numa_64.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. /*
  2. * Generic VM initialization for x86-64 NUMA setups.
  3. * Copyright 2002,2003 Andi Kleen, SuSE Labs.
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/mm.h>
  7. #include <linux/string.h>
  8. #include <linux/init.h>
  9. #include <linux/bootmem.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/ctype.h>
  12. #include <linux/module.h>
  13. #include <linux/nodemask.h>
  14. #include <linux/sched.h>
  15. #include <asm/e820.h>
  16. #include <asm/proto.h>
  17. #include <asm/dma.h>
  18. #include <asm/numa.h>
  19. #include <asm/acpi.h>
  20. #include <asm/k8.h>
  21. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  22. EXPORT_SYMBOL(node_data);
  23. struct memnode memnode;
  24. s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
  25. [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
  26. };
  27. int numa_off __initdata;
  28. static unsigned long __initdata nodemap_addr;
  29. static unsigned long __initdata nodemap_size;
  30. DEFINE_PER_CPU(int, node_number) = 0;
  31. EXPORT_PER_CPU_SYMBOL(node_number);
  32. /*
  33. * Map cpu index to node index
  34. */
  35. DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
  36. EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
  37. /*
  38. * Given a shift value, try to populate memnodemap[]
  39. * Returns :
  40. * 1 if OK
  41. * 0 if memnodmap[] too small (of shift too small)
  42. * -1 if node overlap or lost ram (shift too big)
  43. */
  44. static int __init populate_memnodemap(const struct bootnode *nodes,
  45. int numnodes, int shift, int *nodeids)
  46. {
  47. unsigned long addr, end;
  48. int i, res = -1;
  49. memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
  50. for (i = 0; i < numnodes; i++) {
  51. addr = nodes[i].start;
  52. end = nodes[i].end;
  53. if (addr >= end)
  54. continue;
  55. if ((end >> shift) >= memnodemapsize)
  56. return 0;
  57. do {
  58. if (memnodemap[addr >> shift] != NUMA_NO_NODE)
  59. return -1;
  60. if (!nodeids)
  61. memnodemap[addr >> shift] = i;
  62. else
  63. memnodemap[addr >> shift] = nodeids[i];
  64. addr += (1UL << shift);
  65. } while (addr < end);
  66. res = 1;
  67. }
  68. return res;
  69. }
  70. static int __init allocate_cachealigned_memnodemap(void)
  71. {
  72. unsigned long addr;
  73. memnodemap = memnode.embedded_map;
  74. if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
  75. return 0;
  76. addr = 0x8000;
  77. nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
  78. nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT,
  79. nodemap_size, L1_CACHE_BYTES);
  80. if (nodemap_addr == -1UL) {
  81. printk(KERN_ERR
  82. "NUMA: Unable to allocate Memory to Node hash map\n");
  83. nodemap_addr = nodemap_size = 0;
  84. return -1;
  85. }
  86. memnodemap = phys_to_virt(nodemap_addr);
  87. reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
  88. printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
  89. nodemap_addr, nodemap_addr + nodemap_size);
  90. return 0;
  91. }
  92. /*
  93. * The LSB of all start and end addresses in the node map is the value of the
  94. * maximum possible shift.
