orig_ret_address, trampoline_address);
  420. spin_unlock_irqrestore(&kretprobe_lock, flags);
  421. hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
  422. hlist_del(&ri->hlist);
  423. kfree(ri);
  424. }
  425. return (void*)orig_ret_address;
  426. }
  427. /*
  428. * Called after single-stepping. p->addr is the address of the
  429. * instruction whose first byte has been replaced by the "int 3"
  430. * instruction. To avoid the SMP problems that can occur when we
  431. * temporarily put back the original opcode to single-step, we
  432. * single-stepped a copy of the instruction. The address of this
  433. * copy is p->ainsn.insn.
  434. *
  435. * This function prepares to return from the post-single-step
  436. * interrupt. We have to fix up the stack as follows:
  437. *
  438. * 0) Except in the case of absolute or indirect jump or call instructions,
  439. * the new eip is relative to the copied instruction. We need to make
  440. * it relative to the original instruction.
  441. *
  442. * 1) If the single-stepped instruction was pushfl, then the TF and IF
  443. * flags are set in the just-pushed eflags, and may need to be cleared.
  444. *
  445. * 2) If the single-stepped instruction was a call, the return address
  446. * that is atop the stack is the address following the copied instruction.
  447. * We need to make it the address following the original instruction.
  448. *
  449. * This function also checks instruction size for preparing direct execution.
  450. */
  451. static void __kprobes resume_execution(struct kprobe *p,
  452. struct pt_regs *regs, struct kprobe_ctlblk *kcb)
  453. {
  454. unsigned long *tos = (unsigned long *)&regs->esp;
  455. unsigned long copy_eip = (unsigned long)p->ainsn.insn;
  456. unsigned long orig_eip = (unsigned long)p->addr;
  457. regs->eflags &= ~TF_MASK;
  458. switch (p->ainsn.insn[0]) {
  459. case 0x9c: /* pushfl */
  460. *tos &= ~(TF_MASK | IF_MASK);
  461. *tos |= kcb->kprobe_old_eflags;
  462. break;
  463. case 0xc2: /* iret/ret/lret */
  464. case 0xc3:
  465. case 0xca:
  466. case 0xcb:
  467. case 0xcf:
  468. case 0xea: /* jmp absolute -- eip is correct */
  469. /* eip is already adjusted, no more changes required */
  470. p->ainsn.boostable = 1;
  471. goto no_change;
  472. case 0xe8: /* call relative - Fix return addr */
  473. *tos = orig_eip + (*tos - copy_eip);
  474. break;
  475. case 0x9a: /* call absolute -- same as call absolute, indirect */
  476. *tos = orig_eip + (*tos - copy_eip);
  477. goto no_change;
  478. case 0xff:
  479. if ((p->ainsn.insn[1] & 0x30) == 0x10) {
  480. /*
  481. * call absolute, indirect
  482. * Fix return addr; eip is correct.
  483. * But this is not boostable
  484. */
  485. *tos = orig_eip + (*tos - copy_eip);
  486. goto no_change;
  487. } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
  488. ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
  489. /* eip is correct. And this is boostable */
  490. p->ainsn.boostable = 1;
  491. goto no_change;
  492. }
  493. default:
  494. break;
  495. }
  496. if (p->ainsn.boostable == 0) {
  497. if ((regs->eip > copy_eip) &&
  498. (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
  499. /*
  500. * These instructions can be executed directly if it
  501. * jumps back to correct address.
  502. */
  503. set_jmp_op((void *)regs->eip,
  504. (void *)orig_eip + (regs->eip - copy_eip));
  505. p->ainsn.boostable = 1;
  506. } else {
  507. p->ainsn.boostable = -1;
  508. }
  509. }
  510. regs->eip = orig_eip + (regs->eip - copy_eip);
  511. no_change:
  512. restore_btf();
  513. return;
  514. }
  515. /*
  516. * Interrupts are disabled on entry as trap1 is an interrupt gate and they
  517. * remain disabled thoroughout this function.
  518. */
  519. static int __kprobes post_kprobe_handler(struct pt_regs *regs)
  520. {
  521. struct kprobe *cur = kprobe_running();
  522. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  523. if (!cur)
  524. return 0;
  525. if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
  526. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  527. cur->post_handler(cur, regs, 0);
  528. }
  529. resume_execution(cur, regs, kcb);
  530. regs->eflags |= kcb->kprobe_saved_eflags;
  531. trace_hardirqs_fixup_flags(regs->eflags);
  532. /*Restore back the original saved kprobes variables and continue. */
  533. if (kcb->kprobe_status == KPROBE_REENTER) {
  534. restore_previous_kprobe(kcb);
  535. goto out;
  536. }
  537. reset_current_kprobe();
  538. out:
  539. preempt_enable_no_resched();
  540. /*
  541. * if somebody else is singlestepping across a probe point, eflags
  542. * will have TF set, in which case, continue the remaining processing
  543. * of do_debug, as if this is not a probe hit.
