uengine.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473
  1. /*
  2. * Generic library functions for the microengines found on the Intel
  3. * IXP2000 series of network processors.
  4. *
  5. * Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org>
  6. * Dedicated to Marija Kulikova.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU Lesser General Public License as
  10. * published by the Free Software Foundation; either version 2.1 of the
  11. * License, or (at your option) any later version.
  12. */
  13. #include <linux/config.h>
  14. #include <linux/kernel.h>
  15. #include <linux/init.h>
  16. #include <linux/slab.h>
  17. #include <linux/module.h>
  18. #include <linux/string.h>
  19. #include <asm/hardware.h>
  20. #include <asm/arch/ixp2000-regs.h>
  21. #include <asm/hardware/uengine.h>
  22. #include <asm/io.h>
  23. #define USTORE_ADDRESS 0x000
  24. #define USTORE_DATA_LOWER 0x004
  25. #define USTORE_DATA_UPPER 0x008
  26. #define CTX_ENABLES 0x018
  27. #define CC_ENABLE 0x01c
  28. #define CSR_CTX_POINTER 0x020
  29. #define INDIRECT_CTX_STS 0x040
  30. #define ACTIVE_CTX_STS 0x044
  31. #define INDIRECT_CTX_SIG_EVENTS 0x048
  32. #define INDIRECT_CTX_WAKEUP_EVENTS 0x050
  33. #define NN_PUT 0x080
  34. #define NN_GET 0x084
  35. #define TIMESTAMP_LOW 0x0c0
  36. #define TIMESTAMP_HIGH 0x0c4
  37. #define T_INDEX_BYTE_INDEX 0x0f4
  38. #define LOCAL_CSR_STATUS 0x180
  39. u32 ixp2000_uengine_mask;
  40. static void *ixp2000_uengine_csr_area(int uengine)
  41. {
  42. return ((void *)IXP2000_UENGINE_CSR_VIRT_BASE) + (uengine << 10);
  43. }
  44. /*
  45. * LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR
  46. * space means that the microengine we tried to access was also trying
  47. * to access its own CSR space on the same clock cycle as we did. When
  48. * this happens, we lose the arbitration process by default, and the
  49. * read or write we tried to do was not actually performed, so we try
  50. * again until it succeeds.
  51. */
  52. u32 ixp2000_uengine_csr_read(int uengine, int offset)
  53. {
  54. void *uebase;
  55. u32 *local_csr_status;
  56. u32 *reg;
  57. u32 value;
  58. uebase = ixp2000_uengine_csr_area(uengine);
  59. local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
  60. reg = (u32 *)(uebase + offset);
  61. do {
  62. value = ixp2000_reg_read(reg);
  63. } while (ixp2000_reg_read(local_csr_status) & 1);
  64. return value;
  65. }
  66. EXPORT_SYMBOL(ixp2000_uengine_csr_read);
  67. void ixp2000_uengine_csr_write(int uengine, int offset, u32 value)
  68. {
  69. void *uebase;
  70. u32 *local_csr_status;
  71. u32 *reg;
  72. uebase = ixp2000_uengine_csr_area(uengine);
  73. local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
  74. reg = (u32 *)(uebase + offset);
  75. do {
  76. ixp2000_reg_write(reg, value);
  77. } while (ixp2000_reg_read(local_csr_status) & 1);
  78. }
  79. EXPORT_SYMBOL(ixp2000_uengine_csr_write);
  80. void ixp2000_uengine_reset(u32 uengine_mask)
  81. {
  82. ixp2000_reg_wrb(IXP2000_RESET1, uengine_mask & ixp2000_uengine_mask);
  83. ixp2000_reg_wrb(IXP2000_RESET1, 0);
  84. }
  85. EXPORT_SYMBOL(ixp2000_uengine_reset);
  86. void ixp2000_uengine_set_mode(int uengine, u32 mode)
  87. {
  88. /*
  89. * CTL_STR_PAR_EN: unconditionally enable parity checking on
  90. * control store.
  91. */
  92. mode |= 0x10000000;
  93. ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode);
  94. /*
  95. * Enable updating of condition codes.
  96. */
  97. ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000);
  98. /*
  99. * Initialise other per-microengine registers.
  100. */
  101. ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00);
  102. ixp2000_uengine_csr_write(uengine, NN_GET, 0x00);
  103. ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0);
  104. }
  105. EXPORT_SYMBOL(ixp2000_uengine_set_mode);
  106. static int make_even_parity(u32 x)
  107. {
  108. return hweight32(x) & 1;
  109. }
  110. static void ustore_write(int uengine, u64 insn)
  111. {
  112. /*
  113. * Generate even parity for top and bottom 20 bits.
  114. */
  115. insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41;
  116. insn |= (u64)make_even_parity(insn & 0x000fffff) << 40;
  117. /*
  118. * Write to microstore. The second write auto-increments
  119. * the USTORE_ADDRESS index register.
  120. */
  121. ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn);
  122. ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32));
  123. }
  124. void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns)
  125. {
  126. int i;
  127. /*
  128. * Start writing to microstore at address 0.
