mmu.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. #ifndef MMU_DEBUG
  60. #define ASSERT(x) do { } while (0)
  61. #else
  62. #define ASSERT(x) \
  63. if (!(x)) { \
  64. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  65. __FILE__, __LINE__, #x); \
  66. }
  67. #endif
  68. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  69. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  70. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  71. #define PT64_LEVEL_BITS 9
  72. #define PT64_LEVEL_SHIFT(level) \
  73. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  74. #define PT64_LEVEL_MASK(level) \
  75. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  76. #define PT64_INDEX(address, level)\
  77. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  78. #define PT32_LEVEL_BITS 10
  79. #define PT32_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  81. #define PT32_LEVEL_MASK(level) \
  82. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  83. #define PT32_INDEX(address, level)\
  84. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  85. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  86. #define PT64_DIR_BASE_ADDR_MASK \
  87. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  88. #define PT32_BASE_ADDR_MASK PAGE_MASK
  89. #define PT32_DIR_BASE_ADDR_MASK \
  90. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  91. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  92. | PT64_NX_MASK)
  93. #define PFERR_PRESENT_MASK (1U << 0)
  94. #define PFERR_WRITE_MASK (1U << 1)
  95. #define PFERR_USER_MASK (1U << 2)
  96. #define PFERR_FETCH_MASK (1U << 4)
  97. #define PT_DIRECTORY_LEVEL 2
  98. #define PT_PAGE_TABLE_LEVEL 1
  99. #define RMAP_EXT 4
  100. #define ACC_EXEC_MASK 1
  101. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  102. #define ACC_USER_MASK PT_USER_MASK
  103. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  104. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  105. struct kvm_rmap_desc {
  106. u64 *shadow_ptes[RMAP_EXT];
  107. struct kvm_rmap_desc *more;
  108. };
  109. struct kvm_shadow_walk {
  110. int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
  111. u64 addr, u64 *spte, int level);
  112. };
  113. static struct kmem_cache *pte_chain_cache;
  114. static struct kmem_cache *rmap_desc_cache;
  115. static struct kmem_cache *mmu_page_header_cache;
  116. static u64 __read_mostly shadow_trap_nonpresent_pte;
  117. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  118. static u64 __read_mostly shadow_base_present_pte;
  119. static u64 __read_mostly shadow_nx_mask;
  120. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  121. static u64 __read_mostly shadow_user_mask;
  122. static u64 __read_mostly shadow_accessed_mask;
  123. static u64 __read_mostly shadow_dirty_mask;
  124. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  125. {
  126. shadow_trap_nonpresent_pte = trap_pte;
  127. shadow_notrap_nonpresent_pte = notrap_pte;
  128. }
  129. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  130. void kvm_mmu_set_base_ptes(u64 base_pte)
  131. {
  132. shadow_base_present_pte = base_pte;
  133. }
  134. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  135. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  136. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  137. {
  138. shadow_user_mask = user_mask;
  139. shadow_accessed_mask = accessed_mask;
  140. shadow_dirty_mask = dirty_mask;
  141. shadow_nx_mask = nx_mask;
  142. shadow_x_mask = x_mask;
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  145. static int is_write_protection(struct kvm_vcpu *vcpu)
  146. {
  147. return vcpu->arch.cr0 & X86_CR0_WP;
  148. }
  149. static int is_cpuid_PSE36(void)
  150. {
  151. return 1;
  152. }
  153. static int is_nx(struct kvm_vcpu *vcpu)
  154. {
  155. return vcpu->arch.shadow_efer & EFER_NX;
  156. }
  157. static int is_present_pte(unsigned long pte)
  158. {
  159. return pte & PT_PRESENT_MASK;
  160. }
  161. static int is_shadow_present_pte(u64 pte)
  162. {
  163. return pte != shadow_trap_nonpresent_pte
  164. && pte != shadow_notrap_nonpresent_pte;
  165. }
  166. static int is_large_pte(u64 pte)
  167. {
  168. return pte & PT_PAGE_SIZE_MASK;
  169. }
  170. static int is_writeble_pte(unsigned long pte)
  171. {
  172. return pte & PT_WRITABLE_MASK;
  173. }
  174. static int is_dirty_pte(unsigned long pte)
  175. {
  176. return pte & shadow_dirty_mask;
  177. }
  178. static int is_rmap_pte(u64 pte)
  179. {
  180. return is_shadow_present_pte(pte);
  181. }
  182. static pfn_t spte_to_pfn(u64 pte)
  183. {
  184. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  185. }
  186. static gfn_t pse36_gfn_delta(u32 gpte)
  187. {
  188. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  189. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  190. }
  191. static void set_shadow_pte(u64 *sptep, u64 spte)
  192. {
  193. #ifdef CONFIG_X86_64
  194. set_64bit((unsigned long *)sptep, spte);
  195. #else
  196. set_64bit((unsigned long long *)sptep, spte);
  197. #endif
  198. }
  199. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  200. struct kmem_cache *base_cache, int min)
  201. {
  202. void *obj;
  203. if (cache->nobjs >= min)
  204. return 0;
  205. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  206. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  207. if (!obj)
  208. return -ENOMEM;
  209. cache->objects[cache->nobjs++] = obj;
  210. }
  211. return 0;
  212. }
  213. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  214. {
  215. while (mc->nobjs)
  216. kfree(mc->objects[--mc->nobjs]);
  217. }
  218. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  219. int min)
  220. {
  221. struct page *page;
  222. if (cache->nobjs >= min)
  223. return 0;
  224. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  225. page = alloc_page(GFP_KERNEL);
  226. if (!page)
  227. return -ENOMEM;
  228. set_page_private(page, 0);
  229. cache->objects[cache->nobjs++] = page_address(page);
  230. }
  231. return 0;
  232. }
  233. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  234. {
  235. while (mc->nobjs)
  236. free_page((unsigned long)mc->objects[--mc->nobjs]);
  237. }
  238. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  239. {
  240. int r;
  241. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  242. pte_chain_cache, 4);
  243. if (r)
  244. goto out;
  245. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  246. rmap_desc_cache, 1);
  247. if (r)
  248. goto out;
  249. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  250. if (r)
  251. goto out;
  252. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  253. mmu_page_header_cache, 4);
  254. out:
  255. return r;
  256. }
  257. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  258. {
  259. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  260. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  261. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  262. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  263. }
  264. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  265. size_t size)
  266. {
  267. void *p;
  268. BUG_ON(!mc->nobjs);
  269. p = mc->objects[--mc->nobjs];
  270. memset(p, 0, size);
  271. return p;
  272. }
  273. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  274. {
  275. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  276. sizeof(struct kvm_pte_chain));
  277. }
  278. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  279. {
  280. kfree(pc);
  281. }
  282. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  283. {
  284. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  285. sizeof(struct kvm_rmap_desc));
  286. }
  287. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  288. {
  289. kfree(rd);
  290. }
  291. /*
  292. * Return the pointer to the largepage write count for a given
  293. * gfn, handling slots that are not large page aligned.
  294. */
  295. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  296. {
  297. unsigned long idx;
  298. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  299. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  300. return &slot->lpage_info[idx].write_count;
  301. }
  302. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  303. {
  304. int *write_count;
  305. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  306. *write_count += 1;
  307. }
  308. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  309. {
  310. int *write_count;
  311. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  312. *write_count -= 1;
  313. WARN_ON(*write_count < 0);
  314. }
  315. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  316. {
  317. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  318. int *largepage_idx;
  319. if (slot) {
  320. largepage_idx = slot_largepage_idx(gfn, slot);
  321. return *largepage_idx;
  322. }
  323. return 1;
  324. }
  325. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  326. {
  327. struct vm_area_struct *vma;
  328. unsigned long addr;
  329. int ret = 0;
  330. addr = gfn_to_hva(kvm, gfn);
  331. if (kvm_is_error_hva(addr))
  332. return ret;
  333. down_read(&current->mm->mmap_sem);
  334. vma = find_vma(current->mm, addr);
  335. if (vma && is_vm_hugetlb_page(vma))
  336. ret = 1;
  337. up_read(&current->mm->mmap_sem);
  338. return ret;
  339. }
  340. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  341. {
  342. struct kvm_memory_slot *slot;
  343. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  344. return 0;
  345. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  346. return 0;
  347. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  348. if (slot && slot->dirty_bitmap)
  349. return 0;
  350. return 1;
  351. }
  352. /*
  353. * Take gfn and return the reverse mapping to it.