  544. */
  545. if (regs->eflags & TF_MASK)
  546. return 0;
  547. return 1;
  548. }
  549. int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
  550. {
  551. struct kprobe *cur = kprobe_running();
  552. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  553. switch(kcb->kprobe_status) {
  554. case KPROBE_HIT_SS:
  555. case KPROBE_REENTER:
  556. /*
  557. * We are here because the instruction being single
  558. * stepped caused a page fault. We reset the current
  559. * kprobe and the eip points back to the probe address
  560. * and allow the page fault handler to continue as a
  561. * normal page fault.
  562. */
  563. regs->eip = (unsigned long)cur->addr;
  564. regs->eflags |= kcb->kprobe_old_eflags;
  565. if (kcb->kprobe_status == KPROBE_REENTER)
  566. restore_previous_kprobe(kcb);
  567. else
  568. reset_current_kprobe();
  569. preempt_enable_no_resched();
  570. break;
  571. case KPROBE_HIT_ACTIVE:
  572. case KPROBE_HIT_SSDONE:
  573. /*
  574. * We increment the nmissed count for accounting,
  575. * we can also use npre/npostfault count for accouting
  576. * these specific fault cases.
  577. */
  578. kprobes_inc_nmissed_count(cur);
  579. /*
  580. * We come here because instructions in the pre/post
  581. * handler caused the page_fault, this could happen
  582. * if handler tries to access user space by
  583. * copy_from_user(), get_user() etc. Let the
  584. * user-specified handler try to fix it first.
  585. */
  586. if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
  587. return 1;
  588. /*
  589. * In case the user-specified fault handler returned
  590. * zero, try to fix up.
  591. */
  592. if (fixup_exception(regs))
  593. return 1;
  594. /*
  595. * fixup_exception() could not handle it,
  596. * Let do_page_fault() fix it.
  597. */
  598. break;
  599. default:
  600. break;
  601. }
  602. return 0;
  603. }
  604. /*
  605. * Wrapper routine to for handling exceptions.
  606. */
  607. int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
  608. unsigned long val, void *data)
  609. {
  610. struct die_args *args = (struct die_args *)data;
  611. int ret = NOTIFY_DONE;
  612. if (args->regs && user_mode_vm(args->regs))
  613. return ret;
  614. switch (val) {
  615. case DIE_INT3:
  616. if (kprobe_handler(args->regs))
  617. ret = NOTIFY_STOP;
  618. break;
  619. case DIE_DEBUG:
  620. if (post_kprobe_handler(args->regs))
  621. ret = NOTIFY_STOP;
  622. break;
  623. case DIE_GPF:
  624. /* kprobe_running() needs smp_processor_id() */
  625. preempt_disable();
  626. if (kprobe_running() &&
  627. kprobe_fault_handler(args->regs, args->trapnr))
  628. ret = NOTIFY_STOP;
  629. preempt_enable();
  630. break;
  631. default:
  632. break;
  633. }
  634. return ret;
  635. }
  636. int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  637. {
  638. struct jprobe *jp = container_of(p, struct jprobe, kp);
  639. unsigned long addr;
  640. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  641. kcb->jprobe_saved_regs = *regs;
  642. kcb->jprobe_saved_esp = &regs->esp;
  643. addr = (unsigned long)(kcb->jprobe_saved_esp);
  644. /*
  645. * TBD: As Linus pointed out, gcc assumes that the callee
  646. * owns the argument space and could overwrite it, e.g.
  647. * tailcall optimization. So, to be absolutely safe
  648. * we also save and restore enough stack bytes to cover
  649. * the argument area.
  650. */
  651. memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
  652. MIN_STACK_SIZE(addr));
  653. regs->eflags &= ~IF_MASK;
  654. trace_hardirqs_off();
  655. regs->eip = (unsigned long)(jp->entry);
  656. return 1;
  657. }
  658. void __kprobes jprobe_return(void)
  659. {
  660. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  661. asm volatile (" xchgl %%ebx,%%esp \n"
  662. " int3 \n"
  663. " .globl jprobe_return_end \n"
  664. " jprobe_return_end: \n"
  665. " nop \n"::"b"
  666. (kcb->jprobe_saved_esp):"memory");
  667. }
  668. int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  669. {
  670. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  671. u8 *addr = (u8 *) (regs->eip - 1);
  672. unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
  673. struct jprobe *jp = container_of(p, struct jprobe, kp);
  674. if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
  675. if (&regs->esp != kcb->jprobe_saved_esp) {
  676. struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
  677. printk("current esp %p does not match saved esp %p\n",
  678. &regs->esp, kcb->jprobe_saved_esp);
  679. printk("Saved registers for jprobe %p\n", jp);
  680. show_registers(saved_regs);
  681. printk("Current registers\n");
  682. show_registers(regs);
  683. BUG();
  684. }
  685. *regs = kcb->jprobe_saved_regs;
  686. memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
  687. MIN_STACK_SIZE(stack_addr));
  688. preempt_enable_no_resched();
  689. return 1;
  690. }
  691. return 0;
  692. }
  693. int __kprobes arch_trampoline_kprobe(struct kprobe *p)
  694. {
  695. return 0;
  696. }
  697. int __init arch_init_kprobes(void)
  698. {
  699. return 0;
  700. }