forcedeth.c 183 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  43. #define FORCEDETH_VERSION "0.64"
  44. #define DRV_NAME "forcedeth"
  45. #include <linux/module.h>
  46. #include <linux/types.h>
  47. #include <linux/pci.h>
  48. #include <linux/interrupt.h>
  49. #include <linux/netdevice.h>
  50. #include <linux/etherdevice.h>
  51. #include <linux/delay.h>
  52. #include <linux/sched.h>
  53. #include <linux/spinlock.h>
  54. #include <linux/ethtool.h>
  55. #include <linux/timer.h>
  56. #include <linux/skbuff.h>
  57. #include <linux/mii.h>
  58. #include <linux/random.h>
  59. #include <linux/init.h>
  60. #include <linux/if_vlan.h>
  61. #include <linux/dma-mapping.h>
  62. #include <linux/slab.h>
  63. #include <linux/uaccess.h>
  64. #include <linux/prefetch.h>
  65. #include <linux/io.h>
  66. #include <asm/irq.h>
  67. #include <asm/system.h>
  68. #define TX_WORK_PER_LOOP 64
  69. #define RX_WORK_PER_LOOP 64
  70. /*
  71. * Hardware access:
  72. */
  73. #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
  74. #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
  75. #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
  76. #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
  77. #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
  78. #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
  79. #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
  80. #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
  81. #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
  82. #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
  83. #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */
  84. #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */
  85. #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */
  86. #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */
  87. #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
  88. #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
  89. #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
  90. #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
  91. #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
  93. #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
  94. #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
  95. #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
  96. #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
  97. #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
  98. #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
  99. #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
  100. enum {
  101. NvRegIrqStatus = 0x000,
  102. #define NVREG_IRQSTAT_MIIEVENT 0x040
  103. #define NVREG_IRQSTAT_MASK 0x83ff
  104. NvRegIrqMask = 0x004,
  105. #define NVREG_IRQ_RX_ERROR 0x0001
  106. #define NVREG_IRQ_RX 0x0002
  107. #define NVREG_IRQ_RX_NOBUF 0x0004
  108. #define NVREG_IRQ_TX_ERR 0x0008
  109. #define NVREG_IRQ_TX_OK 0x0010
  110. #define NVREG_IRQ_TIMER 0x0020
  111. #define NVREG_IRQ_LINK 0x0040
  112. #define NVREG_IRQ_RX_FORCED 0x0080
  113. #define NVREG_IRQ_TX_FORCED 0x0100
  114. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  115. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  116. #define NVREG_IRQMASK_CPU 0x0060
  117. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  118. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  119. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  120. NvRegUnknownSetupReg6 = 0x008,
  121. #define NVREG_UNKSETUP6_VAL 3
  122. /*
  123. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  124. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  125. */
  126. NvRegPollingInterval = 0x00c,
  127. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  128. #define NVREG_POLL_DEFAULT_CPU 13
  129. NvRegMSIMap0 = 0x020,
  130. NvRegMSIMap1 = 0x024,
  131. NvRegMSIIrqMask = 0x030,
  132. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  133. NvRegMisc1 = 0x080,
  134. #define NVREG_MISC1_PAUSE_TX 0x01
  135. #define NVREG_MISC1_HD 0x02
  136. #define NVREG_MISC1_FORCE 0x3b0f3c
  137. NvRegMacReset = 0x34,
  138. #define NVREG_MAC_RESET_ASSERT 0x0F3
  139. NvRegTransmitterControl = 0x084,
  140. #define NVREG_XMITCTL_START 0x01
  141. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  142. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  143. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  144. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  145. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  146. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  147. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  148. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  149. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  150. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  151. #define NVREG_XMITCTL_DATA_START 0x00100000
  152. #define NVREG_XMITCTL_DATA_READY 0x00010000
  153. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  154. NvRegTransmitterStatus = 0x088,
  155. #define NVREG_XMITSTAT_BUSY 0x01
  156. NvRegPacketFilterFlags = 0x8c,
  157. #define NVREG_PFF_PAUSE_RX 0x08
  158. #define NVREG_PFF_ALWAYS 0x7F0000
  159. #define NVREG_PFF_PROMISC 0x80
  160. #define NVREG_PFF_MYADDR 0x20
  161. #define NVREG_PFF_LOOPBACK 0x10
  162. NvRegOffloadConfig = 0x90,
  163. #define NVREG_OFFLOAD_HOMEPHY 0x601
  164. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  165. NvRegReceiverControl = 0x094,
  166. #define NVREG_RCVCTL_START 0x01
  167. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  168. NvRegReceiverStatus = 0x98,
  169. #define NVREG_RCVSTAT_BUSY 0x01
  170. NvRegSlotTime = 0x9c,
  171. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  172. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  173. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  174. #define NVREG_SLOTTIME_HALF 0x0000ff00
  175. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  176. #define NVREG_SLOTTIME_MASK 0x000000ff
  177. NvRegTxDeferral = 0xA0,
  178. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  179. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  180. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  181. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  182. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  183. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  184. NvRegRxDeferral = 0xA4,
  185. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  186. NvRegMacAddrA = 0xA8,
  187. NvRegMacAddrB = 0xAC,
  188. NvRegMulticastAddrA = 0xB0,
  189. #define NVREG_MCASTADDRA_FORCE 0x01
  190. NvRegMulticastAddrB = 0xB4,
  191. NvRegMulticastMaskA = 0xB8,
  192. #define NVREG_MCASTMASKA_NONE 0xffffffff
  193. NvRegMulticastMaskB = 0xBC,
  194. #define NVREG_MCASTMASKB_NONE 0xffff
  195. NvRegPhyInterface = 0xC0,
  196. #define PHY_RGMII 0x10000000
  197. NvRegBackOffControl = 0xC4,
  198. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  199. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  200. #define NVREG_BKOFFCTRL_SELECT 24
  201. #define NVREG_BKOFFCTRL_GEAR 12
  202. NvRegTxRingPhysAddr = 0x100,
  203. NvRegRxRingPhysAddr = 0x104,
  204. NvRegRingSizes = 0x108,
  205. #define NVREG_RINGSZ_TXSHIFT 0
  206. #define NVREG_RINGSZ_RXSHIFT 16
  207. NvRegTransmitPoll = 0x10c,
  208. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  209. NvRegLinkSpeed = 0x110,
  210. #define NVREG_LINKSPEED_FORCE 0x10000
  211. #define NVREG_LINKSPEED_10 1000
  212. #define NVREG_LINKSPEED_100 100
  213. #define NVREG_LINKSPEED_1000 50
  214. #define NVREG_LINKSPEED_MASK (0xFFF)
  215. NvRegUnknownSetupReg5 = 0x130,
  216. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  217. NvRegTxWatermark = 0x13c,
  218. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  219. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  220. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  221. NvRegTxRxControl = 0x144,
  222. #define NVREG_TXRXCTL_KICK 0x0001
  223. #define NVREG_TXRXCTL_BIT1 0x0002
  224. #define NVREG_TXRXCTL_BIT2 0x0004
  225. #define NVREG_TXRXCTL_IDLE 0x0008
  226. #define NVREG_TXRXCTL_RESET 0x0010
  227. #define NVREG_TXRXCTL_RXCHECK 0x0400
  228. #define NVREG_TXRXCTL_DESC_1 0
  229. #define NVREG_TXRXCTL_DESC_2 0x002100
  230. #define NVREG_TXRXCTL_DESC_3 0xc02200
  231. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  232. #define NVREG_TXRXCTL_VLANINS 0x00080
  233. NvRegTxRingPhysAddrHigh = 0x148,
  234. NvRegRxRingPhysAddrHigh = 0x14C,
  235. NvRegTxPauseFrame = 0x170,
  236. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  237. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  238. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  239. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  240. NvRegTxPauseFrameLimit = 0x174,
  241. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  242. NvRegMIIStatus = 0x180,
  243. #define NVREG_MIISTAT_ERROR 0x0001
  244. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  245. #define NVREG_MIISTAT_MASK_RW 0x0007
  246. #define NVREG_MIISTAT_MASK_ALL 0x000f
  247. NvRegMIIMask = 0x184,
  248. #define NVREG_MII_LINKCHANGE 0x0008
  249. NvRegAdapterControl = 0x188,
  250. #define NVREG_ADAPTCTL_START 0x02
  251. #define NVREG_ADAPTCTL_LINKUP 0x04
  252. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  253. #define NVREG_ADAPTCTL_RUNNING 0x100000
  254. #define NVREG_ADAPTCTL_PHYSHIFT 24
  255. NvRegMIISpeed = 0x18c,
  256. #define NVREG_MIISPEED_BIT8 (1<<8)
  257. #define NVREG_MIIDELAY 5
  258. NvRegMIIControl = 0x190,
  259. #define NVREG_MIICTL_INUSE 0x08000
  260. #define NVREG_MIICTL_WRITE 0x00400
  261. #define NVREG_MIICTL_ADDRSHIFT 5
  262. NvRegMIIData = 0x194,
  263. NvRegTxUnicast = 0x1a0,
  264. NvRegTxMulticast = 0x1a4,
  265. NvRegTxBroadcast = 0x1a8,
  266. NvRegWakeUpFlags = 0x200,
  267. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  268. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  269. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  270. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  271. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  272. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  273. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  274. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  275. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  276. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  277. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  278. NvRegMgmtUnitGetVersion = 0x204,
  279. #define NVREG_MGMTUNITGETVERSION 0x01
  280. NvRegMgmtUnitVersion = 0x208,
  281. #define NVREG_MGMTUNITVERSION 0x08
  282. NvRegPowerCap = 0x268,
  283. #define NVREG_POWERCAP_D3SUPP (1<<30)
  284. #define NVREG_POWERCAP_D2SUPP (1<<26)
  285. #define NVREG_POWERCAP_D1SUPP (1<<25)
  286. NvRegPowerState = 0x26c,
  287. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  288. #define NVREG_POWERSTATE_VALID 0x0100
  289. #define NVREG_POWERSTATE_MASK 0x0003
  290. #define NVREG_POWERSTATE_D0 0x0000
  291. #define NVREG_POWERSTATE_D1 0x0001
  292. #define NVREG_POWERSTATE_D2 0x0002
  293. #define NVREG_POWERSTATE_D3 0x0003
  294. NvRegMgmtUnitControl = 0x278,
  295. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  296. NvRegTxCnt = 0x280,
  297. NvRegTxZeroReXmt = 0x284,
  298. NvRegTxOneReXmt = 0x288,
  299. NvRegTxManyReXmt = 0x28c,
  300. NvRegTxLateCol = 0x290,
  301. NvRegTxUnderflow = 0x294,
  302. NvRegTxLossCarrier = 0x298,
  303. NvRegTxExcessDef = 0x29c,
  304. NvRegTxRetryErr = 0x2a0,
  305. NvRegRxFrameErr = 0x2a4,
  306. NvRegRxExtraByte = 0x2a8,
  307. NvRegRxLateCol = 0x2ac,
  308. NvRegRxRunt = 0x2b0,
  309. NvRegRxFrameTooLong = 0x2b4,
  310. NvRegRxOverflow = 0x2b8,
  311. NvRegRxFCSErr = 0x2bc,
  312. NvRegRxFrameAlignErr = 0x2c0,
  313. NvRegRxLenErr = 0x2c4,
  314. NvRegRxUnicast = 0x2c8,
  315. NvRegRxMulticast = 0x2cc,
  316. NvRegRxBroadcast = 0x2d0,
  317. NvRegTxDef = 0x2d4,
  318. NvRegTxFrame = 0x2d8,
  319. NvRegRxCnt = 0x2dc,
  320. NvRegTxPause = 0x2e0,
  321. NvRegRxPause = 0x2e4,
  322. NvRegRxDropFrame = 0x2e8,
  323. NvRegVlanControl = 0x300,
  324. #define NVREG_VLANCONTROL_ENABLE 0x2000
  325. NvRegMSIXMap0 = 0x3e0,
  326. NvRegMSIXMap1 = 0x3e4,
  327. NvRegMSIXIrqStatus = 0x3f0,
  328. NvRegPowerState2 = 0x600,
  329. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  330. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  331. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  332. #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
  333. };
  334. /* Big endian: should work, but is untested */
  335. struct ring_desc {
  336. __le32 buf;
  337. __le32 flaglen;
  338. };
  339. struct ring_desc_ex {
  340. __le32 bufhigh;
  341. __le32 buflow;
  342. __le32 txvlan;
  343. __le32 flaglen;
  344. };
  345. union ring_type {
  346. struct ring_desc *orig;
  347. struct ring_desc_ex *ex;
  348. };
  349. #define FLAG_MASK_V1 0xffff0000
  350. #define FLAG_MASK_V2 0xffffc000
  351. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  352. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  353. #define NV_TX_LASTPACKET (1<<16)
  354. #define NV_TX_RETRYERROR (1<<19)
  355. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  356. #define NV_TX_FORCED_INTERRUPT (1<<24)
  357. #define NV_TX_DEFERRED (1<<26)
  358. #define NV_TX_CARRIERLOST (1<<27)
  359. #define NV_TX_LATECOLLISION (1<<28)
  360. #define NV_TX_UNDERFLOW (1<<29)
  361. #define NV_TX_ERROR (1<<30)
  362. #define NV_TX_VALID (1<<31)
  363. #define NV_TX2_LASTPACKET (1<<29)
  364. #define NV_TX2_RETRYERROR (1<<18)
  365. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  366. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  367. #define NV_TX2_DEFERRED (1<<25)
  368. #define NV_TX2_CARRIERLOST (1<<26)
  369. #define NV_TX2_LATECOLLISION (1<<27)
  370. #define NV_TX2_UNDERFLOW (1<<28)
  371. /* error and valid are the same for both */
  372. #define NV_TX2_ERROR (1<<30)
  373. #define NV_TX2_VALID (1<<31)
  374. #define NV_TX2_TSO (1<<28)
  375. #define NV_TX2_TSO_SHIFT 14
  376. #define NV_TX2_TSO_MAX_SHIFT 14
  377. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  378. #define NV_TX2_CHECKSUM_L3 (1<<27)
  379. #define NV_TX2_CHECKSUM_L4 (1<<26)
  380. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  381. #define NV_RX_DESCRIPTORVALID (1<<16)
  382. #define NV_RX_MISSEDFRAME (1<<17)
  383. #define NV_RX_SUBSTRACT1 (1<<18)
  384. #define NV_RX_ERROR1 (1<<23)
  385. #define NV_RX_ERROR2 (1<<24)
  386. #define NV_RX_ERROR3 (1<<25)
  387. #define NV_RX_ERROR4 (1<<26)
  388. #define NV_RX_CRCERR (1<<27)
  389. #define NV_RX_OVERFLOW (1<<28)
  390. #define NV_RX_FRAMINGERR (1<<29)
  391. #define NV_RX_ERROR (1<<30)
  392. #define NV_RX_AVAIL (1<<31)
  393. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  394. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  395. #define NV_RX2_CHECKSUM_IP (0x10000000)
  396. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  397. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  398. #define NV_RX2_DESCRIPTORVALID (1<<29)
  399. #define NV_RX2_SUBSTRACT1 (1<<25)
  400. #define NV_RX2_ERROR1 (1<<18)
  401. #define NV_RX2_ERROR2 (1<<19)
  402. #define NV_RX2_ERROR3 (1<<20)
  403. #define NV_RX2_ERROR4 (1<<21)
  404. #define NV_RX2_CRCERR (1<<22)
  405. #define NV_RX2_OVERFLOW (1<<23)
  406. #define NV_RX2_FRAMINGERR (1<<24)
  407. /* error and avail are the same for both */
  408. #define NV_RX2_ERROR (1<<30)
  409. #define NV_RX2_AVAIL (1<<31)
  410. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  411. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  412. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  413. /* Miscellaneous hardware related defines: */
  414. #define NV_PCI_REGSZ_VER1 0x270
  415. #define NV_PCI_REGSZ_VER2 0x2d4
  416. #define NV_PCI_REGSZ_VER3 0x604
  417. #define NV_PCI_REGSZ_MAX 0x604
  418. /* various timeout delays: all in usec */
  419. #define NV_TXRX_RESET_DELAY 4
  420. #define NV_TXSTOP_DELAY1 10
  421. #define NV_TXSTOP_DELAY1MAX 500000
  422. #define NV_TXSTOP_DELAY2 100
  423. #define NV_RXSTOP_DELAY1 10
  424. #define NV_RXSTOP_DELAY1MAX 500000
  425. #define NV_RXSTOP_DELAY2 100
  426. #define NV_SETUP5_DELAY 5
  427. #define NV_SETUP5_DELAYMAX 50000
  428. #define NV_POWERUP_DELAY 5
  429. #define NV_POWERUP_DELAYMAX 5000
  430. #define NV_MIIBUSY_DELAY 50
  431. #define NV_MIIPHY_DELAY 10
  432. #define NV_MIIPHY_DELAYMAX 10000
  433. #define NV_MAC_RESET_DELAY 64
  434. #define NV_WAKEUPPATTERNS 5
  435. #define NV_WAKEUPMASKENTRIES 4
  436. /* General driver defaults */
  437. #define NV_WATCHDOG_TIMEO (5*HZ)
  438. #define RX_RING_DEFAULT 512
  439. #define TX_RING_DEFAULT 256
  440. #define RX_RING_MIN 128
  441. #define TX_RING_MIN 64
  442. #define RING_MAX_DESC_VER_1 1024
  443. #define RING_MAX_DESC_VER_2_3 16384
  444. /* rx/tx mac addr + type + vlan + align + slack*/
  445. #define NV_RX_HEADERS (64)
  446. /* even more slack. */
  447. #define NV_RX_ALLOC_PAD (64)
  448. /* maximum mtu size */
  449. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  450. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  451. #define OOM_REFILL (1+HZ/20)
  452. #define POLL_WAIT (1+HZ/100)
  453. #define LINK_TIMEOUT (3*HZ)
  454. #define STATS_INTERVAL (10*HZ)
  455. /*
  456. * desc_ver values:
  457. * The nic supports three different descriptor types:
  458. * - DESC_VER_1: Original
  459. * - DESC_VER_2: support for jumbo frames.
  460. * - DESC_VER_3: 64-bit format.
  461. */
  462. #define DESC_VER_1 1
  463. #define DESC_VER_2 2
  464. #define DESC_VER_3 3
  465. /* PHY defines */
  466. #define PHY_OUI_MARVELL 0x5043
  467. #define PHY_OUI_CICADA 0x03f1
  468. #define PHY_OUI_VITESSE 0x01c1
  469. #define PHY_OUI_REALTEK 0x0732
  470. #define PHY_OUI_REALTEK2 0x0020
  471. #define PHYID1_OUI_MASK 0x03ff
  472. #define PHYID1_OUI_SHFT 6
  473. #define PHYID2_OUI_MASK 0xfc00
  474. #define PHYID2_OUI_SHFT 10
  475. #define PHYID2_MODEL_MASK 0x03f0
  476. #define PHY_MODEL_REALTEK_8211 0x0110
  477. #define PHY_REV_MASK 0x0001
  478. #define PHY_REV_REALTEK_8211B 0x0000
  479. #define PHY_REV_REALTEK_8211C 0x0001
  480. #define PHY_MODEL_REALTEK_8201 0x0200
  481. #define PHY_MODEL_MARVELL_E3016 0x0220
  482. #define PHY_MARVELL_E3016_INITMASK 0x0300
  483. #define PHY_CICADA_INIT1 0x0f000
  484. #define PHY_CICADA_INIT2 0x0e00
  485. #define PHY_CICADA_INIT3 0x01000
  486. #define PHY_CICADA_INIT4 0x0200
  487. #define PHY_CICADA_INIT5 0x0004
  488. #define PHY_CICADA_INIT6 0x02000
  489. #define PHY_VITESSE_INIT_REG1 0x1f
  490. #define PHY_VITESSE_INIT_REG2 0x10
  491. #define PHY_VITESSE_INIT_REG3 0x11
  492. #define PHY_VITESSE_INIT_REG4 0x12
  493. #define PHY_VITESSE_INIT_MSK1 0xc
  494. #define PHY_VITESSE_INIT_MSK2 0x0180
  495. #define PHY_VITESSE_INIT1 0x52b5
  496. #define PHY_VITESSE_INIT2 0xaf8a
  497. #define PHY_VITESSE_INIT3 0x8
  498. #define PHY_VITESSE_INIT4 0x8f8a
  499. #define PHY_VITESSE_INIT5 0xaf86
  500. #define PHY_VITESSE_INIT6 0x8f86
  501. #define PHY_VITESSE_INIT7 0xaf82
  502. #define PHY_VITESSE_INIT8 0x0100
  503. #define PHY_VITESSE_INIT9 0x8f82
  504. #define PHY_VITESSE_INIT10 0x0
  505. #define PHY_REALTEK_INIT_REG1 0x1f
  506. #define PHY_REALTEK_INIT_REG2 0x19
  507. #define PHY_REALTEK_INIT_REG3 0x13
  508. #define PHY_REALTEK_INIT_REG4 0x14
  509. #define PHY_REALTEK_INIT_REG5 0x18
  510. #define PHY_REALTEK_INIT_REG6 0x11
  511. #define PHY_REALTEK_INIT_REG7 0x01
  512. #define PHY_REALTEK_INIT1 0x0000
  513. #define PHY_REALTEK_INIT2 0x8e00
  514. #define PHY_REALTEK_INIT3 0x0001
  515. #define PHY_REALTEK_INIT4 0xad17
  516. #define PHY_REALTEK_INIT5 0xfb54
  517. #define PHY_REALTEK_INIT6 0xf5c7
  518. #define PHY_REALTEK_INIT7 0x1000
  519. #define PHY_REALTEK_INIT8 0x0003
  520. #define PHY_REALTEK_INIT9 0x0008
  521. #define PHY_REALTEK_INIT10 0x0005
  522. #define PHY_REALTEK_INIT11 0x0200
  523. #define PHY_REALTEK_INIT_MSK1 0x0003
  524. #define PHY_GIGABIT 0x0100
  525. #define PHY_TIMEOUT 0x1
  526. #define PHY_ERROR 0x2
  527. #define PHY_100 0x1
  528. #define PHY_1000 0x2
  529. #define PHY_HALF 0x100
  530. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  531. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  532. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  533. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  534. #define NV_PAUSEFRAME_RX_REQ 0x0010
  535. #define NV_PAUSEFRAME_TX_REQ 0x0020
  536. #define NV_PAUSEFRAME_AUTONEG 0x0040
  537. /* MSI/MSI-X defines */
  538. #define NV_MSI_X_MAX_VECTORS 8
  539. #define NV_MSI_X_VECTORS_MASK 0x000f
  540. #define NV_MSI_CAPABLE 0x0010
  541. #define NV_MSI_X_CAPABLE 0x0020
  542. #define NV_MSI_ENABLED 0x0040
  543. #define NV_MSI_X_ENABLED 0x0080
  544. #define NV_MSI_X_VECTOR_ALL 0x0
  545. #define NV_MSI_X_VECTOR_RX 0x0
  546. #define NV_MSI_X_VECTOR_TX 0x1
  547. #define NV_MSI_X_VECTOR_OTHER 0x2
  548. #define NV_MSI_PRIV_OFFSET 0x68
  549. #define NV_MSI_PRIV_VALUE 0xffffffff
  550. #define NV_RESTART_TX 0x1
  551. #define NV_RESTART_RX 0x2
  552. #define NV_TX_LIMIT_COUNT 16
  553. #define NV_DYNAMIC_THRESHOLD 4
  554. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  555. /* statistics */
  556. struct nv_ethtool_str {
  557. char name[ETH_GSTRING_LEN];
  558. };
  559. static const struct nv_ethtool_str nv_estats_str[] = {
  560. { "tx_bytes" }, /* includes Ethernet FCS CRC */
  561. { "tx_zero_rexmt" },
  562. { "tx_one_rexmt" },
  563. { "tx_many_rexmt" },
  564. { "tx_late_collision" },
  565. { "tx_fifo_errors" },
  566. { "tx_carrier_errors" },
  567. { "tx_excess_deferral" },
  568. { "tx_retry_error" },
  569. { "rx_frame_error" },
  570. { "rx_extra_byte" },
  571. { "rx_late_collision" },
  572. { "rx_runt" },
  573. { "rx_frame_too_long" },
  574. { "rx_over_errors" },
  575. { "rx_crc_errors" },
  576. { "rx_frame_align_error" },
  577. { "rx_length_error" },
  578. { "rx_unicast" },
  579. { "rx_multicast" },
  580. { "rx_broadcast" },
  581. { "rx_packets" },
  582. { "rx_errors_total" },
  583. { "tx_errors_total" },
  584. /* version 2 stats */
  585. { "tx_deferral" },
  586. { "tx_packets" },
  587. { "rx_bytes" }, /* includes Ethernet FCS CRC */
  588. { "tx_pause" },
  589. { "rx_pause" },
  590. { "rx_drop_frame" },
  591. /* version 3 stats */
  592. { "tx_unicast" },
  593. { "tx_multicast" },
  594. { "tx_broadcast" }
  595. };
  596. struct nv_ethtool_stats {
  597. u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */
  598. u64 tx_zero_rexmt;
  599. u64 tx_one_rexmt;
  600. u64 tx_many_rexmt;
  601. u64 tx_late_collision;
  602. u64 tx_fifo_errors;
  603. u64 tx_carrier_errors;
  604. u64 tx_excess_deferral;
  605. u64 tx_retry_error;
  606. u64 rx_frame_error;
  607. u64 rx_extra_byte;
  608. u64 rx_late_collision;
  609. u64 rx_runt;
  610. u64 rx_frame_too_long;
  611. u64 rx_over_errors;
  612. u64 rx_crc_errors;
  613. u64 rx_frame_align_error;
  614. u64 rx_length_error;
  615. u64 rx_unicast;
  616. u64 rx_multicast;
  617. u64 rx_broadcast;
  618. u64 rx_packets; /* should be ifconfig->rx_packets */
  619. u64 rx_errors_total;
  620. u64 tx_errors_total;
  621. /* version 2 stats */
  622. u64 tx_deferral;
  623. u64 tx_packets; /* should be ifconfig->tx_packets */
  624. u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */
  625. u64 tx_pause;
  626. u64 rx_pause;
  627. u64 rx_drop_frame;
  628. /* version 3 stats */
  629. u64 tx_unicast;
  630. u64 tx_multicast;
  631. u64 tx_broadcast;
  632. };
  633. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  634. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  635. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  636. /* diagnostics */
  637. #define NV_TEST_COUNT_BASE 3
  638. #define NV_TEST_COUNT_EXTENDED 4
  639. static const struct nv_ethtool_str nv_etests_str[] = {
  640. { "link (online/offline)" },
  641. { "register (offline) " },
  642. { "interrupt (offline) " },
  643. { "loopback (offline) " }
  644. };
  645. struct register_test {
  646. __u32 reg;
  647. __u32 mask;
  648. };
  649. static const struct register_test nv_registers_test[] = {
  650. { NvRegUnknownSetupReg6, 0x01 },
  651. { NvRegMisc1, 0x03c },
  652. { NvRegOffloadConfig, 0x03ff },
  653. { NvRegMulticastAddrA, 0xffffffff },
  654. { NvRegTxWatermark, 0x0ff },
  655. { NvRegWakeUpFlags, 0x07777 },
  656. { 0, 0 }
  657. };
  658. struct nv_skb_map {
  659. struct sk_buff *skb;
  660. dma_addr_t dma;
  661. unsigned int dma_len:31;
  662. unsigned int dma_single:1;
  663. struct ring_desc_ex *first_tx_desc;
  664. struct nv_skb_map *next_tx_ctx;
  665. };
  666. /*
  667. * SMP locking:
  668. * All hardware access under netdev_priv(dev)->lock, except the performance
  669. * critical parts:
  670. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  671. * by the arch code for interrupts.