  354. * Note: gfn must be unaliased before this function get called
  355. */
  356. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  357. {
  358. struct kvm_memory_slot *slot;
  359. unsigned long idx;
  360. slot = gfn_to_memslot(kvm, gfn);
  361. if (!lpage)
  362. return &slot->rmap[gfn - slot->base_gfn];
  363. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  364. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  365. return &slot->lpage_info[idx].rmap_pde;
  366. }
  367. /*
  368. * Reverse mapping data structures:
  369. *
  370. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  371. * that points to page_address(page).
  372. *
  373. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  374. * containing more mappings.
  375. */
  376. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  377. {
  378. struct kvm_mmu_page *sp;
  379. struct kvm_rmap_desc *desc;
  380. unsigned long *rmapp;
  381. int i;
  382. if (!is_rmap_pte(*spte))
  383. return;
  384. gfn = unalias_gfn(vcpu->kvm, gfn);
  385. sp = page_header(__pa(spte));
  386. sp->gfns[spte - sp->spt] = gfn;
  387. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  388. if (!*rmapp) {
  389. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  390. *rmapp = (unsigned long)spte;
  391. } else if (!(*rmapp & 1)) {
  392. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  393. desc = mmu_alloc_rmap_desc(vcpu);
  394. desc->shadow_ptes[0] = (u64 *)*rmapp;
  395. desc->shadow_ptes[1] = spte;
  396. *rmapp = (unsigned long)desc | 1;
  397. } else {
  398. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  399. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  400. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  401. desc = desc->more;
  402. if (desc->shadow_ptes[RMAP_EXT-1]) {
  403. desc->more = mmu_alloc_rmap_desc(vcpu);
  404. desc = desc->more;
  405. }
  406. for (i = 0; desc->shadow_ptes[i]; ++i)
  407. ;
  408. desc->shadow_ptes[i] = spte;
  409. }
  410. }
  411. static void rmap_desc_remove_entry(unsigned long *rmapp,
  412. struct kvm_rmap_desc *desc,
  413. int i,
  414. struct kvm_rmap_desc *prev_desc)
  415. {
  416. int j;
  417. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  418. ;
  419. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  420. desc->shadow_ptes[j] = NULL;
  421. if (j != 0)
  422. return;
  423. if (!prev_desc && !desc->more)
  424. *rmapp = (unsigned long)desc->shadow_ptes[0];
  425. else
  426. if (prev_desc)
  427. prev_desc->more = desc->more;
  428. else
  429. *rmapp = (unsigned long)desc->more | 1;
  430. mmu_free_rmap_desc(desc);
  431. }
  432. static void rmap_remove(struct kvm *kvm, u64 *spte)
  433. {
  434. struct kvm_rmap_desc *desc;
  435. struct kvm_rmap_desc *prev_desc;
  436. struct kvm_mmu_page *sp;
  437. pfn_t pfn;
  438. unsigned long *rmapp;
  439. int i;
  440. if (!is_rmap_pte(*spte))
  441. return;
  442. sp = page_header(__pa(spte));
  443. pfn = spte_to_pfn(*spte);
  444. if (*spte & shadow_accessed_mask)
  445. kvm_set_pfn_accessed(pfn);
  446. if (is_writeble_pte(*spte))
  447. kvm_release_pfn_dirty(pfn);
  448. else
  449. kvm_release_pfn_clean(pfn);
  450. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  451. if (!*rmapp) {
  452. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  453. BUG();
  454. } else if (!(*rmapp & 1)) {
  455. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  456. if ((u64 *)*rmapp != spte) {
  457. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  458. spte, *spte);
  459. BUG();
  460. }
  461. *rmapp = 0;
  462. } else {
  463. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  464. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  465. prev_desc = NULL;
  466. while (desc) {
  467. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  468. if (desc->shadow_ptes[i] == spte) {
  469. rmap_desc_remove_entry(rmapp,
  470. desc, i,
  471. prev_desc);
  472. return;
  473. }
  474. prev_desc = desc;
  475. desc = desc->more;
  476. }
  477. BUG();
  478. }
  479. }
  480. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  481. {
  482. struct kvm_rmap_desc *desc;
  483. struct kvm_rmap_desc *prev_desc;
  484. u64 *prev_spte;
  485. int i;
  486. if (!*rmapp)
  487. return NULL;
  488. else if (!(*rmapp & 1)) {
  489. if (!spte)
  490. return (u64 *)*rmapp;
  491. return NULL;
  492. }
  493. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  494. prev_desc = NULL;
  495. prev_spte = NULL;
  496. while (desc) {
  497. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  498. if (prev_spte == spte)
  499. return desc->shadow_ptes[i];
  500. prev_spte = desc->shadow_ptes[i];
  501. }
  502. desc = desc->more;
  503. }
  504. return NULL;
  505. }
  506. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  507. {
  508. unsigned long *rmapp;
  509. u64 *spte;
  510. int write_protected = 0;
  511. gfn = unalias_gfn(kvm, gfn);
  512. rmapp = gfn_to_rmap(kvm, gfn, 0);
  513. spte = rmap_next(kvm, rmapp, NULL);
  514. while (spte) {
  515. BUG_ON(!spte);
  516. BUG_ON(!(*spte & PT_PRESENT_MASK));
  517. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  518. if (is_writeble_pte(*spte)) {
  519. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  520. write_protected = 1;
  521. }
  522. spte = rmap_next(kvm, rmapp, spte);
  523. }
  524. if (write_protected) {
  525. pfn_t pfn;
  526. spte = rmap_next(kvm, rmapp, NULL);
  527. pfn = spte_to_pfn(*spte);
  528. kvm_set_pfn_dirty(pfn);
  529. }
  530. /* check for huge page mappings */
  531. rmapp = gfn_to_rmap(kvm, gfn, 1);
  532. spte = rmap_next(kvm, rmapp, NULL);
  533. while (spte) {
  534. BUG_ON(!spte);
  535. BUG_ON(!(*spte & PT_PRESENT_MASK));
  536. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  537. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  538. if (is_writeble_pte(*spte)) {
  539. rmap_remove(kvm, spte);
  540. --kvm->stat.lpages;
  541. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  542. spte = NULL;
  543. write_protected = 1;
  544. }
  545. spte = rmap_next(kvm, rmapp, spte);
  546. }
  547. if (write_protected)
  548. kvm_flush_remote_tlbs(kvm);
  549. account_shadowed(kvm, gfn);
  550. }
  551. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  552. {
  553. u64 *spte;
  554. int need_tlb_flush = 0;
  555. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  556. BUG_ON(!(*spte & PT_PRESENT_MASK));
  557. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  558. rmap_remove(kvm, spte);
  559. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  560. need_tlb_flush = 1;
  561. }
  562. return need_tlb_flush;
  563. }
  564. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  565. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  566. {
  567. int i;
  568. int retval = 0;
  569. /*
  570. * If mmap_sem isn't taken, we can look the memslots with only
  571. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  572. */
  573. for (i = 0; i < kvm->nmemslots; i++) {
  574. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  575. unsigned long start = memslot->userspace_addr;
  576. unsigned long end;
  577. /* mmu_lock protects userspace_addr */
  578. if (!start)
  579. continue;
  580. end = start + (memslot->npages << PAGE_SHIFT);
  581. if (hva >= start && hva < end) {
  582. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  583. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  584. retval |= handler(kvm,
  585. &memslot->lpage_info[
  586. gfn_offset /
  587. KVM_PAGES_PER_HPAGE].rmap_pde);
  588. }
  589. }
  590. return retval;
  591. }
  592. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  593. {
  594. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  595. }
  596. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  597. {
  598. u64 *spte;
  599. int young = 0;
  600. /* always return old for EPT */
  601. if (!shadow_accessed_mask)
  602. return 0;
  603. spte = rmap_next(kvm, rmapp, NULL);
  604. while (spte) {
  605. int _young;
  606. u64 _spte = *spte;
  607. BUG_ON(!(_spte & PT_PRESENT_MASK));
  608. _young = _spte & PT_ACCESSED_MASK;
  609. if (_young) {
  610. young = 1;
  611. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  612. }
  613. spte = rmap_next(kvm, rmapp, spte);
  614. }
  615. return young;
  616. }
  617. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  618. {
  619. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  620. }
  621. #ifdef MMU_DEBUG
  622. static int is_empty_shadow_page(u64 *spt)
  623. {
  624. u64 *pos;
  625. u64 *end;