  95. */
  96. static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
  97. int numnodes)
  98. {
  99. int i, nodes_used = 0;
  100. unsigned long start, end;
  101. unsigned long bitfield = 0, memtop = 0;
  102. for (i = 0; i < numnodes; i++) {
  103. start = nodes[i].start;
  104. end = nodes[i].end;
  105. if (start >= end)
  106. continue;
  107. bitfield |= start;
  108. nodes_used++;
  109. if (end > memtop)
  110. memtop = end;
  111. }
  112. if (nodes_used <= 1)
  113. i = 63;
  114. else
  115. i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
  116. memnodemapsize = (memtop >> i)+1;
  117. return i;
  118. }
  119. int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
  120. int *nodeids)
  121. {
  122. int shift;
  123. shift = extract_lsb_from_nodes(nodes, numnodes);
  124. if (allocate_cachealigned_memnodemap())
  125. return -1;
  126. printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
  127. shift);
  128. if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
  129. printk(KERN_INFO "Your memory is not aligned you need to "
  130. "rebuild your kernel with a bigger NODEMAPSIZE "
  131. "shift=%d\n", shift);
  132. return -1;
  133. }
  134. return shift;
  135. }
  136. int __meminit __early_pfn_to_nid(unsigned long pfn)
  137. {
  138. return phys_to_nid(pfn << PAGE_SHIFT);
  139. }
  140. static void * __init early_node_mem(int nodeid, unsigned long start,
  141. unsigned long end, unsigned long size,
  142. unsigned long align)
  143. {
  144. unsigned long mem = find_e820_area(start, end, size, align);
  145. void *ptr;
  146. if (mem != -1L)
  147. return __va(mem);
  148. ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
  149. if (ptr == NULL) {
  150. printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
  151. size, nodeid);
  152. return NULL;
  153. }
  154. return ptr;
  155. }
  156. /* Initialize bootmem allocator for a node */
  157. void __init
  158. setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
  159. {
  160. unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size;
  161. const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
  162. unsigned long bootmap_start, nodedata_phys;
  163. void *bootmap;
  164. int nid;
  165. if (!end)
  166. return;
  167. /*
  168. * Don't confuse VM with a node that doesn't have the
  169. * minimum amount of memory:
  170. */
  171. if (end && (end - start) < NODE_MIN_SIZE)
  172. return;
  173. start = roundup(start, ZONE_ALIGN);
  174. printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
  175. start, end);
  176. start_pfn = start >> PAGE_SHIFT;
  177. last_pfn = end >> PAGE_SHIFT;
  178. node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
  179. SMP_CACHE_BYTES);
  180. if (node_data[nodeid] == NULL)
  181. return;
  182. nodedata_phys = __pa(node_data[nodeid]);
  183. printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
  184. nodedata_phys + pgdat_size - 1);
  185. memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
  186. NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid];
  187. NODE_DATA(nodeid)->node_start_pfn = start_pfn;
  188. NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
  189. /*
  190. * Find a place for the bootmem map
  191. * nodedata_phys could be on other nodes by alloc_bootmem,
  192. * so need to sure bootmap_start not to be small, otherwise
  193. * early_node_mem will get that with find_e820_area instead
  194. * of alloc_bootmem, that could clash with reserved range
  195. */
  196. bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn);
  197. nid = phys_to_nid(nodedata_phys);
  198. if (nid == nodeid)
  199. bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE);
  200. else
  201. bootmap_start = roundup(start, PAGE_SIZE);
  202. /*
  203. * SMP_CACHE_BYTES could be enough, but init_bootmem_node like
  204. * to use that to align to PAGE_SIZE
  205. */
  206. bootmap = early_node_mem(nodeid, bootmap_start, end,
  207. bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
  208. if (bootmap == NULL) {
  209. if (nodedata_phys < start || nodedata_phys >= end) {
  210. /*
  211. * only need to free it if it is from other node
  212. * bootmem
  213. */
  214. if (nid != nodeid)
  215. free_bootmem(nodedata_phys, pgdat_size);
  216. }
  217. node_data[nodeid] = NULL;
  218. return;
  219. }
  220. bootmap_start = __pa(bootmap);
  221. bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
  222. bootmap_start >> PAGE_SHIFT,
  223. start_pfn, last_pfn);
  224. printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n",
  225. bootmap_start, bootmap_start + bootmap_size - 1,
  226. bootmap_pages);
  227. free_bootmem_with_active_regions(nodeid, end);
  228. /*
  229. * convert early reserve to bootmem reserve earlier
  230. * otherwise early_node_mem could use early reserved mem
  231. * on previous node
  232. */
  233. early_res_to_bootmem(start, end);
  234. /*
  235. * in some case early_node_mem could use alloc_bootmem
  236. * to get range on other node, don't reserve that again
  237. */
  238. if (nid != nodeid)
  239. printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
  240. else
  241. reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys,
  242. pgdat_size, BOOTMEM_DEFAULT);
  243. nid = phys_to_nid(bootmap_start);
  244. if (nid != nodeid)
  245. printk(KERN_INFO " bootmap(%d) on node %d\n", nodeid, nid);
  246. else
  247. reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
  248. bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT);
  249. node_set_online(nodeid);
  250. }
  251. /*
  252. * There are unfortunately some poorly designed mainboards around that
  253. * only connect memory to a single CPU. This breaks the 1:1 cpu->node
  254. * mapping. To avoid this fill in the mapping for all possible CPUs,
  255. * as the number of CPUs is not known yet. We round robin the existing
  256. * nodes.