  672. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  673. * needs netdev_priv(dev)->lock :-(
  674. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  675. */
  676. /* in dev: base, irq */
  677. struct fe_priv {
  678. spinlock_t lock;
  679. struct net_device *dev;
  680. struct napi_struct napi;
  681. /* General data:
  682. * Locking: spin_lock(&np->lock); */
  683. struct nv_ethtool_stats estats;
  684. int in_shutdown;
  685. u32 linkspeed;
  686. int duplex;
  687. int autoneg;
  688. int fixed_mode;
  689. int phyaddr;
  690. int wolenabled;
  691. unsigned int phy_oui;
  692. unsigned int phy_model;
  693. unsigned int phy_rev;
  694. u16 gigabit;
  695. int intr_test;
  696. int recover_error;
  697. int quiet_count;
  698. /* General data: RO fields */
  699. dma_addr_t ring_addr;
  700. struct pci_dev *pci_dev;
  701. u32 orig_mac[2];
  702. u32 events;
  703. u32 irqmask;
  704. u32 desc_ver;
  705. u32 txrxctl_bits;
  706. u32 vlanctl_bits;
  707. u32 driver_data;
  708. u32 device_id;
  709. u32 register_size;
  710. u32 mac_in_use;
  711. int mgmt_version;
  712. int mgmt_sema;
  713. void __iomem *base;
  714. /* rx specific fields.
  715. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  716. */
  717. union ring_type get_rx, put_rx, first_rx, last_rx;
  718. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  719. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  720. struct nv_skb_map *rx_skb;
  721. union ring_type rx_ring;
  722. unsigned int rx_buf_sz;
  723. unsigned int pkt_limit;
  724. struct timer_list oom_kick;
  725. struct timer_list nic_poll;
  726. struct timer_list stats_poll;
  727. u32 nic_poll_irq;
  728. int rx_ring_size;
  729. /* media detection workaround.
  730. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  731. */
  732. int need_linktimer;
  733. unsigned long link_timeout;
  734. /*
  735. * tx specific fields.
  736. */
  737. union ring_type get_tx, put_tx, first_tx, last_tx;
  738. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  739. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  740. struct nv_skb_map *tx_skb;
  741. union ring_type tx_ring;
  742. u32 tx_flags;
  743. int tx_ring_size;
  744. int tx_limit;
  745. u32 tx_pkts_in_progress;
  746. struct nv_skb_map *tx_change_owner;
  747. struct nv_skb_map *tx_end_flip;
  748. int tx_stop;
  749. /* msi/msi-x fields */
  750. u32 msi_flags;
  751. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  752. /* flow control */
  753. u32 pause_flags;
  754. /* power saved state */
  755. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  756. /* for different msi-x irq type */
  757. char name_rx[IFNAMSIZ + 3]; /* -rx */
  758. char name_tx[IFNAMSIZ + 3]; /* -tx */
  759. char name_other[IFNAMSIZ + 6]; /* -other */
  760. };
  761. /*
  762. * Maximum number of loops until we assume that a bit in the irq mask
  763. * is stuck. Overridable with module param.
  764. */
  765. static int max_interrupt_work = 4;
  766. /*
  767. * Optimization can be either throuput mode or cpu mode
  768. *
  769. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  770. * CPU Mode: Interrupts are controlled by a timer.
  771. */
  772. enum {
  773. NV_OPTIMIZATION_MODE_THROUGHPUT,
  774. NV_OPTIMIZATION_MODE_CPU,
  775. NV_OPTIMIZATION_MODE_DYNAMIC
  776. };
  777. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  778. /*
  779. * Poll interval for timer irq
  780. *
  781. * This interval determines how frequent an interrupt is generated.
  782. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  783. * Min = 0, and Max = 65535
  784. */
  785. static int poll_interval = -1;
  786. /*
  787. * MSI interrupts
  788. */
  789. enum {
  790. NV_MSI_INT_DISABLED,
  791. NV_MSI_INT_ENABLED
  792. };
  793. static int msi = NV_MSI_INT_ENABLED;
  794. /*
  795. * MSIX interrupts
  796. */
  797. enum {
  798. NV_MSIX_INT_DISABLED,
  799. NV_MSIX_INT_ENABLED
  800. };
  801. static int msix = NV_MSIX_INT_ENABLED;
  802. /*
  803. * DMA 64bit
  804. */
  805. enum {
  806. NV_DMA_64BIT_DISABLED,
  807. NV_DMA_64BIT_ENABLED
  808. };
  809. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  810. /*
  811. * Debug output control for tx_timeout
  812. */
  813. static bool debug_tx_timeout = false;
  814. /*
  815. * Crossover Detection
  816. * Realtek 8201 phy + some OEM boards do not work properly.
  817. */
  818. enum {
  819. NV_CROSSOVER_DETECTION_DISABLED,
  820. NV_CROSSOVER_DETECTION_ENABLED
  821. };
  822. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  823. /*
  824. * Power down phy when interface is down (persists through reboot;
  825. * older Linux and other OSes may not power it up again)
  826. */
  827. static int phy_power_down;
  828. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  829. {
  830. return netdev_priv(dev);
  831. }
  832. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  833. {
  834. return ((struct fe_priv *)netdev_priv(dev))->base;
  835. }
  836. static inline void pci_push(u8 __iomem *base)
  837. {
  838. /* force out pending posted writes */
  839. readl(base);
  840. }
  841. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  842. {
  843. return le32_to_cpu(prd->flaglen)
  844. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  845. }
  846. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  847. {
  848. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  849. }
  850. static bool nv_optimized(struct fe_priv *np)
  851. {
  852. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  853. return false;
  854. return true;
  855. }
  856. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  857. int delay, int delaymax)
  858. {
  859. u8 __iomem *base = get_hwbase(dev);
  860. pci_push(base);
  861. do {
  862. udelay(delay);
  863. delaymax -= delay;
  864. if (delaymax < 0)
  865. return 1;
  866. } while ((readl(base + offset) & mask) != target);
  867. return 0;
  868. }
  869. #define NV_SETUP_RX_RING 0x01
  870. #define NV_SETUP_TX_RING 0x02
  871. static inline u32 dma_low(dma_addr_t addr)
  872. {
  873. return addr;
  874. }
  875. static inline u32 dma_high(dma_addr_t addr)
  876. {
  877. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  878. }
  879. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  880. {
  881. struct fe_priv *np = get_nvpriv(dev);
  882. u8 __iomem *base = get_hwbase(dev);
  883. if (!nv_optimized(np)) {
  884. if (rxtx_flags & NV_SETUP_RX_RING)
  885. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  886. if (rxtx_flags & NV_SETUP_TX_RING)
  887. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  888. } else {
  889. if (rxtx_flags & NV_SETUP_RX_RING) {
  890. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  891. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  892. }
  893. if (rxtx_flags & NV_SETUP_TX_RING) {
  894. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  895. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  896. }
  897. }
  898. }
  899. static void free_rings(struct net_device *dev)
  900. {
  901. struct fe_priv *np = get_nvpriv(dev);
  902. if (!nv_optimized(np)) {
  903. if (np->rx_ring.orig)
  904. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  905. np->rx_ring.orig, np->ring_addr);
  906. } else {
  907. if (np->rx_ring.ex)
  908. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  909. np->rx_ring.ex, np->ring_addr);
  910. }
  911. kfree(np->rx_skb);
  912. kfree(np->tx_skb);
  913. }
  914. static int using_multi_irqs(struct net_device *dev)
  915. {
  916. struct fe_priv *np = get_nvpriv(dev);
  917. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  918. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  919. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  920. return 0;
  921. else
  922. return 1;
  923. }
  924. static void nv_txrx_gate(struct net_device *dev, bool gate)
  925. {
  926. struct fe_priv *np = get_nvpriv(dev);
  927. u8 __iomem *base = get_hwbase(dev);
  928. u32 powerstate;
  929. if (!np->mac_in_use &&
  930. (np->driver_data & DEV_HAS_POWER_CNTRL)) {
  931. powerstate = readl(base + NvRegPowerState2);
  932. if (gate)
  933. powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
  934. else
  935. powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
  936. writel(powerstate, base + NvRegPowerState2);
  937. }
  938. }
  939. static void nv_enable_irq(struct net_device *dev)
  940. {
  941. struct fe_priv *np = get_nvpriv(dev);
  942. if (!using_multi_irqs(dev)) {
  943. if (np->msi_flags & NV_MSI_X_ENABLED)
  944. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  945. else
  946. enable_irq(np->pci_dev->irq);
  947. } else {
  948. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  949. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  950. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  951. }
  952. }
  953. static void nv_disable_irq(struct net_device *dev)
  954. {
  955. struct fe_priv *np = get_nvpriv(dev);
  956. if (!using_multi_irqs(dev)) {
  957. if (np->msi_flags & NV_MSI_X_ENABLED)
  958. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  959. else
  960. disable_irq(np->pci_dev->irq);
  961. } else {
  962. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  963. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  964. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  965. }
  966. }
  967. /* In MSIX mode, a write to irqmask behaves as XOR */
  968. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  969. {
  970. u8 __iomem *base = get_hwbase(dev);
  971. writel(mask, base + NvRegIrqMask);
  972. }
  973. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  974. {
  975. struct fe_priv *np = get_nvpriv(dev);
  976. u8 __iomem *base = get_hwbase(dev);
  977. if (np->msi_flags & NV_MSI_X_ENABLED) {
  978. writel(mask, base + NvRegIrqMask);
  979. } else {
  980. if (np->msi_flags & NV_MSI_ENABLED)
  981. writel(0, base + NvRegMSIIrqMask);
  982. writel(0, base + NvRegIrqMask);
  983. }
  984. }
  985. static void nv_napi_enable(struct net_device *dev)
  986. {
  987. struct fe_priv *np = get_nvpriv(dev);
  988. napi_enable(&np->napi);
  989. }
  990. static void nv_napi_disable(struct net_device *dev)
  991. {
  992. struct fe_priv *np = get_nvpriv(dev);
  993. napi_disable(&np->napi);
  994. }
  995. #define MII_READ (-1)
  996. /* mii_rw: read/write a register on the PHY.
  997. *
  998. * Caller must guarantee serialization
  999. */
  1000. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  1001. {
  1002. u8 __iomem *base = get_hwbase(dev);
  1003. u32 reg;
  1004. int retval;
  1005. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  1006. reg = readl(base + NvRegMIIControl);
  1007. if (reg & NVREG_MIICTL_INUSE) {
  1008. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  1009. udelay(NV_MIIBUSY_DELAY);
  1010. }
  1011. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  1012. if (value != MII_READ) {
  1013. writel(value, base + NvRegMIIData);
  1014. reg |= NVREG_MIICTL_WRITE;
  1015. }
  1016. writel(reg, base + NvRegMIIControl);
  1017. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1018. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) {
  1019. retval = -1;
  1020. } else if (value != MII_READ) {
  1021. /* it was a write operation - fewer failures are detectable */
  1022. retval = 0;
  1023. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1024. retval = -1;
  1025. } else {
  1026. retval = readl(base + NvRegMIIData);
  1027. }
  1028. return retval;
  1029. }
  1030. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1031. {
  1032. struct fe_priv *np = netdev_priv(dev);
  1033. u32 miicontrol;
  1034. unsigned int tries = 0;
  1035. miicontrol = BMCR_RESET | bmcr_setup;
  1036. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol))
  1037. return -1;
  1038. /* wait for 500ms */
  1039. msleep(500);
  1040. /* must wait till reset is deasserted */
  1041. while (miicontrol & BMCR_RESET) {
  1042. usleep_range(10000, 20000);
  1043. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1044. /* FIXME: 100 tries seem excessive */
  1045. if (tries++ > 100)
  1046. return -1;
  1047. }
  1048. return 0;
  1049. }
  1050. static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np)
  1051. {
  1052. static const struct {
  1053. int reg;
  1054. int init;
  1055. } ri[] = {
  1056. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
  1057. { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 },
  1058. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 },
  1059. { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 },
  1060. { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 },
  1061. { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 },
  1062. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
  1063. };
  1064. int i;
  1065. for (i = 0; i < ARRAY_SIZE(ri); i++) {
  1066. if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init))
  1067. return PHY_ERROR;
  1068. }
  1069. return 0;
  1070. }
  1071. static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np)
  1072. {
  1073. u32 reg;
  1074. u8 __iomem *base = get_hwbase(dev);
  1075. u32 powerstate = readl(base + NvRegPowerState2);
  1076. /* need to perform hw phy reset */
  1077. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1078. writel(powerstate, base + NvRegPowerState2);
  1079. msleep(25);
  1080. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1081. writel(powerstate, base + NvRegPowerState2);
  1082. msleep(25);
  1083. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1084. reg |= PHY_REALTEK_INIT9;
  1085. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg))
  1086. return PHY_ERROR;
  1087. if (mii_rw(dev, np->phyaddr,
  1088. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10))
  1089. return PHY_ERROR;
  1090. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1091. if (!(reg & PHY_REALTEK_INIT11)) {
  1092. reg |= PHY_REALTEK_INIT11;
  1093. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg))
  1094. return PHY_ERROR;
  1095. }
  1096. if (mii_rw(dev, np->phyaddr,
  1097. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
  1098. return PHY_ERROR;
  1099. return 0;
  1100. }
  1101. static int init_realtek_8201(struct net_device *dev, struct fe_priv *np)
  1102. {
  1103. u32 phy_reserved;
  1104. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1105. phy_reserved = mii_rw(dev, np->phyaddr,
  1106. PHY_REALTEK_INIT_REG6, MII_READ);
  1107. phy_reserved |= PHY_REALTEK_INIT7;
  1108. if (mii_rw(dev, np->phyaddr,
  1109. PHY_REALTEK_INIT_REG6, phy_reserved))
  1110. return PHY_ERROR;
  1111. }
  1112. return 0;
  1113. }
  1114. static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np)
  1115. {
  1116. u32 phy_reserved;
  1117. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1118. if (mii_rw(dev, np->phyaddr,
  1119. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3))
  1120. return PHY_ERROR;
  1121. phy_reserved = mii_rw(dev, np->phyaddr,
  1122. PHY_REALTEK_INIT_REG2, MII_READ);
  1123. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1124. phy_reserved |= PHY_REALTEK_INIT3;
  1125. if (mii_rw(dev, np->phyaddr,
  1126. PHY_REALTEK_INIT_REG2, phy_reserved))
  1127. return PHY_ERROR;
  1128. if (mii_rw(dev, np->phyaddr,
  1129. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
  1130. return PHY_ERROR;
  1131. }
  1132. return 0;
  1133. }
  1134. static int init_cicada(struct net_device *dev, struct fe_priv *np,
  1135. u32 phyinterface)
  1136. {
  1137. u32 phy_reserved;
  1138. if (phyinterface & PHY_RGMII) {
  1139. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1140. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1141. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1142. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved))
  1143. return PHY_ERROR;
  1144. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1145. phy_reserved |= PHY_CICADA_INIT5;
  1146. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved))
  1147. return PHY_ERROR;
  1148. }
  1149. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1150. phy_reserved |= PHY_CICADA_INIT6;
  1151. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved))
  1152. return PHY_ERROR;
  1153. return 0;
  1154. }
  1155. static int init_vitesse(struct net_device *dev, struct fe_priv *np)
  1156. {
  1157. u32 phy_reserved;
  1158. if (mii_rw(dev, np->phyaddr,
  1159. PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1))
  1160. return PHY_ERROR;
  1161. if (mii_rw(dev, np->phyaddr,
  1162. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2))
  1163. return PHY_ERROR;
  1164. phy_reserved = mii_rw(dev, np->phyaddr,
  1165. PHY_VITESSE_INIT_REG4, MII_READ);
  1166. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1167. return PHY_ERROR;
  1168. phy_reserved = mii_rw(dev, np->phyaddr,
  1169. PHY_VITESSE_INIT_REG3, MII_READ);
  1170. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1171. phy_reserved |= PHY_VITESSE_INIT3;
  1172. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1173. return PHY_ERROR;
  1174. if (mii_rw(dev, np->phyaddr,
  1175. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4))
  1176. return PHY_ERROR;
  1177. if (mii_rw(dev, np->phyaddr,
  1178. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5))
  1179. return PHY_ERROR;
  1180. phy_reserved = mii_rw(dev, np->phyaddr,
  1181. PHY_VITESSE_INIT_REG4, MII_READ);
  1182. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1183. phy_reserved |= PHY_VITESSE_INIT3;
  1184. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1185. return PHY_ERROR;
  1186. phy_reserved = mii_rw(dev, np->phyaddr,
  1187. PHY_VITESSE_INIT_REG3, MII_READ);
  1188. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1189. return PHY_ERROR;
  1190. if (mii_rw(dev, np->phyaddr,
  1191. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6))
  1192. return PHY_ERROR;
  1193. if (mii_rw(dev, np->phyaddr,
  1194. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7))
  1195. return PHY_ERROR;
  1196. phy_reserved = mii_rw(dev, np->phyaddr,
  1197. PHY_VITESSE_INIT_REG4, MII_READ);
  1198. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1199. return PHY_ERROR;
  1200. phy_reserved = mii_rw(dev, np->phyaddr,
  1201. PHY_VITESSE_INIT_REG3, MII_READ);
  1202. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1203. phy_reserved |= PHY_VITESSE_INIT8;
  1204. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1205. return PHY_ERROR;
  1206. if (mii_rw(dev, np->phyaddr,
  1207. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9))
  1208. return PHY_ERROR;
  1209. if (mii_rw(dev, np->phyaddr,
  1210. PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10))
  1211. return PHY_ERROR;
  1212. return 0;
  1213. }
  1214. static int phy_init(struct net_device *dev)
  1215. {
  1216. struct fe_priv *np = get_nvpriv(dev);
  1217. u8 __iomem *base = get_hwbase(dev);
  1218. u32 phyinterface;
  1219. u32 mii_status, mii_control, mii_control_1000, reg;
  1220. /* phy errata for E3016 phy */
  1221. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1222. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1223. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1224. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1225. netdev_info(dev, "%s: phy write to errata reg failed\n",
  1226. pci_name(np->pci_dev));
  1227. return PHY_ERROR;
  1228. }
  1229. }
  1230. if (np->phy_oui == PHY_OUI_REALTEK) {
  1231. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1232. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1233. if (init_realtek_8211b(dev, np)) {
  1234. netdev_info(dev, "%s: phy init failed\n",
  1235. pci_name(np->pci_dev));
  1236. return PHY_ERROR;
  1237. }
  1238. } else if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1239. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1240. if (init_realtek_8211c(dev, np)) {
  1241. netdev_info(dev, "%s: phy init failed\n",
  1242. pci_name(np->pci_dev));
  1243. return PHY_ERROR;
  1244. }
  1245. } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1246. if (init_realtek_8201(dev, np)) {
  1247. netdev_info(dev, "%s: phy init failed\n",
  1248. pci_name(np->pci_dev));
  1249. return PHY_ERROR;
  1250. }
  1251. }
  1252. }
  1253. /* set advertise register */
  1254. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1255. reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
  1256. ADVERTISE_100HALF | ADVERTISE_100FULL |
  1257. ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
  1258. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1259. netdev_info(dev, "%s: phy write to advertise failed\n",
  1260. pci_name(np->pci_dev));
  1261. return PHY_ERROR;
  1262. }
  1263. /* get phy interface type */
  1264. phyinterface = readl(base + NvRegPhyInterface);
  1265. /* see if gigabit phy */
  1266. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1267. if (mii_status & PHY_GIGABIT) {
  1268. np->gigabit = PHY_GIGABIT;
  1269. mii_control_1000 = mii_rw(dev, np->phyaddr,
  1270. MII_CTRL1000, MII_READ);
  1271. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1272. if (phyinterface & PHY_RGMII)
  1273. mii_control_1000 |= ADVERTISE_1000FULL;
  1274. else
  1275. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1276. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1277. netdev_info(dev, "%s: phy init failed\n",
  1278. pci_name(np->pci_dev));
  1279. return PHY_ERROR;
  1280. }
  1281. } else
  1282. np->gigabit = 0;
  1283. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1284. mii_control |= BMCR_ANENABLE;
  1285. if (np->phy_oui == PHY_OUI_REALTEK &&
  1286. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1287. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1288. /* start autoneg since we already performed hw reset above */
  1289. mii_control |= BMCR_ANRESTART;
  1290. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1291. netdev_info(dev, "%s: phy init failed\n",
  1292. pci_name(np->pci_dev));
  1293. return PHY_ERROR;