  626. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  627. if (is_shadow_present_pte(*pos)) {
  628. printk(KERN_ERR "%s: %p %llx\n", __func__,
  629. pos, *pos);
  630. return 0;
  631. }
  632. return 1;
  633. }
  634. #endif
  635. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  636. {
  637. ASSERT(is_empty_shadow_page(sp->spt));
  638. list_del(&sp->link);
  639. __free_page(virt_to_page(sp->spt));
  640. __free_page(virt_to_page(sp->gfns));
  641. kfree(sp);
  642. ++kvm->arch.n_free_mmu_pages;
  643. }
  644. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  645. {
  646. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  647. }
  648. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  649. u64 *parent_pte)
  650. {
  651. struct kvm_mmu_page *sp;
  652. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  653. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  654. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  655. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  656. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  657. ASSERT(is_empty_shadow_page(sp->spt));
  658. sp->slot_bitmap = 0;
  659. sp->multimapped = 0;
  660. sp->parent_pte = parent_pte;
  661. --vcpu->kvm->arch.n_free_mmu_pages;
  662. return sp;
  663. }
  664. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  665. struct kvm_mmu_page *sp, u64 *parent_pte)
  666. {
  667. struct kvm_pte_chain *pte_chain;
  668. struct hlist_node *node;
  669. int i;
  670. if (!parent_pte)
  671. return;
  672. if (!sp->multimapped) {
  673. u64 *old = sp->parent_pte;
  674. if (!old) {
  675. sp->parent_pte = parent_pte;
  676. return;
  677. }
  678. sp->multimapped = 1;
  679. pte_chain = mmu_alloc_pte_chain(vcpu);
  680. INIT_HLIST_HEAD(&sp->parent_ptes);
  681. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  682. pte_chain->parent_ptes[0] = old;
  683. }
  684. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  685. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  686. continue;
  687. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  688. if (!pte_chain->parent_ptes[i]) {
  689. pte_chain->parent_ptes[i] = parent_pte;
  690. return;
  691. }
  692. }
  693. pte_chain = mmu_alloc_pte_chain(vcpu);
  694. BUG_ON(!pte_chain);
  695. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  696. pte_chain->parent_ptes[0] = parent_pte;
  697. }
  698. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  699. u64 *parent_pte)
  700. {
  701. struct kvm_pte_chain *pte_chain;
  702. struct hlist_node *node;
  703. int i;
  704. if (!sp->multimapped) {
  705. BUG_ON(sp->parent_pte != parent_pte);
  706. sp->parent_pte = NULL;
  707. return;
  708. }
  709. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  710. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  711. if (!pte_chain->parent_ptes[i])
  712. break;
  713. if (pte_chain->parent_ptes[i] != parent_pte)
  714. continue;
  715. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  716. && pte_chain->parent_ptes[i + 1]) {
  717. pte_chain->parent_ptes[i]
  718. = pte_chain->parent_ptes[i + 1];
  719. ++i;
  720. }
  721. pte_chain->parent_ptes[i] = NULL;
  722. if (i == 0) {
  723. hlist_del(&pte_chain->link);
  724. mmu_free_pte_chain(pte_chain);
  725. if (hlist_empty(&sp->parent_ptes)) {
  726. sp->multimapped = 0;
  727. sp->parent_pte = NULL;
  728. }
  729. }
  730. return;
  731. }
  732. BUG();
  733. }
  734. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  735. struct kvm_mmu_page *sp)
  736. {
  737. int i;
  738. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  739. sp->spt[i] = shadow_trap_nonpresent_pte;
  740. }
  741. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  742. {
  743. unsigned index;
  744. struct hlist_head *bucket;
  745. struct kvm_mmu_page *sp;
  746. struct hlist_node *node;
  747. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  748. index = kvm_page_table_hashfn(gfn);
  749. bucket = &kvm->arch.mmu_page_hash[index];
  750. hlist_for_each_entry(sp, node, bucket, hash_link)
  751. if (sp->gfn == gfn && !sp->role.metaphysical
  752. && !sp->role.invalid) {
  753. pgprintk("%s: found role %x\n",
  754. __func__, sp->role.word);
  755. return sp;
  756. }
  757. return NULL;
  758. }
  759. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  760. gfn_t gfn,
  761. gva_t gaddr,
  762. unsigned level,
  763. int metaphysical,
  764. unsigned access,
  765. u64 *parent_pte)
  766. {
  767. union kvm_mmu_page_role role;
  768. unsigned index;
  769. unsigned quadrant;
  770. struct hlist_head *bucket;
  771. struct kvm_mmu_page *sp;
  772. struct hlist_node *node;
  773. role.word = 0;
  774. role.glevels = vcpu->arch.mmu.root_level;
  775. role.level = level;
  776. role.metaphysical = metaphysical;
  777. role.access = access;
  778. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  779. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  780. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  781. role.quadrant = quadrant;
  782. }
  783. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  784. gfn, role.word);
  785. index = kvm_page_table_hashfn(gfn);
  786. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  787. hlist_for_each_entry(sp, node, bucket, hash_link)
  788. if (sp->gfn == gfn && sp->role.word == role.word) {
  789. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  790. pgprintk("%s: found\n", __func__);
  791. return sp;
  792. }
  793. ++vcpu->kvm->stat.mmu_cache_miss;
  794. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  795. if (!sp)
  796. return sp;
  797. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  798. sp->gfn = gfn;
  799. sp->role = role;
  800. hlist_add_head(&sp->hash_link, bucket);
  801. if (!metaphysical)
  802. rmap_write_protect(vcpu->kvm, gfn);
  803. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  804. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  805. else
  806. nonpaging_prefetch_page(vcpu, sp);
  807. return sp;
  808. }
  809. static int walk_shadow(struct kvm_shadow_walk *walker,
  810. struct kvm_vcpu *vcpu, u64 addr)
  811. {
  812. hpa_t shadow_addr;
  813. int level;
  814. int r;
  815. u64 *sptep;
  816. unsigned index;
  817. shadow_addr = vcpu->arch.mmu.root_hpa;
  818. level = vcpu->arch.mmu.shadow_root_level;
  819. if (level == PT32E_ROOT_LEVEL) {
  820. shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  821. shadow_addr &= PT64_BASE_ADDR_MASK;
  822. --level;
  823. }
  824. while (level >= PT_PAGE_TABLE_LEVEL) {
  825. index = SHADOW_PT_INDEX(addr, level);
  826. sptep = ((u64 *)__va(shadow_addr)) + index;
  827. r = walker->entry(walker, vcpu, addr, sptep, level);
  828. if (r)
  829. return r;
  830. shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
  831. --level;
  832. }
  833. return 0;
  834. }
  835. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  836. struct kvm_mmu_page *sp)
  837. {
  838. unsigned i;
  839. u64 *pt;
  840. u64 ent;
  841. pt = sp->spt;
  842. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  843. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  844. if (is_shadow_present_pte(pt[i]))
  845. rmap_remove(kvm, &pt[i]);
  846. pt[i] = shadow_trap_nonpresent_pte;
  847. }
  848. return;
  849. }
  850. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  851. ent = pt[i];
  852. if (is_shadow_present_pte(ent)) {
  853. if (!is_large_pte(ent)) {
  854. ent &= PT64_BASE_ADDR_MASK;
  855. mmu_page_remove_parent_pte(page_header(ent),
  856. &pt[i]);
  857. } else {
  858. --kvm->stat.lpages;
  859. rmap_remove(kvm, &pt[i]);
  860. }
  861. }
  862. pt[i] = shadow_trap_nonpresent_pte;
  863. }
  864. }
  865. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  866. {
  867. mmu_page_remove_parent_pte(sp, parent_pte);
  868. }
  869. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  870. {
  871. int i;
  872. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  873. if (kvm->vcpus[i])
  874. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  875. }
  876. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  877. {
  878. u64 *parent_pte;
  879. while (sp->multimapped || sp->parent_pte) {
  880. if (!sp->multimapped)
  881. parent_pte = sp->parent_pte;
  882. else {
  883. struct kvm_pte_chain *chain;
  884. chain = container_of(sp->parent_ptes.first,
  885. struct kvm_pte_chain, link);
  886. parent_pte = chain->parent_ptes[0];
  887. }
  888. BUG_ON(!parent_pte);
  889. kvm_mmu_put_page(sp, parent_pte);
  890. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  891. }