  257. */
  258. void __init numa_init_array(void)
  259. {
  260. int rr, i;
  261. rr = first_node(node_online_map);
  262. for (i = 0; i < nr_cpu_ids; i++) {
  263. if (early_cpu_to_node(i) != NUMA_NO_NODE)
  264. continue;
  265. numa_set_node(i, rr);
  266. rr = next_node(rr, node_online_map);
  267. if (rr == MAX_NUMNODES)
  268. rr = first_node(node_online_map);
  269. }
  270. }
  271. #ifdef CONFIG_NUMA_EMU
  272. /* Numa emulation */
  273. static struct bootnode nodes[MAX_NUMNODES] __initdata;
  274. static struct bootnode physnodes[MAX_NUMNODES] __initdata;
  275. static char *cmdline __initdata;
  276. static int __init setup_physnodes(unsigned long start, unsigned long end,
  277. int acpi, int k8)
  278. {
  279. int nr_nodes = 0;
  280. int ret = 0;
  281. int i;
  282. #ifdef CONFIG_ACPI_NUMA
  283. if (acpi)
  284. nr_nodes = acpi_get_nodes(physnodes);
  285. #endif
  286. #ifdef CONFIG_K8_NUMA
  287. if (k8)
  288. nr_nodes = k8_get_nodes(physnodes);
  289. #endif
  290. /*
  291. * Basic sanity checking on the physical node map: there may be errors
  292. * if the SRAT or K8 incorrectly reported the topology or the mem=
  293. * kernel parameter is used.
  294. */
  295. for (i = 0; i < nr_nodes; i++) {
  296. if (physnodes[i].start == physnodes[i].end)
  297. continue;
  298. if (physnodes[i].start > end) {
  299. physnodes[i].end = physnodes[i].start;
  300. continue;
  301. }
  302. if (physnodes[i].end < start) {
  303. physnodes[i].start = physnodes[i].end;
  304. continue;
  305. }
  306. if (physnodes[i].start < start)
  307. physnodes[i].start = start;
  308. if (physnodes[i].end > end)
  309. physnodes[i].end = end;
  310. }
  311. /*
  312. * Remove all nodes that have no memory or were truncated because of the
  313. * limited address range.
  314. */
  315. for (i = 0; i < nr_nodes; i++) {
  316. if (physnodes[i].start == physnodes[i].end)
  317. continue;
  318. physnodes[ret].start = physnodes[i].start;
  319. physnodes[ret].end = physnodes[i].end;
  320. ret++;
  321. }
  322. /*
  323. * If no physical topology was detected, a single node is faked to cover
  324. * the entire address space.
  325. */
  326. if (!ret) {
  327. physnodes[ret].start = start;
  328. physnodes[ret].end = end;
  329. ret = 1;
  330. }
  331. return ret;
  332. }
  333. /*
  334. * Setups up nid to range from addr to addr + size. If the end
  335. * boundary is greater than max_addr, then max_addr is used instead.
  336. * The return value is 0 if there is additional memory left for
  337. * allocation past addr and -1 otherwise. addr is adjusted to be at
  338. * the end of the node.