  1294. }
  1295. } else {
  1296. /* reset the phy
  1297. * (certain phys need bmcr to be setup with reset)
  1298. */
  1299. if (phy_reset(dev, mii_control)) {
  1300. netdev_info(dev, "%s: phy reset failed\n",
  1301. pci_name(np->pci_dev));
  1302. return PHY_ERROR;
  1303. }
  1304. }
  1305. /* phy vendor specific configuration */
  1306. if ((np->phy_oui == PHY_OUI_CICADA)) {
  1307. if (init_cicada(dev, np, phyinterface)) {
  1308. netdev_info(dev, "%s: phy init failed\n",
  1309. pci_name(np->pci_dev));
  1310. return PHY_ERROR;
  1311. }
  1312. } else if (np->phy_oui == PHY_OUI_VITESSE) {
  1313. if (init_vitesse(dev, np)) {
  1314. netdev_info(dev, "%s: phy init failed\n",
  1315. pci_name(np->pci_dev));
  1316. return PHY_ERROR;
  1317. }
  1318. } else if (np->phy_oui == PHY_OUI_REALTEK) {
  1319. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1320. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1321. /* reset could have cleared these out, set them back */
  1322. if (init_realtek_8211b(dev, np)) {
  1323. netdev_info(dev, "%s: phy init failed\n",
  1324. pci_name(np->pci_dev));
  1325. return PHY_ERROR;
  1326. }
  1327. } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1328. if (init_realtek_8201(dev, np) ||
  1329. init_realtek_8201_cross(dev, np)) {
  1330. netdev_info(dev, "%s: phy init failed\n",
  1331. pci_name(np->pci_dev));
  1332. return PHY_ERROR;
  1333. }
  1334. }
  1335. }
  1336. /* some phys clear out pause advertisement on reset, set it back */
  1337. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1338. /* restart auto negotiation, power down phy */
  1339. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1340. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1341. if (phy_power_down)
  1342. mii_control |= BMCR_PDOWN;
  1343. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control))
  1344. return PHY_ERROR;
  1345. return 0;
  1346. }
  1347. static void nv_start_rx(struct net_device *dev)
  1348. {
  1349. struct fe_priv *np = netdev_priv(dev);
  1350. u8 __iomem *base = get_hwbase(dev);
  1351. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1352. /* Already running? Stop it. */
  1353. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1354. rx_ctrl &= ~NVREG_RCVCTL_START;
  1355. writel(rx_ctrl, base + NvRegReceiverControl);
  1356. pci_push(base);
  1357. }
  1358. writel(np->linkspeed, base + NvRegLinkSpeed);
  1359. pci_push(base);
  1360. rx_ctrl |= NVREG_RCVCTL_START;
  1361. if (np->mac_in_use)
  1362. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1363. writel(rx_ctrl, base + NvRegReceiverControl);
  1364. pci_push(base);
  1365. }
  1366. static void nv_stop_rx(struct net_device *dev)
  1367. {
  1368. struct fe_priv *np = netdev_priv(dev);
  1369. u8 __iomem *base = get_hwbase(dev);
  1370. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1371. if (!np->mac_in_use)
  1372. rx_ctrl &= ~NVREG_RCVCTL_START;
  1373. else
  1374. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1375. writel(rx_ctrl, base + NvRegReceiverControl);
  1376. if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1377. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX))
  1378. netdev_info(dev, "%s: ReceiverStatus remained busy\n",
  1379. __func__);
  1380. udelay(NV_RXSTOP_DELAY2);
  1381. if (!np->mac_in_use)
  1382. writel(0, base + NvRegLinkSpeed);
  1383. }
  1384. static void nv_start_tx(struct net_device *dev)
  1385. {
  1386. struct fe_priv *np = netdev_priv(dev);
  1387. u8 __iomem *base = get_hwbase(dev);
  1388. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1389. tx_ctrl |= NVREG_XMITCTL_START;
  1390. if (np->mac_in_use)
  1391. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1392. writel(tx_ctrl, base + NvRegTransmitterControl);
  1393. pci_push(base);
  1394. }
  1395. static void nv_stop_tx(struct net_device *dev)
  1396. {
  1397. struct fe_priv *np = netdev_priv(dev);
  1398. u8 __iomem *base = get_hwbase(dev);
  1399. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1400. if (!np->mac_in_use)
  1401. tx_ctrl &= ~NVREG_XMITCTL_START;
  1402. else
  1403. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1404. writel(tx_ctrl, base + NvRegTransmitterControl);
  1405. if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1406. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX))
  1407. netdev_info(dev, "%s: TransmitterStatus remained busy\n",
  1408. __func__);
  1409. udelay(NV_TXSTOP_DELAY2);
  1410. if (!np->mac_in_use)
  1411. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1412. base + NvRegTransmitPoll);
  1413. }
  1414. static void nv_start_rxtx(struct net_device *dev)
  1415. {
  1416. nv_start_rx(dev);
  1417. nv_start_tx(dev);
  1418. }
  1419. static void nv_stop_rxtx(struct net_device *dev)
  1420. {
  1421. nv_stop_rx(dev);
  1422. nv_stop_tx(dev);
  1423. }
  1424. static void nv_txrx_reset(struct net_device *dev)
  1425. {
  1426. struct fe_priv *np = netdev_priv(dev);
  1427. u8 __iomem *base = get_hwbase(dev);
  1428. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1429. pci_push(base);
  1430. udelay(NV_TXRX_RESET_DELAY);
  1431. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1432. pci_push(base);
  1433. }
  1434. static void nv_mac_reset(struct net_device *dev)
  1435. {
  1436. struct fe_priv *np = netdev_priv(dev);
  1437. u8 __iomem *base = get_hwbase(dev);
  1438. u32 temp1, temp2, temp3;
  1439. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1440. pci_push(base);
  1441. /* save registers since they will be cleared on reset */
  1442. temp1 = readl(base + NvRegMacAddrA);
  1443. temp2 = readl(base + NvRegMacAddrB);
  1444. temp3 = readl(base + NvRegTransmitPoll);
  1445. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1446. pci_push(base);
  1447. udelay(NV_MAC_RESET_DELAY);
  1448. writel(0, base + NvRegMacReset);
  1449. pci_push(base);
  1450. udelay(NV_MAC_RESET_DELAY);
  1451. /* restore saved registers */
  1452. writel(temp1, base + NvRegMacAddrA);
  1453. writel(temp2, base + NvRegMacAddrB);
  1454. writel(temp3, base + NvRegTransmitPoll);
  1455. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1456. pci_push(base);
  1457. }
  1458. static void nv_get_hw_stats(struct net_device *dev)
  1459. {
  1460. struct fe_priv *np = netdev_priv(dev);
  1461. u8 __iomem *base = get_hwbase(dev);
  1462. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1463. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1464. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1465. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1466. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1467. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1468. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1469. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1470. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1471. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1472. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1473. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1474. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1475. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1476. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1477. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1478. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1479. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1480. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1481. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1482. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1483. np->estats.rx_packets =
  1484. np->estats.rx_unicast +
  1485. np->estats.rx_multicast +
  1486. np->estats.rx_broadcast;
  1487. np->estats.rx_errors_total =
  1488. np->estats.rx_crc_errors +
  1489. np->estats.rx_over_errors +
  1490. np->estats.rx_frame_error +
  1491. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1492. np->estats.rx_late_collision +
  1493. np->estats.rx_runt +
  1494. np->estats.rx_frame_too_long;
  1495. np->estats.tx_errors_total =
  1496. np->estats.tx_late_collision +
  1497. np->estats.tx_fifo_errors +
  1498. np->estats.tx_carrier_errors +
  1499. np->estats.tx_excess_deferral +
  1500. np->estats.tx_retry_error;
  1501. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1502. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1503. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1504. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1505. np->estats.tx_pause += readl(base + NvRegTxPause);
  1506. np->estats.rx_pause += readl(base + NvRegRxPause);
  1507. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1508. np->estats.rx_errors_total += np->estats.rx_drop_frame;
  1509. }
  1510. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1511. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1512. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1513. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1514. }
  1515. }
  1516. /*
  1517. * nv_get_stats: dev->get_stats function
  1518. * Get latest stats value from the nic.
  1519. * Called with read_lock(&dev_base_lock) held for read -
  1520. * only synchronized against unregister_netdevice.
  1521. */
  1522. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1523. {
  1524. struct fe_priv *np = netdev_priv(dev);
  1525. /* If the nic supports hw counters then retrieve latest values */
  1526. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1527. nv_get_hw_stats(dev);
  1528. /*
  1529. * Note: because HW stats are not always available and
  1530. * for consistency reasons, the following ifconfig
  1531. * stats are managed by software: rx_bytes, tx_bytes,
  1532. * rx_packets and tx_packets. The related hardware
  1533. * stats reported by ethtool should be equivalent to
  1534. * these ifconfig stats, with 4 additional bytes per
  1535. * packet (Ethernet FCS CRC).
  1536. */
  1537. /* copy to net_device stats */
  1538. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1539. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1540. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1541. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1542. dev->stats.rx_fifo_errors = np->estats.rx_drop_frame;
  1543. dev->stats.rx_errors = np->estats.rx_errors_total;
  1544. dev->stats.tx_errors = np->estats.tx_errors_total;
  1545. }
  1546. return &dev->stats;
  1547. }
  1548. /*
  1549. * nv_alloc_rx: fill rx ring entries.
  1550. * Return 1 if the allocations for the skbs failed and the
  1551. * rx engine is without Available descriptors
  1552. */
  1553. static int nv_alloc_rx(struct net_device *dev)
  1554. {
  1555. struct fe_priv *np = netdev_priv(dev);
  1556. struct ring_desc *less_rx;
  1557. less_rx = np->get_rx.orig;
  1558. if (less_rx-- == np->first_rx.orig)
  1559. less_rx = np->last_rx.orig;
  1560. while (np->put_rx.orig != less_rx) {
  1561. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1562. if (skb) {
  1563. np->put_rx_ctx->skb = skb;
  1564. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1565. skb->data,
  1566. skb_tailroom(skb),
  1567. PCI_DMA_FROMDEVICE);
  1568. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1569. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1570. wmb();
  1571. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1572. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1573. np->put_rx.orig = np->first_rx.orig;
  1574. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1575. np->put_rx_ctx = np->first_rx_ctx;
  1576. } else
  1577. return 1;
  1578. }
  1579. return 0;
  1580. }
  1581. static int nv_alloc_rx_optimized(struct net_device *dev)
  1582. {
  1583. struct fe_priv *np = netdev_priv(dev);
  1584. struct ring_desc_ex *less_rx;
  1585. less_rx = np->get_rx.ex;
  1586. if (less_rx-- == np->first_rx.ex)
  1587. less_rx = np->last_rx.ex;
  1588. while (np->put_rx.ex != less_rx) {
  1589. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1590. if (skb) {
  1591. np->put_rx_ctx->skb = skb;
  1592. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1593. skb->data,
  1594. skb_tailroom(skb),
  1595. PCI_DMA_FROMDEVICE);
  1596. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1597. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1598. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1599. wmb();
  1600. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1601. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1602. np->put_rx.ex = np->first_rx.ex;
  1603. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1604. np->put_rx_ctx = np->first_rx_ctx;
  1605. } else
  1606. return 1;
  1607. }
  1608. return 0;
  1609. }
  1610. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1611. static void nv_do_rx_refill(unsigned long data)
  1612. {
  1613. struct net_device *dev = (struct net_device *) data;
  1614. struct fe_priv *np = netdev_priv(dev);
  1615. /* Just reschedule NAPI rx processing */
  1616. napi_schedule(&np->napi);
  1617. }
  1618. static void nv_init_rx(struct net_device *dev)
  1619. {
  1620. struct fe_priv *np = netdev_priv(dev);
  1621. int i;
  1622. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1623. if (!nv_optimized(np))
  1624. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1625. else
  1626. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1627. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1628. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1629. for (i = 0; i < np->rx_ring_size; i++) {
  1630. if (!nv_optimized(np)) {
  1631. np->rx_ring.orig[i].flaglen = 0;
  1632. np->rx_ring.orig[i].buf = 0;
  1633. } else {
  1634. np->rx_ring.ex[i].flaglen = 0;
  1635. np->rx_ring.ex[i].txvlan = 0;
  1636. np->rx_ring.ex[i].bufhigh = 0;
  1637. np->rx_ring.ex[i].buflow = 0;
  1638. }
  1639. np->rx_skb[i].skb = NULL;
  1640. np->rx_skb[i].dma = 0;
  1641. }
  1642. }
  1643. static void nv_init_tx(struct net_device *dev)
  1644. {
  1645. struct fe_priv *np = netdev_priv(dev);
  1646. int i;
  1647. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1648. if (!nv_optimized(np))
  1649. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1650. else
  1651. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1652. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1653. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1654. np->tx_pkts_in_progress = 0;
  1655. np->tx_change_owner = NULL;
  1656. np->tx_end_flip = NULL;
  1657. np->tx_stop = 0;
  1658. for (i = 0; i < np->tx_ring_size; i++) {
  1659. if (!nv_optimized(np)) {
  1660. np->tx_ring.orig[i].flaglen = 0;
  1661. np->tx_ring.orig[i].buf = 0;
  1662. } else {
  1663. np->tx_ring.ex[i].flaglen = 0;
  1664. np->tx_ring.ex[i].txvlan = 0;
  1665. np->tx_ring.ex[i].bufhigh = 0;
  1666. np->tx_ring.ex[i].buflow = 0;
  1667. }
  1668. np->tx_skb[i].skb = NULL;
  1669. np->tx_skb[i].dma = 0;
  1670. np->tx_skb[i].dma_len = 0;
  1671. np->tx_skb[i].dma_single = 0;
  1672. np->tx_skb[i].first_tx_desc = NULL;
  1673. np->tx_skb[i].next_tx_ctx = NULL;
  1674. }
  1675. }
  1676. static int nv_init_ring(struct net_device *dev)
  1677. {
  1678. struct fe_priv *np = netdev_priv(dev);
  1679. nv_init_tx(dev);
  1680. nv_init_rx(dev);
  1681. if (!nv_optimized(np))
  1682. return nv_alloc_rx(dev);
  1683. else
  1684. return nv_alloc_rx_optimized(dev);
  1685. }
  1686. static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1687. {
  1688. if (tx_skb->dma) {
  1689. if (tx_skb->dma_single)
  1690. pci_unmap_single(np->pci_dev, tx_skb->dma,
  1691. tx_skb->dma_len,
  1692. PCI_DMA_TODEVICE);
  1693. else
  1694. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1695. tx_skb->dma_len,
  1696. PCI_DMA_TODEVICE);
  1697. tx_skb->dma = 0;
  1698. }
  1699. }
  1700. static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1701. {
  1702. nv_unmap_txskb(np, tx_skb);
  1703. if (tx_skb->skb) {
  1704. dev_kfree_skb_any(tx_skb->skb);
  1705. tx_skb->skb = NULL;
  1706. return 1;
  1707. }
  1708. return 0;
  1709. }
  1710. static void nv_drain_tx(struct net_device *dev)
  1711. {
  1712. struct fe_priv *np = netdev_priv(dev);
  1713. unsigned int i;
  1714. for (i = 0; i < np->tx_ring_size; i++) {
  1715. if (!nv_optimized(np)) {
  1716. np->tx_ring.orig[i].flaglen = 0;
  1717. np->tx_ring.orig[i].buf = 0;
  1718. } else {
  1719. np->tx_ring.ex[i].flaglen = 0;
  1720. np->tx_ring.ex[i].txvlan = 0;
  1721. np->tx_ring.ex[i].bufhigh = 0;
  1722. np->tx_ring.ex[i].buflow = 0;
  1723. }
  1724. if (nv_release_txskb(np, &np->tx_skb[i]))
  1725. dev->stats.tx_dropped++;
  1726. np->tx_skb[i].dma = 0;
  1727. np->tx_skb[i].dma_len = 0;
  1728. np->tx_skb[i].dma_single = 0;
  1729. np->tx_skb[i].first_tx_desc = NULL;
  1730. np->tx_skb[i].next_tx_ctx = NULL;
  1731. }
  1732. np->tx_pkts_in_progress = 0;
  1733. np->tx_change_owner = NULL;
  1734. np->tx_end_flip = NULL;
  1735. }
  1736. static void nv_drain_rx(struct net_device *dev)
  1737. {
  1738. struct fe_priv *np = netdev_priv(dev);
  1739. int i;
  1740. for (i = 0; i < np->rx_ring_size; i++) {
  1741. if (!nv_optimized(np)) {
  1742. np->rx_ring.orig[i].flaglen = 0;
  1743. np->rx_ring.orig[i].buf = 0;
  1744. } else {
  1745. np->rx_ring.ex[i].flaglen = 0;
  1746. np->rx_ring.ex[i].txvlan = 0;
  1747. np->rx_ring.ex[i].bufhigh = 0;
  1748. np->rx_ring.ex[i].buflow = 0;
  1749. }
  1750. wmb();
  1751. if (np->rx_skb[i].skb) {
  1752. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1753. (skb_end_pointer(np->rx_skb[i].skb) -
  1754. np->rx_skb[i].skb->data),
  1755. PCI_DMA_FROMDEVICE);
  1756. dev_kfree_skb(np->rx_skb[i].skb);
  1757. np->rx_skb[i].skb = NULL;
  1758. }
  1759. }
  1760. }
  1761. static void nv_drain_rxtx(struct net_device *dev)
  1762. {
  1763. nv_drain_tx(dev);
  1764. nv_drain_rx(dev);
  1765. }
  1766. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1767. {
  1768. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1769. }
  1770. static void nv_legacybackoff_reseed(struct net_device *dev)
  1771. {
  1772. u8 __iomem *base = get_hwbase(dev);
  1773. u32 reg;
  1774. u32 low;
  1775. int tx_status = 0;
  1776. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1777. get_random_bytes(&low, sizeof(low));
  1778. reg |= low & NVREG_SLOTTIME_MASK;
  1779. /* Need to stop tx before change takes effect.
  1780. * Caller has already gained np->lock.
  1781. */
  1782. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1783. if (tx_status)
  1784. nv_stop_tx(dev);
  1785. nv_stop_rx(dev);
  1786. writel(reg, base + NvRegSlotTime);
  1787. if (tx_status)
  1788. nv_start_tx(dev);
  1789. nv_start_rx(dev);
  1790. }
  1791. /* Gear Backoff Seeds */
  1792. #define BACKOFF_SEEDSET_ROWS 8
  1793. #define BACKOFF_SEEDSET_LFSRS 15
  1794. /* Known Good seed sets */
  1795. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1796. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1797. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1798. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1799. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1800. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1801. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1802. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1803. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} };
  1804. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1805. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1806. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1807. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1808. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1809. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1810. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1811. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1812. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} };
  1813. static void nv_gear_backoff_reseed(struct net_device *dev)
  1814. {
  1815. u8 __iomem *base = get_hwbase(dev);
  1816. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1817. u32 temp, seedset, combinedSeed;
  1818. int i;
  1819. /* Setup seed for free running LFSR */
  1820. /* We are going to read the time stamp counter 3 times
  1821. and swizzle bits around to increase randomness */
  1822. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1823. miniseed1 &= 0x0fff;
  1824. if (miniseed1 == 0)
  1825. miniseed1 = 0xabc;
  1826. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1827. miniseed2 &= 0x0fff;
  1828. if (miniseed2 == 0)
  1829. miniseed2 = 0xabc;
  1830. miniseed2_reversed =
  1831. ((miniseed2 & 0xF00) >> 8) |
  1832. (miniseed2 & 0x0F0) |
  1833. ((miniseed2 & 0x00F) << 8);
  1834. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1835. miniseed3 &= 0x0fff;
  1836. if (miniseed3 == 0)
  1837. miniseed3 = 0xabc;
  1838. miniseed3_reversed =
  1839. ((miniseed3 & 0xF00) >> 8) |
  1840. (miniseed3 & 0x0F0) |
  1841. ((miniseed3 & 0x00F) << 8);
  1842. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1843. (miniseed2 ^ miniseed3_reversed);
  1844. /* Seeds can not be zero */
  1845. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1846. combinedSeed |= 0x08;
  1847. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1848. combinedSeed |= 0x8000;
  1849. /* No need to disable tx here */
  1850. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1851. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1852. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1853. writel(temp, base + NvRegBackOffControl);
  1854. /* Setup seeds for all gear LFSRs. */
  1855. get_random_bytes(&seedset, sizeof(seedset));
  1856. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1857. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) {
  1858. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1859. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1860. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1861. writel(temp, base + NvRegBackOffControl);
  1862. }
  1863. }
  1864. /*
  1865. * nv_start_xmit: dev->hard_start_xmit function
  1866. * Called with netif_tx_lock held.