  892. }
  893. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  894. {
  895. ++kvm->stat.mmu_shadow_zapped;
  896. kvm_mmu_page_unlink_children(kvm, sp);
  897. kvm_mmu_unlink_parents(kvm, sp);
  898. kvm_flush_remote_tlbs(kvm);
  899. if (!sp->role.invalid && !sp->role.metaphysical)
  900. unaccount_shadowed(kvm, sp->gfn);
  901. if (!sp->root_count) {
  902. hlist_del(&sp->hash_link);
  903. kvm_mmu_free_page(kvm, sp);
  904. } else {
  905. sp->role.invalid = 1;
  906. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  907. kvm_reload_remote_mmus(kvm);
  908. }
  909. kvm_mmu_reset_last_pte_updated(kvm);
  910. }
  911. /*
  912. * Changing the number of mmu pages allocated to the vm
  913. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  914. */
  915. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  916. {
  917. /*
  918. * If we set the number of mmu pages to be smaller be than the
  919. * number of actived pages , we must to free some mmu pages before we
  920. * change the value
  921. */
  922. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  923. kvm_nr_mmu_pages) {
  924. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  925. - kvm->arch.n_free_mmu_pages;
  926. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  927. struct kvm_mmu_page *page;
  928. page = container_of(kvm->arch.active_mmu_pages.prev,
  929. struct kvm_mmu_page, link);
  930. kvm_mmu_zap_page(kvm, page);
  931. n_used_mmu_pages--;
  932. }
  933. kvm->arch.n_free_mmu_pages = 0;
  934. }
  935. else
  936. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  937. - kvm->arch.n_alloc_mmu_pages;
  938. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  939. }
  940. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  941. {
  942. unsigned index;
  943. struct hlist_head *bucket;
  944. struct kvm_mmu_page *sp;
  945. struct hlist_node *node, *n;
  946. int r;
  947. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  948. r = 0;
  949. index = kvm_page_table_hashfn(gfn);
  950. bucket = &kvm->arch.mmu_page_hash[index];
  951. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  952. if (sp->gfn == gfn && !sp->role.metaphysical) {
  953. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  954. sp->role.word);
  955. kvm_mmu_zap_page(kvm, sp);
  956. r = 1;
  957. }
  958. return r;
  959. }
  960. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  961. {
  962. struct kvm_mmu_page *sp;
  963. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  964. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  965. kvm_mmu_zap_page(kvm, sp);
  966. }
  967. }
  968. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  969. {
  970. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  971. struct kvm_mmu_page *sp = page_header(__pa(pte));
  972. __set_bit(slot, &sp->slot_bitmap);
  973. }
  974. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  975. {
  976. struct page *page;
  977. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  978. if (gpa == UNMAPPED_GVA)
  979. return NULL;
  980. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  981. return page;
  982. }
  983. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  984. unsigned pte_access, int user_fault,
  985. int write_fault, int dirty, int largepage,
  986. gfn_t gfn, pfn_t pfn, bool speculative)
  987. {
  988. u64 spte;
  989. int ret = 0;
  990. /*
  991. * We don't set the accessed bit, since we sometimes want to see
  992. * whether the guest actually used the pte (in order to detect
  993. * demand paging).
  994. */
  995. spte = shadow_base_present_pte | shadow_dirty_mask;
  996. if (!speculative)
  997. spte |= shadow_accessed_mask;
  998. if (!dirty)
  999. pte_access &= ~ACC_WRITE_MASK;
  1000. if (pte_access & ACC_EXEC_MASK)
  1001. spte |= shadow_x_mask;
  1002. else
  1003. spte |= shadow_nx_mask;
  1004. if (pte_access & ACC_USER_MASK)
  1005. spte |= shadow_user_mask;
  1006. if (largepage)
  1007. spte |= PT_PAGE_SIZE_MASK;
  1008. spte |= (u64)pfn << PAGE_SHIFT;
  1009. if ((pte_access & ACC_WRITE_MASK)
  1010. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1011. struct kvm_mmu_page *shadow;
  1012. spte |= PT_WRITABLE_MASK;
  1013. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1014. if (shadow ||
  1015. (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
  1016. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1017. __func__, gfn);
  1018. ret = 1;
  1019. pte_access &= ~ACC_WRITE_MASK;
  1020. if (is_writeble_pte(spte)) {
  1021. spte &= ~PT_WRITABLE_MASK;
  1022. kvm_x86_ops->tlb_flush(vcpu);
  1023. }
  1024. }
  1025. }
  1026. if (pte_access & ACC_WRITE_MASK)
  1027. mark_page_dirty(vcpu->kvm, gfn);
  1028. set_shadow_pte(shadow_pte, spte);
  1029. return ret;
  1030. }
  1031. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1032. unsigned pt_access, unsigned pte_access,
  1033. int user_fault, int write_fault, int dirty,
  1034. int *ptwrite, int largepage, gfn_t gfn,
  1035. pfn_t pfn, bool speculative)
  1036. {
  1037. int was_rmapped = 0;
  1038. int was_writeble = is_writeble_pte(*shadow_pte);
  1039. pgprintk("%s: spte %llx access %x write_fault %d"
  1040. " user_fault %d gfn %lx\n",
  1041. __func__, *shadow_pte, pt_access,
  1042. write_fault, user_fault, gfn);
  1043. if (is_rmap_pte(*shadow_pte)) {
  1044. /*
  1045. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1046. * the parent of the now unreachable PTE.
  1047. */
  1048. if (largepage && !is_large_pte(*shadow_pte)) {
  1049. struct kvm_mmu_page *child;
  1050. u64 pte = *shadow_pte;
  1051. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1052. mmu_page_remove_parent_pte(child, shadow_pte);
  1053. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1054. pgprintk("hfn old %lx new %lx\n",
  1055. spte_to_pfn(*shadow_pte), pfn);
  1056. rmap_remove(vcpu->kvm, shadow_pte);
  1057. } else {
  1058. if (largepage)
  1059. was_rmapped = is_large_pte(*shadow_pte);
  1060. else
  1061. was_rmapped = 1;
  1062. }
  1063. }
  1064. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1065. dirty, largepage, gfn, pfn, speculative))
  1066. if (write_fault)
  1067. *ptwrite = 1;
  1068. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1069. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1070. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1071. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1072. *shadow_pte, shadow_pte);
  1073. if (!was_rmapped && is_large_pte(*shadow_pte))
  1074. ++vcpu->kvm->stat.lpages;
  1075. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1076. if (!was_rmapped) {
  1077. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1078. if (!is_rmap_pte(*shadow_pte))
  1079. kvm_release_pfn_clean(pfn);
  1080. } else {
  1081. if (was_writeble)
  1082. kvm_release_pfn_dirty(pfn);
  1083. else
  1084. kvm_release_pfn_clean(pfn);
  1085. }
  1086. if (speculative) {
  1087. vcpu->arch.last_pte_updated = shadow_pte;
  1088. vcpu->arch.last_pte_gfn = gfn;
  1089. }
  1090. }
  1091. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1092. {
  1093. }
  1094. struct direct_shadow_walk {
  1095. struct kvm_shadow_walk walker;
  1096. pfn_t pfn;
  1097. int write;
  1098. int largepage;
  1099. int pt_write;
  1100. };
  1101. static int direct_map_entry(struct kvm_shadow_walk *_walk,
  1102. struct kvm_vcpu *vcpu,
  1103. u64 addr, u64 *sptep, int level)
  1104. {
  1105. struct direct_shadow_walk *walk =
  1106. container_of(_walk, struct direct_shadow_walk, walker);
  1107. struct kvm_mmu_page *sp;
  1108. gfn_t pseudo_gfn;
  1109. gfn_t gfn = addr >> PAGE_SHIFT;
  1110. if (level == PT_PAGE_TABLE_LEVEL
  1111. || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
  1112. mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
  1113. 0, walk->write, 1, &walk->pt_write,
  1114. walk->largepage, gfn, walk->pfn, false);
  1115. ++vcpu->stat.pf_fixed;
  1116. return 1;
  1117. }
  1118. if (*sptep == shadow_trap_nonpresent_pte) {
  1119. pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1120. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
  1121. 1, ACC_ALL, sptep);
  1122. if (!sp) {
  1123. pgprintk("nonpaging_map: ENOMEM\n");
  1124. kvm_release_pfn_clean(walk->pfn);
  1125. return -ENOMEM;
  1126. }
  1127. set_shadow_pte(sptep,
  1128. __pa(sp->spt)
  1129. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1130. | shadow_user_mask | shadow_x_mask);
  1131. }
  1132. return 0;
  1133. }
  1134. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1135. int largepage, gfn_t gfn, pfn_t pfn)