  339. */
  340. static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
  341. {
  342. int ret = 0;
  343. nodes[nid].start = *addr;
  344. *addr += size;
  345. if (*addr >= max_addr) {
  346. *addr = max_addr;
  347. ret = -1;
  348. }
  349. nodes[nid].end = *addr;
  350. node_set(nid, node_possible_map);
  351. printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
  352. nodes[nid].start, nodes[nid].end,
  353. (nodes[nid].end - nodes[nid].start) >> 20);
  354. return ret;
  355. }
  356. /*
  357. * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
  358. * to max_addr. The return value is the number of nodes allocated.
  359. */
  360. static int __init split_nodes_interleave(u64 addr, u64 max_addr,
  361. int nr_phys_nodes, int nr_nodes)
  362. {
  363. nodemask_t physnode_mask = NODE_MASK_NONE;
  364. u64 size;
  365. int big;
  366. int ret = 0;
  367. int i;
  368. if (nr_nodes <= 0)
  369. return -1;
  370. if (nr_nodes > MAX_NUMNODES) {
  371. pr_info("numa=fake=%d too large, reducing to %d\n",
  372. nr_nodes, MAX_NUMNODES);
  373. nr_nodes = MAX_NUMNODES;
  374. }
  375. size = (max_addr - addr - e820_hole_size(addr, max_addr)) / nr_nodes;
  376. /*
  377. * Calculate the number of big nodes that can be allocated as a result
  378. * of consolidating the remainder.
  379. */
  380. big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
  381. FAKE_NODE_MIN_SIZE;
  382. size &= FAKE_NODE_MIN_HASH_MASK;
  383. if (!size) {
  384. pr_err("Not enough memory for each node. "
  385. "NUMA emulation disabled.\n");
  386. return -1;
  387. }
  388. for (i = 0; i < nr_phys_nodes; i++)
  389. if (physnodes[i].start != physnodes[i].end)
  390. node_set(i, physnode_mask);
  391. /*
  392. * Continue to fill physical nodes with fake nodes until there is no
  393. * memory left on any of them.
  394. */
  395. while (nodes_weight(physnode_mask)) {
  396. for_each_node_mask(i, physnode_mask) {
  397. u64 end = physnodes[i].start + size;
  398. u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
  399. if (ret < big)
  400. end += FAKE_NODE_MIN_SIZE;
  401. /*
  402. * Continue to add memory to this fake node if its
  403. * non-reserved memory is less than the per-node size.
  404. */
  405. while (end - physnodes[i].start -
  406. e820_hole_size(physnodes[i].start, end) < size) {
  407. end += FAKE_NODE_MIN_SIZE;
  408. if (end > physnodes[i].end) {
  409. end = physnodes[i].end;
  410. break;
  411. }
  412. }
  413. /*
  414. * If there won't be at least FAKE_NODE_MIN_SIZE of
  415. * non-reserved memory in ZONE_DMA32 for the next node,
  416. * this one must extend to the boundary.
  417. */
  418. if (end < dma32_end && dma32_end - end -
  419. e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
  420. end = dma32_end;
  421. /*
  422. * If there won't be enough non-reserved memory for the
  423. * next node, this one must extend to the end of the
  424. * physical node.
  425. */
  426. if (physnodes[i].end - end -
  427. e820_hole_size(end, physnodes[i].end) < size)
  428. end = physnodes[i].end;
  429. /*
  430. * Avoid allocating more nodes than requested, which can
  431. * happen as a result of rounding down each node's size
  432. * to FAKE_NODE_MIN_SIZE.
  433. */
  434. if (nodes_weight(physnode_mask) + ret >= nr_nodes)
  435. end = physnodes[i].end;
  436. if (setup_node_range(ret++, &physnodes[i].start,
  437. end - physnodes[i].start,
  438. physnodes[i].end) < 0)
  439. node_clear(i, physnode_mask);
  440. }
  441. }
  442. return ret;
  443. }
  444. /*
  445. * Returns the end address of a node so that there is at least `size' amount of
  446. * non-reserved memory or `max_addr' is reached.