  1867. */
  1868. static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1869. {
  1870. struct fe_priv *np = netdev_priv(dev);
  1871. u32 tx_flags = 0;
  1872. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1873. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1874. unsigned int i;
  1875. u32 offset = 0;
  1876. u32 bcnt;
  1877. u32 size = skb_headlen(skb);
  1878. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1879. u32 empty_slots;
  1880. struct ring_desc *put_tx;
  1881. struct ring_desc *start_tx;
  1882. struct ring_desc *prev_tx;
  1883. struct nv_skb_map *prev_tx_ctx;
  1884. unsigned long flags;
  1885. /* add fragments to entries count */
  1886. for (i = 0; i < fragments; i++) {
  1887. u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1888. entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
  1889. ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1890. }
  1891. spin_lock_irqsave(&np->lock, flags);
  1892. empty_slots = nv_get_empty_tx_slots(np);
  1893. if (unlikely(empty_slots <= entries)) {
  1894. netif_stop_queue(dev);
  1895. np->tx_stop = 1;
  1896. spin_unlock_irqrestore(&np->lock, flags);
  1897. return NETDEV_TX_BUSY;
  1898. }
  1899. spin_unlock_irqrestore(&np->lock, flags);
  1900. start_tx = put_tx = np->put_tx.orig;
  1901. /* setup the header buffer */
  1902. do {
  1903. prev_tx = put_tx;
  1904. prev_tx_ctx = np->put_tx_ctx;
  1905. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1906. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1907. PCI_DMA_TODEVICE);
  1908. np->put_tx_ctx->dma_len = bcnt;
  1909. np->put_tx_ctx->dma_single = 1;
  1910. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1911. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1912. tx_flags = np->tx_flags;
  1913. offset += bcnt;
  1914. size -= bcnt;
  1915. if (unlikely(put_tx++ == np->last_tx.orig))
  1916. put_tx = np->first_tx.orig;
  1917. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1918. np->put_tx_ctx = np->first_tx_ctx;
  1919. } while (size);
  1920. /* setup the fragments */
  1921. for (i = 0; i < fragments; i++) {
  1922. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1923. u32 frag_size = skb_frag_size(frag);
  1924. offset = 0;
  1925. do {
  1926. prev_tx = put_tx;
  1927. prev_tx_ctx = np->put_tx_ctx;
  1928. bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
  1929. np->put_tx_ctx->dma = skb_frag_dma_map(
  1930. &np->pci_dev->dev,
  1931. frag, offset,
  1932. bcnt,
  1933. DMA_TO_DEVICE);
  1934. np->put_tx_ctx->dma_len = bcnt;
  1935. np->put_tx_ctx->dma_single = 0;
  1936. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1937. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1938. offset += bcnt;
  1939. frag_size -= bcnt;
  1940. if (unlikely(put_tx++ == np->last_tx.orig))
  1941. put_tx = np->first_tx.orig;
  1942. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1943. np->put_tx_ctx = np->first_tx_ctx;
  1944. } while (frag_size);
  1945. }
  1946. /* set last fragment flag */
  1947. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1948. /* save skb in this slot's context area */
  1949. prev_tx_ctx->skb = skb;
  1950. if (skb_is_gso(skb))
  1951. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1952. else
  1953. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1954. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1955. spin_lock_irqsave(&np->lock, flags);
  1956. /* set tx flags */
  1957. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1958. np->put_tx.orig = put_tx;
  1959. spin_unlock_irqrestore(&np->lock, flags);
  1960. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1961. return NETDEV_TX_OK;
  1962. }
  1963. static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
  1964. struct net_device *dev)
  1965. {
  1966. struct fe_priv *np = netdev_priv(dev);
  1967. u32 tx_flags = 0;
  1968. u32 tx_flags_extra;
  1969. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1970. unsigned int i;
  1971. u32 offset = 0;
  1972. u32 bcnt;
  1973. u32 size = skb_headlen(skb);
  1974. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1975. u32 empty_slots;
  1976. struct ring_desc_ex *put_tx;
  1977. struct ring_desc_ex *start_tx;
  1978. struct ring_desc_ex *prev_tx;
  1979. struct nv_skb_map *prev_tx_ctx;
  1980. struct nv_skb_map *start_tx_ctx;
  1981. unsigned long flags;
  1982. /* add fragments to entries count */
  1983. for (i = 0; i < fragments; i++) {
  1984. u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1985. entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
  1986. ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1987. }
  1988. spin_lock_irqsave(&np->lock, flags);
  1989. empty_slots = nv_get_empty_tx_slots(np);
  1990. if (unlikely(empty_slots <= entries)) {
  1991. netif_stop_queue(dev);
  1992. np->tx_stop = 1;
  1993. spin_unlock_irqrestore(&np->lock, flags);
  1994. return NETDEV_TX_BUSY;
  1995. }
  1996. spin_unlock_irqrestore(&np->lock, flags);
  1997. start_tx = put_tx = np->put_tx.ex;
  1998. start_tx_ctx = np->put_tx_ctx;
  1999. /* setup the header buffer */
  2000. do {
  2001. prev_tx = put_tx;
  2002. prev_tx_ctx = np->put_tx_ctx;
  2003. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2004. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2005. PCI_DMA_TODEVICE);
  2006. np->put_tx_ctx->dma_len = bcnt;
  2007. np->put_tx_ctx->dma_single = 1;
  2008. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2009. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2010. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2011. tx_flags = NV_TX2_VALID;
  2012. offset += bcnt;
  2013. size -= bcnt;
  2014. if (unlikely(put_tx++ == np->last_tx.ex))
  2015. put_tx = np->first_tx.ex;
  2016. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2017. np->put_tx_ctx = np->first_tx_ctx;
  2018. } while (size);
  2019. /* setup the fragments */
  2020. for (i = 0; i < fragments; i++) {
  2021. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2022. u32 frag_size = skb_frag_size(frag);
  2023. offset = 0;
  2024. do {
  2025. prev_tx = put_tx;
  2026. prev_tx_ctx = np->put_tx_ctx;
  2027. bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
  2028. np->put_tx_ctx->dma = skb_frag_dma_map(
  2029. &np->pci_dev->dev,
  2030. frag, offset,
  2031. bcnt,
  2032. DMA_TO_DEVICE);
  2033. np->put_tx_ctx->dma_len = bcnt;
  2034. np->put_tx_ctx->dma_single = 0;
  2035. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2036. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2037. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2038. offset += bcnt;
  2039. frag_size -= bcnt;
  2040. if (unlikely(put_tx++ == np->last_tx.ex))
  2041. put_tx = np->first_tx.ex;
  2042. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2043. np->put_tx_ctx = np->first_tx_ctx;
  2044. } while (frag_size);
  2045. }
  2046. /* set last fragment flag */
  2047. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2048. /* save skb in this slot's context area */
  2049. prev_tx_ctx->skb = skb;
  2050. if (skb_is_gso(skb))
  2051. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2052. else
  2053. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2054. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2055. /* vlan tag */
  2056. if (vlan_tx_tag_present(skb))
  2057. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT |
  2058. vlan_tx_tag_get(skb));
  2059. else
  2060. start_tx->txvlan = 0;
  2061. spin_lock_irqsave(&np->lock, flags);
  2062. if (np->tx_limit) {
  2063. /* Limit the number of outstanding tx. Setup all fragments, but
  2064. * do not set the VALID bit on the first descriptor. Save a pointer
  2065. * to that descriptor and also for next skb_map element.
  2066. */
  2067. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2068. if (!np->tx_change_owner)
  2069. np->tx_change_owner = start_tx_ctx;
  2070. /* remove VALID bit */
  2071. tx_flags &= ~NV_TX2_VALID;
  2072. start_tx_ctx->first_tx_desc = start_tx;
  2073. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2074. np->tx_end_flip = np->put_tx_ctx;
  2075. } else {
  2076. np->tx_pkts_in_progress++;
  2077. }
  2078. }
  2079. /* set tx flags */
  2080. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2081. np->put_tx.ex = put_tx;
  2082. spin_unlock_irqrestore(&np->lock, flags);
  2083. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2084. return NETDEV_TX_OK;
  2085. }
  2086. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2087. {
  2088. struct fe_priv *np = netdev_priv(dev);
  2089. np->tx_pkts_in_progress--;
  2090. if (np->tx_change_owner) {
  2091. np->tx_change_owner->first_tx_desc->flaglen |=
  2092. cpu_to_le32(NV_TX2_VALID);
  2093. np->tx_pkts_in_progress++;
  2094. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2095. if (np->tx_change_owner == np->tx_end_flip)
  2096. np->tx_change_owner = NULL;
  2097. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2098. }
  2099. }
  2100. /*
  2101. * nv_tx_done: check for completed packets, release the skbs.
  2102. *
  2103. * Caller must own np->lock.
  2104. */
  2105. static int nv_tx_done(struct net_device *dev, int limit)
  2106. {
  2107. struct fe_priv *np = netdev_priv(dev);
  2108. u32 flags;
  2109. int tx_work = 0;
  2110. struct ring_desc *orig_get_tx = np->get_tx.orig;
  2111. while ((np->get_tx.orig != np->put_tx.orig) &&
  2112. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2113. (tx_work < limit)) {
  2114. nv_unmap_txskb(np, np->get_tx_ctx);
  2115. if (np->desc_ver == DESC_VER_1) {
  2116. if (flags & NV_TX_LASTPACKET) {
  2117. if (flags & NV_TX_ERROR) {
  2118. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2119. nv_legacybackoff_reseed(dev);
  2120. } else {
  2121. dev->stats.tx_packets++;
  2122. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2123. }
  2124. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2125. np->get_tx_ctx->skb = NULL;
  2126. tx_work++;
  2127. }
  2128. } else {
  2129. if (flags & NV_TX2_LASTPACKET) {
  2130. if (flags & NV_TX2_ERROR) {
  2131. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2132. nv_legacybackoff_reseed(dev);
  2133. } else {
  2134. dev->stats.tx_packets++;
  2135. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2136. }
  2137. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2138. np->get_tx_ctx->skb = NULL;
  2139. tx_work++;
  2140. }
  2141. }
  2142. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2143. np->get_tx.orig = np->first_tx.orig;
  2144. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2145. np->get_tx_ctx = np->first_tx_ctx;
  2146. }
  2147. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2148. np->tx_stop = 0;
  2149. netif_wake_queue(dev);
  2150. }
  2151. return tx_work;
  2152. }
  2153. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2154. {
  2155. struct fe_priv *np = netdev_priv(dev);
  2156. u32 flags;
  2157. int tx_work = 0;
  2158. struct ring_desc_ex *orig_get_tx = np->get_tx.ex;
  2159. while ((np->get_tx.ex != np->put_tx.ex) &&
  2160. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
  2161. (tx_work < limit)) {
  2162. nv_unmap_txskb(np, np->get_tx_ctx);
  2163. if (flags & NV_TX2_LASTPACKET) {
  2164. if (flags & NV_TX2_ERROR) {
  2165. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2166. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2167. nv_gear_backoff_reseed(dev);
  2168. else
  2169. nv_legacybackoff_reseed(dev);
  2170. }
  2171. } else {
  2172. dev->stats.tx_packets++;
  2173. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2174. }
  2175. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2176. np->get_tx_ctx->skb = NULL;
  2177. tx_work++;
  2178. if (np->tx_limit)
  2179. nv_tx_flip_ownership(dev);
  2180. }
  2181. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2182. np->get_tx.ex = np->first_tx.ex;
  2183. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2184. np->get_tx_ctx = np->first_tx_ctx;
  2185. }
  2186. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2187. np->tx_stop = 0;
  2188. netif_wake_queue(dev);
  2189. }
  2190. return tx_work;
  2191. }
  2192. /*
  2193. * nv_tx_timeout: dev->tx_timeout function
  2194. * Called with netif_tx_lock held.
  2195. */
  2196. static void nv_tx_timeout(struct net_device *dev)
  2197. {
  2198. struct fe_priv *np = netdev_priv(dev);
  2199. u8 __iomem *base = get_hwbase(dev);
  2200. u32 status;
  2201. union ring_type put_tx;
  2202. int saved_tx_limit;
  2203. if (np->msi_flags & NV_MSI_X_ENABLED)
  2204. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2205. else
  2206. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2207. netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status);
  2208. if (unlikely(debug_tx_timeout)) {
  2209. int i;
  2210. netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr);
  2211. netdev_info(dev, "Dumping tx registers\n");
  2212. for (i = 0; i <= np->register_size; i += 32) {
  2213. netdev_info(dev,
  2214. "%3x: %08x %08x %08x %08x "
  2215. "%08x %08x %08x %08x\n",
  2216. i,
  2217. readl(base + i + 0), readl(base + i + 4),
  2218. readl(base + i + 8), readl(base + i + 12),
  2219. readl(base + i + 16), readl(base + i + 20),
  2220. readl(base + i + 24), readl(base + i + 28));
  2221. }
  2222. netdev_info(dev, "Dumping tx ring\n");
  2223. for (i = 0; i < np->tx_ring_size; i += 4) {
  2224. if (!nv_optimized(np)) {
  2225. netdev_info(dev,
  2226. "%03x: %08x %08x // %08x %08x "
  2227. "// %08x %08x // %08x %08x\n",
  2228. i,
  2229. le32_to_cpu(np->tx_ring.orig[i].buf),
  2230. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2231. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2232. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2233. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2234. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2235. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2236. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2237. } else {
  2238. netdev_info(dev,
  2239. "%03x: %08x %08x %08x "
  2240. "// %08x %08x %08x "
  2241. "// %08x %08x %08x "
  2242. "// %08x %08x %08x\n",
  2243. i,
  2244. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2245. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2246. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2247. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2248. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2249. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2250. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2251. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2252. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2253. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2254. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2255. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2256. }
  2257. }
  2258. }
  2259. spin_lock_irq(&np->lock);
  2260. /* 1) stop tx engine */
  2261. nv_stop_tx(dev);
  2262. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2263. saved_tx_limit = np->tx_limit;
  2264. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2265. np->tx_stop = 0; /* prevent waking tx queue */
  2266. if (!nv_optimized(np))
  2267. nv_tx_done(dev, np->tx_ring_size);
  2268. else
  2269. nv_tx_done_optimized(dev, np->tx_ring_size);
  2270. /* save current HW position */
  2271. if (np->tx_change_owner)
  2272. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2273. else
  2274. put_tx = np->put_tx;
  2275. /* 3) clear all tx state */
  2276. nv_drain_tx(dev);
  2277. nv_init_tx(dev);
  2278. /* 4) restore state to current HW position */
  2279. np->get_tx = np->put_tx = put_tx;
  2280. np->tx_limit = saved_tx_limit;
  2281. /* 5) restart tx engine */
  2282. nv_start_tx(dev);
  2283. netif_wake_queue(dev);
  2284. spin_unlock_irq(&np->lock);
  2285. }
  2286. /*
  2287. * Called when the nic notices a mismatch between the actual data len on the
  2288. * wire and the len indicated in the 802 header
  2289. */
  2290. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2291. {
  2292. int hdrlen; /* length of the 802 header */
  2293. int protolen; /* length as stored in the proto field */
  2294. /* 1) calculate len according to header */
  2295. if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2296. protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto);
  2297. hdrlen = VLAN_HLEN;
  2298. } else {
  2299. protolen = ntohs(((struct ethhdr *)packet)->h_proto);
  2300. hdrlen = ETH_HLEN;
  2301. }
  2302. if (protolen > ETH_DATA_LEN)
  2303. return datalen; /* Value in proto field not a len, no checks possible */
  2304. protolen += hdrlen;
  2305. /* consistency checks: */
  2306. if (datalen > ETH_ZLEN) {
  2307. if (datalen >= protolen) {
  2308. /* more data on wire than in 802 header, trim of
  2309. * additional data.
  2310. */
  2311. return protolen;
  2312. } else {
  2313. /* less data on wire than mentioned in header.
  2314. * Discard the packet.
  2315. */
  2316. return -1;
  2317. }
  2318. } else {
  2319. /* short packet. Accept only if 802 values are also short */
  2320. if (protolen > ETH_ZLEN) {
  2321. return -1;
  2322. }
  2323. return datalen;
  2324. }
  2325. }
  2326. static int nv_rx_process(struct net_device *dev, int limit)
  2327. {
  2328. struct fe_priv *np = netdev_priv(dev);
  2329. u32 flags;
  2330. int rx_work = 0;
  2331. struct sk_buff *skb;
  2332. int len;
  2333. while ((np->get_rx.orig != np->put_rx.orig) &&
  2334. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2335. (rx_work < limit)) {
  2336. /*
  2337. * the packet is for us - immediately tear down the pci mapping.
  2338. * TODO: check if a prefetch of the first cacheline improves
  2339. * the performance.
  2340. */
  2341. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2342. np->get_rx_ctx->dma_len,
  2343. PCI_DMA_FROMDEVICE);
  2344. skb = np->get_rx_ctx->skb;
  2345. np->get_rx_ctx->skb = NULL;
  2346. /* look at what we actually got: */
  2347. if (np->desc_ver == DESC_VER_1) {
  2348. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2349. len = flags & LEN_MASK_V1;
  2350. if (unlikely(flags & NV_RX_ERROR)) {
  2351. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2352. len = nv_getlen(dev, skb->data, len);
  2353. if (len < 0) {
  2354. dev_kfree_skb(skb);
  2355. goto next_pkt;
  2356. }
  2357. }
  2358. /* framing errors are soft errors */
  2359. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2360. if (flags & NV_RX_SUBSTRACT1)
  2361. len--;
  2362. }
  2363. /* the rest are hard errors */
  2364. else {
  2365. if (flags & NV_RX_MISSEDFRAME)
  2366. dev->stats.rx_missed_errors++;
  2367. dev_kfree_skb(skb);
  2368. goto next_pkt;
  2369. }
  2370. }
  2371. } else {
  2372. dev_kfree_skb(skb);
  2373. goto next_pkt;
  2374. }
  2375. } else {
  2376. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2377. len = flags & LEN_MASK_V2;
  2378. if (unlikely(flags & NV_RX2_ERROR)) {
  2379. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2380. len = nv_getlen(dev, skb->data, len);
  2381. if (len < 0) {
  2382. dev_kfree_skb(skb);
  2383. goto next_pkt;
  2384. }
  2385. }
  2386. /* framing errors are soft errors */
  2387. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2388. if (flags & NV_RX2_SUBSTRACT1)
  2389. len--;
  2390. }
  2391. /* the rest are hard errors */
  2392. else {
  2393. dev_kfree_skb(skb);
  2394. goto next_pkt;
  2395. }
  2396. }
  2397. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2398. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2399. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2400. } else {
  2401. dev_kfree_skb(skb);
  2402. goto next_pkt;
  2403. }
  2404. }
  2405. /* got a valid packet - forward it to the network core */
  2406. skb_put(skb, len);
  2407. skb->protocol = eth_type_trans(skb, dev);
  2408. napi_gro_receive(&np->napi, skb);
  2409. dev->stats.rx_packets++;
  2410. dev->stats.rx_bytes += len;
  2411. next_pkt:
  2412. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2413. np->get_rx.orig = np->first_rx.orig;
  2414. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2415. np->get_rx_ctx = np->first_rx_ctx;
  2416. rx_work++;
  2417. }
  2418. return rx_work;
  2419. }
  2420. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2421. {
  2422. struct fe_priv *np = netdev_priv(dev);
  2423. u32 flags;
  2424. u32 vlanflags = 0;
  2425. int rx_work = 0;
  2426. struct sk_buff *skb;
  2427. int len;
  2428. while ((np->get_rx.ex != np->put_rx.ex) &&
  2429. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2430. (rx_work < limit)) {
  2431. /*
  2432. * the packet is for us - immediately tear down the pci mapping.
  2433. * TODO: check if a prefetch of the first cacheline improves
  2434. * the performance.
  2435. */
  2436. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2437. np->get_rx_ctx->dma_len,
  2438. PCI_DMA_FROMDEVICE);
  2439. skb = np->get_rx_ctx->skb;
  2440. np->get_rx_ctx->skb = NULL;
  2441. /* look at what we actually got: */
  2442. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2443. len = flags & LEN_MASK_V2;
  2444. if (unlikely(flags & NV_RX2_ERROR)) {
  2445. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2446. len = nv_getlen(dev, skb->data, len);
  2447. if (len < 0) {
  2448. dev_kfree_skb(skb);
  2449. goto next_pkt;
  2450. }
  2451. }
  2452. /* framing errors are soft errors */
  2453. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2454. if (flags & NV_RX2_SUBSTRACT1)
  2455. len--;
  2456. }
  2457. /* the rest are hard errors */
  2458. else {
  2459. dev_kfree_skb(skb);
  2460. goto next_pkt;
  2461. }
  2462. }
  2463. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2464. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2465. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2466. /* got a valid packet - forward it to the network core */
  2467. skb_put(skb, len);
  2468. skb->protocol = eth_type_trans(skb, dev);
  2469. prefetch(skb->data);
  2470. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2471. /*
  2472. * There's need to check for NETIF_F_HW_VLAN_RX here.
  2473. * Even if vlan rx accel is disabled,
  2474. * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set.
  2475. */
  2476. if (dev->features & NETIF_F_HW_VLAN_RX &&
  2477. vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2478. u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK;
  2479. __vlan_hwaccel_put_tag(skb, vid);
  2480. }
  2481. napi_gro_receive(&np->napi, skb);
  2482. dev->stats.rx_packets++;
  2483. dev->stats.rx_bytes += len;
  2484. } else {
  2485. dev_kfree_skb(skb);
  2486. }
  2487. next_pkt:
  2488. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2489. np->get_rx.ex = np->first_rx.ex;
  2490. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2491. np->get_rx_ctx = np->first_rx_ctx;
  2492. rx_work++;
  2493. }
  2494. return rx_work;
  2495. }
  2496. static void set_bufsize(struct net_device *dev)
  2497. {
  2498. struct fe_priv *np = netdev_priv(dev);
  2499. if (dev->mtu <= ETH_DATA_LEN)
  2500. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2501. else
  2502. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2503. }
  2504. /*
  2505. * nv_change_mtu: dev->change_mtu function
  2506. * Called with dev_base_lock held for read.
  2507. */
  2508. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2509. {
  2510. struct fe_priv *np = netdev_priv(dev);
  2511. int old_mtu;
  2512. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2513. return -EINVAL;
  2514. old_mtu = dev->mtu;
  2515. dev->mtu = new_mtu;
  2516. /* return early if the buffer sizes will not change */
  2517. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2518. return 0;
  2519. if (old_mtu == new_mtu)
  2520. return 0;
  2521. /* synchronized against open : rtnl_lock() held by caller */
  2522. if (netif_running(dev)) {
  2523. u8 __iomem *base = get_hwbase(dev);
  2524. /*
  2525. * It seems that the nic preloads valid ring entries into an
  2526. * internal buffer. The procedure for flushing everything is
  2527. * guessed, there is probably a simpler approach.
  2528. * Changing the MTU is a rare event, it shouldn't matter.
  2529. */
  2530. nv_disable_irq(dev);
  2531. nv_napi_disable(dev);
  2532. netif_tx_lock_bh(dev);
  2533. netif_addr_lock(dev);
  2534. spin_lock(&np->lock);
  2535. /* stop engines */
  2536. nv_stop_rxtx(dev);
  2537. nv_txrx_reset(dev);
  2538. /* drain rx queue */
  2539. nv_drain_rxtx(dev);
  2540. /* reinit driver view of the rx queue */
  2541. set_bufsize(dev);
  2542. if (nv_init_ring(dev)) {
  2543. if (!np->in_shutdown)
  2544. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2545. }
  2546. /* reinit nic view of the rx queue */
  2547. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2548. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2549. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2550. base + NvRegRingSizes);
  2551. pci_push(base);
  2552. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2553. pci_push(base);
  2554. /* restart rx engine */
  2555. nv_start_rxtx(dev);
  2556. spin_unlock(&np->lock);
  2557. netif_addr_unlock(dev);
  2558. netif_tx_unlock_bh(dev);
  2559. nv_napi_enable(dev);
  2560. nv_enable_irq(dev);
  2561. }
  2562. return 0;
  2563. }
  2564. static void nv_copy_mac_to_hw(struct net_device *dev)
  2565. {
  2566. u8 __iomem *base = get_hwbase(dev);
  2567. u32 mac[2];
  2568. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2569. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2570. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2571. writel(mac[0], base + NvRegMacAddrA);
  2572. writel(mac[1], base + NvRegMacAddrB);
  2573. }
  2574. /*
  2575. * nv_set_mac_address: dev->set_mac_address function
  2576. * Called with rtnl_lock() held.
  2577. */
  2578. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2579. {
  2580. struct fe_priv *np = netdev_priv(dev);
  2581. struct sockaddr *macaddr = (struct sockaddr *)addr;
  2582. if (!is_valid_ether_addr(macaddr->sa_data))
  2583. return -EADDRNOTAVAIL;
  2584. /* synchronized against open : rtnl_lock() held by caller */
  2585. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2586. if (netif_running(dev)) {
  2587. netif_tx_lock_bh(dev);
  2588. netif_addr_lock(dev);
  2589. spin_lock_irq(&np->lock);
  2590. /* stop rx engine */
  2591. nv_stop_rx(dev);
  2592. /* set mac address */
  2593. nv_copy_mac_to_hw(dev);
  2594. /* restart rx engine */
  2595. nv_start_rx(dev);
  2596. spin_unlock_irq(&np->lock);
  2597. netif_addr_unlock(dev);
  2598. netif_tx_unlock_bh(dev);
  2599. } else {
  2600. nv_copy_mac_to_hw(dev);
  2601. }
  2602. return 0;
  2603. }
  2604. /*
  2605. * nv_set_multicast: dev->set_multicast function
  2606. * Called with netif_tx_lock held.