  1136. {
  1137. int r;
  1138. struct direct_shadow_walk walker = {
  1139. .walker = { .entry = direct_map_entry, },
  1140. .pfn = pfn,
  1141. .largepage = largepage,
  1142. .write = write,
  1143. .pt_write = 0,
  1144. };
  1145. r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
  1146. if (r < 0)
  1147. return r;
  1148. return walker.pt_write;
  1149. }
  1150. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1151. {
  1152. int r;
  1153. int largepage = 0;
  1154. pfn_t pfn;
  1155. unsigned long mmu_seq;
  1156. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1157. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1158. largepage = 1;
  1159. }
  1160. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1161. smp_rmb();
  1162. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1163. /* mmio */
  1164. if (is_error_pfn(pfn)) {
  1165. kvm_release_pfn_clean(pfn);
  1166. return 1;
  1167. }
  1168. spin_lock(&vcpu->kvm->mmu_lock);
  1169. if (mmu_notifier_retry(vcpu, mmu_seq))
  1170. goto out_unlock;
  1171. kvm_mmu_free_some_pages(vcpu);
  1172. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1173. spin_unlock(&vcpu->kvm->mmu_lock);
  1174. return r;
  1175. out_unlock:
  1176. spin_unlock(&vcpu->kvm->mmu_lock);
  1177. kvm_release_pfn_clean(pfn);
  1178. return 0;
  1179. }
  1180. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1181. {
  1182. int i;
  1183. struct kvm_mmu_page *sp;
  1184. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1185. return;
  1186. spin_lock(&vcpu->kvm->mmu_lock);
  1187. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1188. hpa_t root = vcpu->arch.mmu.root_hpa;
  1189. sp = page_header(root);
  1190. --sp->root_count;
  1191. if (!sp->root_count && sp->role.invalid)
  1192. kvm_mmu_zap_page(vcpu->kvm, sp);
  1193. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1194. spin_unlock(&vcpu->kvm->mmu_lock);
  1195. return;
  1196. }
  1197. for (i = 0; i < 4; ++i) {
  1198. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1199. if (root) {
  1200. root &= PT64_BASE_ADDR_MASK;
  1201. sp = page_header(root);
  1202. --sp->root_count;
  1203. if (!sp->root_count && sp->role.invalid)
  1204. kvm_mmu_zap_page(vcpu->kvm, sp);
  1205. }
  1206. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1207. }
  1208. spin_unlock(&vcpu->kvm->mmu_lock);
  1209. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1210. }
  1211. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1212. {
  1213. int i;
  1214. gfn_t root_gfn;
  1215. struct kvm_mmu_page *sp;
  1216. int metaphysical = 0;
  1217. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1218. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1219. hpa_t root = vcpu->arch.mmu.root_hpa;
  1220. ASSERT(!VALID_PAGE(root));
  1221. if (tdp_enabled)
  1222. metaphysical = 1;
  1223. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1224. PT64_ROOT_LEVEL, metaphysical,
  1225. ACC_ALL, NULL);
  1226. root = __pa(sp->spt);
  1227. ++sp->root_count;
  1228. vcpu->arch.mmu.root_hpa = root;
  1229. return;
  1230. }
  1231. metaphysical = !is_paging(vcpu);
  1232. if (tdp_enabled)
  1233. metaphysical = 1;
  1234. for (i = 0; i < 4; ++i) {
  1235. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1236. ASSERT(!VALID_PAGE(root));
  1237. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1238. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1239. vcpu->arch.mmu.pae_root[i] = 0;
  1240. continue;
  1241. }
  1242. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1243. } else if (vcpu->arch.mmu.root_level == 0)
  1244. root_gfn = 0;
  1245. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1246. PT32_ROOT_LEVEL, metaphysical,
  1247. ACC_ALL, NULL);
  1248. root = __pa(sp->spt);
  1249. ++sp->root_count;
  1250. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1251. }
  1252. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1253. }
  1254. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1255. {
  1256. return vaddr;
  1257. }
  1258. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1259. u32 error_code)
  1260. {
  1261. gfn_t gfn;
  1262. int r;
  1263. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1264. r = mmu_topup_memory_caches(vcpu);
  1265. if (r)
  1266. return r;
  1267. ASSERT(vcpu);
  1268. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1269. gfn = gva >> PAGE_SHIFT;
  1270. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1271. error_code & PFERR_WRITE_MASK, gfn);
  1272. }
  1273. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1274. u32 error_code)
  1275. {
  1276. pfn_t pfn;
  1277. int r;
  1278. int largepage = 0;
  1279. gfn_t gfn = gpa >> PAGE_SHIFT;
  1280. unsigned long mmu_seq;
  1281. ASSERT(vcpu);
  1282. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1283. r = mmu_topup_memory_caches(vcpu);
  1284. if (r)
  1285. return r;
  1286. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1287. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1288. largepage = 1;
  1289. }
  1290. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1291. smp_rmb();
  1292. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1293. if (is_error_pfn(pfn)) {
  1294. kvm_release_pfn_clean(pfn);
  1295. return 1;
  1296. }
  1297. spin_lock(&vcpu->kvm->mmu_lock);
  1298. if (mmu_notifier_retry(vcpu, mmu_seq))
  1299. goto out_unlock;
  1300. kvm_mmu_free_some_pages(vcpu);
  1301. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1302. largepage, gfn, pfn);
  1303. spin_unlock(&vcpu->kvm->mmu_lock);
  1304. return r;
  1305. out_unlock:
  1306. spin_unlock(&vcpu->kvm->mmu_lock);
  1307. kvm_release_pfn_clean(pfn);
  1308. return 0;
  1309. }
  1310. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1311. {
  1312. mmu_free_roots(vcpu);
  1313. }
  1314. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1315. {
  1316. struct kvm_mmu *context = &vcpu->arch.mmu;
  1317. context->new_cr3 = nonpaging_new_cr3;
  1318. context->page_fault = nonpaging_page_fault;
  1319. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1320. context->free = nonpaging_free;
  1321. context->prefetch_page = nonpaging_prefetch_page;
  1322. context->root_level = 0;
  1323. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1324. context->root_hpa = INVALID_PAGE;
  1325. return 0;
  1326. }
  1327. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1328. {
  1329. ++vcpu->stat.tlb_flush;
  1330. kvm_x86_ops->tlb_flush(vcpu);
  1331. }
  1332. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1333. {
  1334. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1335. mmu_free_roots(vcpu);
  1336. }
  1337. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1338. u64 addr,
  1339. u32 err_code)
  1340. {
  1341. kvm_inject_page_fault(vcpu, addr, err_code);
  1342. }
  1343. static void paging_free(struct kvm_vcpu *vcpu)
  1344. {
  1345. nonpaging_free(vcpu);
  1346. }
  1347. #define PTTYPE 64
  1348. #include "paging_tmpl.h"
  1349. #undef PTTYPE
  1350. #define PTTYPE 32
  1351. #include "paging_tmpl.h"
  1352. #undef PTTYPE
  1353. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1354. {
  1355. struct kvm_mmu *context = &vcpu->arch.mmu;
  1356. ASSERT(is_pae(vcpu));
  1357. context->new_cr3 = paging_new_cr3;
  1358. context->page_fault = paging64_page_fault;
  1359. context->gva_to_gpa = paging64_gva_to_gpa;
  1360. context->prefetch_page = paging64_prefetch_page;
  1361. context->free = paging_free;
  1362. context->root_level = level;
  1363. context->shadow_root_level = level;
  1364. context->root_hpa = INVALID_PAGE;
  1365. return 0;
  1366. }
  1367. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1368. {
  1369. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1370. }
  1371. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1372. {
  1373. struct kvm_mmu *context = &vcpu->arch.mmu;
  1374. context->new_cr3 = paging_new_cr3;
  1375. context->page_fault = paging32_page_fault;
  1376. context->gva_to_gpa = paging32_gva_to_gpa;
  1377. context->free = paging_free;
  1378. context->prefetch_page = paging32_prefetch_page;
  1379. context->root_level = PT32_ROOT_LEVEL;
  1380. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1381. context->root_hpa = INVALID_PAGE;
  1382. return 0;
  1383. }
  1384. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1385. {
  1386. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1387. }
  1388. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1389. {
  1390. struct kvm_mmu *context = &vcpu->arch.mmu;
  1391. context->new_cr3 = nonpaging_new_cr3;