  447. */
  448. static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
  449. {
  450. u64 end = start + size;
  451. while (end - start - e820_hole_size(start, end) < size) {
  452. end += FAKE_NODE_MIN_SIZE;
  453. if (end > max_addr) {
  454. end = max_addr;
  455. break;
  456. }
  457. }
  458. return end;
  459. }
  460. /*
  461. * Sets up fake nodes of `size' interleaved over physical nodes ranging from
  462. * `addr' to `max_addr'. The return value is the number of nodes allocated.
  463. */
  464. static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
  465. {
  466. nodemask_t physnode_mask = NODE_MASK_NONE;
  467. u64 min_size;
  468. int ret = 0;
  469. int i;
  470. if (!size)
  471. return -1;
  472. /*
  473. * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
  474. * increased accordingly if the requested size is too small. This
  475. * creates a uniform distribution of node sizes across the entire
  476. * machine (but not necessarily over physical nodes).
  477. */
  478. min_size = (max_addr - addr - e820_hole_size(addr, max_addr)) /
  479. MAX_NUMNODES;
  480. min_size = max(min_size, FAKE_NODE_MIN_SIZE);
  481. if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
  482. min_size = (min_size + FAKE_NODE_MIN_SIZE) &
  483. FAKE_NODE_MIN_HASH_MASK;
  484. if (size < min_size) {
  485. pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
  486. size >> 20, min_size >> 20);
  487. size = min_size;
  488. }
  489. size &= FAKE_NODE_MIN_HASH_MASK;
  490. for (i = 0; i < MAX_NUMNODES; i++)
  491. if (physnodes[i].start != physnodes[i].end)
  492. node_set(i, physnode_mask);
  493. /*
  494. * Fill physical nodes with fake nodes of size until there is no memory
  495. * left on any of them.
  496. */
  497. while (nodes_weight(physnode_mask)) {
  498. for_each_node_mask(i, physnode_mask) {
  499. u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
  500. u64 end;
  501. end = find_end_of_node(physnodes[i].start,
  502. physnodes[i].end, size);
  503. /*
  504. * If there won't be at least FAKE_NODE_MIN_SIZE of
  505. * non-reserved memory in ZONE_DMA32 for the next node,
  506. * this one must extend to the boundary.
  507. */
  508. if (end < dma32_end && dma32_end - end -
  509. e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
  510. end = dma32_end;
  511. /*
  512. * If there won't be enough non-reserved memory for the
  513. * next node, this one must extend to the end of the
  514. * physical node.
  515. */
  516. if (physnodes[i].end - end -
  517. e820_hole_size(end, physnodes[i].end) < size)
  518. end = physnodes[i].end;
  519. /*
  520. * Setup the fake node that will be allocated as bootmem
  521. * later. If setup_node_range() returns non-zero, there
  522. * is no more memory available on this physical node.
  523. */
  524. if (setup_node_range(ret++, &physnodes[i].start,
  525. end - physnodes[i].start,
  526. physnodes[i].end) < 0)
  527. node_clear(i, physnode_mask);
  528. }
  529. }
  530. return ret;
  531. }
  532. /*
  533. * Sets up the system RAM area from start_pfn to last_pfn according to the
  534. * numa=fake command-line option.
  535. */
  536. static int __init numa_emulation(unsigned long start_pfn,
  537. unsigned long last_pfn, int acpi, int k8)
  538. {
  539. u64 addr = start_pfn << PAGE_SHIFT;
  540. u64 max_addr = last_pfn << PAGE_SHIFT;
  541. int num_phys_nodes;
  542. int num_nodes;
  543. int i;
  544. num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8);
  545. /*
  546. * If the numa=fake command-line contains a 'M' or 'G', it represents
  547. * the fixed node size. Otherwise, if it is just a single number N,
  548. * split the system RAM into N fake nodes.
  549. */
  550. if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
  551. u64 size;
  552. size = memparse(cmdline, &cmdline);
  553. num_nodes = split_nodes_size_interleave(addr, max_addr, size);
  554. } else {
  555. unsigned long n;
  556. n = simple_strtoul(cmdline, NULL, 0);
  557. num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n);
  558. }
  559. if (num_nodes < 0)
  560. return num_nodes;
  561. memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
  562. if (memnode_shift < 0) {
  563. memnode_shift = 0;
  564. printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
  565. "disabled.\n");
  566. return -1;
  567. }
  568. /*
  569. * We need to vacate all active ranges that may have been registered for
  570. * the e820 memory map.