  129. */
  130. ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000);
  131. for (i = 0; i < insns; i++) {
  132. u64 insn;
  133. insn = (((u64)ucode[0]) << 32) |
  134. (((u64)ucode[1]) << 24) |
  135. (((u64)ucode[2]) << 16) |
  136. (((u64)ucode[3]) << 8) |
  137. ((u64)ucode[4]);
  138. ucode += 5;
  139. ustore_write(uengine, insn);
  140. }
  141. /*
  142. * Pad with a few NOPs at the end (to avoid the microengine
  143. * aborting as it prefetches beyond the last instruction), unless
  144. * we run off the end of the instruction store first, at which
  145. * point the address register will wrap back to zero.
  146. */
  147. for (i = 0; i < 4; i++) {
  148. u32 addr;
  149. addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS);
  150. if (addr == 0x80000000)
  151. break;
  152. ustore_write(uengine, 0xf0000c0300ULL);
  153. }
  154. /*
  155. * End programming.
  156. */
  157. ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000);
  158. }
  159. EXPORT_SYMBOL(ixp2000_uengine_load_microcode);
  160. void ixp2000_uengine_init_context(int uengine, int context, int pc)
  161. {
  162. /*
  163. * Select the right context for indirect access.
  164. */
  165. ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context);
  166. /*
  167. * Initialise signal masks to immediately go to Ready state.
  168. */
  169. ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1);
  170. ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1);
  171. /*
  172. * Set program counter.
  173. */
  174. ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc);
  175. }
  176. EXPORT_SYMBOL(ixp2000_uengine_init_context);
  177. void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask)
  178. {
  179. u32 mask;
  180. /*
  181. * Enable the specified context to go to Executing state.
  182. */
  183. mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
  184. mask |= ctx_mask << 8;
  185. ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
  186. }
  187. EXPORT_SYMBOL(ixp2000_uengine_start_contexts);
  188. void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask)
  189. {
  190. u32 mask;
  191. /*
  192. * Disable the Ready->Executing transition. Note that this
  193. * does not stop the context until it voluntarily yields.
  194. */
  195. mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
  196. mask &= ~(ctx_mask << 8);
  197. ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
  198. }
  199. EXPORT_SYMBOL(ixp2000_uengine_stop_contexts);
  200. static int check_ixp_type(struct ixp2000_uengine_code *c)
  201. {
  202. u32 product_id;
  203. u32 rev;
  204. product_id = ixp2000_reg_read(IXP2000_PRODUCT_ID);
  205. if (((product_id >> 16) & 0x1f) != 0)
  206. return 0;
  207. switch ((product_id >> 8) & 0xff) {
  208. case 0: /* IXP2800 */
  209. if (!(c->cpu_model_bitmask & 4))
  210. return 0;
  211. break;
  212. case 1: /* IXP2850 */
  213. if (!(c->cpu_model_bitmask & 8))
  214. return 0;
  215. break;
  216. case 2: /* IXP2400 */
  217. if (!(c->cpu_model_bitmask & 2))
  218. return 0;
  219. break;
  220. default:
  221. return 0;
  222. }
  223. rev = product_id & 0xff;
  224. if (rev < c->cpu_min_revision || rev > c->cpu_max_revision)
  225. return 0;
  226. return 1;
  227. }
  228. static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b)
  229. {
  230. int offset;
  231. int i;
  232. offset = 0;
  233. for (i = 0; i < 128; i++) {
  234. u8 b3;
  235. u8 b2;
  236. u8 b1;
  237. u8 b0;
  238. b3 = (gpr_a[i] >> 24) & 0xff;
  239. b2 = (gpr_a[i] >> 16) & 0xff;
  240. b1 = (gpr_a[i] >> 8) & 0xff;
  241. b0 = gpr_a[i] & 0xff;
  242. // immed[@ai, (b1 << 8) | b0]
  243. // 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII
  244. ucode[offset++] = 0xf0;
  245. ucode[offset++] = (b1 >> 4);
  246. ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6);
  247. ucode[offset++] = (b0 << 2);
  248. ucode[offset++] = 0x80 | i;
  249. // immed_w1[@ai, (b3 << 8) | b2]
  250. // 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII
  251. ucode[offset++] = 0xf4;
  252. ucode[offset++] = 0x40 | (b3 >> 4);
  253. ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6);
  254. ucode[offset++] = (b2 << 2);
  255. ucode[offset++] = 0x80 | i;
  256. }
  257. for (i = 0; i < 128; i++) {
  258. u8 b3;
  259. u8 b2;
  260. u8 b1;
  261. u8 b0;
  262. b3 = (gpr_b[i] >> 24) & 0xff;
  263. b2 = (gpr_b[i] >> 16) & 0xff;