  1392. context->page_fault = tdp_page_fault;
  1393. context->free = nonpaging_free;
  1394. context->prefetch_page = nonpaging_prefetch_page;
  1395. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1396. context->root_hpa = INVALID_PAGE;
  1397. if (!is_paging(vcpu)) {
  1398. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1399. context->root_level = 0;
  1400. } else if (is_long_mode(vcpu)) {
  1401. context->gva_to_gpa = paging64_gva_to_gpa;
  1402. context->root_level = PT64_ROOT_LEVEL;
  1403. } else if (is_pae(vcpu)) {
  1404. context->gva_to_gpa = paging64_gva_to_gpa;
  1405. context->root_level = PT32E_ROOT_LEVEL;
  1406. } else {
  1407. context->gva_to_gpa = paging32_gva_to_gpa;
  1408. context->root_level = PT32_ROOT_LEVEL;
  1409. }
  1410. return 0;
  1411. }
  1412. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1413. {
  1414. ASSERT(vcpu);
  1415. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1416. if (!is_paging(vcpu))
  1417. return nonpaging_init_context(vcpu);
  1418. else if (is_long_mode(vcpu))
  1419. return paging64_init_context(vcpu);
  1420. else if (is_pae(vcpu))
  1421. return paging32E_init_context(vcpu);
  1422. else
  1423. return paging32_init_context(vcpu);
  1424. }
  1425. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1426. {
  1427. vcpu->arch.update_pte.pfn = bad_pfn;
  1428. if (tdp_enabled)
  1429. return init_kvm_tdp_mmu(vcpu);
  1430. else
  1431. return init_kvm_softmmu(vcpu);
  1432. }
  1433. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1434. {
  1435. ASSERT(vcpu);
  1436. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1437. vcpu->arch.mmu.free(vcpu);
  1438. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1439. }
  1440. }
  1441. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1442. {
  1443. destroy_kvm_mmu(vcpu);
  1444. return init_kvm_mmu(vcpu);
  1445. }
  1446. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1447. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1448. {
  1449. int r;
  1450. r = mmu_topup_memory_caches(vcpu);
  1451. if (r)
  1452. goto out;
  1453. spin_lock(&vcpu->kvm->mmu_lock);
  1454. kvm_mmu_free_some_pages(vcpu);
  1455. mmu_alloc_roots(vcpu);
  1456. spin_unlock(&vcpu->kvm->mmu_lock);
  1457. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1458. kvm_mmu_flush_tlb(vcpu);
  1459. out:
  1460. return r;
  1461. }
  1462. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1463. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1464. {
  1465. mmu_free_roots(vcpu);
  1466. }
  1467. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1468. struct kvm_mmu_page *sp,
  1469. u64 *spte)
  1470. {
  1471. u64 pte;
  1472. struct kvm_mmu_page *child;
  1473. pte = *spte;
  1474. if (is_shadow_present_pte(pte)) {
  1475. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1476. is_large_pte(pte))
  1477. rmap_remove(vcpu->kvm, spte);
  1478. else {
  1479. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1480. mmu_page_remove_parent_pte(child, spte);
  1481. }
  1482. }
  1483. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1484. if (is_large_pte(pte))
  1485. --vcpu->kvm->stat.lpages;
  1486. }
  1487. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1488. struct kvm_mmu_page *sp,
  1489. u64 *spte,
  1490. const void *new)
  1491. {
  1492. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1493. if (!vcpu->arch.update_pte.largepage ||
  1494. sp->role.glevels == PT32_ROOT_LEVEL) {
  1495. ++vcpu->kvm->stat.mmu_pde_zapped;
  1496. return;
  1497. }
  1498. }
  1499. ++vcpu->kvm->stat.mmu_pte_updated;
  1500. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1501. paging32_update_pte(vcpu, sp, spte, new);
  1502. else
  1503. paging64_update_pte(vcpu, sp, spte, new);
  1504. }
  1505. static bool need_remote_flush(u64 old, u64 new)
  1506. {
  1507. if (!is_shadow_present_pte(old))
  1508. return false;
  1509. if (!is_shadow_present_pte(new))
  1510. return true;
  1511. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1512. return true;
  1513. old ^= PT64_NX_MASK;
  1514. new ^= PT64_NX_MASK;
  1515. return (old & ~new & PT64_PERM_MASK) != 0;
  1516. }
  1517. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1518. {
  1519. if (need_remote_flush(old, new))
  1520. kvm_flush_remote_tlbs(vcpu->kvm);
  1521. else
  1522. kvm_mmu_flush_tlb(vcpu);
  1523. }
  1524. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1525. {
  1526. u64 *spte = vcpu->arch.last_pte_updated;
  1527. return !!(spte && (*spte & shadow_accessed_mask));
  1528. }
  1529. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1530. const u8 *new, int bytes)
  1531. {
  1532. gfn_t gfn;
  1533. int r;
  1534. u64 gpte = 0;
  1535. pfn_t pfn;
  1536. vcpu->arch.update_pte.largepage = 0;
  1537. if (bytes != 4 && bytes != 8)
  1538. return;
  1539. /*
  1540. * Assume that the pte write on a page table of the same type
  1541. * as the current vcpu paging mode. This is nearly always true
  1542. * (might be false while changing modes). Note it is verified later
  1543. * by update_pte().
  1544. */
  1545. if (is_pae(vcpu)) {
  1546. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1547. if ((bytes == 4) && (gpa % 4 == 0)) {
  1548. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1549. if (r)
  1550. return;
  1551. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1552. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1553. memcpy((void *)&gpte, new, 8);
  1554. }
  1555. } else {
  1556. if ((bytes == 4) && (gpa % 4 == 0))
  1557. memcpy((void *)&gpte, new, 4);
  1558. }
  1559. if (!is_present_pte(gpte))
  1560. return;
  1561. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1562. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1563. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1564. vcpu->arch.update_pte.largepage = 1;
  1565. }
  1566. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1567. smp_rmb();
  1568. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1569. if (is_error_pfn(pfn)) {
  1570. kvm_release_pfn_clean(pfn);
  1571. return;
  1572. }
  1573. vcpu->arch.update_pte.gfn = gfn;
  1574. vcpu->arch.update_pte.pfn = pfn;
  1575. }
  1576. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  1577. {
  1578. u64 *spte = vcpu->arch.last_pte_updated;
  1579. if (spte
  1580. && vcpu->arch.last_pte_gfn == gfn
  1581. && shadow_accessed_mask
  1582. && !(*spte & shadow_accessed_mask)
  1583. && is_shadow_present_pte(*spte))
  1584. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  1585. }
  1586. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1587. const u8 *new, int bytes)
  1588. {
  1589. gfn_t gfn = gpa >> PAGE_SHIFT;
  1590. struct kvm_mmu_page *sp;
  1591. struct hlist_node *node, *n;
  1592. struct hlist_head *bucket;
  1593. unsigned index;
  1594. u64 entry, gentry;
  1595. u64 *spte;
  1596. unsigned offset = offset_in_page(gpa);
  1597. unsigned pte_size;
  1598. unsigned page_offset;
  1599. unsigned misaligned;
  1600. unsigned quadrant;
  1601. int level;
  1602. int flooded = 0;
  1603. int npte;
  1604. int r;
  1605. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1606. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1607. spin_lock(&vcpu->kvm->mmu_lock);
  1608. kvm_mmu_access_page(vcpu, gfn);
  1609. kvm_mmu_free_some_pages(vcpu);
  1610. ++vcpu->kvm->stat.mmu_pte_write;
  1611. kvm_mmu_audit(vcpu, "pre pte write");
  1612. if (gfn == vcpu->arch.last_pt_write_gfn
  1613. && !last_updated_pte_accessed(vcpu)) {
  1614. ++vcpu->arch.last_pt_write_count;
  1615. if (vcpu->arch.last_pt_write_count >= 3)
  1616. flooded = 1;
  1617. } else {
  1618. vcpu->arch.last_pt_write_gfn = gfn;
  1619. vcpu->arch.last_pt_write_count = 1;
  1620. vcpu->arch.last_pte_updated = NULL;
  1621. }
  1622. index = kvm_page_table_hashfn(gfn);
  1623. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1624. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1625. if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
  1626. continue;
  1627. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1628. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1629. misaligned |= bytes < 4;
  1630. if (misaligned || flooded) {
  1631. /*
  1632. * Misaligned accesses are too much trouble to fix
  1633. * up; also, they usually indicate a page is not used
  1634. * as a page table.
  1635. *
  1636. * If we're seeing too many writes to a page,
  1637. * it may no longer be a page table, or we may be
  1638. * forking, in which case it is better to unmap the
  1639. * page.
