i915_gem.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. #include <linux/dma-buf.h>
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable,
  43. bool nonblocking);
  44. static int i915_gem_phys_pwrite(struct drm_device *dev,
  45. struct drm_i915_gem_object *obj,
  46. struct drm_i915_gem_pwrite *args,
  47. struct drm_file *file);
  48. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  49. struct drm_i915_gem_object *obj);
  50. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  51. struct drm_i915_fence_reg *fence,
  52. bool enable);
  53. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  54. struct shrink_control *sc);
  55. static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  56. static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  57. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  58. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  59. {
  60. if (obj->tiling_mode)
  61. i915_gem_release_mmap(obj);
  62. /* As we do not have an associated fence register, we will force
  63. * a tiling change if we ever need to acquire one.
  64. */
  65. obj->fence_dirty = false;
  66. obj->fence_reg = I915_FENCE_REG_NONE;
  67. }
  68. /* some bookkeeping */
  69. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  70. size_t size)
  71. {
  72. dev_priv->mm.object_count++;
  73. dev_priv->mm.object_memory += size;
  74. }
  75. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  76. size_t size)
  77. {
  78. dev_priv->mm.object_count--;
  79. dev_priv->mm.object_memory -= size;
  80. }
  81. static int
  82. i915_gem_wait_for_error(struct drm_device *dev)
  83. {
  84. struct drm_i915_private *dev_priv = dev->dev_private;
  85. struct completion *x = &dev_priv->error_completion;
  86. unsigned long flags;
  87. int ret;
  88. if (!atomic_read(&dev_priv->mm.wedged))
  89. return 0;
  90. /*
  91. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  92. * userspace. If it takes that long something really bad is going on and
  93. * we should simply try to bail out and fail as gracefully as possible.
  94. */
  95. ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
  96. if (ret == 0) {
  97. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  98. return -EIO;
  99. } else if (ret < 0) {
  100. return ret;
  101. }
  102. if (atomic_read(&dev_priv->mm.wedged)) {
  103. /* GPU is hung, bump the completion count to account for
  104. * the token we just consumed so that we never hit zero and
  105. * end up waiting upon a subsequent completion event that
  106. * will never happen.
  107. */
  108. spin_lock_irqsave(&x->wait.lock, flags);
  109. x->done++;
  110. spin_unlock_irqrestore(&x->wait.lock, flags);
  111. }
  112. return 0;
  113. }
  114. int i915_mutex_lock_interruptible(struct drm_device *dev)
  115. {
  116. int ret;
  117. ret = i915_gem_wait_for_error(dev);
  118. if (ret)
  119. return ret;
  120. ret = mutex_lock_interruptible(&dev->struct_mutex);
  121. if (ret)
  122. return ret;
  123. WARN_ON(i915_verify_lists(dev));
  124. return 0;
  125. }
  126. static inline bool
  127. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  128. {
  129. return obj->gtt_space && !obj->active;
  130. }
  131. int
  132. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  133. struct drm_file *file)
  134. {
  135. struct drm_i915_gem_init *args = data;
  136. if (drm_core_check_feature(dev, DRIVER_MODESET))
  137. return -ENODEV;
  138. if (args->gtt_start >= args->gtt_end ||
  139. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  140. return -EINVAL;
  141. /* GEM with user mode setting was never supported on ilk and later. */
  142. if (INTEL_INFO(dev)->gen >= 5)
  143. return -ENODEV;
  144. mutex_lock(&dev->struct_mutex);
  145. i915_gem_init_global_gtt(dev, args->gtt_start,
  146. args->gtt_end, args->gtt_end);
  147. mutex_unlock(&dev->struct_mutex);
  148. return 0;
  149. }
  150. int
  151. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  152. struct drm_file *file)
  153. {
  154. struct drm_i915_private *dev_priv = dev->dev_private;
  155. struct drm_i915_gem_get_aperture *args = data;
  156. struct drm_i915_gem_object *obj;
  157. size_t pinned;
  158. pinned = 0;
  159. mutex_lock(&dev->struct_mutex);
  160. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  161. if (obj->pin_count)
  162. pinned += obj->gtt_space->size;
  163. mutex_unlock(&dev->struct_mutex);
  164. args->aper_size = dev_priv->mm.gtt_total;
  165. args->aper_available_size = args->aper_size - pinned;
  166. return 0;
  167. }
  168. static int
  169. i915_gem_create(struct drm_file *file,
  170. struct drm_device *dev,
  171. uint64_t size,
  172. uint32_t *handle_p)
  173. {
  174. struct drm_i915_gem_object *obj;
  175. int ret;
  176. u32 handle;
  177. size = roundup(size, PAGE_SIZE);
  178. if (size == 0)
  179. return -EINVAL;
  180. /* Allocate the new object */
  181. obj = i915_gem_alloc_object(dev, size);
  182. if (obj == NULL)
  183. return -ENOMEM;
  184. ret = drm_gem_handle_create(file, &obj->base, &handle);
  185. if (ret) {
  186. drm_gem_object_release(&obj->base);
  187. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  188. kfree(obj);
  189. return ret;
  190. }
  191. /* drop reference from allocate - handle holds it now */
  192. drm_gem_object_unreference(&obj->base);
  193. trace_i915_gem_object_create(obj);
  194. *handle_p = handle;
  195. return 0;
  196. }
  197. int
  198. i915_gem_dumb_create(struct drm_file *file,
  199. struct drm_device *dev,
  200. struct drm_mode_create_dumb *args)
  201. {
  202. /* have to work out size/pitch and return them */
  203. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  204. args->size = args->pitch * args->height;
  205. return i915_gem_create(file, dev,
  206. args->size, &args->handle);
  207. }
  208. int i915_gem_dumb_destroy(struct drm_file *file,
  209. struct drm_device *dev,
  210. uint32_t handle)
  211. {
  212. return drm_gem_handle_delete(file, handle);
  213. }
  214. /**
  215. * Creates a new mm object and returns a handle to it.
  216. */
  217. int
  218. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  219. struct drm_file *file)
  220. {
  221. struct drm_i915_gem_create *args = data;
  222. return i915_gem_create(file, dev,
  223. args->size, &args->handle);
  224. }
  225. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  226. {
  227. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  228. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  229. obj->tiling_mode != I915_TILING_NONE;
  230. }
  231. static inline int
  232. __copy_to_user_swizzled(char __user *cpu_vaddr,
  233. const char *gpu_vaddr, int gpu_offset,
  234. int length)
  235. {
  236. int ret, cpu_offset = 0;
  237. while (length > 0) {
  238. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  239. int this_length = min(cacheline_end - gpu_offset, length);
  240. int swizzled_gpu_offset = gpu_offset ^ 64;
  241. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  242. gpu_vaddr + swizzled_gpu_offset,
  243. this_length);
  244. if (ret)
  245. return ret + length;
  246. cpu_offset += this_length;
  247. gpu_offset += this_length;
  248. length -= this_length;
  249. }
  250. return 0;
  251. }
  252. static inline int
  253. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  254. const char __user *cpu_vaddr,
  255. int length)
  256. {
  257. int ret, cpu_offset = 0;
  258. while (length > 0) {
  259. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  260. int this_length = min(cacheline_end - gpu_offset, length);
  261. int swizzled_gpu_offset = gpu_offset ^ 64;
  262. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  263. cpu_vaddr + cpu_offset,
  264. this_length);
  265. if (ret)
  266. return ret + length;
  267. cpu_offset += this_length;
  268. gpu_offset += this_length;
  269. length -= this_length;
  270. }
  271. return 0;
  272. }
  273. /* Per-page copy function for the shmem pread fastpath.
  274. * Flushes invalid cachelines before reading the target if
  275. * needs_clflush is set. */
  276. static int
  277. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  278. char __user *user_data,
  279. bool page_do_bit17_swizzling, bool needs_clflush)
  280. {
  281. char *vaddr;
  282. int ret;
  283. if (unlikely(page_do_bit17_swizzling))
  284. return -EINVAL;
  285. vaddr = kmap_atomic(page);
  286. if (needs_clflush)
  287. drm_clflush_virt_range(vaddr + shmem_page_offset,
  288. page_length);
  289. ret = __copy_to_user_inatomic(user_data,
  290. vaddr + shmem_page_offset,
  291. page_length);
  292. kunmap_atomic(vaddr);
  293. return ret ? -EFAULT : 0;
  294. }
  295. static void
  296. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  297. bool swizzled)
  298. {
  299. if (unlikely(swizzled)) {
  300. unsigned long start = (unsigned long) addr;
  301. unsigned long end = (unsigned long) addr + length;
  302. /* For swizzling simply ensure that we always flush both
  303. * channels. Lame, but simple and it works. Swizzled
  304. * pwrite/pread is far from a hotpath - current userspace
  305. * doesn't use it at all. */
  306. start = round_down(start, 128);
  307. end = round_up(end, 128);
  308. drm_clflush_virt_range((void *)start, end - start);
  309. } else {
  310. drm_clflush_virt_range(addr, length);
  311. }
  312. }
  313. /* Only difference to the fast-path function is that this can handle bit17
  314. * and uses non-atomic copy and kmap functions. */
  315. static int
  316. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  317. char __user *user_data,
  318. bool page_do_bit17_swizzling, bool needs_clflush)
  319. {
  320. char *vaddr;
  321. int ret;
  322. vaddr = kmap(page);
  323. if (needs_clflush)
  324. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  325. page_length,
  326. page_do_bit17_swizzling);
  327. if (page_do_bit17_swizzling)
  328. ret = __copy_to_user_swizzled(user_data,
  329. vaddr, shmem_page_offset,
  330. page_length);
  331. else
  332. ret = __copy_to_user(user_data,
  333. vaddr + shmem_page_offset,
  334. page_length);
  335. kunmap(page);
  336. return ret ? - EFAULT : 0;
  337. }
  338. static int
  339. i915_gem_shmem_pread(struct drm_device *dev,
  340. struct drm_i915_gem_object *obj,
  341. struct drm_i915_gem_pread *args,
  342. struct drm_file *file)
  343. {
  344. char __user *user_data;
  345. ssize_t remain;
  346. loff_t offset;
  347. int shmem_page_offset, page_length, ret = 0;
  348. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  349. int hit_slowpath = 0;
  350. int prefaulted = 0;
  351. int needs_clflush = 0;
  352. struct scatterlist *sg;
  353. int i;
  354. user_data = (char __user *) (uintptr_t) args->data_ptr;
  355. remain = args->size;
  356. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  357. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  358. /* If we're not in the cpu read domain, set ourself into the gtt
  359. * read domain and manually flush cachelines (if required). This
  360. * optimizes for the case when the gpu will dirty the data
  361. * anyway again before the next pread happens. */
  362. if (obj->cache_level == I915_CACHE_NONE)
  363. needs_clflush = 1;
  364. if (obj->gtt_space) {
  365. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  366. if (ret)
  367. return ret;
  368. }
  369. }
  370. ret = i915_gem_object_get_pages(obj);
  371. if (ret)
  372. return ret;
  373. i915_gem_object_pin_pages(obj);
  374. offset = args->offset;
  375. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  376. struct page *page;
  377. if (i < offset >> PAGE_SHIFT)
  378. continue;
  379. if (remain <= 0)
  380. break;
  381. /* Operation in this page
  382. *
  383. * shmem_page_offset = offset within page in shmem file
  384. * page_length = bytes to copy for this page
  385. */
  386. shmem_page_offset = offset_in_page(offset);
  387. page_length = remain;
  388. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  389. page_length = PAGE_SIZE - shmem_page_offset;
  390. page = sg_page(sg);
  391. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  392. (page_to_phys(page) & (1 << 17)) != 0;
  393. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  394. user_data, page_do_bit17_swizzling,
  395. needs_clflush);
  396. if (ret == 0)
  397. goto next_page;
  398. hit_slowpath = 1;
  399. mutex_unlock(&dev->struct_mutex);
  400. if (!prefaulted) {
  401. ret = fault_in_multipages_writeable(user_data, remain);
  402. /* Userspace is tricking us, but we've already clobbered
  403. * its pages with the prefault and promised to write the
  404. * data up to the first fault. Hence ignore any errors
  405. * and just continue. */
  406. (void)ret;
  407. prefaulted = 1;
  408. }
  409. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  410. user_data, page_do_bit17_swizzling,
  411. needs_clflush);
  412. mutex_lock(&dev->struct_mutex);
  413. next_page:
  414. mark_page_accessed(page);
  415. if (ret)
  416. goto out;
  417. remain -= page_length;
  418. user_data += page_length;
  419. offset += page_length;
  420. }
  421. out:
  422. i915_gem_object_unpin_pages(obj);
  423. if (hit_slowpath) {
  424. /* Fixup: Kill any reinstated backing storage pages */
  425. if (obj->madv == __I915_MADV_PURGED)
  426. i915_gem_object_truncate(obj);
  427. }
  428. return ret;
  429. }
  430. /**
  431. * Reads data from the object referenced by handle.