  571. */
  572. remove_all_active_ranges();
  573. for_each_node_mask(i, node_possible_map) {
  574. e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
  575. nodes[i].end >> PAGE_SHIFT);
  576. setup_node_bootmem(i, nodes[i].start, nodes[i].end);
  577. }
  578. acpi_fake_nodes(nodes, num_nodes);
  579. numa_init_array();
  580. return 0;
  581. }
  582. #endif /* CONFIG_NUMA_EMU */
  583. void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn,
  584. int acpi, int k8)
  585. {
  586. int i;
  587. nodes_clear(node_possible_map);
  588. nodes_clear(node_online_map);
  589. #ifdef CONFIG_NUMA_EMU
  590. if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8))
  591. return;
  592. nodes_clear(node_possible_map);
  593. nodes_clear(node_online_map);
  594. #endif
  595. #ifdef CONFIG_ACPI_NUMA
  596. if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
  597. last_pfn << PAGE_SHIFT))
  598. return;
  599. nodes_clear(node_possible_map);
  600. nodes_clear(node_online_map);
  601. #endif
  602. #ifdef CONFIG_K8_NUMA
  603. if (!numa_off && k8 && !k8_scan_nodes())
  604. return;
  605. nodes_clear(node_possible_map);
  606. nodes_clear(node_online_map);
  607. #endif
  608. printk(KERN_INFO "%s\n",
  609. numa_off ? "NUMA turned off" : "No NUMA configuration found");
  610. printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
  611. start_pfn << PAGE_SHIFT,
  612. last_pfn << PAGE_SHIFT);
  613. /* setup dummy node covering all memory */
  614. memnode_shift = 63;
  615. memnodemap = memnode.embedded_map;
  616. memnodemap[0] = 0;
  617. node_set_online(0);
  618. node_set(0, node_possible_map);
  619. for (i = 0; i < nr_cpu_ids; i++)
  620. numa_set_node(i, 0);
  621. e820_register_active_regions(0, start_pfn, last_pfn);
  622. setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
  623. }
  624. unsigned long __init numa_free_all_bootmem(void)
  625. {
  626. unsigned long pages = 0;
  627. int i;
  628. for_each_online_node(i)
  629. pages += free_all_bootmem_node(NODE_DATA(i));
  630. return pages;
  631. }
  632. static __init int numa_setup(char *opt)
  633. {
  634. if (!opt)
  635. return -EINVAL;
  636. if (!strncmp(opt, "off", 3))
  637. numa_off = 1;
  638. #ifdef CONFIG_NUMA_EMU
  639. if (!strncmp(opt, "fake=", 5))
  640. cmdline = opt + 5;
  641. #endif
  642. #ifdef CONFIG_ACPI_NUMA
  643. if (!strncmp(opt, "noacpi", 6))
  644. acpi_numa = -1;
  645. #endif
  646. return 0;
  647. }
  648. early_param("numa", numa_setup);
  649. #ifdef CONFIG_NUMA
  650. static __init int find_near_online_node(int node)
  651. {
  652. int n, val;
  653. int min_val = INT_MAX;
  654. int best_node = -1;
  655. for_each_online_node(n) {
  656. val = node_distance(node, n);
  657. if (val < min_val) {
  658. min_val = val;
  659. best_node = n;
  660. }
  661. }
  662. return best_node;
  663. }
  664. /*
  665. * Setup early cpu_to_node.
  666. *
  667. * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
  668. * and apicid_to_node[] tables have valid entries for a CPU.
  669. * This means we skip cpu_to_node[] initialisation for NUMA
  670. * emulation and faking node case (when running a kernel compiled
  671. * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
  672. * is already initialized in a round robin manner at numa_init_array,
  673. * prior to this call, and this initialization is good enough
  674. * for the fake NUMA cases.