  2607. */
  2608. static void nv_set_multicast(struct net_device *dev)
  2609. {
  2610. struct fe_priv *np = netdev_priv(dev);
  2611. u8 __iomem *base = get_hwbase(dev);
  2612. u32 addr[2];
  2613. u32 mask[2];
  2614. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2615. memset(addr, 0, sizeof(addr));
  2616. memset(mask, 0, sizeof(mask));
  2617. if (dev->flags & IFF_PROMISC) {
  2618. pff |= NVREG_PFF_PROMISC;
  2619. } else {
  2620. pff |= NVREG_PFF_MYADDR;
  2621. if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
  2622. u32 alwaysOff[2];
  2623. u32 alwaysOn[2];
  2624. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2625. if (dev->flags & IFF_ALLMULTI) {
  2626. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2627. } else {
  2628. struct netdev_hw_addr *ha;
  2629. netdev_for_each_mc_addr(ha, dev) {
  2630. unsigned char *hw_addr = ha->addr;
  2631. u32 a, b;
  2632. a = le32_to_cpu(*(__le32 *) hw_addr);
  2633. b = le16_to_cpu(*(__le16 *) (&hw_addr[4]));
  2634. alwaysOn[0] &= a;
  2635. alwaysOff[0] &= ~a;
  2636. alwaysOn[1] &= b;
  2637. alwaysOff[1] &= ~b;
  2638. }
  2639. }
  2640. addr[0] = alwaysOn[0];
  2641. addr[1] = alwaysOn[1];
  2642. mask[0] = alwaysOn[0] | alwaysOff[0];
  2643. mask[1] = alwaysOn[1] | alwaysOff[1];
  2644. } else {
  2645. mask[0] = NVREG_MCASTMASKA_NONE;
  2646. mask[1] = NVREG_MCASTMASKB_NONE;
  2647. }
  2648. }
  2649. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2650. pff |= NVREG_PFF_ALWAYS;
  2651. spin_lock_irq(&np->lock);
  2652. nv_stop_rx(dev);
  2653. writel(addr[0], base + NvRegMulticastAddrA);
  2654. writel(addr[1], base + NvRegMulticastAddrB);
  2655. writel(mask[0], base + NvRegMulticastMaskA);
  2656. writel(mask[1], base + NvRegMulticastMaskB);
  2657. writel(pff, base + NvRegPacketFilterFlags);
  2658. nv_start_rx(dev);
  2659. spin_unlock_irq(&np->lock);
  2660. }
  2661. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2662. {
  2663. struct fe_priv *np = netdev_priv(dev);
  2664. u8 __iomem *base = get_hwbase(dev);
  2665. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2666. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2667. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2668. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2669. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2670. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2671. } else {
  2672. writel(pff, base + NvRegPacketFilterFlags);
  2673. }
  2674. }
  2675. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2676. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2677. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2678. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2679. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2680. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2681. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2682. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2683. /* limit the number of tx pause frames to a default of 8 */
  2684. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2685. }
  2686. writel(pause_enable, base + NvRegTxPauseFrame);
  2687. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2688. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2689. } else {
  2690. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2691. writel(regmisc, base + NvRegMisc1);
  2692. }
  2693. }
  2694. }
  2695. static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex)
  2696. {
  2697. struct fe_priv *np = netdev_priv(dev);
  2698. u8 __iomem *base = get_hwbase(dev);
  2699. u32 phyreg, txreg;
  2700. int mii_status;
  2701. np->linkspeed = NVREG_LINKSPEED_FORCE|speed;
  2702. np->duplex = duplex;
  2703. /* see if gigabit phy */
  2704. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2705. if (mii_status & PHY_GIGABIT) {
  2706. np->gigabit = PHY_GIGABIT;
  2707. phyreg = readl(base + NvRegSlotTime);
  2708. phyreg &= ~(0x3FF00);
  2709. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2710. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2711. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2712. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2713. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2714. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2715. writel(phyreg, base + NvRegSlotTime);
  2716. }
  2717. phyreg = readl(base + NvRegPhyInterface);
  2718. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2719. if (np->duplex == 0)
  2720. phyreg |= PHY_HALF;
  2721. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2722. phyreg |= PHY_100;
  2723. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2724. NVREG_LINKSPEED_1000)
  2725. phyreg |= PHY_1000;
  2726. writel(phyreg, base + NvRegPhyInterface);
  2727. if (phyreg & PHY_RGMII) {
  2728. if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2729. NVREG_LINKSPEED_1000)
  2730. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2731. else
  2732. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2733. } else {
  2734. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2735. }
  2736. writel(txreg, base + NvRegTxDeferral);
  2737. if (np->desc_ver == DESC_VER_1) {
  2738. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2739. } else {
  2740. if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2741. NVREG_LINKSPEED_1000)
  2742. txreg = NVREG_TX_WM_DESC2_3_1000;
  2743. else
  2744. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2745. }
  2746. writel(txreg, base + NvRegTxWatermark);
  2747. writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
  2748. base + NvRegMisc1);
  2749. pci_push(base);
  2750. writel(np->linkspeed, base + NvRegLinkSpeed);
  2751. pci_push(base);
  2752. return;
  2753. }
  2754. /**
  2755. * nv_update_linkspeed: Setup the MAC according to the link partner
  2756. * @dev: Network device to be configured
  2757. *
  2758. * The function queries the PHY and checks if there is a link partner.
  2759. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2760. * set to 10 MBit HD.
  2761. *
  2762. * The function returns 0 if there is no link partner and 1 if there is
  2763. * a good link partner.
  2764. */
  2765. static int nv_update_linkspeed(struct net_device *dev)
  2766. {
  2767. struct fe_priv *np = netdev_priv(dev);
  2768. u8 __iomem *base = get_hwbase(dev);
  2769. int adv = 0;
  2770. int lpa = 0;
  2771. int adv_lpa, adv_pause, lpa_pause;
  2772. int newls = np->linkspeed;
  2773. int newdup = np->duplex;
  2774. int mii_status;
  2775. u32 bmcr;
  2776. int retval = 0;
  2777. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2778. u32 txrxFlags = 0;
  2779. u32 phy_exp;
  2780. /* If device loopback is enabled, set carrier on and enable max link
  2781. * speed.
  2782. */
  2783. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2784. if (bmcr & BMCR_LOOPBACK) {
  2785. if (netif_running(dev)) {
  2786. nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1);
  2787. if (!netif_carrier_ok(dev))
  2788. netif_carrier_on(dev);
  2789. }
  2790. return 1;
  2791. }
  2792. /* BMSR_LSTATUS is latched, read it twice:
  2793. * we want the current value.
  2794. */
  2795. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2796. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2797. if (!(mii_status & BMSR_LSTATUS)) {
  2798. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2799. newdup = 0;
  2800. retval = 0;
  2801. goto set_speed;
  2802. }
  2803. if (np->autoneg == 0) {
  2804. if (np->fixed_mode & LPA_100FULL) {
  2805. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2806. newdup = 1;
  2807. } else if (np->fixed_mode & LPA_100HALF) {
  2808. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2809. newdup = 0;
  2810. } else if (np->fixed_mode & LPA_10FULL) {
  2811. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2812. newdup = 1;
  2813. } else {
  2814. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2815. newdup = 0;
  2816. }
  2817. retval = 1;
  2818. goto set_speed;
  2819. }
  2820. /* check auto negotiation is complete */
  2821. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2822. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2823. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2824. newdup = 0;
  2825. retval = 0;
  2826. goto set_speed;
  2827. }
  2828. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2829. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2830. retval = 1;
  2831. if (np->gigabit == PHY_GIGABIT) {
  2832. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2833. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2834. if ((control_1000 & ADVERTISE_1000FULL) &&
  2835. (status_1000 & LPA_1000FULL)) {
  2836. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2837. newdup = 1;
  2838. goto set_speed;
  2839. }
  2840. }
  2841. /* FIXME: handle parallel detection properly */
  2842. adv_lpa = lpa & adv;
  2843. if (adv_lpa & LPA_100FULL) {
  2844. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2845. newdup = 1;
  2846. } else if (adv_lpa & LPA_100HALF) {
  2847. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2848. newdup = 0;
  2849. } else if (adv_lpa & LPA_10FULL) {
  2850. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2851. newdup = 1;
  2852. } else if (adv_lpa & LPA_10HALF) {
  2853. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2854. newdup = 0;
  2855. } else {
  2856. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2857. newdup = 0;
  2858. }
  2859. set_speed:
  2860. if (np->duplex == newdup && np->linkspeed == newls)
  2861. return retval;
  2862. np->duplex = newdup;
  2863. np->linkspeed = newls;
  2864. /* The transmitter and receiver must be restarted for safe update */
  2865. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2866. txrxFlags |= NV_RESTART_TX;
  2867. nv_stop_tx(dev);
  2868. }
  2869. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2870. txrxFlags |= NV_RESTART_RX;
  2871. nv_stop_rx(dev);
  2872. }
  2873. if (np->gigabit == PHY_GIGABIT) {
  2874. phyreg = readl(base + NvRegSlotTime);
  2875. phyreg &= ~(0x3FF00);
  2876. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2877. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2878. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2879. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2880. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2881. writel(phyreg, base + NvRegSlotTime);
  2882. }
  2883. phyreg = readl(base + NvRegPhyInterface);
  2884. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2885. if (np->duplex == 0)
  2886. phyreg |= PHY_HALF;
  2887. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2888. phyreg |= PHY_100;
  2889. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2890. phyreg |= PHY_1000;
  2891. writel(phyreg, base + NvRegPhyInterface);
  2892. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2893. if (phyreg & PHY_RGMII) {
  2894. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2895. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2896. } else {
  2897. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2898. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2899. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2900. else
  2901. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2902. } else {
  2903. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2904. }
  2905. }
  2906. } else {
  2907. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2908. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2909. else
  2910. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2911. }
  2912. writel(txreg, base + NvRegTxDeferral);
  2913. if (np->desc_ver == DESC_VER_1) {
  2914. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2915. } else {
  2916. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2917. txreg = NVREG_TX_WM_DESC2_3_1000;
  2918. else
  2919. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2920. }
  2921. writel(txreg, base + NvRegTxWatermark);
  2922. writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
  2923. base + NvRegMisc1);
  2924. pci_push(base);
  2925. writel(np->linkspeed, base + NvRegLinkSpeed);
  2926. pci_push(base);
  2927. pause_flags = 0;
  2928. /* setup pause frame */
  2929. if (np->duplex != 0) {
  2930. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2931. adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2932. lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM);
  2933. switch (adv_pause) {
  2934. case ADVERTISE_PAUSE_CAP:
  2935. if (lpa_pause & LPA_PAUSE_CAP) {
  2936. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2937. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2938. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2939. }
  2940. break;
  2941. case ADVERTISE_PAUSE_ASYM:
  2942. if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM))
  2943. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2944. break;
  2945. case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM:
  2946. if (lpa_pause & LPA_PAUSE_CAP) {
  2947. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2948. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2949. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2950. }
  2951. if (lpa_pause == LPA_PAUSE_ASYM)
  2952. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2953. break;
  2954. }
  2955. } else {
  2956. pause_flags = np->pause_flags;
  2957. }
  2958. }
  2959. nv_update_pause(dev, pause_flags);
  2960. if (txrxFlags & NV_RESTART_TX)
  2961. nv_start_tx(dev);
  2962. if (txrxFlags & NV_RESTART_RX)
  2963. nv_start_rx(dev);
  2964. return retval;
  2965. }
  2966. static void nv_linkchange(struct net_device *dev)
  2967. {
  2968. if (nv_update_linkspeed(dev)) {
  2969. if (!netif_carrier_ok(dev)) {
  2970. netif_carrier_on(dev);
  2971. netdev_info(dev, "link up\n");
  2972. nv_txrx_gate(dev, false);
  2973. nv_start_rx(dev);
  2974. }
  2975. } else {
  2976. if (netif_carrier_ok(dev)) {
  2977. netif_carrier_off(dev);
  2978. netdev_info(dev, "link down\n");
  2979. nv_txrx_gate(dev, true);
  2980. nv_stop_rx(dev);
  2981. }
  2982. }
  2983. }
  2984. static void nv_link_irq(struct net_device *dev)
  2985. {
  2986. u8 __iomem *base = get_hwbase(dev);
  2987. u32 miistat;
  2988. miistat = readl(base + NvRegMIIStatus);
  2989. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  2990. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2991. nv_linkchange(dev);
  2992. }
  2993. static void nv_msi_workaround(struct fe_priv *np)
  2994. {
  2995. /* Need to toggle the msi irq mask within the ethernet device,
  2996. * otherwise, future interrupts will not be detected.
  2997. */
  2998. if (np->msi_flags & NV_MSI_ENABLED) {
  2999. u8 __iomem *base = np->base;
  3000. writel(0, base + NvRegMSIIrqMask);
  3001. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3002. }
  3003. }
  3004. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3005. {
  3006. struct fe_priv *np = netdev_priv(dev);
  3007. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3008. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3009. /* transition to poll based interrupts */
  3010. np->quiet_count = 0;
  3011. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3012. np->irqmask = NVREG_IRQMASK_CPU;
  3013. return 1;
  3014. }
  3015. } else {
  3016. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3017. np->quiet_count++;
  3018. } else {
  3019. /* reached a period of low activity, switch
  3020. to per tx/rx packet interrupts */
  3021. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3022. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3023. return 1;
  3024. }
  3025. }
  3026. }
  3027. }
  3028. return 0;
  3029. }
  3030. static irqreturn_t nv_nic_irq(int foo, void *data)
  3031. {
  3032. struct net_device *dev = (struct net_device *) data;
  3033. struct fe_priv *np = netdev_priv(dev);
  3034. u8 __iomem *base = get_hwbase(dev);
  3035. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3036. np->events = readl(base + NvRegIrqStatus);
  3037. writel(np->events, base + NvRegIrqStatus);
  3038. } else {
  3039. np->events = readl(base + NvRegMSIXIrqStatus);
  3040. writel(np->events, base + NvRegMSIXIrqStatus);
  3041. }
  3042. if (!(np->events & np->irqmask))
  3043. return IRQ_NONE;
  3044. nv_msi_workaround(np);
  3045. if (napi_schedule_prep(&np->napi)) {
  3046. /*
  3047. * Disable further irq's (msix not enabled with napi)
  3048. */
  3049. writel(0, base + NvRegIrqMask);
  3050. __napi_schedule(&np->napi);
  3051. }
  3052. return IRQ_HANDLED;
  3053. }
  3054. /**
  3055. * All _optimized functions are used to help increase performance
  3056. * (reduce CPU and increase throughput). They use descripter version 3,
  3057. * compiler directives, and reduce memory accesses.
  3058. */
  3059. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3060. {
  3061. struct net_device *dev = (struct net_device *) data;
  3062. struct fe_priv *np = netdev_priv(dev);
  3063. u8 __iomem *base = get_hwbase(dev);
  3064. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3065. np->events = readl(base + NvRegIrqStatus);
  3066. writel(np->events, base + NvRegIrqStatus);
  3067. } else {
  3068. np->events = readl(base + NvRegMSIXIrqStatus);
  3069. writel(np->events, base + NvRegMSIXIrqStatus);
  3070. }
  3071. if (!(np->events & np->irqmask))
  3072. return IRQ_NONE;
  3073. nv_msi_workaround(np);
  3074. if (napi_schedule_prep(&np->napi)) {
  3075. /*
  3076. * Disable further irq's (msix not enabled with napi)
  3077. */
  3078. writel(0, base + NvRegIrqMask);
  3079. __napi_schedule(&np->napi);
  3080. }
  3081. return IRQ_HANDLED;
  3082. }
  3083. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3084. {
  3085. struct net_device *dev = (struct net_device *) data;
  3086. struct fe_priv *np = netdev_priv(dev);
  3087. u8 __iomem *base = get_hwbase(dev);
  3088. u32 events;
  3089. int i;
  3090. unsigned long flags;
  3091. for (i = 0;; i++) {
  3092. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3093. writel(events, base + NvRegMSIXIrqStatus);
  3094. netdev_dbg(dev, "tx irq events: %08x\n", events);
  3095. if (!(events & np->irqmask))
  3096. break;
  3097. spin_lock_irqsave(&np->lock, flags);
  3098. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3099. spin_unlock_irqrestore(&np->lock, flags);
  3100. if (unlikely(i > max_interrupt_work)) {
  3101. spin_lock_irqsave(&np->lock, flags);
  3102. /* disable interrupts on the nic */
  3103. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3104. pci_push(base);
  3105. if (!np->in_shutdown) {
  3106. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3107. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3108. }
  3109. spin_unlock_irqrestore(&np->lock, flags);
  3110. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3111. __func__, i);
  3112. break;
  3113. }
  3114. }
  3115. return IRQ_RETVAL(i);
  3116. }
  3117. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3118. {
  3119. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3120. struct net_device *dev = np->dev;
  3121. u8 __iomem *base = get_hwbase(dev);
  3122. unsigned long flags;
  3123. int retcode;
  3124. int rx_count, tx_work = 0, rx_work = 0;
  3125. do {
  3126. if (!nv_optimized(np)) {
  3127. spin_lock_irqsave(&np->lock, flags);
  3128. tx_work += nv_tx_done(dev, np->tx_ring_size);
  3129. spin_unlock_irqrestore(&np->lock, flags);
  3130. rx_count = nv_rx_process(dev, budget - rx_work);
  3131. retcode = nv_alloc_rx(dev);
  3132. } else {
  3133. spin_lock_irqsave(&np->lock, flags);
  3134. tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
  3135. spin_unlock_irqrestore(&np->lock, flags);
  3136. rx_count = nv_rx_process_optimized(dev,
  3137. budget - rx_work);
  3138. retcode = nv_alloc_rx_optimized(dev);
  3139. }
  3140. } while (retcode == 0 &&
  3141. rx_count > 0 && (rx_work += rx_count) < budget);
  3142. if (retcode) {
  3143. spin_lock_irqsave(&np->lock, flags);
  3144. if (!np->in_shutdown)
  3145. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3146. spin_unlock_irqrestore(&np->lock, flags);
  3147. }
  3148. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3149. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3150. spin_lock_irqsave(&np->lock, flags);
  3151. nv_link_irq(dev);
  3152. spin_unlock_irqrestore(&np->lock, flags);
  3153. }
  3154. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3155. spin_lock_irqsave(&np->lock, flags);
  3156. nv_linkchange(dev);
  3157. spin_unlock_irqrestore(&np->lock, flags);
  3158. np->link_timeout = jiffies + LINK_TIMEOUT;
  3159. }
  3160. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3161. spin_lock_irqsave(&np->lock, flags);
  3162. if (!np->in_shutdown) {
  3163. np->nic_poll_irq = np->irqmask;
  3164. np->recover_error = 1;
  3165. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3166. }
  3167. spin_unlock_irqrestore(&np->lock, flags);
  3168. napi_complete(napi);
  3169. return rx_work;
  3170. }
  3171. if (rx_work < budget) {
  3172. /* re-enable interrupts
  3173. (msix not enabled in napi) */
  3174. napi_complete(napi);
  3175. writel(np->irqmask, base + NvRegIrqMask);
  3176. }
  3177. return rx_work;
  3178. }
  3179. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3180. {
  3181. struct net_device *dev = (struct net_device *) data;
  3182. struct fe_priv *np = netdev_priv(dev);
  3183. u8 __iomem *base = get_hwbase(dev);
  3184. u32 events;
  3185. int i;
  3186. unsigned long flags;
  3187. for (i = 0;; i++) {
  3188. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3189. writel(events, base + NvRegMSIXIrqStatus);
  3190. netdev_dbg(dev, "rx irq events: %08x\n", events);
  3191. if (!(events & np->irqmask))
  3192. break;
  3193. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3194. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3195. spin_lock_irqsave(&np->lock, flags);
  3196. if (!np->in_shutdown)
  3197. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3198. spin_unlock_irqrestore(&np->lock, flags);
  3199. }
  3200. }
  3201. if (unlikely(i > max_interrupt_work)) {
  3202. spin_lock_irqsave(&np->lock, flags);
  3203. /* disable interrupts on the nic */
  3204. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3205. pci_push(base);
  3206. if (!np->in_shutdown) {
  3207. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3208. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3209. }
  3210. spin_unlock_irqrestore(&np->lock, flags);
  3211. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3212. __func__, i);
  3213. break;
  3214. }
  3215. }
  3216. return IRQ_RETVAL(i);
  3217. }
  3218. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3219. {
  3220. struct net_device *dev = (struct net_device *) data;
  3221. struct fe_priv *np = netdev_priv(dev);
  3222. u8 __iomem *base = get_hwbase(dev);
  3223. u32 events;
  3224. int i;
  3225. unsigned long flags;
  3226. for (i = 0;; i++) {
  3227. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3228. writel(events, base + NvRegMSIXIrqStatus);
  3229. netdev_dbg(dev, "irq events: %08x\n", events);
  3230. if (!(events & np->irqmask))
  3231. break;
  3232. /* check tx in case we reached max loop limit in tx isr */
  3233. spin_lock_irqsave(&np->lock, flags);
  3234. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3235. spin_unlock_irqrestore(&np->lock, flags);
  3236. if (events & NVREG_IRQ_LINK) {
  3237. spin_lock_irqsave(&np->lock, flags);
  3238. nv_link_irq(dev);
  3239. spin_unlock_irqrestore(&np->lock, flags);
  3240. }
  3241. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3242. spin_lock_irqsave(&np->lock, flags);
  3243. nv_linkchange(dev);
  3244. spin_unlock_irqrestore(&np->lock, flags);
  3245. np->link_timeout = jiffies + LINK_TIMEOUT;
  3246. }
  3247. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3248. spin_lock_irq(&np->lock);
  3249. /* disable interrupts on the nic */
  3250. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3251. pci_push(base);
  3252. if (!np->in_shutdown) {
  3253. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3254. np->recover_error = 1;
  3255. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3256. }
  3257. spin_unlock_irq(&np->lock);
  3258. break;
  3259. }
  3260. if (unlikely(i > max_interrupt_work)) {
  3261. spin_lock_irqsave(&np->lock, flags);
  3262. /* disable interrupts on the nic */
  3263. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3264. pci_push(base);
  3265. if (!np->in_shutdown) {
  3266. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3267. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3268. }
  3269. spin_unlock_irqrestore(&np->lock, flags);
  3270. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3271. __func__, i);
  3272. break;
  3273. }
  3274. }
  3275. return IRQ_RETVAL(i);
  3276. }
  3277. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3278. {
  3279. struct net_device *dev = (struct net_device *) data;
  3280. struct fe_priv *np = netdev_priv(dev);
  3281. u8 __iomem *base = get_hwbase(dev);
  3282. u32 events;
  3283. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3284. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3285. writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3286. } else {
  3287. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3288. writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3289. }
  3290. pci_push(base);
  3291. if (!(events & NVREG_IRQ_TIMER))
  3292. return IRQ_RETVAL(0);
  3293. nv_msi_workaround(np);
  3294. spin_lock(&np->lock);
  3295. np->intr_test = 1;
  3296. spin_unlock(&np->lock);
  3297. return IRQ_RETVAL(1);
  3298. }
  3299. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3300. {
  3301. u8 __iomem *base = get_hwbase(dev);
  3302. int i;
  3303. u32 msixmap = 0;
  3304. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3305. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3306. * the remaining 8 interrupts.