  432. *
  433. * On error, the contents of *data are undefined.
  434. */
  435. int
  436. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  437. struct drm_file *file)
  438. {
  439. struct drm_i915_gem_pread *args = data;
  440. struct drm_i915_gem_object *obj;
  441. int ret = 0;
  442. if (args->size == 0)
  443. return 0;
  444. if (!access_ok(VERIFY_WRITE,
  445. (char __user *)(uintptr_t)args->data_ptr,
  446. args->size))
  447. return -EFAULT;
  448. ret = i915_mutex_lock_interruptible(dev);
  449. if (ret)
  450. return ret;
  451. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  452. if (&obj->base == NULL) {
  453. ret = -ENOENT;
  454. goto unlock;
  455. }
  456. /* Bounds check source. */
  457. if (args->offset > obj->base.size ||
  458. args->size > obj->base.size - args->offset) {
  459. ret = -EINVAL;
  460. goto out;
  461. }
  462. /* prime objects have no backing filp to GEM pread/pwrite
  463. * pages from.
  464. */
  465. if (!obj->base.filp) {
  466. ret = -EINVAL;
  467. goto out;
  468. }
  469. trace_i915_gem_object_pread(obj, args->offset, args->size);
  470. ret = i915_gem_shmem_pread(dev, obj, args, file);
  471. out:
  472. drm_gem_object_unreference(&obj->base);
  473. unlock:
  474. mutex_unlock(&dev->struct_mutex);
  475. return ret;
  476. }
  477. /* This is the fast write path which cannot handle
  478. * page faults in the source data
  479. */
  480. static inline int
  481. fast_user_write(struct io_mapping *mapping,
  482. loff_t page_base, int page_offset,
  483. char __user *user_data,
  484. int length)
  485. {
  486. void __iomem *vaddr_atomic;
  487. void *vaddr;
  488. unsigned long unwritten;
  489. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  490. /* We can use the cpu mem copy function because this is X86. */
  491. vaddr = (void __force*)vaddr_atomic + page_offset;
  492. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  493. user_data, length);
  494. io_mapping_unmap_atomic(vaddr_atomic);
  495. return unwritten;
  496. }
  497. /**
  498. * This is the fast pwrite path, where we copy the data directly from the
  499. * user into the GTT, uncached.
  500. */
  501. static int
  502. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  503. struct drm_i915_gem_object *obj,
  504. struct drm_i915_gem_pwrite *args,
  505. struct drm_file *file)
  506. {
  507. drm_i915_private_t *dev_priv = dev->dev_private;
  508. ssize_t remain;
  509. loff_t offset, page_base;
  510. char __user *user_data;
  511. int page_offset, page_length, ret;
  512. ret = i915_gem_object_pin(obj, 0, true, true);
  513. if (ret)
  514. goto out;
  515. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  516. if (ret)
  517. goto out_unpin;
  518. ret = i915_gem_object_put_fence(obj);
  519. if (ret)
  520. goto out_unpin;
  521. user_data = (char __user *) (uintptr_t) args->data_ptr;
  522. remain = args->size;
  523. offset = obj->gtt_offset + args->offset;
  524. while (remain > 0) {
  525. /* Operation in this page
  526. *
  527. * page_base = page offset within aperture
  528. * page_offset = offset within page
  529. * page_length = bytes to copy for this page
  530. */
  531. page_base = offset & PAGE_MASK;
  532. page_offset = offset_in_page(offset);
  533. page_length = remain;
  534. if ((page_offset + remain) > PAGE_SIZE)
  535. page_length = PAGE_SIZE - page_offset;
  536. /* If we get a fault while copying data, then (presumably) our
  537. * source page isn't available. Return the error and we'll
  538. * retry in the slow path.
  539. */
  540. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  541. page_offset, user_data, page_length)) {
  542. ret = -EFAULT;
  543. goto out_unpin;
  544. }
  545. remain -= page_length;
  546. user_data += page_length;
  547. offset += page_length;
  548. }
  549. out_unpin:
  550. i915_gem_object_unpin(obj);
  551. out:
  552. return ret;
  553. }
  554. /* Per-page copy function for the shmem pwrite fastpath.
  555. * Flushes invalid cachelines before writing to the target if
  556. * needs_clflush_before is set and flushes out any written cachelines after
  557. * writing if needs_clflush is set. */
  558. static int
  559. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  560. char __user *user_data,
  561. bool page_do_bit17_swizzling,
  562. bool needs_clflush_before,
  563. bool needs_clflush_after)
  564. {
  565. char *vaddr;
  566. int ret;
  567. if (unlikely(page_do_bit17_swizzling))
  568. return -EINVAL;
  569. vaddr = kmap_atomic(page);
  570. if (needs_clflush_before)
  571. drm_clflush_virt_range(vaddr + shmem_page_offset,
  572. page_length);
  573. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  574. user_data,
  575. page_length);
  576. if (needs_clflush_after)
  577. drm_clflush_virt_range(vaddr + shmem_page_offset,
  578. page_length);
  579. kunmap_atomic(vaddr);
  580. return ret ? -EFAULT : 0;
  581. }
  582. /* Only difference to the fast-path function is that this can handle bit17
  583. * and uses non-atomic copy and kmap functions. */
  584. static int
  585. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  586. char __user *user_data,
  587. bool page_do_bit17_swizzling,
  588. bool needs_clflush_before,
  589. bool needs_clflush_after)
  590. {
  591. char *vaddr;
  592. int ret;
  593. vaddr = kmap(page);
  594. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  595. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  596. page_length,
  597. page_do_bit17_swizzling);
  598. if (page_do_bit17_swizzling)
  599. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  600. user_data,
  601. page_length);
  602. else
  603. ret = __copy_from_user(vaddr + shmem_page_offset,
  604. user_data,
  605. page_length);
  606. if (needs_clflush_after)
  607. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  608. page_length,
  609. page_do_bit17_swizzling);
  610. kunmap(page);
  611. return ret ? -EFAULT : 0;
  612. }
  613. static int
  614. i915_gem_shmem_pwrite(struct drm_device *dev,
  615. struct drm_i915_gem_object *obj,
  616. struct drm_i915_gem_pwrite *args,
  617. struct drm_file *file)
  618. {
  619. ssize_t remain;
  620. loff_t offset;
  621. char __user *user_data;
  622. int shmem_page_offset, page_length, ret = 0;
  623. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  624. int hit_slowpath = 0;
  625. int needs_clflush_after = 0;
  626. int needs_clflush_before = 0;
  627. int i;
  628. struct scatterlist *sg;
  629. user_data = (char __user *) (uintptr_t) args->data_ptr;
  630. remain = args->size;
  631. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  632. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  633. /* If we're not in the cpu write domain, set ourself into the gtt
  634. * write domain and manually flush cachelines (if required). This
  635. * optimizes for the case when the gpu will use the data
  636. * right away and we therefore have to clflush anyway. */
  637. if (obj->cache_level == I915_CACHE_NONE)
  638. needs_clflush_after = 1;
  639. if (obj->gtt_space) {
  640. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  641. if (ret)
  642. return ret;
  643. }
  644. }
  645. /* Same trick applies for invalidate partially written cachelines before
  646. * writing. */
  647. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  648. && obj->cache_level == I915_CACHE_NONE)
  649. needs_clflush_before = 1;
  650. ret = i915_gem_object_get_pages(obj);
  651. if (ret)
  652. return ret;
  653. i915_gem_object_pin_pages(obj);
  654. offset = args->offset;
  655. obj->dirty = 1;
  656. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  657. struct page *page;
  658. int partial_cacheline_write;
  659. if (i < offset >> PAGE_SHIFT)
  660. continue;
  661. if (remain <= 0)
  662. break;
  663. /* Operation in this page
  664. *
  665. * shmem_page_offset = offset within page in shmem file
  666. * page_length = bytes to copy for this page
  667. */
  668. shmem_page_offset = offset_in_page(offset);
  669. page_length = remain;
  670. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  671. page_length = PAGE_SIZE - shmem_page_offset;
  672. /* If we don't overwrite a cacheline completely we need to be
  673. * careful to have up-to-date data by first clflushing. Don't
  674. * overcomplicate things and flush the entire patch. */
  675. partial_cacheline_write = needs_clflush_before &&
  676. ((shmem_page_offset | page_length)
  677. & (boot_cpu_data.x86_clflush_size - 1));
  678. page = sg_page(sg);
  679. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  680. (page_to_phys(page) & (1 << 17)) != 0;
  681. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  682. user_data, page_do_bit17_swizzling,
  683. partial_cacheline_write,
  684. needs_clflush_after);
  685. if (ret == 0)
  686. goto next_page;
  687. hit_slowpath = 1;
  688. mutex_unlock(&dev->struct_mutex);
  689. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  690. user_data, page_do_bit17_swizzling,
  691. partial_cacheline_write,
  692. needs_clflush_after);
  693. mutex_lock(&dev->struct_mutex);
  694. next_page:
  695. set_page_dirty(page);
  696. mark_page_accessed(page);
  697. if (ret)
  698. goto out;
  699. remain -= page_length;
  700. user_data += page_length;
  701. offset += page_length;
  702. }
  703. out:
  704. i915_gem_object_unpin_pages(obj);
  705. if (hit_slowpath) {
  706. /* Fixup: Kill any reinstated backing storage pages */
  707. if (obj->madv == __I915_MADV_PURGED)
  708. i915_gem_object_truncate(obj);
  709. /* and flush dirty cachelines in case the object isn't in the cpu write
  710. * domain anymore. */
  711. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  712. i915_gem_clflush_object(obj);
  713. intel_gtt_chipset_flush();
  714. }
  715. }
  716. if (needs_clflush_after)
  717. intel_gtt_chipset_flush();
  718. return ret;
  719. }
  720. /**
  721. * Writes data to the object referenced by handle.
  722. *
  723. * On error, the contents of the buffer that were to be modified are undefined.
  724. */
  725. int
  726. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  727. struct drm_file *file)
  728. {
  729. struct drm_i915_gem_pwrite *args = data;
  730. struct drm_i915_gem_object *obj;
  731. int ret;
  732. if (args->size == 0)
  733. return 0;
  734. if (!access_ok(VERIFY_READ,
  735. (char __user *)(uintptr_t)args->data_ptr,
  736. args->size))
  737. return -EFAULT;
  738. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  739. args->size);
  740. if (ret)
  741. return -EFAULT;
  742. ret = i915_mutex_lock_interruptible(dev);
  743. if (ret)
  744. return ret;
  745. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  746. if (&obj->base == NULL) {
  747. ret = -ENOENT;
  748. goto unlock;
  749. }
  750. /* Bounds check destination. */
  751. if (args->offset > obj->base.size ||
  752. args->size > obj->base.size - args->offset) {
  753. ret = -EINVAL;
  754. goto out;
  755. }
  756. /* prime objects have no backing filp to GEM pread/pwrite
  757. * pages from.
  758. */
  759. if (!obj->base.filp) {
  760. ret = -EINVAL;
  761. goto out;
  762. }
  763. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  764. ret = -EFAULT;
  765. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  766. * it would end up going through the fenced access, and we'll get
  767. * different detiling behavior between reading and writing.
  768. * pread/pwrite currently are reading and writing from the CPU
  769. * perspective, requiring manual detiling by the client.
  770. */
  771. if (obj->phys_obj) {
  772. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  773. goto out;
  774. }
  775. if (obj->cache_level == I915_CACHE_NONE &&
  776. obj->tiling_mode == I915_TILING_NONE &&
  777. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  778. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  779. /* Note that the gtt paths might fail with non-page-backed user
  780. * pointers (e.g. gtt mappings when moving data between
  781. * textures). Fallback to the shmem path in that case. */
  782. }
  783. if (ret == -EFAULT || ret == -ENOSPC)
  784. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  785. out:
  786. drm_gem_object_unreference(&obj->base);
  787. unlock:
  788. mutex_unlock(&dev->struct_mutex);
  789. return ret;
  790. }
  791. int
  792. i915_gem_check_wedge(struct drm_i915_private *dev_priv,
  793. bool interruptible)
  794. {
  795. if (atomic_read(&dev_priv->mm.wedged)) {
  796. struct completion *x = &dev_priv->error_completion;
  797. bool recovery_complete;
  798. unsigned long flags;
  799. /* Give the error handler a chance to run. */
  800. spin_lock_irqsave(&x->wait.lock, flags);
  801. recovery_complete = x->done > 0;
  802. spin_unlock_irqrestore(&x->wait.lock, flags);
  803. /* Non-interruptible callers can't handle -EAGAIN, hence return
  804. * -EIO unconditionally for these. */
  805. if (!interruptible)
  806. return -EIO;
  807. /* Recovery complete, but still wedged means reset failure. */
  808. if (recovery_complete)
  809. return -EIO;
  810. return -EAGAIN;
  811. }
  812. return 0;
  813. }
  814. /*
  815. * Compare seqno against outstanding lazy request. Emit a request if they are
  816. * equal.