  675. *
  676. * Called before the per_cpu areas are setup.
  677. */
  678. void __init init_cpu_to_node(void)
  679. {
  680. int cpu;
  681. u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
  682. BUG_ON(cpu_to_apicid == NULL);
  683. for_each_possible_cpu(cpu) {
  684. int node;
  685. u16 apicid = cpu_to_apicid[cpu];
  686. if (apicid == BAD_APICID)
  687. continue;
  688. node = apicid_to_node[apicid];
  689. if (node == NUMA_NO_NODE)
  690. continue;
  691. if (!node_online(node))
  692. node = find_near_online_node(node);
  693. numa_set_node(cpu, node);
  694. }
  695. }
  696. #endif
  697. void __cpuinit numa_set_node(int cpu, int node)
  698. {
  699. int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
  700. /* early setting, no percpu area yet */
  701. if (cpu_to_node_map) {
  702. cpu_to_node_map[cpu] = node;
  703. return;
  704. }
  705. #ifdef CONFIG_DEBUG_PER_CPU_MAPS
  706. if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
  707. printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
  708. dump_stack();
  709. return;
  710. }
  711. #endif
  712. per_cpu(x86_cpu_to_node_map, cpu) = node;
  713. if (node != NUMA_NO_NODE)
  714. per_cpu(node_number, cpu) = node;
  715. }
  716. void __cpuinit numa_clear_node(int cpu)
  717. {
  718. numa_set_node(cpu, NUMA_NO_NODE);
  719. }
  720. #ifndef CONFIG_DEBUG_PER_CPU_MAPS
  721. void __cpuinit numa_add_cpu(int cpu)
  722. {
  723. cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  724. }
  725. void __cpuinit numa_remove_cpu(int cpu)
  726. {
  727. cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  728. }
  729. #else /* CONFIG_DEBUG_PER_CPU_MAPS */
  730. /*
  731. * --------- debug versions of the numa functions ---------
  732. */
  733. static void __cpuinit numa_set_cpumask(int cpu, int enable)
  734. {
  735. int node = early_cpu_to_node(cpu);
  736. struct cpumask *mask;
  737. char buf[64];
  738. mask = node_to_cpumask_map[node];
  739. if (mask == NULL) {
  740. printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node);
  741. dump_stack();
  742. return;
  743. }
  744. if (enable)
  745. cpumask_set_cpu(cpu, mask);
  746. else
  747. cpumask_clear_cpu(cpu, mask);
  748. cpulist_scnprintf(buf, sizeof(buf), mask);
  749. printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
  750. enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf);
  751. }
  752. void __cpuinit numa_add_cpu(int cpu)
  753. {
  754. numa_set_cpumask(cpu, 1);
  755. }
  756. void __cpuinit numa_remove_cpu(int cpu)
  757. {
  758. numa_set_cpumask(cpu, 0);
  759. }
  760. int cpu_to_node(int cpu)
  761. {
  762. if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
  763. printk(KERN_WARNING
  764. "cpu_to_node(%d): usage too early!\n", cpu);
  765. dump_stack();
  766. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  767. }
  768. return per_cpu(x86_cpu_to_node_map, cpu);
  769. }
  770. EXPORT_SYMBOL(cpu_to_node);
  771. /*
  772. * Same function as cpu_to_node() but used if called before the
  773. * per_cpu areas are setup.
  774. */
  775. int early_cpu_to_node(int cpu)
  776. {
  777. if (early_per_cpu_ptr(x86_cpu_to_node_map))
  778. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  779. if (!cpu_possible(cpu)) {
  780. printk(KERN_WARNING
  781. "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
  782. dump_stack();
  783. return NUMA_NO_NODE;
  784. }
  785. return per_cpu(x86_cpu_to_node_map, cpu);
  786. }
  787. /*
  788. * --------- end of debug versions of the numa functions ---------
  789. */
  790. #endif /* CONFIG_DEBUG_PER_CPU_MAPS */