  264. b1 = (gpr_b[i] >> 8) & 0xff;
  265. b0 = gpr_b[i] & 0xff;
  266. // immed[@bi, (b1 << 8) | b0]
  267. // 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV
  268. ucode[offset++] = 0xf0;
  269. ucode[offset++] = (b1 >> 4);
  270. ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6);
  271. ucode[offset++] = (i << 2) | 0x03;
  272. ucode[offset++] = b0;
  273. // immed_w1[@bi, (b3 << 8) | b2]
  274. // 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV
  275. ucode[offset++] = 0xf4;
  276. ucode[offset++] = 0x40 | (b3 >> 4);
  277. ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6);
  278. ucode[offset++] = (i << 2) | 0x03;
  279. ucode[offset++] = b2;
  280. }
  281. // ctx_arb[kill]
  282. ucode[offset++] = 0xe0;
  283. ucode[offset++] = 0x00;
  284. ucode[offset++] = 0x01;
  285. ucode[offset++] = 0x00;
  286. ucode[offset++] = 0x00;
  287. }
  288. static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c)
  289. {
  290. int per_ctx_regs;
  291. u32 *gpr_a;
  292. u32 *gpr_b;
  293. u8 *ucode;
  294. int i;
  295. gpr_a = kmalloc(128 * sizeof(u32), GFP_KERNEL);
  296. gpr_b = kmalloc(128 * sizeof(u32), GFP_KERNEL);
  297. ucode = kmalloc(513 * 5, GFP_KERNEL);
  298. if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) {
  299. kfree(ucode);
  300. kfree(gpr_b);
  301. kfree(gpr_a);
  302. return 1;
  303. }
  304. per_ctx_regs = 16;
  305. if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS)
  306. per_ctx_regs = 32;
  307. memset(gpr_a, 0, sizeof(gpr_a));
  308. memset(gpr_b, 0, sizeof(gpr_b));
  309. for (i = 0; i < 256; i++) {
  310. struct ixp2000_reg_value *r = c->initial_reg_values + i;
  311. u32 *bank;
  312. int inc;
  313. int j;
  314. if (r->reg == -1)
  315. break;
  316. bank = (r->reg & 0x400) ? gpr_b : gpr_a;
  317. inc = (r->reg & 0x80) ? 128 : per_ctx_regs;
  318. j = r->reg & 0x7f;
  319. while (j < 128) {
  320. bank[j] = r->value;
  321. j += inc;
  322. }
  323. }
  324. generate_ucode(ucode, gpr_a, gpr_b);
  325. ixp2000_uengine_load_microcode(uengine, ucode, 513);
  326. ixp2000_uengine_init_context(uengine, 0, 0);
  327. ixp2000_uengine_start_contexts(uengine, 0x01);
  328. for (i = 0; i < 100; i++) {
  329. u32 status;
  330. status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS);
  331. if (!(status & 0x80000000))
  332. break;
  333. }
  334. ixp2000_uengine_stop_contexts(uengine, 0x01);
  335. kfree(ucode);
  336. kfree(gpr_b);
  337. kfree(gpr_a);
  338. return !!(i == 100);
  339. }
  340. int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c)
  341. {
  342. int ctx;
  343. if (!check_ixp_type(c))
  344. return 1;
  345. if (!(ixp2000_uengine_mask & (1 << uengine)))
  346. return 1;
  347. ixp2000_uengine_reset(1 << uengine);
  348. ixp2000_uengine_set_mode(uengine, c->uengine_parameters);
  349. if (set_initial_registers(uengine, c))
  350. return 1;
  351. ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns);
  352. for (ctx = 0; ctx < 8; ctx++)
  353. ixp2000_uengine_init_context(uengine, ctx, 0);
  354. return 0;
  355. }
  356. EXPORT_SYMBOL(ixp2000_uengine_load);
  357. static int __init ixp2000_uengine_init(void)
  358. {
  359. int uengine;
  360. u32 value;
  361. /*
  362. * Determine number of microengines present.
  363. */
  364. switch ((ixp2000_reg_read(IXP2000_PRODUCT_ID) >> 8) & 0x1fff) {
  365. case 0: /* IXP2800 */
  366. case 1: /* IXP2850 */
  367. ixp2000_uengine_mask = 0x00ff00ff;
  368. break;
  369. case 2: /* IXP2400 */
  370. ixp2000_uengine_mask = 0x000f000f;
  371. break;
  372. default:
  373. printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n",
  374. (unsigned int)ixp2000_reg_read(IXP2000_PRODUCT_ID));
  375. ixp2000_uengine_mask = 0x00000000;
  376. break;
  377. }
  378. /*
  379. * Reset microengines.
  380. */
  381. ixp2000_uengine_reset(ixp2000_uengine_mask);
  382. /*
  383. * Synchronise timestamp counters across all microengines.
  384. */
  385. value = ixp2000_reg_read(IXP2000_MISC_CONTROL);
  386. ixp2000_reg_wrb(IXP2000_MISC_CONTROL, value & ~0x80);
  387. for (uengine = 0; uengine < 32; uengine++) {
  388. if (ixp2000_uengine_mask & (1 << uengine)) {
  389. ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0);
  390. ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0);
  391. }
  392. }
  393. ixp2000_reg_wrb(IXP2000_MISC_CONTROL, value | 0x80);
  394. return 0;
  395. }
  396. subsys_initcall(ixp2000_uengine_init);