  817. */
  818. static int
  819. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  820. {
  821. int ret;
  822. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  823. ret = 0;
  824. if (seqno == ring->outstanding_lazy_request)
  825. ret = i915_add_request(ring, NULL, NULL);
  826. return ret;
  827. }
  828. /**
  829. * __wait_seqno - wait until execution of seqno has finished
  830. * @ring: the ring expected to report seqno
  831. * @seqno: duh!
  832. * @interruptible: do an interruptible wait (normally yes)
  833. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  834. *
  835. * Returns 0 if the seqno was found within the alloted time. Else returns the
  836. * errno with remaining time filled in timeout argument.
  837. */
  838. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  839. bool interruptible, struct timespec *timeout)
  840. {
  841. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  842. struct timespec before, now, wait_time={1,0};
  843. unsigned long timeout_jiffies;
  844. long end;
  845. bool wait_forever = true;
  846. int ret;
  847. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  848. return 0;
  849. trace_i915_gem_request_wait_begin(ring, seqno);
  850. if (timeout != NULL) {
  851. wait_time = *timeout;
  852. wait_forever = false;
  853. }
  854. timeout_jiffies = timespec_to_jiffies(&wait_time);
  855. if (WARN_ON(!ring->irq_get(ring)))
  856. return -ENODEV;
  857. /* Record current time in case interrupted by signal, or wedged * */
  858. getrawmonotonic(&before);
  859. #define EXIT_COND \
  860. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  861. atomic_read(&dev_priv->mm.wedged))
  862. do {
  863. if (interruptible)
  864. end = wait_event_interruptible_timeout(ring->irq_queue,
  865. EXIT_COND,
  866. timeout_jiffies);
  867. else
  868. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  869. timeout_jiffies);
  870. ret = i915_gem_check_wedge(dev_priv, interruptible);
  871. if (ret)
  872. end = ret;
  873. } while (end == 0 && wait_forever);
  874. getrawmonotonic(&now);
  875. ring->irq_put(ring);
  876. trace_i915_gem_request_wait_end(ring, seqno);
  877. #undef EXIT_COND
  878. if (timeout) {
  879. struct timespec sleep_time = timespec_sub(now, before);
  880. *timeout = timespec_sub(*timeout, sleep_time);
  881. }
  882. switch (end) {
  883. case -EIO:
  884. case -EAGAIN: /* Wedged */
  885. case -ERESTARTSYS: /* Signal */
  886. return (int)end;
  887. case 0: /* Timeout */
  888. if (timeout)
  889. set_normalized_timespec(timeout, 0, 0);
  890. return -ETIME;
  891. default: /* Completed */
  892. WARN_ON(end < 0); /* We're not aware of other errors */
  893. return 0;
  894. }
  895. }
  896. /**
  897. * Waits for a sequence number to be signaled, and cleans up the
  898. * request and object lists appropriately for that event.
  899. */
  900. int
  901. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  902. {
  903. struct drm_device *dev = ring->dev;
  904. struct drm_i915_private *dev_priv = dev->dev_private;
  905. bool interruptible = dev_priv->mm.interruptible;
  906. int ret;
  907. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  908. BUG_ON(seqno == 0);
  909. ret = i915_gem_check_wedge(dev_priv, interruptible);
  910. if (ret)
  911. return ret;
  912. ret = i915_gem_check_olr(ring, seqno);
  913. if (ret)
  914. return ret;
  915. return __wait_seqno(ring, seqno, interruptible, NULL);
  916. }
  917. /**
  918. * Ensures that all rendering to the object has completed and the object is
  919. * safe to unbind from the GTT or access from the CPU.
  920. */
  921. static __must_check int
  922. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  923. bool readonly)
  924. {
  925. struct intel_ring_buffer *ring = obj->ring;
  926. u32 seqno;
  927. int ret;
  928. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  929. if (seqno == 0)
  930. return 0;
  931. ret = i915_wait_seqno(ring, seqno);
  932. if (ret)
  933. return ret;
  934. i915_gem_retire_requests_ring(ring);
  935. /* Manually manage the write flush as we may have not yet
  936. * retired the buffer.
  937. */
  938. if (obj->last_write_seqno &&
  939. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  940. obj->last_write_seqno = 0;
  941. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  942. }
  943. return 0;
  944. }
  945. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  946. * as the object state may change during this call.
  947. */
  948. static __must_check int
  949. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  950. bool readonly)
  951. {
  952. struct drm_device *dev = obj->base.dev;
  953. struct drm_i915_private *dev_priv = dev->dev_private;
  954. struct intel_ring_buffer *ring = obj->ring;
  955. u32 seqno;
  956. int ret;
  957. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  958. BUG_ON(!dev_priv->mm.interruptible);
  959. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  960. if (seqno == 0)
  961. return 0;
  962. ret = i915_gem_check_wedge(dev_priv, true);
  963. if (ret)
  964. return ret;
  965. ret = i915_gem_check_olr(ring, seqno);
  966. if (ret)
  967. return ret;
  968. mutex_unlock(&dev->struct_mutex);
  969. ret = __wait_seqno(ring, seqno, true, NULL);
  970. mutex_lock(&dev->struct_mutex);
  971. i915_gem_retire_requests_ring(ring);
  972. /* Manually manage the write flush as we may have not yet
  973. * retired the buffer.
  974. */
  975. if (obj->last_write_seqno &&
  976. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  977. obj->last_write_seqno = 0;
  978. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  979. }
  980. return ret;
  981. }
  982. /**
  983. * Called when user space prepares to use an object with the CPU, either
  984. * through the mmap ioctl's mapping or a GTT mapping.
  985. */
  986. int
  987. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  988. struct drm_file *file)
  989. {
  990. struct drm_i915_gem_set_domain *args = data;
  991. struct drm_i915_gem_object *obj;
  992. uint32_t read_domains = args->read_domains;
  993. uint32_t write_domain = args->write_domain;
  994. int ret;
  995. /* Only handle setting domains to types used by the CPU. */
  996. if (write_domain & I915_GEM_GPU_DOMAINS)
  997. return -EINVAL;
  998. if (read_domains & I915_GEM_GPU_DOMAINS)
  999. return -EINVAL;
  1000. /* Having something in the write domain implies it's in the read
  1001. * domain, and only that read domain. Enforce that in the request.
  1002. */
  1003. if (write_domain != 0 && read_domains != write_domain)
  1004. return -EINVAL;
  1005. ret = i915_mutex_lock_interruptible(dev);
  1006. if (ret)
  1007. return ret;
  1008. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1009. if (&obj->base == NULL) {
  1010. ret = -ENOENT;
  1011. goto unlock;
  1012. }
  1013. /* Try to flush the object off the GPU without holding the lock.
  1014. * We will repeat the flush holding the lock in the normal manner
  1015. * to catch cases where we are gazumped.
  1016. */
  1017. ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
  1018. if (ret)
  1019. goto unref;
  1020. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1021. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1022. /* Silently promote "you're not bound, there was nothing to do"
  1023. * to success, since the client was just asking us to
  1024. * make sure everything was done.
  1025. */
  1026. if (ret == -EINVAL)
  1027. ret = 0;
  1028. } else {
  1029. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1030. }
  1031. unref:
  1032. drm_gem_object_unreference(&obj->base);
  1033. unlock:
  1034. mutex_unlock(&dev->struct_mutex);
  1035. return ret;
  1036. }
  1037. /**
  1038. * Called when user space has done writes to this buffer
  1039. */
  1040. int
  1041. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1042. struct drm_file *file)
  1043. {
  1044. struct drm_i915_gem_sw_finish *args = data;
  1045. struct drm_i915_gem_object *obj;
  1046. int ret = 0;
  1047. ret = i915_mutex_lock_interruptible(dev);
  1048. if (ret)
  1049. return ret;
  1050. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1051. if (&obj->base == NULL) {
  1052. ret = -ENOENT;
  1053. goto unlock;
  1054. }
  1055. /* Pinned buffers may be scanout, so flush the cache */
  1056. if (obj->pin_count)
  1057. i915_gem_object_flush_cpu_write_domain(obj);
  1058. drm_gem_object_unreference(&obj->base);
  1059. unlock:
  1060. mutex_unlock(&dev->struct_mutex);
  1061. return ret;
  1062. }
  1063. /**
  1064. * Maps the contents of an object, returning the address it is mapped
  1065. * into.
  1066. *
  1067. * While the mapping holds a reference on the contents of the object, it doesn't
  1068. * imply a ref on the object itself.
  1069. */
  1070. int
  1071. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1072. struct drm_file *file)
  1073. {
  1074. struct drm_i915_gem_mmap *args = data;
  1075. struct drm_gem_object *obj;
  1076. unsigned long addr;
  1077. obj = drm_gem_object_lookup(dev, file, args->handle);
  1078. if (obj == NULL)
  1079. return -ENOENT;
  1080. /* prime objects have no backing filp to GEM mmap
  1081. * pages from.
  1082. */
  1083. if (!obj->filp) {
  1084. drm_gem_object_unreference_unlocked(obj);
  1085. return -EINVAL;
  1086. }
  1087. addr = vm_mmap(obj->filp, 0, args->size,
  1088. PROT_READ | PROT_WRITE, MAP_SHARED,
  1089. args->offset);
  1090. drm_gem_object_unreference_unlocked(obj);
  1091. if (IS_ERR((void *)addr))
  1092. return addr;
  1093. args->addr_ptr = (uint64_t) addr;
  1094. return 0;
  1095. }
  1096. /**
  1097. * i915_gem_fault - fault a page into the GTT
  1098. * vma: VMA in question
  1099. * vmf: fault info
  1100. *
  1101. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1102. * from userspace. The fault handler takes care of binding the object to
  1103. * the GTT (if needed), allocating and programming a fence register (again,
  1104. * only if needed based on whether the old reg is still valid or the object
  1105. * is tiled) and inserting a new PTE into the faulting process.
  1106. *
  1107. * Note that the faulting process may involve evicting existing objects
  1108. * from the GTT and/or fence registers to make room. So performance may
  1109. * suffer if the GTT working set is large or there are few fence registers
  1110. * left.
  1111. */
  1112. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1113. {
  1114. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1115. struct drm_device *dev = obj->base.dev;
  1116. drm_i915_private_t *dev_priv = dev->dev_private;
  1117. pgoff_t page_offset;
  1118. unsigned long pfn;
  1119. int ret = 0;
  1120. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1121. /* We don't use vmf->pgoff since that has the fake offset */
  1122. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1123. PAGE_SHIFT;
  1124. ret = i915_mutex_lock_interruptible(dev);
  1125. if (ret)
  1126. goto out;
  1127. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1128. /* Now bind it into the GTT if needed */
  1129. if (!obj->map_and_fenceable) {
  1130. ret = i915_gem_object_unbind(obj);
  1131. if (ret)
  1132. goto unlock;
  1133. }
  1134. if (!obj->gtt_space) {
  1135. ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
  1136. if (ret)
  1137. goto unlock;
  1138. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1139. if (ret)
  1140. goto unlock;
  1141. }
  1142. if (!obj->has_global_gtt_mapping)
  1143. i915_gem_gtt_bind_object(obj, obj->cache_level);
  1144. ret = i915_gem_object_get_fence(obj);
  1145. if (ret)
  1146. goto unlock;
  1147. if (i915_gem_object_is_inactive(obj))
  1148. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1149. obj->fault_mappable = true;
  1150. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  1151. page_offset;
  1152. /* Finally, remap it using the new GTT offset */
  1153. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1154. unlock:
  1155. mutex_unlock(&dev->struct_mutex);
  1156. out:
  1157. switch (ret) {
  1158. case -EIO:
  1159. /* If this -EIO is due to a gpu hang, give the reset code a
  1160. * chance to clean up the mess. Otherwise return the proper
  1161. * SIGBUS. */
  1162. if (!atomic_read(&dev_priv->mm.wedged))
  1163. return VM_FAULT_SIGBUS;
  1164. case -EAGAIN:
  1165. /* Give the error handler a chance to run and move the
  1166. * objects off the GPU active list. Next time we service the
  1167. * fault, we should be able to transition the page into the
  1168. * GTT without touching the GPU (and so avoid further
  1169. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1170. * with coherency, just lost writes.
  1171. */
  1172. set_need_resched();
  1173. case 0:
  1174. case -ERESTARTSYS:
  1175. case -EINTR:
  1176. return VM_FAULT_NOPAGE;
  1177. case -ENOMEM:
  1178. return VM_FAULT_OOM;
  1179. default:
  1180. return VM_FAULT_SIGBUS;
  1181. }
  1182. }
  1183. /**
  1184. * i915_gem_release_mmap - remove physical page mappings
  1185. * @obj: obj in question
  1186. *
  1187. * Preserve the reservation of the mmapping with the DRM core code, but
  1188. * relinquish ownership of the pages back to the system.