  3307. */
  3308. for (i = 0; i < 8; i++) {
  3309. if ((irqmask >> i) & 0x1)
  3310. msixmap |= vector << (i << 2);
  3311. }
  3312. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3313. msixmap = 0;
  3314. for (i = 0; i < 8; i++) {
  3315. if ((irqmask >> (i + 8)) & 0x1)
  3316. msixmap |= vector << (i << 2);
  3317. }
  3318. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3319. }
  3320. static int nv_request_irq(struct net_device *dev, int intr_test)
  3321. {
  3322. struct fe_priv *np = get_nvpriv(dev);
  3323. u8 __iomem *base = get_hwbase(dev);
  3324. int ret = 1;
  3325. int i;
  3326. irqreturn_t (*handler)(int foo, void *data);
  3327. if (intr_test) {
  3328. handler = nv_nic_irq_test;
  3329. } else {
  3330. if (nv_optimized(np))
  3331. handler = nv_nic_irq_optimized;
  3332. else
  3333. handler = nv_nic_irq;
  3334. }
  3335. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3336. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
  3337. np->msi_x_entry[i].entry = i;
  3338. ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK));
  3339. if (ret == 0) {
  3340. np->msi_flags |= NV_MSI_X_ENABLED;
  3341. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3342. /* Request irq for rx handling */
  3343. sprintf(np->name_rx, "%s-rx", dev->name);
  3344. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3345. nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3346. netdev_info(dev,
  3347. "request_irq failed for rx %d\n",
  3348. ret);
  3349. pci_disable_msix(np->pci_dev);
  3350. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3351. goto out_err;
  3352. }
  3353. /* Request irq for tx handling */
  3354. sprintf(np->name_tx, "%s-tx", dev->name);
  3355. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3356. nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3357. netdev_info(dev,
  3358. "request_irq failed for tx %d\n",
  3359. ret);
  3360. pci_disable_msix(np->pci_dev);
  3361. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3362. goto out_free_rx;
  3363. }
  3364. /* Request irq for link and timer handling */
  3365. sprintf(np->name_other, "%s-other", dev->name);
  3366. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3367. nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3368. netdev_info(dev,
  3369. "request_irq failed for link %d\n",
  3370. ret);
  3371. pci_disable_msix(np->pci_dev);
  3372. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3373. goto out_free_tx;
  3374. }
  3375. /* map interrupts to their respective vector */
  3376. writel(0, base + NvRegMSIXMap0);
  3377. writel(0, base + NvRegMSIXMap1);
  3378. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3379. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3380. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3381. } else {
  3382. /* Request irq for all interrupts */
  3383. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3384. netdev_info(dev,
  3385. "request_irq failed %d\n",
  3386. ret);
  3387. pci_disable_msix(np->pci_dev);
  3388. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3389. goto out_err;
  3390. }
  3391. /* map interrupts to vector 0 */
  3392. writel(0, base + NvRegMSIXMap0);
  3393. writel(0, base + NvRegMSIXMap1);
  3394. }
  3395. netdev_info(dev, "MSI-X enabled\n");
  3396. }
  3397. }
  3398. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3399. ret = pci_enable_msi(np->pci_dev);
  3400. if (ret == 0) {
  3401. np->msi_flags |= NV_MSI_ENABLED;
  3402. dev->irq = np->pci_dev->irq;
  3403. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3404. netdev_info(dev, "request_irq failed %d\n",
  3405. ret);
  3406. pci_disable_msi(np->pci_dev);
  3407. np->msi_flags &= ~NV_MSI_ENABLED;
  3408. dev->irq = np->pci_dev->irq;
  3409. goto out_err;
  3410. }
  3411. /* map interrupts to vector 0 */
  3412. writel(0, base + NvRegMSIMap0);
  3413. writel(0, base + NvRegMSIMap1);
  3414. /* enable msi vector 0 */
  3415. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3416. netdev_info(dev, "MSI enabled\n");
  3417. }
  3418. }
  3419. if (ret != 0) {
  3420. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3421. goto out_err;
  3422. }
  3423. return 0;
  3424. out_free_tx:
  3425. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3426. out_free_rx:
  3427. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3428. out_err:
  3429. return 1;
  3430. }
  3431. static void nv_free_irq(struct net_device *dev)
  3432. {
  3433. struct fe_priv *np = get_nvpriv(dev);
  3434. int i;
  3435. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3436. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
  3437. free_irq(np->msi_x_entry[i].vector, dev);
  3438. pci_disable_msix(np->pci_dev);
  3439. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3440. } else {
  3441. free_irq(np->pci_dev->irq, dev);
  3442. if (np->msi_flags & NV_MSI_ENABLED) {
  3443. pci_disable_msi(np->pci_dev);
  3444. np->msi_flags &= ~NV_MSI_ENABLED;
  3445. }
  3446. }
  3447. }
  3448. static void nv_do_nic_poll(unsigned long data)
  3449. {
  3450. struct net_device *dev = (struct net_device *) data;
  3451. struct fe_priv *np = netdev_priv(dev);
  3452. u8 __iomem *base = get_hwbase(dev);
  3453. u32 mask = 0;
  3454. /*
  3455. * First disable irq(s) and then
  3456. * reenable interrupts on the nic, we have to do this before calling
  3457. * nv_nic_irq because that may decide to do otherwise
  3458. */
  3459. if (!using_multi_irqs(dev)) {
  3460. if (np->msi_flags & NV_MSI_X_ENABLED)
  3461. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3462. else
  3463. disable_irq_lockdep(np->pci_dev->irq);
  3464. mask = np->irqmask;
  3465. } else {
  3466. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3467. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3468. mask |= NVREG_IRQ_RX_ALL;
  3469. }
  3470. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3471. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3472. mask |= NVREG_IRQ_TX_ALL;
  3473. }
  3474. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3475. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3476. mask |= NVREG_IRQ_OTHER;
  3477. }
  3478. }
  3479. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3480. if (np->recover_error) {
  3481. np->recover_error = 0;
  3482. netdev_info(dev, "MAC in recoverable error state\n");
  3483. if (netif_running(dev)) {
  3484. netif_tx_lock_bh(dev);
  3485. netif_addr_lock(dev);
  3486. spin_lock(&np->lock);
  3487. /* stop engines */
  3488. nv_stop_rxtx(dev);
  3489. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3490. nv_mac_reset(dev);
  3491. nv_txrx_reset(dev);
  3492. /* drain rx queue */
  3493. nv_drain_rxtx(dev);
  3494. /* reinit driver view of the rx queue */
  3495. set_bufsize(dev);
  3496. if (nv_init_ring(dev)) {
  3497. if (!np->in_shutdown)
  3498. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3499. }
  3500. /* reinit nic view of the rx queue */
  3501. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3502. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3503. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3504. base + NvRegRingSizes);
  3505. pci_push(base);
  3506. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3507. pci_push(base);
  3508. /* clear interrupts */
  3509. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3510. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3511. else
  3512. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3513. /* restart rx engine */
  3514. nv_start_rxtx(dev);
  3515. spin_unlock(&np->lock);
  3516. netif_addr_unlock(dev);
  3517. netif_tx_unlock_bh(dev);
  3518. }
  3519. }
  3520. writel(mask, base + NvRegIrqMask);
  3521. pci_push(base);
  3522. if (!using_multi_irqs(dev)) {
  3523. np->nic_poll_irq = 0;
  3524. if (nv_optimized(np))
  3525. nv_nic_irq_optimized(0, dev);
  3526. else
  3527. nv_nic_irq(0, dev);
  3528. if (np->msi_flags & NV_MSI_X_ENABLED)
  3529. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3530. else
  3531. enable_irq_lockdep(np->pci_dev->irq);
  3532. } else {
  3533. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3534. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3535. nv_nic_irq_rx(0, dev);
  3536. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3537. }
  3538. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3539. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3540. nv_nic_irq_tx(0, dev);
  3541. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3542. }
  3543. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3544. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3545. nv_nic_irq_other(0, dev);
  3546. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3547. }
  3548. }
  3549. }
  3550. #ifdef CONFIG_NET_POLL_CONTROLLER
  3551. static void nv_poll_controller(struct net_device *dev)
  3552. {
  3553. nv_do_nic_poll((unsigned long) dev);
  3554. }
  3555. #endif
  3556. static void nv_do_stats_poll(unsigned long data)
  3557. {
  3558. struct net_device *dev = (struct net_device *) data;
  3559. struct fe_priv *np = netdev_priv(dev);
  3560. nv_get_hw_stats(dev);
  3561. if (!np->in_shutdown)
  3562. mod_timer(&np->stats_poll,
  3563. round_jiffies(jiffies + STATS_INTERVAL));
  3564. }
  3565. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3566. {
  3567. struct fe_priv *np = netdev_priv(dev);
  3568. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  3569. strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version));
  3570. strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
  3571. }
  3572. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3573. {
  3574. struct fe_priv *np = netdev_priv(dev);
  3575. wolinfo->supported = WAKE_MAGIC;
  3576. spin_lock_irq(&np->lock);
  3577. if (np->wolenabled)
  3578. wolinfo->wolopts = WAKE_MAGIC;
  3579. spin_unlock_irq(&np->lock);
  3580. }
  3581. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3582. {
  3583. struct fe_priv *np = netdev_priv(dev);
  3584. u8 __iomem *base = get_hwbase(dev);
  3585. u32 flags = 0;
  3586. if (wolinfo->wolopts == 0) {
  3587. np->wolenabled = 0;
  3588. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3589. np->wolenabled = 1;
  3590. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3591. }
  3592. if (netif_running(dev)) {
  3593. spin_lock_irq(&np->lock);
  3594. writel(flags, base + NvRegWakeUpFlags);
  3595. spin_unlock_irq(&np->lock);
  3596. }
  3597. device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled);
  3598. return 0;
  3599. }
  3600. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3601. {
  3602. struct fe_priv *np = netdev_priv(dev);
  3603. u32 speed;
  3604. int adv;
  3605. spin_lock_irq(&np->lock);
  3606. ecmd->port = PORT_MII;
  3607. if (!netif_running(dev)) {
  3608. /* We do not track link speed / duplex setting if the
  3609. * interface is disabled. Force a link check */
  3610. if (nv_update_linkspeed(dev)) {
  3611. if (!netif_carrier_ok(dev))
  3612. netif_carrier_on(dev);
  3613. } else {
  3614. if (netif_carrier_ok(dev))
  3615. netif_carrier_off(dev);
  3616. }
  3617. }
  3618. if (netif_carrier_ok(dev)) {
  3619. switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3620. case NVREG_LINKSPEED_10:
  3621. speed = SPEED_10;
  3622. break;
  3623. case NVREG_LINKSPEED_100:
  3624. speed = SPEED_100;
  3625. break;
  3626. case NVREG_LINKSPEED_1000:
  3627. speed = SPEED_1000;
  3628. break;
  3629. default:
  3630. speed = -1;
  3631. break;
  3632. }
  3633. ecmd->duplex = DUPLEX_HALF;
  3634. if (np->duplex)
  3635. ecmd->duplex = DUPLEX_FULL;
  3636. } else {
  3637. speed = -1;
  3638. ecmd->duplex = -1;
  3639. }
  3640. ethtool_cmd_speed_set(ecmd, speed);
  3641. ecmd->autoneg = np->autoneg;
  3642. ecmd->advertising = ADVERTISED_MII;
  3643. if (np->autoneg) {
  3644. ecmd->advertising |= ADVERTISED_Autoneg;
  3645. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3646. if (adv & ADVERTISE_10HALF)
  3647. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3648. if (adv & ADVERTISE_10FULL)
  3649. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3650. if (adv & ADVERTISE_100HALF)
  3651. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3652. if (adv & ADVERTISE_100FULL)
  3653. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3654. if (np->gigabit == PHY_GIGABIT) {
  3655. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3656. if (adv & ADVERTISE_1000FULL)
  3657. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3658. }
  3659. }
  3660. ecmd->supported = (SUPPORTED_Autoneg |
  3661. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3662. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3663. SUPPORTED_MII);
  3664. if (np->gigabit == PHY_GIGABIT)
  3665. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3666. ecmd->phy_address = np->phyaddr;
  3667. ecmd->transceiver = XCVR_EXTERNAL;
  3668. /* ignore maxtxpkt, maxrxpkt for now */
  3669. spin_unlock_irq(&np->lock);
  3670. return 0;
  3671. }
  3672. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3673. {
  3674. struct fe_priv *np = netdev_priv(dev);
  3675. u32 speed = ethtool_cmd_speed(ecmd);
  3676. if (ecmd->port != PORT_MII)
  3677. return -EINVAL;
  3678. if (ecmd->transceiver != XCVR_EXTERNAL)
  3679. return -EINVAL;
  3680. if (ecmd->phy_address != np->phyaddr) {
  3681. /* TODO: support switching between multiple phys. Should be
  3682. * trivial, but not enabled due to lack of test hardware. */
  3683. return -EINVAL;
  3684. }
  3685. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3686. u32 mask;
  3687. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3688. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3689. if (np->gigabit == PHY_GIGABIT)
  3690. mask |= ADVERTISED_1000baseT_Full;
  3691. if ((ecmd->advertising & mask) == 0)
  3692. return -EINVAL;
  3693. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3694. /* Note: autonegotiation disable, speed 1000 intentionally
  3695. * forbidden - no one should need that. */
  3696. if (speed != SPEED_10 && speed != SPEED_100)
  3697. return -EINVAL;
  3698. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3699. return -EINVAL;
  3700. } else {
  3701. return -EINVAL;
  3702. }
  3703. netif_carrier_off(dev);
  3704. if (netif_running(dev)) {
  3705. unsigned long flags;
  3706. nv_disable_irq(dev);
  3707. netif_tx_lock_bh(dev);
  3708. netif_addr_lock(dev);
  3709. /* with plain spinlock lockdep complains */
  3710. spin_lock_irqsave(&np->lock, flags);
  3711. /* stop engines */
  3712. /* FIXME:
  3713. * this can take some time, and interrupts are disabled
  3714. * due to spin_lock_irqsave, but let's hope no daemon
  3715. * is going to change the settings very often...
  3716. * Worst case:
  3717. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3718. * + some minor delays, which is up to a second approximately
  3719. */
  3720. nv_stop_rxtx(dev);
  3721. spin_unlock_irqrestore(&np->lock, flags);
  3722. netif_addr_unlock(dev);
  3723. netif_tx_unlock_bh(dev);
  3724. }
  3725. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3726. int adv, bmcr;
  3727. np->autoneg = 1;
  3728. /* advertise only what has been requested */
  3729. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3730. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3731. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3732. adv |= ADVERTISE_10HALF;
  3733. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3734. adv |= ADVERTISE_10FULL;
  3735. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3736. adv |= ADVERTISE_100HALF;
  3737. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3738. adv |= ADVERTISE_100FULL;
  3739. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
  3740. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3741. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3742. adv |= ADVERTISE_PAUSE_ASYM;
  3743. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3744. if (np->gigabit == PHY_GIGABIT) {
  3745. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3746. adv &= ~ADVERTISE_1000FULL;
  3747. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3748. adv |= ADVERTISE_1000FULL;
  3749. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3750. }
  3751. if (netif_running(dev))
  3752. netdev_info(dev, "link down\n");
  3753. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3754. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3755. bmcr |= BMCR_ANENABLE;
  3756. /* reset the phy in order for settings to stick,
  3757. * and cause autoneg to start */
  3758. if (phy_reset(dev, bmcr)) {
  3759. netdev_info(dev, "phy reset failed\n");
  3760. return -EINVAL;
  3761. }
  3762. } else {
  3763. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3764. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3765. }
  3766. } else {
  3767. int adv, bmcr;
  3768. np->autoneg = 0;
  3769. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3770. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3771. if (speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3772. adv |= ADVERTISE_10HALF;
  3773. if (speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3774. adv |= ADVERTISE_10FULL;
  3775. if (speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3776. adv |= ADVERTISE_100HALF;
  3777. if (speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3778. adv |= ADVERTISE_100FULL;
  3779. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3780. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */
  3781. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3782. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3783. }
  3784. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3785. adv |= ADVERTISE_PAUSE_ASYM;
  3786. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3787. }
  3788. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3789. np->fixed_mode = adv;
  3790. if (np->gigabit == PHY_GIGABIT) {
  3791. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3792. adv &= ~ADVERTISE_1000FULL;
  3793. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3794. }
  3795. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3796. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3797. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3798. bmcr |= BMCR_FULLDPLX;
  3799. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3800. bmcr |= BMCR_SPEED100;
  3801. if (np->phy_oui == PHY_OUI_MARVELL) {
  3802. /* reset the phy in order for forced mode settings to stick */
  3803. if (phy_reset(dev, bmcr)) {
  3804. netdev_info(dev, "phy reset failed\n");
  3805. return -EINVAL;
  3806. }
  3807. } else {
  3808. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3809. if (netif_running(dev)) {
  3810. /* Wait a bit and then reconfigure the nic. */
  3811. udelay(10);
  3812. nv_linkchange(dev);
  3813. }
  3814. }
  3815. }
  3816. if (netif_running(dev)) {
  3817. nv_start_rxtx(dev);
  3818. nv_enable_irq(dev);
  3819. }
  3820. return 0;
  3821. }
  3822. #define FORCEDETH_REGS_VER 1
  3823. static int nv_get_regs_len(struct net_device *dev)
  3824. {
  3825. struct fe_priv *np = netdev_priv(dev);
  3826. return np->register_size;
  3827. }
  3828. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3829. {
  3830. struct fe_priv *np = netdev_priv(dev);
  3831. u8 __iomem *base = get_hwbase(dev);
  3832. u32 *rbuf = buf;
  3833. int i;
  3834. regs->version = FORCEDETH_REGS_VER;
  3835. spin_lock_irq(&np->lock);
  3836. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  3837. rbuf[i] = readl(base + i*sizeof(u32));
  3838. spin_unlock_irq(&np->lock);
  3839. }
  3840. static int nv_nway_reset(struct net_device *dev)
  3841. {
  3842. struct fe_priv *np = netdev_priv(dev);
  3843. int ret;
  3844. if (np->autoneg) {
  3845. int bmcr;
  3846. netif_carrier_off(dev);
  3847. if (netif_running(dev)) {
  3848. nv_disable_irq(dev);
  3849. netif_tx_lock_bh(dev);
  3850. netif_addr_lock(dev);
  3851. spin_lock(&np->lock);
  3852. /* stop engines */
  3853. nv_stop_rxtx(dev);
  3854. spin_unlock(&np->lock);
  3855. netif_addr_unlock(dev);
  3856. netif_tx_unlock_bh(dev);
  3857. netdev_info(dev, "link down\n");
  3858. }
  3859. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3860. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3861. bmcr |= BMCR_ANENABLE;
  3862. /* reset the phy in order for settings to stick*/
  3863. if (phy_reset(dev, bmcr)) {
  3864. netdev_info(dev, "phy reset failed\n");
  3865. return -EINVAL;
  3866. }
  3867. } else {
  3868. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3869. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3870. }
  3871. if (netif_running(dev)) {
  3872. nv_start_rxtx(dev);
  3873. nv_enable_irq(dev);
  3874. }
  3875. ret = 0;
  3876. } else {
  3877. ret = -EINVAL;
  3878. }
  3879. return ret;
  3880. }
  3881. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3882. {
  3883. struct fe_priv *np = netdev_priv(dev);
  3884. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3885. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3886. ring->rx_pending = np->rx_ring_size;
  3887. ring->tx_pending = np->tx_ring_size;
  3888. }
  3889. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3890. {
  3891. struct fe_priv *np = netdev_priv(dev);
  3892. u8 __iomem *base = get_hwbase(dev);
  3893. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3894. dma_addr_t ring_addr;
  3895. if (ring->rx_pending < RX_RING_MIN ||
  3896. ring->tx_pending < TX_RING_MIN ||
  3897. ring->rx_mini_pending != 0 ||
  3898. ring->rx_jumbo_pending != 0 ||
  3899. (np->desc_ver == DESC_VER_1 &&
  3900. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3901. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3902. (np->desc_ver != DESC_VER_1 &&
  3903. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3904. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3905. return -EINVAL;
  3906. }
  3907. /* allocate new rings */
  3908. if (!nv_optimized(np)) {
  3909. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3910. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3911. &ring_addr);
  3912. } else {
  3913. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3914. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3915. &ring_addr);
  3916. }
  3917. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3918. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3919. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3920. /* fall back to old rings */
  3921. if (!nv_optimized(np)) {
  3922. if (rxtx_ring)
  3923. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3924. rxtx_ring, ring_addr);
  3925. } else {
  3926. if (rxtx_ring)
  3927. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3928. rxtx_ring, ring_addr);
  3929. }
  3930. kfree(rx_skbuff);
  3931. kfree(tx_skbuff);
  3932. goto exit;
  3933. }
  3934. if (netif_running(dev)) {
  3935. nv_disable_irq(dev);
  3936. nv_napi_disable(dev);
  3937. netif_tx_lock_bh(dev);
  3938. netif_addr_lock(dev);
  3939. spin_lock(&np->lock);
  3940. /* stop engines */
  3941. nv_stop_rxtx(dev);
  3942. nv_txrx_reset(dev);
  3943. /* drain queues */
  3944. nv_drain_rxtx(dev);
  3945. /* delete queues */
  3946. free_rings(dev);
  3947. }
  3948. /* set new values */
  3949. np->rx_ring_size = ring->rx_pending;
  3950. np->tx_ring_size = ring->tx_pending;
  3951. if (!nv_optimized(np)) {
  3952. np->rx_ring.orig = (struct ring_desc *)rxtx_ring;
  3953. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3954. } else {
  3955. np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring;
  3956. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3957. }
  3958. np->rx_skb = (struct nv_skb_map *)rx_skbuff;
  3959. np->tx_skb = (struct nv_skb_map *)tx_skbuff;
  3960. np->ring_addr = ring_addr;
  3961. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3962. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3963. if (netif_running(dev)) {
  3964. /* reinit driver view of the queues */
  3965. set_bufsize(dev);
  3966. if (nv_init_ring(dev)) {
  3967. if (!np->in_shutdown)
  3968. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3969. }
  3970. /* reinit nic view of the queues */
  3971. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3972. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3973. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3974. base + NvRegRingSizes);
  3975. pci_push(base);
  3976. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3977. pci_push(base);
  3978. /* restart engines */
  3979. nv_start_rxtx(dev);
  3980. spin_unlock(&np->lock);
  3981. netif_addr_unlock(dev);
  3982. netif_tx_unlock_bh(dev);
  3983. nv_napi_enable(dev);
  3984. nv_enable_irq(dev);
  3985. }
  3986. return 0;
  3987. exit:
  3988. return -ENOMEM;
  3989. }
  3990. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3991. {
  3992. struct fe_priv *np = netdev_priv(dev);
  3993. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3994. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3995. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3996. }
  3997. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3998. {
  3999. struct fe_priv *np = netdev_priv(dev);