  1640. */
  1641. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1642. gpa, bytes, sp->role.word);
  1643. kvm_mmu_zap_page(vcpu->kvm, sp);
  1644. ++vcpu->kvm->stat.mmu_flooded;
  1645. continue;
  1646. }
  1647. page_offset = offset;
  1648. level = sp->role.level;
  1649. npte = 1;
  1650. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1651. page_offset <<= 1; /* 32->64 */
  1652. /*
  1653. * A 32-bit pde maps 4MB while the shadow pdes map
  1654. * only 2MB. So we need to double the offset again
  1655. * and zap two pdes instead of one.
  1656. */
  1657. if (level == PT32_ROOT_LEVEL) {
  1658. page_offset &= ~7; /* kill rounding error */
  1659. page_offset <<= 1;
  1660. npte = 2;
  1661. }
  1662. quadrant = page_offset >> PAGE_SHIFT;
  1663. page_offset &= ~PAGE_MASK;
  1664. if (quadrant != sp->role.quadrant)
  1665. continue;
  1666. }
  1667. spte = &sp->spt[page_offset / sizeof(*spte)];
  1668. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1669. gentry = 0;
  1670. r = kvm_read_guest_atomic(vcpu->kvm,
  1671. gpa & ~(u64)(pte_size - 1),
  1672. &gentry, pte_size);
  1673. new = (const void *)&gentry;
  1674. if (r < 0)
  1675. new = NULL;
  1676. }
  1677. while (npte--) {
  1678. entry = *spte;
  1679. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1680. if (new)
  1681. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1682. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1683. ++spte;
  1684. }
  1685. }
  1686. kvm_mmu_audit(vcpu, "post pte write");
  1687. spin_unlock(&vcpu->kvm->mmu_lock);
  1688. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  1689. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  1690. vcpu->arch.update_pte.pfn = bad_pfn;
  1691. }
  1692. }
  1693. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1694. {
  1695. gpa_t gpa;
  1696. int r;
  1697. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1698. spin_lock(&vcpu->kvm->mmu_lock);
  1699. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1700. spin_unlock(&vcpu->kvm->mmu_lock);
  1701. return r;
  1702. }
  1703. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  1704. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1705. {
  1706. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1707. struct kvm_mmu_page *sp;
  1708. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1709. struct kvm_mmu_page, link);
  1710. kvm_mmu_zap_page(vcpu->kvm, sp);
  1711. ++vcpu->kvm->stat.mmu_recycled;
  1712. }
  1713. }
  1714. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1715. {
  1716. int r;
  1717. enum emulation_result er;
  1718. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1719. if (r < 0)
  1720. goto out;
  1721. if (!r) {
  1722. r = 1;
  1723. goto out;
  1724. }
  1725. r = mmu_topup_memory_caches(vcpu);
  1726. if (r)
  1727. goto out;
  1728. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1729. switch (er) {
  1730. case EMULATE_DONE:
  1731. return 1;
  1732. case EMULATE_DO_MMIO:
  1733. ++vcpu->stat.mmio_exits;
  1734. return 0;
  1735. case EMULATE_FAIL:
  1736. kvm_report_emulation_failure(vcpu, "pagetable");
  1737. return 1;
  1738. default:
  1739. BUG();
  1740. }
  1741. out:
  1742. return r;
  1743. }
  1744. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1745. void kvm_enable_tdp(void)
  1746. {
  1747. tdp_enabled = true;
  1748. }
  1749. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1750. void kvm_disable_tdp(void)
  1751. {
  1752. tdp_enabled = false;
  1753. }
  1754. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  1755. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1756. {
  1757. struct kvm_mmu_page *sp;
  1758. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1759. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1760. struct kvm_mmu_page, link);
  1761. kvm_mmu_zap_page(vcpu->kvm, sp);
  1762. cond_resched();
  1763. }
  1764. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1765. }
  1766. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1767. {
  1768. struct page *page;
  1769. int i;
  1770. ASSERT(vcpu);
  1771. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1772. vcpu->kvm->arch.n_free_mmu_pages =
  1773. vcpu->kvm->arch.n_requested_mmu_pages;
  1774. else
  1775. vcpu->kvm->arch.n_free_mmu_pages =
  1776. vcpu->kvm->arch.n_alloc_mmu_pages;
  1777. /*
  1778. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1779. * Therefore we need to allocate shadow page tables in the first
  1780. * 4GB of memory, which happens to fit the DMA32 zone.
  1781. */
  1782. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1783. if (!page)
  1784. goto error_1;
  1785. vcpu->arch.mmu.pae_root = page_address(page);
  1786. for (i = 0; i < 4; ++i)
  1787. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1788. return 0;
  1789. error_1:
  1790. free_mmu_pages(vcpu);
  1791. return -ENOMEM;
  1792. }
  1793. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1794. {
  1795. ASSERT(vcpu);
  1796. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1797. return alloc_mmu_pages(vcpu);
  1798. }
  1799. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1800. {
  1801. ASSERT(vcpu);
  1802. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1803. return init_kvm_mmu(vcpu);
  1804. }
  1805. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1806. {
  1807. ASSERT(vcpu);
  1808. destroy_kvm_mmu(vcpu);
  1809. free_mmu_pages(vcpu);
  1810. mmu_free_memory_caches(vcpu);
  1811. }
  1812. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1813. {
  1814. struct kvm_mmu_page *sp;
  1815. spin_lock(&kvm->mmu_lock);
  1816. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1817. int i;
  1818. u64 *pt;
  1819. if (!test_bit(slot, &sp->slot_bitmap))
  1820. continue;
  1821. pt = sp->spt;
  1822. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1823. /* avoid RMW */
  1824. if (pt[i] & PT_WRITABLE_MASK)
  1825. pt[i] &= ~PT_WRITABLE_MASK;
  1826. }
  1827. kvm_flush_remote_tlbs(kvm);
  1828. spin_unlock(&kvm->mmu_lock);
  1829. }
  1830. void kvm_mmu_zap_all(struct kvm *kvm)
  1831. {
  1832. struct kvm_mmu_page *sp, *node;
  1833. spin_lock(&kvm->mmu_lock);
  1834. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1835. kvm_mmu_zap_page(kvm, sp);
  1836. spin_unlock(&kvm->mmu_lock);
  1837. kvm_flush_remote_tlbs(kvm);
  1838. }
  1839. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  1840. {
  1841. struct kvm_mmu_page *page;
  1842. page = container_of(kvm->arch.active_mmu_pages.prev,
  1843. struct kvm_mmu_page, link);
  1844. kvm_mmu_zap_page(kvm, page);
  1845. }
  1846. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  1847. {
  1848. struct kvm *kvm;
  1849. struct kvm *kvm_freed = NULL;
  1850. int cache_count = 0;
  1851. spin_lock(&kvm_lock);
  1852. list_for_each_entry(kvm, &vm_list, vm_list) {
  1853. int npages;
  1854. if (!down_read_trylock(&kvm->slots_lock))
  1855. continue;
  1856. spin_lock(&kvm->mmu_lock);
  1857. npages = kvm->arch.n_alloc_mmu_pages -
  1858. kvm->arch.n_free_mmu_pages;
  1859. cache_count += npages;
  1860. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  1861. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  1862. cache_count--;
  1863. kvm_freed = kvm;
  1864. }
  1865. nr_to_scan--;
  1866. spin_unlock(&kvm->mmu_lock);
  1867. up_read(&kvm->slots_lock);
  1868. }
  1869. if (kvm_freed)
  1870. list_move_tail(&kvm_freed->vm_list, &vm_list);
  1871. spin_unlock(&kvm_lock);
  1872. return cache_count;
  1873. }
  1874. static struct shrinker mmu_shrinker = {
  1875. .shrink = mmu_shrink,
  1876. .seeks = DEFAULT_SEEKS * 10,
  1877. };
  1878. static void mmu_destroy_caches(void)
  1879. {
  1880. if (pte_chain_cache)
  1881. kmem_cache_destroy(pte_chain_cache);
  1882. if (rmap_desc_cache)
  1883. kmem_cache_destroy(rmap_desc_cache);
  1884. if (mmu_page_header_cache)
  1885. kmem_cache_destroy(mmu_page_header_cache);
  1886. }
  1887. void kvm_mmu_module_exit(void)
  1888. {
  1889. mmu_destroy_caches();
  1890. unregister_shrinker(&mmu_shrinker);
  1891. }
  1892. int kvm_mmu_module_init(void)
  1893. {
  1894. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1895. sizeof(struct kvm_pte_chain),
  1896. 0, 0, NULL);
  1897. if (!pte_chain_cache)
  1898. goto nomem;
  1899. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1900. sizeof(struct kvm_rmap_desc),
  1901. 0, 0, NULL);
  1902. if (!rmap_desc_cache)
  1903. goto nomem;
  1904. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1905. sizeof(struct kvm_mmu_page),
  1906. 0, 0, NULL);
  1907. if (!mmu_page_header_cache)
  1908. goto nomem;
  1909. register_shrinker(&mmu_shrinker);
  1910. return 0;
  1911. nomem:
  1912. mmu_destroy_caches();
  1913. return -ENOMEM;
  1914. }
  1915. /*
  1916. * Caculate mmu pages needed for kvm.