  1189. *
  1190. * It is vital that we remove the page mapping if we have mapped a tiled
  1191. * object through the GTT and then lose the fence register due to
  1192. * resource pressure. Similarly if the object has been moved out of the
  1193. * aperture, than pages mapped into userspace must be revoked. Removing the
  1194. * mapping will then trigger a page fault on the next user access, allowing
  1195. * fixup by i915_gem_fault().
  1196. */
  1197. void
  1198. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1199. {
  1200. if (!obj->fault_mappable)
  1201. return;
  1202. if (obj->base.dev->dev_mapping)
  1203. unmap_mapping_range(obj->base.dev->dev_mapping,
  1204. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1205. obj->base.size, 1);
  1206. obj->fault_mappable = false;
  1207. }
  1208. static uint32_t
  1209. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1210. {
  1211. uint32_t gtt_size;
  1212. if (INTEL_INFO(dev)->gen >= 4 ||
  1213. tiling_mode == I915_TILING_NONE)
  1214. return size;
  1215. /* Previous chips need a power-of-two fence region when tiling */
  1216. if (INTEL_INFO(dev)->gen == 3)
  1217. gtt_size = 1024*1024;
  1218. else
  1219. gtt_size = 512*1024;
  1220. while (gtt_size < size)
  1221. gtt_size <<= 1;
  1222. return gtt_size;
  1223. }
  1224. /**
  1225. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1226. * @obj: object to check
  1227. *
  1228. * Return the required GTT alignment for an object, taking into account
  1229. * potential fence register mapping.
  1230. */
  1231. static uint32_t
  1232. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1233. uint32_t size,
  1234. int tiling_mode)
  1235. {
  1236. /*
  1237. * Minimum alignment is 4k (GTT page size), but might be greater
  1238. * if a fence register is needed for the object.
  1239. */
  1240. if (INTEL_INFO(dev)->gen >= 4 ||
  1241. tiling_mode == I915_TILING_NONE)
  1242. return 4096;
  1243. /*
  1244. * Previous chips need to be aligned to the size of the smallest
  1245. * fence register that can contain the object.
  1246. */
  1247. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1248. }
  1249. /**
  1250. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1251. * unfenced object
  1252. * @dev: the device
  1253. * @size: size of the object
  1254. * @tiling_mode: tiling mode of the object
  1255. *
  1256. * Return the required GTT alignment for an object, only taking into account
  1257. * unfenced tiled surface requirements.
  1258. */
  1259. uint32_t
  1260. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1261. uint32_t size,
  1262. int tiling_mode)
  1263. {
  1264. /*
  1265. * Minimum alignment is 4k (GTT page size) for sane hw.
  1266. */
  1267. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1268. tiling_mode == I915_TILING_NONE)
  1269. return 4096;
  1270. /* Previous hardware however needs to be aligned to a power-of-two
  1271. * tile height. The simplest method for determining this is to reuse
  1272. * the power-of-tile object size.
  1273. */
  1274. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1275. }
  1276. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1277. {
  1278. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1279. int ret;
  1280. if (obj->base.map_list.map)
  1281. return 0;
  1282. ret = drm_gem_create_mmap_offset(&obj->base);
  1283. if (ret != -ENOSPC)
  1284. return ret;
  1285. /* Badly fragmented mmap space? The only way we can recover
  1286. * space is by destroying unwanted objects. We can't randomly release
  1287. * mmap_offsets as userspace expects them to be persistent for the
  1288. * lifetime of the objects. The closest we can is to release the
  1289. * offsets on purgeable objects by truncating it and marking it purged,
  1290. * which prevents userspace from ever using that object again.
  1291. */
  1292. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1293. ret = drm_gem_create_mmap_offset(&obj->base);
  1294. if (ret != -ENOSPC)
  1295. return ret;
  1296. i915_gem_shrink_all(dev_priv);
  1297. return drm_gem_create_mmap_offset(&obj->base);
  1298. }
  1299. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1300. {
  1301. if (!obj->base.map_list.map)
  1302. return;
  1303. drm_gem_free_mmap_offset(&obj->base);
  1304. }
  1305. int
  1306. i915_gem_mmap_gtt(struct drm_file *file,
  1307. struct drm_device *dev,
  1308. uint32_t handle,
  1309. uint64_t *offset)
  1310. {
  1311. struct drm_i915_private *dev_priv = dev->dev_private;
  1312. struct drm_i915_gem_object *obj;
  1313. int ret;
  1314. ret = i915_mutex_lock_interruptible(dev);
  1315. if (ret)
  1316. return ret;
  1317. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1318. if (&obj->base == NULL) {
  1319. ret = -ENOENT;
  1320. goto unlock;
  1321. }
  1322. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1323. ret = -E2BIG;
  1324. goto out;
  1325. }
  1326. if (obj->madv != I915_MADV_WILLNEED) {
  1327. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1328. ret = -EINVAL;
  1329. goto out;
  1330. }
  1331. ret = i915_gem_object_create_mmap_offset(obj);
  1332. if (ret)
  1333. goto out;
  1334. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1335. out:
  1336. drm_gem_object_unreference(&obj->base);
  1337. unlock:
  1338. mutex_unlock(&dev->struct_mutex);
  1339. return ret;
  1340. }
  1341. /**
  1342. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1343. * @dev: DRM device
  1344. * @data: GTT mapping ioctl data
  1345. * @file: GEM object info
  1346. *
  1347. * Simply returns the fake offset to userspace so it can mmap it.
  1348. * The mmap call will end up in drm_gem_mmap(), which will set things
  1349. * up so we can get faults in the handler above.
  1350. *
  1351. * The fault handler will take care of binding the object into the GTT
  1352. * (since it may have been evicted to make room for something), allocating
  1353. * a fence register, and mapping the appropriate aperture address into
  1354. * userspace.
  1355. */
  1356. int
  1357. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1358. struct drm_file *file)
  1359. {
  1360. struct drm_i915_gem_mmap_gtt *args = data;
  1361. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1362. }
  1363. /* Immediately discard the backing storage */
  1364. static void
  1365. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1366. {
  1367. struct inode *inode;
  1368. i915_gem_object_free_mmap_offset(obj);
  1369. if (obj->base.filp == NULL)
  1370. return;
  1371. /* Our goal here is to return as much of the memory as
  1372. * is possible back to the system as we are called from OOM.
  1373. * To do this we must instruct the shmfs to drop all of its
  1374. * backing pages, *now*.
  1375. */
  1376. inode = obj->base.filp->f_path.dentry->d_inode;
  1377. shmem_truncate_range(inode, 0, (loff_t)-1);
  1378. obj->madv = __I915_MADV_PURGED;
  1379. }
  1380. static inline int
  1381. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1382. {
  1383. return obj->madv == I915_MADV_DONTNEED;
  1384. }
  1385. static void
  1386. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1387. {
  1388. int page_count = obj->base.size / PAGE_SIZE;
  1389. struct scatterlist *sg;
  1390. int ret, i;
  1391. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1392. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1393. if (ret) {
  1394. /* In the event of a disaster, abandon all caches and
  1395. * hope for the best.
  1396. */
  1397. WARN_ON(ret != -EIO);
  1398. i915_gem_clflush_object(obj);
  1399. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1400. }
  1401. if (i915_gem_object_needs_bit17_swizzle(obj))
  1402. i915_gem_object_save_bit_17_swizzle(obj);
  1403. if (obj->madv == I915_MADV_DONTNEED)
  1404. obj->dirty = 0;
  1405. for_each_sg(obj->pages->sgl, sg, page_count, i) {
  1406. struct page *page = sg_page(sg);
  1407. if (obj->dirty)
  1408. set_page_dirty(page);
  1409. if (obj->madv == I915_MADV_WILLNEED)
  1410. mark_page_accessed(page);
  1411. page_cache_release(page);
  1412. }
  1413. obj->dirty = 0;
  1414. sg_free_table(obj->pages);
  1415. kfree(obj->pages);
  1416. }
  1417. static int
  1418. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1419. {
  1420. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1421. if (obj->pages == NULL)
  1422. return 0;
  1423. BUG_ON(obj->gtt_space);
  1424. if (obj->pages_pin_count)
  1425. return -EBUSY;
  1426. ops->put_pages(obj);
  1427. obj->pages = NULL;
  1428. list_del(&obj->gtt_list);
  1429. if (i915_gem_object_is_purgeable(obj))
  1430. i915_gem_object_truncate(obj);
  1431. return 0;
  1432. }
  1433. static long
  1434. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1435. {
  1436. struct drm_i915_gem_object *obj, *next;
  1437. long count = 0;
  1438. list_for_each_entry_safe(obj, next,
  1439. &dev_priv->mm.unbound_list,
  1440. gtt_list) {
  1441. if (i915_gem_object_is_purgeable(obj) &&
  1442. i915_gem_object_put_pages(obj) == 0) {
  1443. count += obj->base.size >> PAGE_SHIFT;
  1444. if (count >= target)
  1445. return count;
  1446. }
  1447. }
  1448. list_for_each_entry_safe(obj, next,
  1449. &dev_priv->mm.inactive_list,
  1450. mm_list) {
  1451. if (i915_gem_object_is_purgeable(obj) &&
  1452. i915_gem_object_unbind(obj) == 0 &&
  1453. i915_gem_object_put_pages(obj) == 0) {
  1454. count += obj->base.size >> PAGE_SHIFT;
  1455. if (count >= target)
  1456. return count;
  1457. }
  1458. }
  1459. return count;
  1460. }
  1461. static void
  1462. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1463. {
  1464. struct drm_i915_gem_object *obj, *next;
  1465. i915_gem_evict_everything(dev_priv->dev);
  1466. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
  1467. i915_gem_object_put_pages(obj);
  1468. }
  1469. static int
  1470. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1471. {
  1472. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1473. int page_count, i;
  1474. struct address_space *mapping;
  1475. struct sg_table *st;
  1476. struct scatterlist *sg;
  1477. struct page *page;
  1478. gfp_t gfp;
  1479. /* Assert that the object is not currently in any GPU domain. As it
  1480. * wasn't in the GTT, there shouldn't be any way it could have been in
  1481. * a GPU cache
  1482. */
  1483. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1484. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1485. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1486. if (st == NULL)
  1487. return -ENOMEM;
  1488. page_count = obj->base.size / PAGE_SIZE;
  1489. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1490. sg_free_table(st);
  1491. kfree(st);
  1492. return -ENOMEM;
  1493. }
  1494. /* Get the list of pages out of our struct file. They'll be pinned
  1495. * at this point until we release them.
  1496. *
  1497. * Fail silently without starting the shrinker
  1498. */
  1499. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  1500. gfp = mapping_gfp_mask(mapping);
  1501. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1502. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1503. for_each_sg(st->sgl, sg, page_count, i) {
  1504. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1505. if (IS_ERR(page)) {
  1506. i915_gem_purge(dev_priv, page_count);
  1507. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1508. }
  1509. if (IS_ERR(page)) {
  1510. /* We've tried hard to allocate the memory by reaping
  1511. * our own buffer, now let the real VM do its job and
  1512. * go down in flames if truly OOM.
  1513. */
  1514. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
  1515. gfp |= __GFP_IO | __GFP_WAIT;
  1516. i915_gem_shrink_all(dev_priv);
  1517. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1518. if (IS_ERR(page))
  1519. goto err_pages;
  1520. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1521. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1522. }
  1523. sg_set_page(sg, page, PAGE_SIZE, 0);
  1524. }
  1525. if (i915_gem_object_needs_bit17_swizzle(obj))
  1526. i915_gem_object_do_bit_17_swizzle(obj);
  1527. obj->pages = st;
  1528. return 0;
  1529. err_pages:
  1530. for_each_sg(st->sgl, sg, i, page_count)
  1531. page_cache_release(sg_page(sg));
  1532. sg_free_table(st);
  1533. kfree(st);
  1534. return PTR_ERR(page);
  1535. }
  1536. /* Ensure that the associated pages are gathered from the backing storage
  1537. * and pinned into our object. i915_gem_object_get_pages() may be called
  1538. * multiple times before they are released by a single call to
  1539. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1540. * either as a result of memory pressure (reaping pages under the shrinker)
  1541. * or as the object is itself released.