  4000. int adv, bmcr;
  4001. if ((!np->autoneg && np->duplex == 0) ||
  4002. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4003. netdev_info(dev, "can not set pause settings when forced link is in half duplex\n");
  4004. return -EINVAL;
  4005. }
  4006. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4007. netdev_info(dev, "hardware does not support tx pause frames\n");
  4008. return -EINVAL;
  4009. }
  4010. netif_carrier_off(dev);
  4011. if (netif_running(dev)) {
  4012. nv_disable_irq(dev);
  4013. netif_tx_lock_bh(dev);
  4014. netif_addr_lock(dev);
  4015. spin_lock(&np->lock);
  4016. /* stop engines */
  4017. nv_stop_rxtx(dev);
  4018. spin_unlock(&np->lock);
  4019. netif_addr_unlock(dev);
  4020. netif_tx_unlock_bh(dev);
  4021. }
  4022. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4023. if (pause->rx_pause)
  4024. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4025. if (pause->tx_pause)
  4026. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4027. if (np->autoneg && pause->autoneg) {
  4028. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4029. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4030. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4031. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
  4032. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4033. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4034. adv |= ADVERTISE_PAUSE_ASYM;
  4035. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4036. if (netif_running(dev))
  4037. netdev_info(dev, "link down\n");
  4038. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4039. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4040. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4041. } else {
  4042. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4043. if (pause->rx_pause)
  4044. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4045. if (pause->tx_pause)
  4046. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4047. if (!netif_running(dev))
  4048. nv_update_linkspeed(dev);
  4049. else
  4050. nv_update_pause(dev, np->pause_flags);
  4051. }
  4052. if (netif_running(dev)) {
  4053. nv_start_rxtx(dev);
  4054. nv_enable_irq(dev);
  4055. }
  4056. return 0;
  4057. }
  4058. static int nv_set_loopback(struct net_device *dev, netdev_features_t features)
  4059. {
  4060. struct fe_priv *np = netdev_priv(dev);
  4061. unsigned long flags;
  4062. u32 miicontrol;
  4063. int err, retval = 0;
  4064. spin_lock_irqsave(&np->lock, flags);
  4065. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4066. if (features & NETIF_F_LOOPBACK) {
  4067. if (miicontrol & BMCR_LOOPBACK) {
  4068. spin_unlock_irqrestore(&np->lock, flags);
  4069. netdev_info(dev, "Loopback already enabled\n");
  4070. return 0;
  4071. }
  4072. nv_disable_irq(dev);
  4073. /* Turn on loopback mode */
  4074. miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000;
  4075. err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol);
  4076. if (err) {
  4077. retval = PHY_ERROR;
  4078. spin_unlock_irqrestore(&np->lock, flags);
  4079. phy_init(dev);
  4080. } else {
  4081. if (netif_running(dev)) {
  4082. /* Force 1000 Mbps full-duplex */
  4083. nv_force_linkspeed(dev, NVREG_LINKSPEED_1000,
  4084. 1);
  4085. /* Force link up */
  4086. netif_carrier_on(dev);
  4087. }
  4088. spin_unlock_irqrestore(&np->lock, flags);
  4089. netdev_info(dev,
  4090. "Internal PHY loopback mode enabled.\n");
  4091. }
  4092. } else {
  4093. if (!(miicontrol & BMCR_LOOPBACK)) {
  4094. spin_unlock_irqrestore(&np->lock, flags);
  4095. netdev_info(dev, "Loopback already disabled\n");
  4096. return 0;
  4097. }
  4098. nv_disable_irq(dev);
  4099. /* Turn off loopback */
  4100. spin_unlock_irqrestore(&np->lock, flags);
  4101. netdev_info(dev, "Internal PHY loopback mode disabled.\n");
  4102. phy_init(dev);
  4103. }
  4104. msleep(500);
  4105. spin_lock_irqsave(&np->lock, flags);
  4106. nv_enable_irq(dev);
  4107. spin_unlock_irqrestore(&np->lock, flags);
  4108. return retval;
  4109. }
  4110. static netdev_features_t nv_fix_features(struct net_device *dev,
  4111. netdev_features_t features)
  4112. {
  4113. /* vlan is dependent on rx checksum offload */
  4114. if (features & (NETIF_F_HW_VLAN_TX|NETIF_F_HW_VLAN_RX))
  4115. features |= NETIF_F_RXCSUM;
  4116. return features;
  4117. }
  4118. static void nv_vlan_mode(struct net_device *dev, netdev_features_t features)
  4119. {
  4120. struct fe_priv *np = get_nvpriv(dev);
  4121. spin_lock_irq(&np->lock);
  4122. if (features & NETIF_F_HW_VLAN_RX)
  4123. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP;
  4124. else
  4125. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4126. if (features & NETIF_F_HW_VLAN_TX)
  4127. np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS;
  4128. else
  4129. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4130. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4131. spin_unlock_irq(&np->lock);
  4132. }
  4133. static int nv_set_features(struct net_device *dev, netdev_features_t features)
  4134. {
  4135. struct fe_priv *np = netdev_priv(dev);
  4136. u8 __iomem *base = get_hwbase(dev);
  4137. netdev_features_t changed = dev->features ^ features;
  4138. int retval;
  4139. if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) {
  4140. retval = nv_set_loopback(dev, features);
  4141. if (retval != 0)
  4142. return retval;
  4143. }
  4144. if (changed & NETIF_F_RXCSUM) {
  4145. spin_lock_irq(&np->lock);
  4146. if (features & NETIF_F_RXCSUM)
  4147. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4148. else
  4149. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4150. if (netif_running(dev))
  4151. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4152. spin_unlock_irq(&np->lock);
  4153. }
  4154. if (changed & (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX))
  4155. nv_vlan_mode(dev, features);
  4156. return 0;
  4157. }
  4158. static int nv_get_sset_count(struct net_device *dev, int sset)
  4159. {
  4160. struct fe_priv *np = netdev_priv(dev);
  4161. switch (sset) {
  4162. case ETH_SS_TEST:
  4163. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4164. return NV_TEST_COUNT_EXTENDED;
  4165. else
  4166. return NV_TEST_COUNT_BASE;
  4167. case ETH_SS_STATS:
  4168. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4169. return NV_DEV_STATISTICS_V3_COUNT;
  4170. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4171. return NV_DEV_STATISTICS_V2_COUNT;
  4172. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4173. return NV_DEV_STATISTICS_V1_COUNT;
  4174. else
  4175. return 0;
  4176. default:
  4177. return -EOPNOTSUPP;
  4178. }
  4179. }
  4180. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4181. {
  4182. struct fe_priv *np = netdev_priv(dev);
  4183. /* update stats */
  4184. nv_get_hw_stats(dev);
  4185. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4186. }
  4187. static int nv_link_test(struct net_device *dev)
  4188. {
  4189. struct fe_priv *np = netdev_priv(dev);
  4190. int mii_status;
  4191. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4192. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4193. /* check phy link status */
  4194. if (!(mii_status & BMSR_LSTATUS))
  4195. return 0;
  4196. else
  4197. return 1;
  4198. }
  4199. static int nv_register_test(struct net_device *dev)
  4200. {
  4201. u8 __iomem *base = get_hwbase(dev);
  4202. int i = 0;
  4203. u32 orig_read, new_read;
  4204. do {
  4205. orig_read = readl(base + nv_registers_test[i].reg);
  4206. /* xor with mask to toggle bits */
  4207. orig_read ^= nv_registers_test[i].mask;
  4208. writel(orig_read, base + nv_registers_test[i].reg);
  4209. new_read = readl(base + nv_registers_test[i].reg);
  4210. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4211. return 0;
  4212. /* restore original value */
  4213. orig_read ^= nv_registers_test[i].mask;
  4214. writel(orig_read, base + nv_registers_test[i].reg);
  4215. } while (nv_registers_test[++i].reg != 0);
  4216. return 1;
  4217. }
  4218. static int nv_interrupt_test(struct net_device *dev)
  4219. {
  4220. struct fe_priv *np = netdev_priv(dev);
  4221. u8 __iomem *base = get_hwbase(dev);
  4222. int ret = 1;
  4223. int testcnt;
  4224. u32 save_msi_flags, save_poll_interval = 0;
  4225. if (netif_running(dev)) {
  4226. /* free current irq */
  4227. nv_free_irq(dev);
  4228. save_poll_interval = readl(base+NvRegPollingInterval);
  4229. }
  4230. /* flag to test interrupt handler */
  4231. np->intr_test = 0;
  4232. /* setup test irq */
  4233. save_msi_flags = np->msi_flags;
  4234. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4235. np->msi_flags |= 0x001; /* setup 1 vector */
  4236. if (nv_request_irq(dev, 1))
  4237. return 0;
  4238. /* setup timer interrupt */
  4239. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4240. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4241. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4242. /* wait for at least one interrupt */
  4243. msleep(100);
  4244. spin_lock_irq(&np->lock);
  4245. /* flag should be set within ISR */
  4246. testcnt = np->intr_test;
  4247. if (!testcnt)
  4248. ret = 2;
  4249. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4250. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4251. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4252. else
  4253. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4254. spin_unlock_irq(&np->lock);
  4255. nv_free_irq(dev);
  4256. np->msi_flags = save_msi_flags;
  4257. if (netif_running(dev)) {
  4258. writel(save_poll_interval, base + NvRegPollingInterval);
  4259. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4260. /* restore original irq */
  4261. if (nv_request_irq(dev, 0))
  4262. return 0;
  4263. }
  4264. return ret;
  4265. }
  4266. static int nv_loopback_test(struct net_device *dev)
  4267. {
  4268. struct fe_priv *np = netdev_priv(dev);
  4269. u8 __iomem *base = get_hwbase(dev);
  4270. struct sk_buff *tx_skb, *rx_skb;
  4271. dma_addr_t test_dma_addr;
  4272. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4273. u32 flags;
  4274. int len, i, pkt_len;
  4275. u8 *pkt_data;
  4276. u32 filter_flags = 0;
  4277. u32 misc1_flags = 0;
  4278. int ret = 1;
  4279. if (netif_running(dev)) {
  4280. nv_disable_irq(dev);
  4281. filter_flags = readl(base + NvRegPacketFilterFlags);
  4282. misc1_flags = readl(base + NvRegMisc1);
  4283. } else {
  4284. nv_txrx_reset(dev);
  4285. }
  4286. /* reinit driver view of the rx queue */
  4287. set_bufsize(dev);
  4288. nv_init_ring(dev);
  4289. /* setup hardware for loopback */
  4290. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4291. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4292. /* reinit nic view of the rx queue */
  4293. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4294. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4295. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4296. base + NvRegRingSizes);
  4297. pci_push(base);
  4298. /* restart rx engine */
  4299. nv_start_rxtx(dev);
  4300. /* setup packet for tx */
  4301. pkt_len = ETH_DATA_LEN;
  4302. tx_skb = dev_alloc_skb(pkt_len);
  4303. if (!tx_skb) {
  4304. netdev_err(dev, "dev_alloc_skb() failed during loopback test\n");
  4305. ret = 0;
  4306. goto out;
  4307. }
  4308. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4309. skb_tailroom(tx_skb),
  4310. PCI_DMA_FROMDEVICE);
  4311. pkt_data = skb_put(tx_skb, pkt_len);
  4312. for (i = 0; i < pkt_len; i++)
  4313. pkt_data[i] = (u8)(i & 0xff);
  4314. if (!nv_optimized(np)) {
  4315. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4316. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4317. } else {
  4318. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4319. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4320. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4321. }
  4322. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4323. pci_push(get_hwbase(dev));
  4324. msleep(500);
  4325. /* check for rx of the packet */
  4326. if (!nv_optimized(np)) {
  4327. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4328. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4329. } else {
  4330. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4331. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4332. }
  4333. if (flags & NV_RX_AVAIL) {
  4334. ret = 0;
  4335. } else if (np->desc_ver == DESC_VER_1) {
  4336. if (flags & NV_RX_ERROR)
  4337. ret = 0;
  4338. } else {
  4339. if (flags & NV_RX2_ERROR)
  4340. ret = 0;
  4341. }
  4342. if (ret) {
  4343. if (len != pkt_len) {
  4344. ret = 0;
  4345. } else {
  4346. rx_skb = np->rx_skb[0].skb;
  4347. for (i = 0; i < pkt_len; i++) {
  4348. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4349. ret = 0;
  4350. break;
  4351. }
  4352. }
  4353. }
  4354. }
  4355. pci_unmap_single(np->pci_dev, test_dma_addr,
  4356. (skb_end_pointer(tx_skb) - tx_skb->data),
  4357. PCI_DMA_TODEVICE);
  4358. dev_kfree_skb_any(tx_skb);
  4359. out:
  4360. /* stop engines */
  4361. nv_stop_rxtx(dev);
  4362. nv_txrx_reset(dev);
  4363. /* drain rx queue */
  4364. nv_drain_rxtx(dev);
  4365. if (netif_running(dev)) {
  4366. writel(misc1_flags, base + NvRegMisc1);
  4367. writel(filter_flags, base + NvRegPacketFilterFlags);
  4368. nv_enable_irq(dev);
  4369. }
  4370. return ret;
  4371. }
  4372. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4373. {
  4374. struct fe_priv *np = netdev_priv(dev);
  4375. u8 __iomem *base = get_hwbase(dev);
  4376. int result;
  4377. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4378. if (!nv_link_test(dev)) {
  4379. test->flags |= ETH_TEST_FL_FAILED;
  4380. buffer[0] = 1;
  4381. }
  4382. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4383. if (netif_running(dev)) {
  4384. netif_stop_queue(dev);
  4385. nv_napi_disable(dev);
  4386. netif_tx_lock_bh(dev);
  4387. netif_addr_lock(dev);
  4388. spin_lock_irq(&np->lock);
  4389. nv_disable_hw_interrupts(dev, np->irqmask);
  4390. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4391. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4392. else
  4393. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4394. /* stop engines */
  4395. nv_stop_rxtx(dev);
  4396. nv_txrx_reset(dev);
  4397. /* drain rx queue */
  4398. nv_drain_rxtx(dev);
  4399. spin_unlock_irq(&np->lock);
  4400. netif_addr_unlock(dev);
  4401. netif_tx_unlock_bh(dev);
  4402. }
  4403. if (!nv_register_test(dev)) {
  4404. test->flags |= ETH_TEST_FL_FAILED;
  4405. buffer[1] = 1;
  4406. }
  4407. result = nv_interrupt_test(dev);
  4408. if (result != 1) {
  4409. test->flags |= ETH_TEST_FL_FAILED;
  4410. buffer[2] = 1;
  4411. }
  4412. if (result == 0) {
  4413. /* bail out */
  4414. return;
  4415. }
  4416. if (!nv_loopback_test(dev)) {
  4417. test->flags |= ETH_TEST_FL_FAILED;
  4418. buffer[3] = 1;
  4419. }
  4420. if (netif_running(dev)) {
  4421. /* reinit driver view of the rx queue */
  4422. set_bufsize(dev);
  4423. if (nv_init_ring(dev)) {
  4424. if (!np->in_shutdown)
  4425. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4426. }
  4427. /* reinit nic view of the rx queue */
  4428. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4429. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4430. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4431. base + NvRegRingSizes);
  4432. pci_push(base);
  4433. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4434. pci_push(base);
  4435. /* restart rx engine */
  4436. nv_start_rxtx(dev);
  4437. netif_start_queue(dev);
  4438. nv_napi_enable(dev);
  4439. nv_enable_hw_interrupts(dev, np->irqmask);
  4440. }
  4441. }
  4442. }
  4443. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4444. {
  4445. switch (stringset) {
  4446. case ETH_SS_STATS:
  4447. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4448. break;
  4449. case ETH_SS_TEST:
  4450. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4451. break;
  4452. }
  4453. }
  4454. static const struct ethtool_ops ops = {
  4455. .get_drvinfo = nv_get_drvinfo,
  4456. .get_link = ethtool_op_get_link,
  4457. .get_wol = nv_get_wol,
  4458. .set_wol = nv_set_wol,
  4459. .get_settings = nv_get_settings,
  4460. .set_settings = nv_set_settings,
  4461. .get_regs_len = nv_get_regs_len,
  4462. .get_regs = nv_get_regs,
  4463. .nway_reset = nv_nway_reset,
  4464. .get_ringparam = nv_get_ringparam,
  4465. .set_ringparam = nv_set_ringparam,
  4466. .get_pauseparam = nv_get_pauseparam,
  4467. .set_pauseparam = nv_set_pauseparam,
  4468. .get_strings = nv_get_strings,
  4469. .get_ethtool_stats = nv_get_ethtool_stats,
  4470. .get_sset_count = nv_get_sset_count,
  4471. .self_test = nv_self_test,
  4472. };
  4473. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4474. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4475. {
  4476. struct fe_priv *np = netdev_priv(dev);
  4477. u8 __iomem *base = get_hwbase(dev);
  4478. int i;
  4479. u32 tx_ctrl, mgmt_sema;
  4480. for (i = 0; i < 10; i++) {
  4481. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4482. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4483. break;
  4484. msleep(500);
  4485. }
  4486. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4487. return 0;
  4488. for (i = 0; i < 2; i++) {
  4489. tx_ctrl = readl(base + NvRegTransmitterControl);
  4490. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4491. writel(tx_ctrl, base + NvRegTransmitterControl);
  4492. /* verify that semaphore was acquired */
  4493. tx_ctrl = readl(base + NvRegTransmitterControl);
  4494. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4495. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4496. np->mgmt_sema = 1;
  4497. return 1;
  4498. } else
  4499. udelay(50);
  4500. }
  4501. return 0;
  4502. }
  4503. static void nv_mgmt_release_sema(struct net_device *dev)
  4504. {
  4505. struct fe_priv *np = netdev_priv(dev);
  4506. u8 __iomem *base = get_hwbase(dev);
  4507. u32 tx_ctrl;
  4508. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4509. if (np->mgmt_sema) {
  4510. tx_ctrl = readl(base + NvRegTransmitterControl);
  4511. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4512. writel(tx_ctrl, base + NvRegTransmitterControl);
  4513. }
  4514. }
  4515. }
  4516. static int nv_mgmt_get_version(struct net_device *dev)
  4517. {
  4518. struct fe_priv *np = netdev_priv(dev);
  4519. u8 __iomem *base = get_hwbase(dev);
  4520. u32 data_ready = readl(base + NvRegTransmitterControl);
  4521. u32 data_ready2 = 0;
  4522. unsigned long start;
  4523. int ready = 0;
  4524. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4525. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4526. start = jiffies;
  4527. while (time_before(jiffies, start + 5*HZ)) {
  4528. data_ready2 = readl(base + NvRegTransmitterControl);
  4529. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4530. ready = 1;
  4531. break;
  4532. }
  4533. schedule_timeout_uninterruptible(1);
  4534. }
  4535. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4536. return 0;
  4537. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4538. return 1;
  4539. }
  4540. static int nv_open(struct net_device *dev)
  4541. {
  4542. struct fe_priv *np = netdev_priv(dev);
  4543. u8 __iomem *base = get_hwbase(dev);
  4544. int ret = 1;
  4545. int oom, i;
  4546. u32 low;
  4547. /* power up phy */
  4548. mii_rw(dev, np->phyaddr, MII_BMCR,
  4549. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4550. nv_txrx_gate(dev, false);
  4551. /* erase previous misconfiguration */
  4552. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4553. nv_mac_reset(dev);
  4554. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4555. writel(0, base + NvRegMulticastAddrB);
  4556. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4557. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4558. writel(0, base + NvRegPacketFilterFlags);
  4559. writel(0, base + NvRegTransmitterControl);
  4560. writel(0, base + NvRegReceiverControl);
  4561. writel(0, base + NvRegAdapterControl);
  4562. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4563. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4564. /* initialize descriptor rings */
  4565. set_bufsize(dev);
  4566. oom = nv_init_ring(dev);
  4567. writel(0, base + NvRegLinkSpeed);
  4568. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4569. nv_txrx_reset(dev);
  4570. writel(0, base + NvRegUnknownSetupReg6);
  4571. np->in_shutdown = 0;
  4572. /* give hw rings */
  4573. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4574. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4575. base + NvRegRingSizes);
  4576. writel(np->linkspeed, base + NvRegLinkSpeed);
  4577. if (np->desc_ver == DESC_VER_1)
  4578. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4579. else
  4580. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4581. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4582. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4583. pci_push(base);
  4584. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4585. if (reg_delay(dev, NvRegUnknownSetupReg5,
  4586. NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4587. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX))
  4588. netdev_info(dev,
  4589. "%s: SetupReg5, Bit 31 remained off\n", __func__);
  4590. writel(0, base + NvRegMIIMask);
  4591. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4592. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4593. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4594. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4595. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4596. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4597. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4598. get_random_bytes(&low, sizeof(low));
  4599. low &= NVREG_SLOTTIME_MASK;
  4600. if (np->desc_ver == DESC_VER_1) {
  4601. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4602. } else {
  4603. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4604. /* setup legacy backoff */
  4605. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4606. } else {
  4607. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4608. nv_gear_backoff_reseed(dev);
  4609. }
  4610. }
  4611. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4612. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4613. if (poll_interval == -1) {
  4614. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4615. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4616. else
  4617. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4618. } else
  4619. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4620. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4621. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4622. base + NvRegAdapterControl);
  4623. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4624. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4625. if (np->wolenabled)
  4626. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4627. i = readl(base + NvRegPowerState);
  4628. if ((i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4629. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4630. pci_push(base);
  4631. udelay(10);
  4632. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4633. nv_disable_hw_interrupts(dev, np->irqmask);
  4634. pci_push(base);
  4635. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4636. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4637. pci_push(base);
  4638. if (nv_request_irq(dev, 0))
  4639. goto out_drain;
  4640. /* ask for interrupts */
  4641. nv_enable_hw_interrupts(dev, np->irqmask);
  4642. spin_lock_irq(&np->lock);
  4643. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4644. writel(0, base + NvRegMulticastAddrB);
  4645. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4646. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4647. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4648. /* One manual link speed update: Interrupts are enabled, future link
  4649. * speed changes cause interrupts and are handled by nv_link_irq().
  4650. */
  4651. {
  4652. u32 miistat;
  4653. miistat = readl(base + NvRegMIIStatus);
  4654. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4655. }
  4656. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4657. * to init hw */
  4658. np->linkspeed = 0;
  4659. ret = nv_update_linkspeed(dev);
  4660. nv_start_rxtx(dev);
  4661. netif_start_queue(dev);
  4662. nv_napi_enable(dev);
  4663. if (ret) {
  4664. netif_carrier_on(dev);
  4665. } else {
  4666. netdev_info(dev, "no link during initialization\n");
  4667. netif_carrier_off(dev);
  4668. }
  4669. if (oom)
  4670. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4671. /* start statistics timer */
  4672. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4673. mod_timer(&np->stats_poll,
  4674. round_jiffies(jiffies + STATS_INTERVAL));
  4675. spin_unlock_irq(&np->lock);
  4676. /* If the loopback feature was set while the device was down, make sure
  4677. * that it's set correctly now.