  1917. */
  1918. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1919. {
  1920. int i;
  1921. unsigned int nr_mmu_pages;
  1922. unsigned int nr_pages = 0;
  1923. for (i = 0; i < kvm->nmemslots; i++)
  1924. nr_pages += kvm->memslots[i].npages;
  1925. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1926. nr_mmu_pages = max(nr_mmu_pages,
  1927. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1928. return nr_mmu_pages;
  1929. }
  1930. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1931. unsigned len)
  1932. {
  1933. if (len > buffer->len)
  1934. return NULL;
  1935. return buffer->ptr;
  1936. }
  1937. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1938. unsigned len)
  1939. {
  1940. void *ret;
  1941. ret = pv_mmu_peek_buffer(buffer, len);
  1942. if (!ret)
  1943. return ret;
  1944. buffer->ptr += len;
  1945. buffer->len -= len;
  1946. buffer->processed += len;
  1947. return ret;
  1948. }
  1949. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  1950. gpa_t addr, gpa_t value)
  1951. {
  1952. int bytes = 8;
  1953. int r;
  1954. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  1955. bytes = 4;
  1956. r = mmu_topup_memory_caches(vcpu);
  1957. if (r)
  1958. return r;
  1959. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  1960. return -EFAULT;
  1961. return 1;
  1962. }
  1963. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1964. {
  1965. kvm_x86_ops->tlb_flush(vcpu);
  1966. return 1;
  1967. }
  1968. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  1969. {
  1970. spin_lock(&vcpu->kvm->mmu_lock);
  1971. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  1972. spin_unlock(&vcpu->kvm->mmu_lock);
  1973. return 1;
  1974. }
  1975. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  1976. struct kvm_pv_mmu_op_buffer *buffer)
  1977. {
  1978. struct kvm_mmu_op_header *header;
  1979. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  1980. if (!header)
  1981. return 0;
  1982. switch (header->op) {
  1983. case KVM_MMU_OP_WRITE_PTE: {
  1984. struct kvm_mmu_op_write_pte *wpte;
  1985. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  1986. if (!wpte)
  1987. return 0;
  1988. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  1989. wpte->pte_val);
  1990. }
  1991. case KVM_MMU_OP_FLUSH_TLB: {
  1992. struct kvm_mmu_op_flush_tlb *ftlb;
  1993. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  1994. if (!ftlb)
  1995. return 0;
  1996. return kvm_pv_mmu_flush_tlb(vcpu);
  1997. }
  1998. case KVM_MMU_OP_RELEASE_PT: {
  1999. struct kvm_mmu_op_release_pt *rpt;
  2000. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2001. if (!rpt)
  2002. return 0;
  2003. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2004. }
  2005. default: return 0;
  2006. }
  2007. }
  2008. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2009. gpa_t addr, unsigned long *ret)
  2010. {
  2011. int r;
  2012. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2013. buffer->ptr = buffer->buf;
  2014. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2015. buffer->processed = 0;
  2016. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2017. if (r)
  2018. goto out;
  2019. while (buffer->len) {
  2020. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2021. if (r < 0)
  2022. goto out;
  2023. if (r == 0)
  2024. break;
  2025. }
  2026. r = 1;
  2027. out:
  2028. *ret = buffer->processed;
  2029. return r;
  2030. }
  2031. #ifdef AUDIT
  2032. static const char *audit_msg;
  2033. static gva_t canonicalize(gva_t gva)
  2034. {
  2035. #ifdef CONFIG_X86_64
  2036. gva = (long long)(gva << 16) >> 16;
  2037. #endif
  2038. return gva;
  2039. }
  2040. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2041. gva_t va, int level)
  2042. {
  2043. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2044. int i;
  2045. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2046. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2047. u64 ent = pt[i];
  2048. if (ent == shadow_trap_nonpresent_pte)
  2049. continue;
  2050. va = canonicalize(va);
  2051. if (level > 1) {
  2052. if (ent == shadow_notrap_nonpresent_pte)
  2053. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2054. " in nonleaf level: levels %d gva %lx"
  2055. " level %d pte %llx\n", audit_msg,
  2056. vcpu->arch.mmu.root_level, va, level, ent);
  2057. audit_mappings_page(vcpu, ent, va, level - 1);
  2058. } else {
  2059. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2060. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2061. if (is_shadow_present_pte(ent)
  2062. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2063. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2064. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2065. audit_msg, vcpu->arch.mmu.root_level,
  2066. va, gpa, hpa, ent,
  2067. is_shadow_present_pte(ent));
  2068. else if (ent == shadow_notrap_nonpresent_pte
  2069. && !is_error_hpa(hpa))
  2070. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2071. " valid guest gva %lx\n", audit_msg, va);
  2072. kvm_release_pfn_clean(pfn);
  2073. }
  2074. }
  2075. }
  2076. static void audit_mappings(struct kvm_vcpu *vcpu)
  2077. {
  2078. unsigned i;
  2079. if (vcpu->arch.mmu.root_level == 4)
  2080. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2081. else
  2082. for (i = 0; i < 4; ++i)
  2083. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2084. audit_mappings_page(vcpu,
  2085. vcpu->arch.mmu.pae_root[i],
  2086. i << 30,
  2087. 2);
  2088. }
  2089. static int count_rmaps(struct kvm_vcpu *vcpu)
  2090. {
  2091. int nmaps = 0;
  2092. int i, j, k;
  2093. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2094. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2095. struct kvm_rmap_desc *d;
  2096. for (j = 0; j < m->npages; ++j) {
  2097. unsigned long *rmapp = &m->rmap[j];
  2098. if (!*rmapp)
  2099. continue;
  2100. if (!(*rmapp & 1)) {
  2101. ++nmaps;
  2102. continue;
  2103. }
  2104. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2105. while (d) {
  2106. for (k = 0; k < RMAP_EXT; ++k)
  2107. if (d->shadow_ptes[k])
  2108. ++nmaps;
  2109. else
  2110. break;
  2111. d = d->more;
  2112. }
  2113. }
  2114. }
  2115. return nmaps;
  2116. }
  2117. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2118. {
  2119. int nmaps = 0;
  2120. struct kvm_mmu_page *sp;
  2121. int i;
  2122. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2123. u64 *pt = sp->spt;
  2124. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2125. continue;
  2126. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2127. u64 ent = pt[i];
  2128. if (!(ent & PT_PRESENT_MASK))
  2129. continue;
  2130. if (!(ent & PT_WRITABLE_MASK))
  2131. continue;
  2132. ++nmaps;
  2133. }
  2134. }
  2135. return nmaps;
  2136. }
  2137. static void audit_rmap(struct kvm_vcpu *vcpu)
  2138. {
  2139. int n_rmap = count_rmaps(vcpu);
  2140. int n_actual = count_writable_mappings(vcpu);
  2141. if (n_rmap != n_actual)
  2142. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2143. __func__, audit_msg, n_rmap, n_actual);
  2144. }
  2145. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2146. {
  2147. struct kvm_mmu_page *sp;
  2148. struct kvm_memory_slot *slot;
  2149. unsigned long *rmapp;
  2150. gfn_t gfn;
  2151. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2152. if (sp->role.metaphysical)
  2153. continue;
  2154. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  2155. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2156. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2157. if (*rmapp)
  2158. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2159. " mappings: gfn %lx role %x\n",
  2160. __func__, audit_msg, sp->gfn,
  2161. sp->role.word);
  2162. }
  2163. }
  2164. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2165. {
  2166. int olddbg = dbg;
  2167. dbg = 0;
  2168. audit_msg = msg;
  2169. audit_rmap(vcpu);
  2170. audit_write_protection(vcpu);
  2171. audit_mappings(vcpu);
  2172. dbg = olddbg;
  2173. }
  2174. #endif