  1542. */
  1543. int
  1544. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1545. {
  1546. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1547. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1548. int ret;
  1549. if (obj->pages)
  1550. return 0;
  1551. BUG_ON(obj->pages_pin_count);
  1552. ret = ops->get_pages(obj);
  1553. if (ret)
  1554. return ret;
  1555. list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  1556. return 0;
  1557. }
  1558. void
  1559. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1560. struct intel_ring_buffer *ring,
  1561. u32 seqno)
  1562. {
  1563. struct drm_device *dev = obj->base.dev;
  1564. struct drm_i915_private *dev_priv = dev->dev_private;
  1565. BUG_ON(ring == NULL);
  1566. obj->ring = ring;
  1567. /* Add a reference if we're newly entering the active list. */
  1568. if (!obj->active) {
  1569. drm_gem_object_reference(&obj->base);
  1570. obj->active = 1;
  1571. }
  1572. /* Move from whatever list we were on to the tail of execution. */
  1573. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1574. list_move_tail(&obj->ring_list, &ring->active_list);
  1575. obj->last_read_seqno = seqno;
  1576. if (obj->fenced_gpu_access) {
  1577. obj->last_fenced_seqno = seqno;
  1578. /* Bump MRU to take account of the delayed flush */
  1579. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1580. struct drm_i915_fence_reg *reg;
  1581. reg = &dev_priv->fence_regs[obj->fence_reg];
  1582. list_move_tail(&reg->lru_list,
  1583. &dev_priv->mm.fence_list);
  1584. }
  1585. }
  1586. }
  1587. static void
  1588. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1589. {
  1590. struct drm_device *dev = obj->base.dev;
  1591. struct drm_i915_private *dev_priv = dev->dev_private;
  1592. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1593. BUG_ON(!obj->active);
  1594. if (obj->pin_count) /* are we a framebuffer? */
  1595. intel_mark_fb_idle(obj);
  1596. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1597. list_del_init(&obj->ring_list);
  1598. obj->ring = NULL;
  1599. obj->last_read_seqno = 0;
  1600. obj->last_write_seqno = 0;
  1601. obj->base.write_domain = 0;
  1602. obj->last_fenced_seqno = 0;
  1603. obj->fenced_gpu_access = false;
  1604. obj->active = 0;
  1605. drm_gem_object_unreference(&obj->base);
  1606. WARN_ON(i915_verify_lists(dev));
  1607. }
  1608. static u32
  1609. i915_gem_get_seqno(struct drm_device *dev)
  1610. {
  1611. drm_i915_private_t *dev_priv = dev->dev_private;
  1612. u32 seqno = dev_priv->next_seqno;
  1613. /* reserve 0 for non-seqno */
  1614. if (++dev_priv->next_seqno == 0)
  1615. dev_priv->next_seqno = 1;
  1616. return seqno;
  1617. }
  1618. u32
  1619. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1620. {
  1621. if (ring->outstanding_lazy_request == 0)
  1622. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1623. return ring->outstanding_lazy_request;
  1624. }
  1625. int
  1626. i915_add_request(struct intel_ring_buffer *ring,
  1627. struct drm_file *file,
  1628. struct drm_i915_gem_request *request)
  1629. {
  1630. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1631. uint32_t seqno;
  1632. u32 request_ring_position;
  1633. int was_empty;
  1634. int ret;
  1635. /*
  1636. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1637. * after having emitted the batchbuffer command. Hence we need to fix
  1638. * things up similar to emitting the lazy request. The difference here
  1639. * is that the flush _must_ happen before the next request, no matter
  1640. * what.
  1641. */
  1642. ret = intel_ring_flush_all_caches(ring);
  1643. if (ret)
  1644. return ret;
  1645. if (request == NULL) {
  1646. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1647. if (request == NULL)
  1648. return -ENOMEM;
  1649. }
  1650. seqno = i915_gem_next_request_seqno(ring);
  1651. /* Record the position of the start of the request so that
  1652. * should we detect the updated seqno part-way through the
  1653. * GPU processing the request, we never over-estimate the
  1654. * position of the head.
  1655. */
  1656. request_ring_position = intel_ring_get_tail(ring);
  1657. ret = ring->add_request(ring, &seqno);
  1658. if (ret) {
  1659. kfree(request);
  1660. return ret;
  1661. }
  1662. trace_i915_gem_request_add(ring, seqno);
  1663. request->seqno = seqno;
  1664. request->ring = ring;
  1665. request->tail = request_ring_position;
  1666. request->emitted_jiffies = jiffies;
  1667. was_empty = list_empty(&ring->request_list);
  1668. list_add_tail(&request->list, &ring->request_list);
  1669. request->file_priv = NULL;
  1670. if (file) {
  1671. struct drm_i915_file_private *file_priv = file->driver_priv;
  1672. spin_lock(&file_priv->mm.lock);
  1673. request->file_priv = file_priv;
  1674. list_add_tail(&request->client_list,
  1675. &file_priv->mm.request_list);
  1676. spin_unlock(&file_priv->mm.lock);
  1677. }
  1678. ring->outstanding_lazy_request = 0;
  1679. if (!dev_priv->mm.suspended) {
  1680. if (i915_enable_hangcheck) {
  1681. mod_timer(&dev_priv->hangcheck_timer,
  1682. round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
  1683. }
  1684. if (was_empty) {
  1685. queue_delayed_work(dev_priv->wq,
  1686. &dev_priv->mm.retire_work,
  1687. round_jiffies_up_relative(HZ));
  1688. intel_mark_busy(dev_priv->dev);
  1689. }
  1690. }
  1691. return 0;
  1692. }
  1693. static inline void
  1694. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1695. {
  1696. struct drm_i915_file_private *file_priv = request->file_priv;
  1697. if (!file_priv)
  1698. return;
  1699. spin_lock(&file_priv->mm.lock);
  1700. if (request->file_priv) {
  1701. list_del(&request->client_list);
  1702. request->file_priv = NULL;
  1703. }
  1704. spin_unlock(&file_priv->mm.lock);
  1705. }
  1706. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1707. struct intel_ring_buffer *ring)
  1708. {
  1709. while (!list_empty(&ring->request_list)) {
  1710. struct drm_i915_gem_request *request;
  1711. request = list_first_entry(&ring->request_list,
  1712. struct drm_i915_gem_request,
  1713. list);
  1714. list_del(&request->list);
  1715. i915_gem_request_remove_from_client(request);
  1716. kfree(request);
  1717. }
  1718. while (!list_empty(&ring->active_list)) {
  1719. struct drm_i915_gem_object *obj;
  1720. obj = list_first_entry(&ring->active_list,
  1721. struct drm_i915_gem_object,
  1722. ring_list);
  1723. i915_gem_object_move_to_inactive(obj);
  1724. }
  1725. }
  1726. static void i915_gem_reset_fences(struct drm_device *dev)
  1727. {
  1728. struct drm_i915_private *dev_priv = dev->dev_private;
  1729. int i;
  1730. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1731. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1732. i915_gem_write_fence(dev, i, NULL);
  1733. if (reg->obj)
  1734. i915_gem_object_fence_lost(reg->obj);
  1735. reg->pin_count = 0;
  1736. reg->obj = NULL;
  1737. INIT_LIST_HEAD(&reg->lru_list);
  1738. }
  1739. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1740. }
  1741. void i915_gem_reset(struct drm_device *dev)
  1742. {
  1743. struct drm_i915_private *dev_priv = dev->dev_private;
  1744. struct drm_i915_gem_object *obj;
  1745. struct intel_ring_buffer *ring;
  1746. int i;
  1747. for_each_ring(ring, dev_priv, i)
  1748. i915_gem_reset_ring_lists(dev_priv, ring);
  1749. /* Move everything out of the GPU domains to ensure we do any
  1750. * necessary invalidation upon reuse.
  1751. */
  1752. list_for_each_entry(obj,
  1753. &dev_priv->mm.inactive_list,
  1754. mm_list)
  1755. {
  1756. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1757. }
  1758. /* The fence registers are invalidated so clear them out */
  1759. i915_gem_reset_fences(dev);
  1760. }
  1761. /**
  1762. * This function clears the request list as sequence numbers are passed.
  1763. */
  1764. void
  1765. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1766. {
  1767. uint32_t seqno;
  1768. int i;
  1769. if (list_empty(&ring->request_list))
  1770. return;
  1771. WARN_ON(i915_verify_lists(ring->dev));
  1772. seqno = ring->get_seqno(ring, true);
  1773. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1774. if (seqno >= ring->sync_seqno[i])
  1775. ring->sync_seqno[i] = 0;
  1776. while (!list_empty(&ring->request_list)) {
  1777. struct drm_i915_gem_request *request;
  1778. request = list_first_entry(&ring->request_list,
  1779. struct drm_i915_gem_request,
  1780. list);
  1781. if (!i915_seqno_passed(seqno, request->seqno))
  1782. break;
  1783. trace_i915_gem_request_retire(ring, request->seqno);
  1784. /* We know the GPU must have read the request to have
  1785. * sent us the seqno + interrupt, so use the position
  1786. * of tail of the request to update the last known position
  1787. * of the GPU head.
  1788. */
  1789. ring->last_retired_head = request->tail;
  1790. list_del(&request->list);
  1791. i915_gem_request_remove_from_client(request);
  1792. kfree(request);
  1793. }
  1794. /* Move any buffers on the active list that are no longer referenced
  1795. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1796. */
  1797. while (!list_empty(&ring->active_list)) {
  1798. struct drm_i915_gem_object *obj;
  1799. obj = list_first_entry(&ring->active_list,
  1800. struct drm_i915_gem_object,
  1801. ring_list);
  1802. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1803. break;
  1804. i915_gem_object_move_to_inactive(obj);
  1805. }
  1806. if (unlikely(ring->trace_irq_seqno &&
  1807. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1808. ring->irq_put(ring);
  1809. ring->trace_irq_seqno = 0;
  1810. }
  1811. WARN_ON(i915_verify_lists(ring->dev));
  1812. }
  1813. void
  1814. i915_gem_retire_requests(struct drm_device *dev)
  1815. {
  1816. drm_i915_private_t *dev_priv = dev->dev_private;
  1817. struct intel_ring_buffer *ring;
  1818. int i;
  1819. for_each_ring(ring, dev_priv, i)
  1820. i915_gem_retire_requests_ring(ring);
  1821. }
  1822. static void
  1823. i915_gem_retire_work_handler(struct work_struct *work)
  1824. {
  1825. drm_i915_private_t *dev_priv;
  1826. struct drm_device *dev;
  1827. struct intel_ring_buffer *ring;
  1828. bool idle;
  1829. int i;
  1830. dev_priv = container_of(work, drm_i915_private_t,
  1831. mm.retire_work.work);
  1832. dev = dev_priv->dev;
  1833. /* Come back later if the device is busy... */
  1834. if (!mutex_trylock(&dev->struct_mutex)) {
  1835. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  1836. round_jiffies_up_relative(HZ));
  1837. return;
  1838. }
  1839. i915_gem_retire_requests(dev);
  1840. /* Send a periodic flush down the ring so we don't hold onto GEM
  1841. * objects indefinitely.
  1842. */
  1843. idle = true;
  1844. for_each_ring(ring, dev_priv, i) {
  1845. if (ring->gpu_caches_dirty)
  1846. i915_add_request(ring, NULL, NULL);
  1847. idle &= list_empty(&ring->request_list);
  1848. }
  1849. if (!dev_priv->mm.suspended && !idle)
  1850. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  1851. round_jiffies_up_relative(HZ));
  1852. if (idle)
  1853. intel_mark_idle(dev);
  1854. mutex_unlock(&dev->struct_mutex);
  1855. }
  1856. /**
  1857. * Ensures that an object will eventually get non-busy by flushing any required
  1858. * write domains, emitting any outstanding lazy request and retiring and
  1859. * completed requests.
  1860. */
  1861. static int
  1862. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1863. {
  1864. int ret;
  1865. if (obj->active) {
  1866. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  1867. if (ret)
  1868. return ret;
  1869. i915_gem_retire_requests_ring(obj->ring);
  1870. }
  1871. return 0;
  1872. }
  1873. /**
  1874. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1875. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1876. *
  1877. * Returns 0 if successful, else an error is returned with the remaining time in
  1878. * the timeout parameter.
  1879. * -ETIME: object is still busy after timeout
  1880. * -ERESTARTSYS: signal interrupted the wait
  1881. * -ENONENT: object doesn't exist
  1882. * Also possible, but rare:
  1883. * -EAGAIN: GPU wedged
  1884. * -ENOMEM: damn
  1885. * -ENODEV: Internal IRQ fail
  1886. * -E?: The add request failed
  1887. *
  1888. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1889. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1890. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1891. * without holding struct_mutex the object may become re-busied before this
  1892. * function completes. A similar but shorter * race condition exists in the busy
  1893. * ioctl
  1894. */
  1895. int
  1896. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1897. {
  1898. struct drm_i915_gem_wait *args = data;
  1899. struct drm_i915_gem_object *obj;
  1900. struct intel_ring_buffer *ring = NULL;
  1901. struct timespec timeout_stack, *timeout = NULL;
  1902. u32 seqno = 0;
  1903. int ret = 0;
  1904. if (args->timeout_ns >= 0) {
  1905. timeout_stack = ns_to_timespec(args->timeout_ns);
  1906. timeout = &timeout_stack;
  1907. }
  1908. ret = i915_mutex_lock_interruptible(dev);
  1909. if (ret)
  1910. return ret;
  1911. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1912. if (&obj->base == NULL) {
  1913. mutex_unlock(&dev->struct_mutex);
  1914. return -ENOENT;
  1915. }
  1916. /* Need to make sure the object gets inactive eventually. */
  1917. ret = i915_gem_object_flush_active(obj);
  1918. if (ret)
  1919. goto out;
  1920. if (obj->active) {
  1921. seqno = obj->last_read_seqno;
  1922. ring = obj->ring;
  1923. }
  1924. if (seqno == 0)
  1925. goto out;
  1926. /* Do this after OLR check to make sure we make forward progress polling
  1927. * on this IOCTL with a 0 timeout (like busy ioctl)
  1928. */
  1929. if (!args->timeout_ns) {
  1930. ret = -ETIME;
  1931. goto out;
  1932. }
  1933. drm_gem_object_unreference(&obj->base);
  1934. mutex_unlock(&dev->struct_mutex);
  1935. ret = __wait_seqno(ring, seqno, true, timeout);
  1936. if (timeout) {
  1937. WARN_ON(!timespec_valid(timeout));
  1938. args->timeout_ns = timespec_to_ns(timeout);
  1939. }
  1940. return ret;
  1941. out:
  1942. drm_gem_object_unreference(&obj->base);
  1943. mutex_unlock(&dev->struct_mutex);
  1944. return ret;
  1945. }
  1946. /**
  1947. * i915_gem_object_sync - sync an object to a ring.