  4678. */
  4679. if (dev->features & NETIF_F_LOOPBACK)
  4680. nv_set_loopback(dev, dev->features);
  4681. return 0;
  4682. out_drain:
  4683. nv_drain_rxtx(dev);
  4684. return ret;
  4685. }
  4686. static int nv_close(struct net_device *dev)
  4687. {
  4688. struct fe_priv *np = netdev_priv(dev);
  4689. u8 __iomem *base;
  4690. spin_lock_irq(&np->lock);
  4691. np->in_shutdown = 1;
  4692. spin_unlock_irq(&np->lock);
  4693. nv_napi_disable(dev);
  4694. synchronize_irq(np->pci_dev->irq);
  4695. del_timer_sync(&np->oom_kick);
  4696. del_timer_sync(&np->nic_poll);
  4697. del_timer_sync(&np->stats_poll);
  4698. netif_stop_queue(dev);
  4699. spin_lock_irq(&np->lock);
  4700. nv_stop_rxtx(dev);
  4701. nv_txrx_reset(dev);
  4702. /* disable interrupts on the nic or we will lock up */
  4703. base = get_hwbase(dev);
  4704. nv_disable_hw_interrupts(dev, np->irqmask);
  4705. pci_push(base);
  4706. spin_unlock_irq(&np->lock);
  4707. nv_free_irq(dev);
  4708. nv_drain_rxtx(dev);
  4709. if (np->wolenabled || !phy_power_down) {
  4710. nv_txrx_gate(dev, false);
  4711. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4712. nv_start_rx(dev);
  4713. } else {
  4714. /* power down phy */
  4715. mii_rw(dev, np->phyaddr, MII_BMCR,
  4716. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4717. nv_txrx_gate(dev, true);
  4718. }
  4719. /* FIXME: power down nic */
  4720. return 0;
  4721. }
  4722. static const struct net_device_ops nv_netdev_ops = {
  4723. .ndo_open = nv_open,
  4724. .ndo_stop = nv_close,
  4725. .ndo_get_stats = nv_get_stats,
  4726. .ndo_start_xmit = nv_start_xmit,
  4727. .ndo_tx_timeout = nv_tx_timeout,
  4728. .ndo_change_mtu = nv_change_mtu,
  4729. .ndo_fix_features = nv_fix_features,
  4730. .ndo_set_features = nv_set_features,
  4731. .ndo_validate_addr = eth_validate_addr,
  4732. .ndo_set_mac_address = nv_set_mac_address,
  4733. .ndo_set_rx_mode = nv_set_multicast,
  4734. #ifdef CONFIG_NET_POLL_CONTROLLER
  4735. .ndo_poll_controller = nv_poll_controller,
  4736. #endif
  4737. };
  4738. static const struct net_device_ops nv_netdev_ops_optimized = {
  4739. .ndo_open = nv_open,
  4740. .ndo_stop = nv_close,
  4741. .ndo_get_stats = nv_get_stats,
  4742. .ndo_start_xmit = nv_start_xmit_optimized,
  4743. .ndo_tx_timeout = nv_tx_timeout,
  4744. .ndo_change_mtu = nv_change_mtu,
  4745. .ndo_fix_features = nv_fix_features,
  4746. .ndo_set_features = nv_set_features,
  4747. .ndo_validate_addr = eth_validate_addr,
  4748. .ndo_set_mac_address = nv_set_mac_address,
  4749. .ndo_set_rx_mode = nv_set_multicast,
  4750. #ifdef CONFIG_NET_POLL_CONTROLLER
  4751. .ndo_poll_controller = nv_poll_controller,
  4752. #endif
  4753. };
  4754. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4755. {
  4756. struct net_device *dev;
  4757. struct fe_priv *np;
  4758. unsigned long addr;
  4759. u8 __iomem *base;
  4760. int err, i;
  4761. u32 powerstate, txreg;
  4762. u32 phystate_orig = 0, phystate;
  4763. int phyinitialized = 0;
  4764. static int printed_version;
  4765. if (!printed_version++)
  4766. pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n",
  4767. FORCEDETH_VERSION);
  4768. dev = alloc_etherdev(sizeof(struct fe_priv));
  4769. err = -ENOMEM;
  4770. if (!dev)
  4771. goto out;
  4772. np = netdev_priv(dev);
  4773. np->dev = dev;
  4774. np->pci_dev = pci_dev;
  4775. spin_lock_init(&np->lock);
  4776. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4777. init_timer(&np->oom_kick);
  4778. np->oom_kick.data = (unsigned long) dev;
  4779. np->oom_kick.function = nv_do_rx_refill; /* timer handler */
  4780. init_timer(&np->nic_poll);
  4781. np->nic_poll.data = (unsigned long) dev;
  4782. np->nic_poll.function = nv_do_nic_poll; /* timer handler */
  4783. init_timer(&np->stats_poll);
  4784. np->stats_poll.data = (unsigned long) dev;
  4785. np->stats_poll.function = nv_do_stats_poll; /* timer handler */
  4786. err = pci_enable_device(pci_dev);
  4787. if (err)
  4788. goto out_free;
  4789. pci_set_master(pci_dev);
  4790. err = pci_request_regions(pci_dev, DRV_NAME);
  4791. if (err < 0)
  4792. goto out_disable;
  4793. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4794. np->register_size = NV_PCI_REGSZ_VER3;
  4795. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4796. np->register_size = NV_PCI_REGSZ_VER2;
  4797. else
  4798. np->register_size = NV_PCI_REGSZ_VER1;
  4799. err = -EINVAL;
  4800. addr = 0;
  4801. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4802. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4803. pci_resource_len(pci_dev, i) >= np->register_size) {
  4804. addr = pci_resource_start(pci_dev, i);
  4805. break;
  4806. }
  4807. }
  4808. if (i == DEVICE_COUNT_RESOURCE) {
  4809. dev_info(&pci_dev->dev, "Couldn't find register window\n");
  4810. goto out_relreg;
  4811. }
  4812. /* copy of driver data */
  4813. np->driver_data = id->driver_data;
  4814. /* copy of device id */
  4815. np->device_id = id->device;
  4816. /* handle different descriptor versions */
  4817. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4818. /* packet format 3: supports 40-bit addressing */
  4819. np->desc_ver = DESC_VER_3;
  4820. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4821. if (dma_64bit) {
  4822. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  4823. dev_info(&pci_dev->dev,
  4824. "64-bit DMA failed, using 32-bit addressing\n");
  4825. else
  4826. dev->features |= NETIF_F_HIGHDMA;
  4827. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  4828. dev_info(&pci_dev->dev,
  4829. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4830. }
  4831. }
  4832. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4833. /* packet format 2: supports jumbo frames */
  4834. np->desc_ver = DESC_VER_2;
  4835. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4836. } else {
  4837. /* original packet format */
  4838. np->desc_ver = DESC_VER_1;
  4839. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4840. }
  4841. np->pkt_limit = NV_PKTLIMIT_1;
  4842. if (id->driver_data & DEV_HAS_LARGEDESC)
  4843. np->pkt_limit = NV_PKTLIMIT_2;
  4844. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4845. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4846. dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG |
  4847. NETIF_F_TSO | NETIF_F_RXCSUM;
  4848. }
  4849. np->vlanctl_bits = 0;
  4850. if (id->driver_data & DEV_HAS_VLAN) {
  4851. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4852. dev->hw_features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4853. }
  4854. dev->features |= dev->hw_features;
  4855. /* Add loopback capability to the device. */
  4856. dev->hw_features |= NETIF_F_LOOPBACK;
  4857. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4858. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4859. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4860. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4861. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4862. }
  4863. err = -ENOMEM;
  4864. np->base = ioremap(addr, np->register_size);
  4865. if (!np->base)
  4866. goto out_relreg;
  4867. dev->base_addr = (unsigned long)np->base;
  4868. dev->irq = pci_dev->irq;
  4869. np->rx_ring_size = RX_RING_DEFAULT;
  4870. np->tx_ring_size = TX_RING_DEFAULT;
  4871. if (!nv_optimized(np)) {
  4872. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4873. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4874. &np->ring_addr);
  4875. if (!np->rx_ring.orig)
  4876. goto out_unmap;
  4877. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4878. } else {
  4879. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4880. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4881. &np->ring_addr);
  4882. if (!np->rx_ring.ex)
  4883. goto out_unmap;
  4884. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4885. }
  4886. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4887. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4888. if (!np->rx_skb || !np->tx_skb)
  4889. goto out_freering;
  4890. if (!nv_optimized(np))
  4891. dev->netdev_ops = &nv_netdev_ops;
  4892. else
  4893. dev->netdev_ops = &nv_netdev_ops_optimized;
  4894. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4895. SET_ETHTOOL_OPS(dev, &ops);
  4896. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4897. pci_set_drvdata(pci_dev, dev);
  4898. /* read the mac address */
  4899. base = get_hwbase(dev);
  4900. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4901. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4902. /* check the workaround bit for correct mac address order */
  4903. txreg = readl(base + NvRegTransmitPoll);
  4904. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  4905. /* mac address is already in correct order */
  4906. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4907. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4908. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4909. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4910. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4911. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4912. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4913. /* mac address is already in correct order */
  4914. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4915. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4916. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4917. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4918. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4919. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4920. /*
  4921. * Set orig mac address back to the reversed version.
  4922. * This flag will be cleared during low power transition.
  4923. * Therefore, we should always put back the reversed address.
  4924. */
  4925. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  4926. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  4927. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  4928. } else {
  4929. /* need to reverse mac address to correct order */
  4930. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4931. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4932. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4933. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4934. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4935. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4936. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4937. dev_dbg(&pci_dev->dev,
  4938. "%s: set workaround bit for reversed mac addr\n",
  4939. __func__);
  4940. }
  4941. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4942. if (!is_valid_ether_addr(dev->perm_addr)) {
  4943. /*
  4944. * Bad mac address. At least one bios sets the mac address
  4945. * to 01:23:45:67:89:ab
  4946. */
  4947. dev_err(&pci_dev->dev,
  4948. "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n",
  4949. dev->dev_addr);
  4950. random_ether_addr(dev->dev_addr);
  4951. dev_err(&pci_dev->dev,
  4952. "Using random MAC address: %pM\n", dev->dev_addr);
  4953. }
  4954. /* set mac address */
  4955. nv_copy_mac_to_hw(dev);
  4956. /* disable WOL */
  4957. writel(0, base + NvRegWakeUpFlags);
  4958. np->wolenabled = 0;
  4959. device_set_wakeup_enable(&pci_dev->dev, false);
  4960. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4961. /* take phy and nic out of low power mode */
  4962. powerstate = readl(base + NvRegPowerState2);
  4963. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4964. if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
  4965. pci_dev->revision >= 0xA3)
  4966. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4967. writel(powerstate, base + NvRegPowerState2);
  4968. }
  4969. if (np->desc_ver == DESC_VER_1)
  4970. np->tx_flags = NV_TX_VALID;
  4971. else
  4972. np->tx_flags = NV_TX2_VALID;
  4973. np->msi_flags = 0;
  4974. if ((id->driver_data & DEV_HAS_MSI) && msi)
  4975. np->msi_flags |= NV_MSI_CAPABLE;
  4976. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4977. /* msix has had reported issues when modifying irqmask
  4978. as in the case of napi, therefore, disable for now
  4979. */
  4980. #if 0
  4981. np->msi_flags |= NV_MSI_X_CAPABLE;
  4982. #endif
  4983. }
  4984. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  4985. np->irqmask = NVREG_IRQMASK_CPU;
  4986. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4987. np->msi_flags |= 0x0001;
  4988. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  4989. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  4990. /* start off in throughput mode */
  4991. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4992. /* remove support for msix mode */
  4993. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  4994. } else {
  4995. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  4996. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4997. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4998. np->msi_flags |= 0x0003;
  4999. }
  5000. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5001. np->irqmask |= NVREG_IRQ_TIMER;
  5002. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5003. np->need_linktimer = 1;
  5004. np->link_timeout = jiffies + LINK_TIMEOUT;
  5005. } else {
  5006. np->need_linktimer = 0;
  5007. }
  5008. /* Limit the number of tx's outstanding for hw bug */
  5009. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5010. np->tx_limit = 1;
  5011. if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
  5012. pci_dev->revision >= 0xA2)
  5013. np->tx_limit = 0;
  5014. }
  5015. /* clear phy state and temporarily halt phy interrupts */
  5016. writel(0, base + NvRegMIIMask);
  5017. phystate = readl(base + NvRegAdapterControl);
  5018. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5019. phystate_orig = 1;
  5020. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5021. writel(phystate, base + NvRegAdapterControl);
  5022. }
  5023. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5024. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5025. /* management unit running on the mac? */
  5026. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5027. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5028. nv_mgmt_acquire_sema(dev) &&
  5029. nv_mgmt_get_version(dev)) {
  5030. np->mac_in_use = 1;
  5031. if (np->mgmt_version > 0)
  5032. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5033. /* management unit setup the phy already? */
  5034. if (np->mac_in_use &&
  5035. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5036. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5037. /* phy is inited by mgmt unit */
  5038. phyinitialized = 1;
  5039. } else {
  5040. /* we need to init the phy */
  5041. }
  5042. }
  5043. }
  5044. /* find a suitable phy */
  5045. for (i = 1; i <= 32; i++) {
  5046. int id1, id2;
  5047. int phyaddr = i & 0x1F;
  5048. spin_lock_irq(&np->lock);
  5049. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5050. spin_unlock_irq(&np->lock);
  5051. if (id1 < 0 || id1 == 0xffff)
  5052. continue;
  5053. spin_lock_irq(&np->lock);
  5054. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5055. spin_unlock_irq(&np->lock);
  5056. if (id2 < 0 || id2 == 0xffff)
  5057. continue;
  5058. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5059. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5060. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5061. np->phyaddr = phyaddr;
  5062. np->phy_oui = id1 | id2;
  5063. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5064. if (np->phy_oui == PHY_OUI_REALTEK2)
  5065. np->phy_oui = PHY_OUI_REALTEK;
  5066. /* Setup phy revision for Realtek */
  5067. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5068. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5069. break;
  5070. }
  5071. if (i == 33) {
  5072. dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n");
  5073. goto out_error;
  5074. }
  5075. if (!phyinitialized) {
  5076. /* reset it */
  5077. phy_init(dev);
  5078. } else {
  5079. /* see if it is a gigabit phy */
  5080. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5081. if (mii_status & PHY_GIGABIT)
  5082. np->gigabit = PHY_GIGABIT;
  5083. }
  5084. /* set default link speed settings */
  5085. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5086. np->duplex = 0;
  5087. np->autoneg = 1;
  5088. err = register_netdev(dev);
  5089. if (err) {
  5090. dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err);
  5091. goto out_error;
  5092. }
  5093. if (id->driver_data & DEV_HAS_VLAN)
  5094. nv_vlan_mode(dev, dev->features);
  5095. netif_carrier_off(dev);
  5096. dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n",
  5097. dev->name, np->phy_oui, np->phyaddr, dev->dev_addr);
  5098. dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5099. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5100. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5101. "csum " : "",
  5102. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5103. "vlan " : "",
  5104. dev->features & (NETIF_F_LOOPBACK) ?
  5105. "loopback " : "",
  5106. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5107. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5108. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5109. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5110. np->need_linktimer ? "lnktim " : "",
  5111. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5112. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5113. np->desc_ver);
  5114. return 0;
  5115. out_error:
  5116. if (phystate_orig)
  5117. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5118. pci_set_drvdata(pci_dev, NULL);
  5119. out_freering:
  5120. free_rings(dev);
  5121. out_unmap:
  5122. iounmap(get_hwbase(dev));
  5123. out_relreg:
  5124. pci_release_regions(pci_dev);
  5125. out_disable:
  5126. pci_disable_device(pci_dev);
  5127. out_free:
  5128. free_netdev(dev);
  5129. out:
  5130. return err;
  5131. }
  5132. static void nv_restore_phy(struct net_device *dev)
  5133. {
  5134. struct fe_priv *np = netdev_priv(dev);
  5135. u16 phy_reserved, mii_control;
  5136. if (np->phy_oui == PHY_OUI_REALTEK &&
  5137. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5138. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5139. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5140. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5141. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5142. phy_reserved |= PHY_REALTEK_INIT8;
  5143. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5144. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5145. /* restart auto negotiation */
  5146. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5147. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5148. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5149. }
  5150. }
  5151. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5152. {
  5153. struct net_device *dev = pci_get_drvdata(pci_dev);
  5154. struct fe_priv *np = netdev_priv(dev);
  5155. u8 __iomem *base = get_hwbase(dev);
  5156. /* special op: write back the misordered MAC address - otherwise
  5157. * the next nv_probe would see a wrong address.
  5158. */
  5159. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5160. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5161. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5162. base + NvRegTransmitPoll);
  5163. }
  5164. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5165. {
  5166. struct net_device *dev = pci_get_drvdata(pci_dev);
  5167. unregister_netdev(dev);
  5168. nv_restore_mac_addr(pci_dev);
  5169. /* restore any phy related changes */
  5170. nv_restore_phy(dev);
  5171. nv_mgmt_release_sema(dev);
  5172. /* free all structures */
  5173. free_rings(dev);
  5174. iounmap(get_hwbase(dev));
  5175. pci_release_regions(pci_dev);
  5176. pci_disable_device(pci_dev);
  5177. free_netdev(dev);
  5178. pci_set_drvdata(pci_dev, NULL);
  5179. }
  5180. #ifdef CONFIG_PM_SLEEP
  5181. static int nv_suspend(struct device *device)
  5182. {
  5183. struct pci_dev *pdev = to_pci_dev(device);
  5184. struct net_device *dev = pci_get_drvdata(pdev);
  5185. struct fe_priv *np = netdev_priv(dev);
  5186. u8 __iomem *base = get_hwbase(dev);
  5187. int i;
  5188. if (netif_running(dev)) {
  5189. /* Gross. */
  5190. nv_close(dev);
  5191. }
  5192. netif_device_detach(dev);
  5193. /* save non-pci configuration space */
  5194. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  5195. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5196. return 0;
  5197. }
  5198. static int nv_resume(struct device *device)
  5199. {
  5200. struct pci_dev *pdev = to_pci_dev(device);
  5201. struct net_device *dev = pci_get_drvdata(pdev);
  5202. struct fe_priv *np = netdev_priv(dev);
  5203. u8 __iomem *base = get_hwbase(dev);
  5204. int i, rc = 0;
  5205. /* restore non-pci configuration space */
  5206. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  5207. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5208. if (np->driver_data & DEV_NEED_MSI_FIX)
  5209. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5210. /* restore phy state, including autoneg */
  5211. phy_init(dev);
  5212. netif_device_attach(dev);
  5213. if (netif_running(dev)) {
  5214. rc = nv_open(dev);
  5215. nv_set_multicast(dev);
  5216. }
  5217. return rc;
  5218. }
  5219. static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume);
  5220. #define NV_PM_OPS (&nv_pm_ops)
  5221. #else
  5222. #define NV_PM_OPS NULL
  5223. #endif /* CONFIG_PM_SLEEP */
  5224. #ifdef CONFIG_PM
  5225. static void nv_shutdown(struct pci_dev *pdev)
  5226. {
  5227. struct net_device *dev = pci_get_drvdata(pdev);
  5228. struct fe_priv *np = netdev_priv(dev);
  5229. if (netif_running(dev))
  5230. nv_close(dev);
  5231. /*
  5232. * Restore the MAC so a kernel started by kexec won't get confused.
  5233. * If we really go for poweroff, we must not restore the MAC,
  5234. * otherwise the MAC for WOL will be reversed at least on some boards.
  5235. */
  5236. if (system_state != SYSTEM_POWER_OFF)
  5237. nv_restore_mac_addr(pdev);
  5238. pci_disable_device(pdev);
  5239. /*
  5240. * Apparently it is not possible to reinitialise from D3 hot,
  5241. * only put the device into D3 if we really go for poweroff.
  5242. */
  5243. if (system_state == SYSTEM_POWER_OFF) {
  5244. pci_wake_from_d3(pdev, np->wolenabled);
  5245. pci_set_power_state(pdev, PCI_D3hot);
  5246. }
  5247. }
  5248. #else
  5249. #define nv_shutdown NULL
  5250. #endif /* CONFIG_PM */
  5251. static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = {
  5252. { /* nForce Ethernet Controller */
  5253. PCI_DEVICE(0x10DE, 0x01C3),
  5254. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5255. },
  5256. { /* nForce2 Ethernet Controller */
  5257. PCI_DEVICE(0x10DE, 0x0066),
  5258. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5259. },
  5260. { /* nForce3 Ethernet Controller */
  5261. PCI_DEVICE(0x10DE, 0x00D6),
  5262. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5263. },
  5264. { /* nForce3 Ethernet Controller */
  5265. PCI_DEVICE(0x10DE, 0x0086),
  5266. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5267. },
  5268. { /* nForce3 Ethernet Controller */
  5269. PCI_DEVICE(0x10DE, 0x008C),
  5270. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5271. },
  5272. { /* nForce3 Ethernet Controller */
  5273. PCI_DEVICE(0x10DE, 0x00E6),
  5274. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5275. },
  5276. { /* nForce3 Ethernet Controller */
  5277. PCI_DEVICE(0x10DE, 0x00DF),
  5278. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5279. },
  5280. { /* CK804 Ethernet Controller */
  5281. PCI_DEVICE(0x10DE, 0x0056),
  5282. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5283. },
  5284. { /* CK804 Ethernet Controller */
  5285. PCI_DEVICE(0x10DE, 0x0057),
  5286. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5287. },
  5288. { /* MCP04 Ethernet Controller */
  5289. PCI_DEVICE(0x10DE, 0x0037),
  5290. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5291. },
  5292. { /* MCP04 Ethernet Controller */
  5293. PCI_DEVICE(0x10DE, 0x0038),
  5294. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5295. },
  5296. { /* MCP51 Ethernet Controller */
  5297. PCI_DEVICE(0x10DE, 0x0268),
  5298. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5299. },
  5300. { /* MCP51 Ethernet Controller */
  5301. PCI_DEVICE(0x10DE, 0x0269),
  5302. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5303. },
  5304. { /* MCP55 Ethernet Controller */
  5305. PCI_DEVICE(0x10DE, 0x0372),
  5306. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5307. },
  5308. { /* MCP55 Ethernet Controller */
  5309. PCI_DEVICE(0x10DE, 0x0373),
  5310. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5311. },
  5312. { /* MCP61 Ethernet Controller */
  5313. PCI_DEVICE(0x10DE, 0x03E5),
  5314. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5315. },
  5316. { /* MCP61 Ethernet Controller */
  5317. PCI_DEVICE(0x10DE, 0x03E6),
  5318. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5319. },
  5320. { /* MCP61 Ethernet Controller */
  5321. PCI_DEVICE(0x10DE, 0x03EE),
  5322. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5323. },
  5324. { /* MCP61 Ethernet Controller */
  5325. PCI_DEVICE(0x10DE, 0x03EF),
  5326. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5327. },
  5328. { /* MCP65 Ethernet Controller */
  5329. PCI_DEVICE(0x10DE, 0x0450),
  5330. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5331. },
  5332. { /* MCP65 Ethernet Controller */
  5333. PCI_DEVICE(0x10DE, 0x0451),
  5334. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5335. },
  5336. { /* MCP65 Ethernet Controller */
  5337. PCI_DEVICE(0x10DE, 0x0452),
  5338. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5339. },
  5340. { /* MCP65 Ethernet Controller */
  5341. PCI_DEVICE(0x10DE, 0x0453),
  5342. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5343. },
  5344. { /* MCP67 Ethernet Controller */
  5345. PCI_DEVICE(0x10DE, 0x054C),
  5346. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5347. },
  5348. { /* MCP67 Ethernet Controller */
  5349. PCI_DEVICE(0x10DE, 0x054D),
  5350. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5351. },
  5352. { /* MCP67 Ethernet Controller */
  5353. PCI_DEVICE(0x10DE, 0x054E),
  5354. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5355. },
  5356. { /* MCP67 Ethernet Controller */
  5357. PCI_DEVICE(0x10DE, 0x054F),
  5358. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5359. },
  5360. { /* MCP73 Ethernet Controller */
  5361. PCI_DEVICE(0x10DE, 0x07DC),
  5362. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5363. },
  5364. { /* MCP73 Ethernet Controller */
  5365. PCI_DEVICE(0x10DE, 0x07DD),
  5366. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5367. },
  5368. { /* MCP73 Ethernet Controller */
  5369. PCI_DEVICE(0x10DE, 0x07DE),
  5370. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5371. },
  5372. { /* MCP73 Ethernet Controller */
  5373. PCI_DEVICE(0x10DE, 0x07DF),
  5374. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5375. },
  5376. { /* MCP77 Ethernet Controller */
  5377. PCI_DEVICE(0x10DE, 0x0760),
  5378. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5379. },
  5380. { /* MCP77 Ethernet Controller */
  5381. PCI_DEVICE(0x10DE, 0x0761),
  5382. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5383. },
  5384. { /* MCP77 Ethernet Controller */
  5385. PCI_DEVICE(0x10DE, 0x0762),
  5386. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5387. },
  5388. { /* MCP77 Ethernet Controller */
  5389. PCI_DEVICE(0x10DE, 0x0763),
  5390. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5391. },
  5392. { /* MCP79 Ethernet Controller */
  5393. PCI_DEVICE(0x10DE, 0x0AB0),
  5394. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5395. },
  5396. { /* MCP79 Ethernet Controller */
  5397. PCI_DEVICE(0x10DE, 0x0AB1),
  5398. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5399. },
  5400. { /* MCP79 Ethernet Controller */
  5401. PCI_DEVICE(0x10DE, 0x0AB2),
  5402. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5403. },
  5404. { /* MCP79 Ethernet Controller */
  5405. PCI_DEVICE(0x10DE, 0x0AB3),
  5406. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5407. },
  5408. { /* MCP89 Ethernet Controller */
  5409. PCI_DEVICE(0x10DE, 0x0D7D),
  5410. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
  5411. },
  5412. {0,},
  5413. };
  5414. static struct pci_driver driver = {
  5415. .name = DRV_NAME,
  5416. .id_table = pci_tbl,
  5417. .probe = nv_probe,
  5418. .remove = __devexit_p(nv_remove),
  5419. .shutdown = nv_shutdown,
  5420. .driver.pm = NV_PM_OPS,
  5421. };
  5422. static int __init init_nic(void)
  5423. {
  5424. return pci_register_driver(&driver);
  5425. }
  5426. static void __exit exit_nic(void)
  5427. {
  5428. pci_unregister_driver(&driver);
  5429. }
  5430. module_param(max_interrupt_work, int, 0);
  5431. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5432. module_param(optimization_mode, int, 0);
  5433. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5434. module_param(poll_interval, int, 0);
  5435. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5436. module_param(msi, int, 0);
  5437. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5438. module_param(msix, int, 0);
  5439. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5440. module_param(dma_64bit, int, 0);
  5441. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5442. module_param(phy_cross, int, 0);
  5443. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5444. module_param(phy_power_down, int, 0);
  5445. MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
  5446. module_param(debug_tx_timeout, bool, 0);
  5447. MODULE_PARM_DESC(debug_tx_timeout,
  5448. "Dump tx related registers and ring when tx_timeout happens");
  5449. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5450. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5451. MODULE_LICENSE("GPL");
  5452. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5453. module_init(init_nic);
  5454. module_exit(exit_nic);