  1948. *
  1949. * @obj: object which may be in use on another ring.
  1950. * @to: ring we wish to use the object on. May be NULL.
  1951. *
  1952. * This code is meant to abstract object synchronization with the GPU.
  1953. * Calling with NULL implies synchronizing the object with the CPU
  1954. * rather than a particular GPU ring.
  1955. *
  1956. * Returns 0 if successful, else propagates up the lower layer error.
  1957. */
  1958. int
  1959. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1960. struct intel_ring_buffer *to)
  1961. {
  1962. struct intel_ring_buffer *from = obj->ring;
  1963. u32 seqno;
  1964. int ret, idx;
  1965. if (from == NULL || to == from)
  1966. return 0;
  1967. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1968. return i915_gem_object_wait_rendering(obj, false);
  1969. idx = intel_ring_sync_index(from, to);
  1970. seqno = obj->last_read_seqno;
  1971. if (seqno <= from->sync_seqno[idx])
  1972. return 0;
  1973. ret = i915_gem_check_olr(obj->ring, seqno);
  1974. if (ret)
  1975. return ret;
  1976. ret = to->sync_to(to, from, seqno);
  1977. if (!ret)
  1978. from->sync_seqno[idx] = seqno;
  1979. return ret;
  1980. }
  1981. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1982. {
  1983. u32 old_write_domain, old_read_domains;
  1984. /* Act a barrier for all accesses through the GTT */
  1985. mb();
  1986. /* Force a pagefault for domain tracking on next user access */
  1987. i915_gem_release_mmap(obj);
  1988. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1989. return;
  1990. old_read_domains = obj->base.read_domains;
  1991. old_write_domain = obj->base.write_domain;
  1992. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1993. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1994. trace_i915_gem_object_change_domain(obj,
  1995. old_read_domains,
  1996. old_write_domain);
  1997. }
  1998. /**
  1999. * Unbinds an object from the GTT aperture.
  2000. */
  2001. int
  2002. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  2003. {
  2004. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2005. int ret = 0;
  2006. if (obj->gtt_space == NULL)
  2007. return 0;
  2008. if (obj->pin_count)
  2009. return -EBUSY;
  2010. BUG_ON(obj->pages == NULL);
  2011. ret = i915_gem_object_finish_gpu(obj);
  2012. if (ret)
  2013. return ret;
  2014. /* Continue on if we fail due to EIO, the GPU is hung so we
  2015. * should be safe and we need to cleanup or else we might
  2016. * cause memory corruption through use-after-free.
  2017. */
  2018. i915_gem_object_finish_gtt(obj);
  2019. /* release the fence reg _after_ flushing */
  2020. ret = i915_gem_object_put_fence(obj);
  2021. if (ret)
  2022. return ret;
  2023. trace_i915_gem_object_unbind(obj);
  2024. if (obj->has_global_gtt_mapping)
  2025. i915_gem_gtt_unbind_object(obj);
  2026. if (obj->has_aliasing_ppgtt_mapping) {
  2027. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  2028. obj->has_aliasing_ppgtt_mapping = 0;
  2029. }
  2030. i915_gem_gtt_finish_object(obj);
  2031. list_del(&obj->mm_list);
  2032. list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  2033. /* Avoid an unnecessary call to unbind on rebind. */
  2034. obj->map_and_fenceable = true;
  2035. drm_mm_put_block(obj->gtt_space);
  2036. obj->gtt_space = NULL;
  2037. obj->gtt_offset = 0;
  2038. return 0;
  2039. }
  2040. static int i915_ring_idle(struct intel_ring_buffer *ring)
  2041. {
  2042. if (list_empty(&ring->active_list))
  2043. return 0;
  2044. return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
  2045. }
  2046. int i915_gpu_idle(struct drm_device *dev)
  2047. {
  2048. drm_i915_private_t *dev_priv = dev->dev_private;
  2049. struct intel_ring_buffer *ring;
  2050. int ret, i;
  2051. /* Flush everything onto the inactive list. */
  2052. for_each_ring(ring, dev_priv, i) {
  2053. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  2054. if (ret)
  2055. return ret;
  2056. ret = i915_ring_idle(ring);
  2057. if (ret)
  2058. return ret;
  2059. }
  2060. return 0;
  2061. }
  2062. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  2063. struct drm_i915_gem_object *obj)
  2064. {
  2065. drm_i915_private_t *dev_priv = dev->dev_private;
  2066. uint64_t val;
  2067. if (obj) {
  2068. u32 size = obj->gtt_space->size;
  2069. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2070. 0xfffff000) << 32;
  2071. val |= obj->gtt_offset & 0xfffff000;
  2072. val |= (uint64_t)((obj->stride / 128) - 1) <<
  2073. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2074. if (obj->tiling_mode == I915_TILING_Y)
  2075. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2076. val |= I965_FENCE_REG_VALID;
  2077. } else
  2078. val = 0;
  2079. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  2080. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  2081. }
  2082. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2083. struct drm_i915_gem_object *obj)
  2084. {
  2085. drm_i915_private_t *dev_priv = dev->dev_private;
  2086. uint64_t val;
  2087. if (obj) {
  2088. u32 size = obj->gtt_space->size;
  2089. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2090. 0xfffff000) << 32;
  2091. val |= obj->gtt_offset & 0xfffff000;
  2092. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2093. if (obj->tiling_mode == I915_TILING_Y)
  2094. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2095. val |= I965_FENCE_REG_VALID;
  2096. } else
  2097. val = 0;
  2098. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  2099. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  2100. }
  2101. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2102. struct drm_i915_gem_object *obj)
  2103. {
  2104. drm_i915_private_t *dev_priv = dev->dev_private;
  2105. u32 val;
  2106. if (obj) {
  2107. u32 size = obj->gtt_space->size;
  2108. int pitch_val;
  2109. int tile_width;
  2110. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2111. (size & -size) != size ||
  2112. (obj->gtt_offset & (size - 1)),
  2113. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2114. obj->gtt_offset, obj->map_and_fenceable, size);
  2115. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2116. tile_width = 128;
  2117. else
  2118. tile_width = 512;
  2119. /* Note: pitch better be a power of two tile widths */
  2120. pitch_val = obj->stride / tile_width;
  2121. pitch_val = ffs(pitch_val) - 1;
  2122. val = obj->gtt_offset;
  2123. if (obj->tiling_mode == I915_TILING_Y)
  2124. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2125. val |= I915_FENCE_SIZE_BITS(size);
  2126. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2127. val |= I830_FENCE_REG_VALID;
  2128. } else
  2129. val = 0;
  2130. if (reg < 8)
  2131. reg = FENCE_REG_830_0 + reg * 4;
  2132. else
  2133. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2134. I915_WRITE(reg, val);
  2135. POSTING_READ(reg);
  2136. }
  2137. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2138. struct drm_i915_gem_object *obj)
  2139. {
  2140. drm_i915_private_t *dev_priv = dev->dev_private;
  2141. uint32_t val;
  2142. if (obj) {
  2143. u32 size = obj->gtt_space->size;
  2144. uint32_t pitch_val;
  2145. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2146. (size & -size) != size ||
  2147. (obj->gtt_offset & (size - 1)),
  2148. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2149. obj->gtt_offset, size);
  2150. pitch_val = obj->stride / 128;
  2151. pitch_val = ffs(pitch_val) - 1;
  2152. val = obj->gtt_offset;
  2153. if (obj->tiling_mode == I915_TILING_Y)
  2154. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2155. val |= I830_FENCE_SIZE_BITS(size);
  2156. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2157. val |= I830_FENCE_REG_VALID;
  2158. } else
  2159. val = 0;
  2160. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2161. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2162. }
  2163. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2164. struct drm_i915_gem_object *obj)
  2165. {
  2166. switch (INTEL_INFO(dev)->gen) {
  2167. case 7:
  2168. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2169. case 5:
  2170. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2171. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2172. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2173. default: break;
  2174. }
  2175. }
  2176. static inline int fence_number(struct drm_i915_private *dev_priv,
  2177. struct drm_i915_fence_reg *fence)
  2178. {
  2179. return fence - dev_priv->fence_regs;
  2180. }
  2181. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2182. struct drm_i915_fence_reg *fence,
  2183. bool enable)
  2184. {
  2185. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2186. int reg = fence_number(dev_priv, fence);
  2187. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2188. if (enable) {
  2189. obj->fence_reg = reg;
  2190. fence->obj = obj;
  2191. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2192. } else {
  2193. obj->fence_reg = I915_FENCE_REG_NONE;
  2194. fence->obj = NULL;
  2195. list_del_init(&fence->lru_list);
  2196. }
  2197. }
  2198. static int
  2199. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2200. {
  2201. if (obj->last_fenced_seqno) {
  2202. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2203. if (ret)
  2204. return ret;
  2205. obj->last_fenced_seqno = 0;
  2206. }
  2207. /* Ensure that all CPU reads are completed before installing a fence
  2208. * and all writes before removing the fence.
  2209. */
  2210. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2211. mb();
  2212. obj->fenced_gpu_access = false;
  2213. return 0;
  2214. }
  2215. int
  2216. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2217. {
  2218. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2219. int ret;
  2220. ret = i915_gem_object_flush_fence(obj);
  2221. if (ret)
  2222. return ret;
  2223. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2224. return 0;
  2225. i915_gem_object_update_fence(obj,
  2226. &dev_priv->fence_regs[obj->fence_reg],
  2227. false);
  2228. i915_gem_object_fence_lost(obj);
  2229. return 0;
  2230. }
  2231. static struct drm_i915_fence_reg *
  2232. i915_find_fence_reg(struct drm_device *dev)
  2233. {
  2234. struct drm_i915_private *dev_priv = dev->dev_private;
  2235. struct drm_i915_fence_reg *reg, *avail;
  2236. int i;
  2237. /* First try to find a free reg */
  2238. avail = NULL;
  2239. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2240. reg = &dev_priv->fence_regs[i];
  2241. if (!reg->obj)
  2242. return reg;
  2243. if (!reg->pin_count)
  2244. avail = reg;
  2245. }
  2246. if (avail == NULL)
  2247. return NULL;
  2248. /* None available, try to steal one or wait for a user to finish */
  2249. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2250. if (reg->pin_count)
  2251. continue;
  2252. return reg;
  2253. }
  2254. return NULL;
  2255. }
  2256. /**
  2257. * i915_gem_object_get_fence - set up fencing for an object
  2258. * @obj: object to map through a fence reg
  2259. *
  2260. * When mapping objects through the GTT, userspace wants to be able to write
  2261. * to them without having to worry about swizzling if the object is tiled.
  2262. * This function walks the fence regs looking for a free one for @obj,
  2263. * stealing one if it can't find any.
  2264. *
  2265. * It then sets up the reg based on the object's properties: address, pitch
  2266. * and tiling format.
  2267. *
  2268. * For an untiled surface, this removes any existing fence.
  2269. */
  2270. int
  2271. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2272. {
  2273. struct drm_device *dev = obj->base.dev;
  2274. struct drm_i915_private *dev_priv = dev->dev_private;
  2275. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2276. struct drm_i915_fence_reg *reg;
  2277. int ret;
  2278. /* Have we updated the tiling parameters upon the object and so
  2279. * will need to serialise the write to the associated fence register?
  2280. */
  2281. if (obj->fence_dirty) {
  2282. ret = i915_gem_object_flush_fence(obj);
  2283. if (ret)
  2284. return ret;
  2285. }
  2286. /* Just update our place in the LRU if our fence is getting reused. */
  2287. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2288. reg = &dev_priv->fence_regs[obj->fence_reg];
  2289. if (!obj->fence_dirty) {
  2290. list_move_tail(&reg->lru_list,
  2291. &dev_priv->mm.fence_list);
  2292. return 0;
  2293. }
  2294. } else if (enable) {
  2295. reg = i915_find_fence_reg(dev);
  2296. if (reg == NULL)
  2297. return -EDEADLK;
  2298. if (reg->obj) {
  2299. struct drm_i915_gem_object *old = reg->obj;
  2300. ret = i915_gem_object_flush_fence(old);
  2301. if (ret)
  2302. return ret;
  2303. i915_gem_object_fence_lost(old);
  2304. }
  2305. } else
  2306. return 0;
  2307. i915_gem_object_update_fence(obj, reg, enable);
  2308. obj->fence_dirty = false;
  2309. return 0;
  2310. }
  2311. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2312. struct drm_mm_node *gtt_space,
  2313. unsigned long cache_level)
  2314. {
  2315. struct drm_mm_node *other;
  2316. /* On non-LLC machines we have to be careful when putting differing
  2317. * types of snoopable memory together to avoid the prefetcher
  2318. * crossing memory domains and dieing.
  2319. */
  2320. if (HAS_LLC(dev))
  2321. return true;
  2322. if (gtt_space == NULL)
  2323. return true;
  2324. if (list_empty(&gtt_space->node_list))
  2325. return true;
  2326. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2327. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2328. return false;
  2329. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2330. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2331. return false;
  2332. return true;
  2333. }
  2334. static void i915_gem_verify_gtt(struct drm_device *dev)
  2335. {
  2336. #if WATCH_GTT
  2337. struct drm_i915_private *dev_priv = dev->dev_private;
  2338. struct drm_i915_gem_object *obj;
  2339. int err = 0;
  2340. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  2341. if (obj->gtt_space == NULL) {
  2342. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2343. err++;
  2344. continue;
  2345. }
  2346. if (obj->cache_level != obj->gtt_space->color) {
  2347. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2348. obj->gtt_space->start,
  2349. obj->gtt_space->start + obj->gtt_space->size,
  2350. obj->cache_level,
  2351. obj->gtt_space->color);
  2352. err++;
  2353. continue;
  2354. }
  2355. if (!i915_gem_valid_gtt_space(dev,
  2356. obj->gtt_space,
  2357. obj->cache_level)) {
  2358. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2359. obj->gtt_space->start,
  2360. obj->gtt_space->start + obj->gtt_space->size,
  2361. obj->cache_level);
  2362. err++;
  2363. continue;
  2364. }
  2365. }
  2366. WARN_ON(err);
  2367. #endif
  2368. }
  2369. /**
  2370. * Finds free space in the GTT aperture and binds the object there.
  2371. */
  2372. static int
  2373. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2374. unsigned alignment,
  2375. bool map_and_fenceable,
  2376. bool nonblocking)
  2377. {
  2378. struct drm_device *dev = obj->base.dev;
  2379. drm_i915_private_t *dev_priv = dev->dev_private;
  2380. struct drm_mm_node *free_space;
  2381. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2382. bool mappable, fenceable;
  2383. int ret;
  2384. if (obj->madv != I915_MADV_WILLNEED) {
  2385. DRM_ERROR("Attempting to bind a purgeable object\n");
  2386. return -EINVAL;
  2387. }
  2388. fence_size = i915_gem_get_gtt_size(dev,
  2389. obj->base.size,
  2390. obj->tiling_mode);
  2391. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2392. obj->base.size,
  2393. obj->tiling_mode);
  2394. unfenced_alignment =
  2395. i915_gem_get_unfenced_gtt_alignment(dev,
  2396. obj->base.size,
  2397. obj->tiling_mode);
  2398. if (alignment == 0)
  2399. alignment = map_and_fenceable ? fence_alignment :
  2400. unfenced_alignment;
  2401. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2402. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2403. return -EINVAL;
  2404. }
  2405. size = map_and_fenceable ? fence_size : obj->base.size;
  2406. /* If the object is bigger than the entire aperture, reject it early
  2407. * before evicting everything in a vain attempt to find space.
  2408. */
  2409. if (obj->base.size >
  2410. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2411. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2412. return -E2BIG;
  2413. }
  2414. ret = i915_gem_object_get_pages(obj);
  2415. if (ret)
  2416. return ret;
  2417. search_free:
  2418. if (map_and_fenceable)
  2419. free_space =
  2420. drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
  2421. size, alignment, obj->cache_level,
  2422. 0, dev_priv->mm.gtt_mappable_end,
  2423. false);
  2424. else
  2425. free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
  2426. size, alignment, obj->cache_level,
  2427. false);
  2428. if (free_space != NULL) {
  2429. if (map_and_fenceable)
  2430. obj->gtt_space =
  2431. drm_mm_get_block_range_generic(free_space,
  2432. size, alignment, obj->cache_level,
  2433. 0, dev_priv->mm.gtt_mappable_end,
  2434. false);
  2435. else
  2436. obj->gtt_space =
  2437. drm_mm_get_block_generic(free_space,
  2438. size, alignment, obj->cache_level,
  2439. false);
  2440. }
  2441. if (obj->gtt_space == NULL) {
  2442. ret = i915_gem_evict_something(dev, size, alignment,
  2443. obj->cache_level,
  2444. map_and_fenceable,
  2445. nonblocking);
  2446. if (ret)
  2447. return ret;
  2448. goto search_free;
  2449. }
  2450. if (WARN_ON(!i915_gem_valid_gtt_space(dev,
  2451. obj->gtt_space,
  2452. obj->cache_level))) {
  2453. drm_mm_put_block(obj->gtt_space);
  2454. obj->gtt_space = NULL;
  2455. return -EINVAL;
  2456. }
  2457. ret = i915_gem_gtt_prepare_object(obj);
  2458. if (ret) {
  2459. drm_mm_put_block(obj->gtt_space);
  2460. obj->gtt_space = NULL;
  2461. return ret;
  2462. }
  2463. if (!dev_priv->mm.aliasing_ppgtt)
  2464. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2465. list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
  2466. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2467. obj->gtt_offset = obj->gtt_space->start;
  2468. fenceable =
  2469. obj->gtt_space->size == fence_size &&
  2470. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2471. mappable =
  2472. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2473. obj->map_and_fenceable = mappable && fenceable;
  2474. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2475. i915_gem_verify_gtt(dev);
  2476. return 0;
  2477. }
  2478. void
  2479. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2480. {
  2481. /* If we don't have a page list set up, then we're not pinned
  2482. * to GPU, and we can ignore the cache flush because it'll happen
  2483. * again at bind time.
  2484. */
  2485. if (obj->pages == NULL)
  2486. return;
  2487. /* If the GPU is snooping the contents of the CPU cache,
  2488. * we do not need to manually clear the CPU cache lines. However,
  2489. * the caches are only snooped when the render cache is
  2490. * flushed/invalidated. As we always have to emit invalidations
  2491. * and flushes when moving into and out of the RENDER domain, correct
  2492. * snooping behaviour occurs naturally as the result of our domain
  2493. * tracking.
  2494. */
  2495. if (obj->cache_level != I915_CACHE_NONE)
  2496. return;
  2497. trace_i915_gem_object_clflush(obj);
  2498. drm_clflush_sg(obj->pages);
  2499. }
  2500. /** Flushes the GTT write domain for the object if it's dirty. */
  2501. static void
  2502. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2503. {
  2504. uint32_t old_write_domain;
  2505. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2506. return;
  2507. /* No actual flushing is required for the GTT write domain. Writes
  2508. * to it immediately go to main memory as far as we know, so there's
  2509. * no chipset flush. It also doesn't land in render cache.
  2510. *
  2511. * However, we do have to enforce the order so that all writes through
  2512. * the GTT land before any writes to the device, such as updates to
  2513. * the GATT itself.
  2514. */
  2515. wmb();
  2516. old_write_domain = obj->base.write_domain;
  2517. obj->base.write_domain = 0;
  2518. trace_i915_gem_object_change_domain(obj,
  2519. obj->base.read_domains,
  2520. old_write_domain);
  2521. }
  2522. /** Flushes the CPU write domain for the object if it's dirty. */
  2523. static void
  2524. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2525. {
  2526. uint32_t old_write_domain;
  2527. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2528. return;
  2529. i915_gem_clflush_object(obj);
  2530. intel_gtt_chipset_flush();
  2531. old_write_domain = obj->base.write_domain;
  2532. obj->base.write_domain = 0;
  2533. trace_i915_gem_object_change_domain(obj,
  2534. obj->base.read_domains,
  2535. old_write_domain);
  2536. }
  2537. /**
  2538. * Moves a single object to the GTT read, and possibly write domain.
  2539. *
  2540. * This function returns when the move is complete, including waiting on
  2541. * flushes to occur.
  2542. */
  2543. int
  2544. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2545. {
  2546. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2547. uint32_t old_write_domain, old_read_domains;
  2548. int ret;
  2549. /* Not valid to be called on unbound objects. */
  2550. if (obj->gtt_space == NULL)
  2551. return -EINVAL;
  2552. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2553. return 0;
  2554. ret = i915_gem_object_wait_rendering(obj, !write);
  2555. if (ret)
  2556. return ret;
  2557. i915_gem_object_flush_cpu_write_domain(obj);
  2558. old_write_domain = obj->base.write_domain;
  2559. old_read_domains = obj->base.read_domains;
  2560. /* It should now be out of any other write domains, and we can update
  2561. * the domain values for our changes.
  2562. */
  2563. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2564. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2565. if (write) {
  2566. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2567. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2568. obj->dirty = 1;
  2569. }
  2570. trace_i915_gem_object_change_domain(obj,
  2571. old_read_domains,
  2572. old_write_domain);
  2573. /* And bump the LRU for this access */
  2574. if (i915_gem_object_is_inactive(obj))
  2575. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2576. return 0;
  2577. }
  2578. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2579. enum i915_cache_level cache_level)
  2580. {
  2581. struct drm_device *dev = obj->base.dev;
  2582. drm_i915_private_t *dev_priv = dev->dev_private;
  2583. int ret;
  2584. if (obj->cache_level == cache_level)
  2585. return 0;
  2586. if (obj->pin_count) {
  2587. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2588. return -EBUSY;
  2589. }
  2590. if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
  2591. ret = i915_gem_object_unbind(obj);
  2592. if (ret)
  2593. return ret;
  2594. }
  2595. if (obj->gtt_space) {
  2596. ret = i915_gem_object_finish_gpu(obj);
  2597. if (ret)
  2598. return ret;
  2599. i915_gem_object_finish_gtt(obj);
  2600. /* Before SandyBridge, you could not use tiling or fence
  2601. * registers with snooped memory, so relinquish any fences
  2602. * currently pointing to our region in the aperture.
  2603. */
  2604. if (INTEL_INFO(dev)->gen < 6) {
  2605. ret = i915_gem_object_put_fence(obj);
  2606. if (ret)
  2607. return ret;
  2608. }
  2609. if (obj->has_global_gtt_mapping)
  2610. i915_gem_gtt_bind_object(obj, cache_level);
  2611. if (obj->has_aliasing_ppgtt_mapping)
  2612. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2613. obj, cache_level);
  2614. obj->gtt_space->color = cache_level;
  2615. }
  2616. if (cache_level == I915_CACHE_NONE) {
  2617. u32 old_read_domains, old_write_domain;
  2618. /* If we're coming from LLC cached, then we haven't
  2619. * actually been tracking whether the data is in the
  2620. * CPU cache or not, since we only allow one bit set
  2621. * in obj->write_domain and have been skipping the clflushes.
  2622. * Just set it to the CPU cache for now.
  2623. */
  2624. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2625. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2626. old_read_domains = obj->base.read_domains;
  2627. old_write_domain = obj->base.write_domain;
  2628. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2629. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2630. trace_i915_gem_object_change_domain(obj,
  2631. old_read_domains,
  2632. old_write_domain);
  2633. }
  2634. obj->cache_level = cache_level;
  2635. i915_gem_verify_gtt(dev);
  2636. return 0;
  2637. }
  2638. int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
  2639. struct drm_file *file)
  2640. {
  2641. struct drm_i915_gem_cacheing *args = data;
  2642. struct drm_i915_gem_object *obj;
  2643. int ret;
  2644. ret = i915_mutex_lock_interruptible(dev);
  2645. if (ret)
  2646. return ret;
  2647. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2648. if (&obj->base == NULL) {
  2649. ret = -ENOENT;
  2650. goto unlock;
  2651. }
  2652. args->cacheing = obj->cache_level != I915_CACHE_NONE;
  2653. drm_gem_object_unreference(&obj->base);
  2654. unlock:
  2655. mutex_unlock(&dev->struct_mutex);
  2656. return ret;
  2657. }
  2658. int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
  2659. struct drm_file *file)
  2660. {
  2661. struct drm_i915_gem_cacheing *args = data;
  2662. struct drm_i915_gem_object *obj;
  2663. enum i915_cache_level level;
  2664. int ret;
  2665. ret = i915_mutex_lock_interruptible(dev);
  2666. if (ret)
  2667. return ret;
  2668. switch (args->cacheing) {
  2669. case I915_CACHEING_NONE:
  2670. level = I915_CACHE_NONE;
  2671. break;
  2672. case I915_CACHEING_CACHED:
  2673. level = I915_CACHE_LLC;
  2674. break;
  2675. default:
  2676. return -EINVAL;
  2677. }
  2678. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2679. if (&obj->base == NULL) {
  2680. ret = -ENOENT;
  2681. goto unlock;
  2682. }
  2683. ret = i915_gem_object_set_cache_level(obj, level);
  2684. drm_gem_object_unreference(&obj->base);
  2685. unlock:
  2686. mutex_unlock(&dev->struct_mutex);
  2687. return ret;
  2688. }
  2689. /*
  2690. * Prepare buffer for display plane (scanout, cursors, etc).
  2691. * Can be called from an uninterruptible phase (modesetting) and allows
  2692. * any flushes to be pipelined (for pageflips).
  2693. */
  2694. int
  2695. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2696. u32 alignment,
  2697. struct intel_ring_buffer *pipelined)
  2698. {
  2699. u32 old_read_domains, old_write_domain;
  2700. int ret;
  2701. if (pipelined != obj->ring) {
  2702. ret = i915_gem_object_sync(obj, pipelined);
  2703. if (ret)
  2704. return ret;
  2705. }
  2706. /* The display engine is not coherent with the LLC cache on gen6. As
  2707. * a result, we make sure that the pinning that is about to occur is
  2708. * done with uncached PTEs. This is lowest common denominator for all
  2709. * chipsets.
  2710. *
  2711. * However for gen6+, we could do better by using the GFDT bit instead
  2712. * of uncaching, which would allow us to flush all the LLC-cached data
  2713. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2714. */
  2715. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2716. if (ret)
  2717. return ret;
  2718. /* As the user may map the buffer once pinned in the display plane
  2719. * (e.g. libkms for the bootup splash), we have to ensure that we
  2720. * always use map_and_fenceable for all scanout buffers.
  2721. */
  2722. ret = i915_gem_object_pin(obj, alignment, true, false);
  2723. if (ret)
  2724. return ret;
  2725. i915_gem_object_flush_cpu_write_domain(obj);
  2726. old_write_domain = obj->base.write_domain;
  2727. old_read_domains = obj->base.read_domains;
  2728. /* It should now be out of any other write domains, and we can update
  2729. * the domain values for our changes.
  2730. */
  2731. obj->base.write_domain = 0;
  2732. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2733. trace_i915_gem_object_change_domain(obj,
  2734. old_read_domains,
  2735. old_write_domain);
  2736. return 0;
  2737. }
  2738. int
  2739. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2740. {
  2741. int ret;
  2742. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2743. return 0;
  2744. ret = i915_gem_object_wait_rendering(obj, false);
  2745. if (ret)
  2746. return ret;
  2747. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2748. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2749. return 0;
  2750. }
  2751. /**
  2752. * Moves a single object to the CPU read, and possibly write domain.
  2753. *
  2754. * This function returns when the move is complete, including waiting on
  2755. * flushes to occur.
  2756. */
  2757. int
  2758. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2759. {
  2760. uint32_t old_write_domain, old_read_domains;
  2761. int ret;
  2762. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2763. return 0;
  2764. ret = i915_gem_object_wait_rendering(obj, !write);
  2765. if (ret)
  2766. return ret;
  2767. i915_gem_object_flush_gtt_write_domain(obj);
  2768. old_write_domain = obj->base.write_domain;
  2769. old_read_domains = obj->base.read_domains;
  2770. /* Flush the CPU cache if it's still invalid. */
  2771. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2772. i915_gem_clflush_object(obj);
  2773. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2774. }
  2775. /* It should now be out of any other write domains, and we can update
  2776. * the domain values for our changes.
  2777. */
  2778. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2779. /* If we're writing through the CPU, then the GPU read domains will
  2780. * need to be invalidated at next use.
  2781. */
  2782. if (write) {
  2783. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2784. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2785. }
  2786. trace_i915_gem_object_change_domain(obj,
  2787. old_read_domains,
  2788. old_write_domain);
  2789. return 0;
  2790. }
  2791. /* Throttle our rendering by waiting until the ring has completed our requests
  2792. * emitted over 20 msec ago.
  2793. *
  2794. * Note that if we were to use the current jiffies each time around the loop,
  2795. * we wouldn't escape the function with any frames outstanding if the time to
  2796. * render a frame was over 20ms.
  2797. *
  2798. * This should get us reasonable parallelism between CPU and GPU but also
  2799. * relatively low latency when blocking on a particular request to finish.
  2800. */
  2801. static int
  2802. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2803. {
  2804. struct drm_i915_private *dev_priv = dev->dev_private;
  2805. struct drm_i915_file_private *file_priv = file->driver_priv;
  2806. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2807. struct drm_i915_gem_request *request;
  2808. struct intel_ring_buffer *ring = NULL;
  2809. u32 seqno = 0;
  2810. int ret;
  2811. if (atomic_read(&dev_priv->mm.wedged))
  2812. return -EIO;
  2813. spin_lock(&file_priv->mm.lock);
  2814. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2815. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2816. break;
  2817. ring = request->ring;
  2818. seqno = request->seqno;
  2819. }
  2820. spin_unlock(&file_priv->mm.lock);
  2821. if (seqno == 0)
  2822. return 0;
  2823. ret = __wait_seqno(ring, seqno, true, NULL);
  2824. if (ret == 0)
  2825. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2826. return ret;
  2827. }
  2828. int
  2829. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2830. uint32_t alignment,
  2831. bool map_and_fenceable,
  2832. bool nonblocking)
  2833. {
  2834. int ret;
  2835. if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  2836. return -EBUSY;
  2837. if (obj->gtt_space != NULL) {
  2838. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2839. (map_and_fenceable && !obj->map_and_fenceable)) {
  2840. WARN(obj->pin_count,
  2841. "bo is already pinned with incorrect alignment:"
  2842. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2843. " obj->map_and_fenceable=%d\n",
  2844. obj->gtt_offset, alignment,
  2845. map_and_fenceable,
  2846. obj->map_and_fenceable);
  2847. ret = i915_gem_object_unbind(obj);
  2848. if (ret)
  2849. return ret;
  2850. }
  2851. }
  2852. if (obj->gtt_space == NULL) {
  2853. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2854. map_and_fenceable,
  2855. nonblocking);
  2856. if (ret)
  2857. return ret;
  2858. }
  2859. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2860. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2861. obj->pin_count++;
  2862. obj->pin_mappable |= map_and_fenceable;
  2863. return 0;
  2864. }
  2865. void
  2866. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2867. {
  2868. BUG_ON(obj->pin_count == 0);
  2869. BUG_ON(obj->gtt_space == NULL);
  2870. if (--obj->pin_count == 0)
  2871. obj->pin_mappable = false;
  2872. }
  2873. int
  2874. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2875. struct drm_file *file)
  2876. {
  2877. struct drm_i915_gem_pin *args = data;
  2878. struct drm_i915_gem_object *obj;
  2879. int ret;
  2880. ret = i915_mutex_lock_interruptible(dev);
  2881. if (ret)
  2882. return ret;
  2883. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2884. if (&obj->base == NULL) {
  2885. ret = -ENOENT;
  2886. goto unlock;
  2887. }
  2888. if (obj->madv != I915_MADV_WILLNEED) {
  2889. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2890. ret = -EINVAL;
  2891. goto out;
  2892. }
  2893. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2894. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2895. args->handle);
  2896. ret = -EINVAL;
  2897. goto out;
  2898. }
  2899. obj->user_pin_count++;
  2900. obj->pin_filp = file;
  2901. if (obj->user_pin_count == 1) {
  2902. ret = i915_gem_object_pin(obj, args->alignment, true, false);
  2903. if (ret)
  2904. goto out;
  2905. }
  2906. /* XXX - flush the CPU caches for pinned objects
  2907. * as the X server doesn't manage domains yet
  2908. */
  2909. i915_gem_object_flush_cpu_write_domain(obj);
  2910. args->offset = obj->gtt_offset;
  2911. out:
  2912. drm_gem_object_unreference(&obj->base);
  2913. unlock:
  2914. mutex_unlock(&dev->struct_mutex);
  2915. return ret;
  2916. }
  2917. int
  2918. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2919. struct drm_file *file)
  2920. {
  2921. struct drm_i915_gem_pin *args = data;
  2922. struct drm_i915_gem_object *obj;
  2923. int ret;
  2924. ret = i915_mutex_lock_interruptible(dev);
  2925. if (ret)
  2926. return ret;
  2927. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2928. if (&obj->base == NULL) {
  2929. ret = -ENOENT;
  2930. goto unlock;
  2931. }
  2932. if (obj->pin_filp != file) {
  2933. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2934. args->handle);
  2935. ret = -EINVAL;
  2936. goto out;
  2937. }
  2938. obj->user_pin_count--;
  2939. if (obj->user_pin_count == 0) {
  2940. obj->pin_filp = NULL;
  2941. i915_gem_object_unpin(obj);
  2942. }
  2943. out:
  2944. drm_gem_object_unreference(&obj->base);
  2945. unlock:
  2946. mutex_unlock(&dev->struct_mutex);
  2947. return ret;
  2948. }
  2949. int
  2950. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2951. struct drm_file *file)
  2952. {
  2953. struct drm_i915_gem_busy *args = data;
  2954. struct drm_i915_gem_object *obj;
  2955. int ret;
  2956. ret = i915_mutex_lock_interruptible(dev);
  2957. if (ret)
  2958. return ret;
  2959. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2960. if (&obj->base == NULL) {
  2961. ret = -ENOENT;
  2962. goto unlock;
  2963. }
  2964. /* Count all active objects as busy, even if they are currently not used
  2965. * by the gpu. Users of this interface expect objects to eventually
  2966. * become non-busy without any further actions, therefore emit any
  2967. * necessary flushes here.
  2968. */
  2969. ret = i915_gem_object_flush_active(obj);
  2970. args->busy = obj->active;
  2971. if (obj->ring) {
  2972. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  2973. args->busy |= intel_ring_flag(obj->ring) << 16;
  2974. }
  2975. drm_gem_object_unreference(&obj->base);
  2976. unlock:
  2977. mutex_unlock(&dev->struct_mutex);
  2978. return ret;
  2979. }
  2980. int
  2981. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2982. struct drm_file *file_priv)
  2983. {
  2984. return i915_gem_ring_throttle(dev, file_priv);
  2985. }
  2986. int
  2987. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2988. struct drm_file *file_priv)
  2989. {
  2990. struct drm_i915_gem_madvise *args = data;
  2991. struct drm_i915_gem_object *obj;
  2992. int ret;
  2993. switch (args->madv) {
  2994. case I915_MADV_DONTNEED:
  2995. case I915_MADV_WILLNEED:
  2996. break;
  2997. default:
  2998. return -EINVAL;
  2999. }
  3000. ret = i915_mutex_lock_interruptible(dev);
  3001. if (ret)
  3002. return ret;
  3003. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3004. if (&obj->base == NULL) {
  3005. ret = -ENOENT;
  3006. goto unlock;
  3007. }
  3008. if (obj->pin_count) {
  3009. ret = -EINVAL;
  3010. goto out;
  3011. }
  3012. if (obj->madv != __I915_MADV_PURGED)
  3013. obj->madv = args->madv;
  3014. /* if the object is no longer attached, discard its backing storage */
  3015. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3016. i915_gem_object_truncate(obj);
  3017. args->retained = obj->madv != __I915_MADV_PURGED;
  3018. out:
  3019. drm_gem_object_unreference(&obj->base);
  3020. unlock:
  3021. mutex_unlock(&dev->struct_mutex);
  3022. return ret;
  3023. }
  3024. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3025. const struct drm_i915_gem_object_ops *ops)
  3026. {
  3027. INIT_LIST_HEAD(&obj->mm_list);
  3028. INIT_LIST_HEAD(&obj->gtt_list);
  3029. INIT_LIST_HEAD(&obj->ring_list);
  3030. INIT_LIST_HEAD(&obj->exec_list);
  3031. obj->ops = ops;
  3032. obj->fence_reg = I915_FENCE_REG_NONE;
  3033. obj->madv = I915_MADV_WILLNEED;
  3034. /* Avoid an unnecessary call to unbind on the first bind. */
  3035. obj->map_and_fenceable = true;
  3036. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3037. }
  3038. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3039. .get_pages = i915_gem_object_get_pages_gtt,
  3040. .put_pages = i915_gem_object_put_pages_gtt,
  3041. };
  3042. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3043. size_t size)
  3044. {
  3045. struct drm_i915_gem_object *obj;
  3046. struct address_space *mapping;
  3047. u32 mask;
  3048. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3049. if (obj == NULL)
  3050. return NULL;
  3051. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3052. kfree(obj);
  3053. return NULL;
  3054. }
  3055. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3056. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3057. /* 965gm cannot relocate objects above 4GiB. */
  3058. mask &= ~__GFP_HIGHMEM;
  3059. mask |= __GFP_DMA32;
  3060. }
  3061. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3062. mapping_set_gfp_mask(mapping, mask);
  3063. i915_gem_object_init(obj, &i915_gem_object_ops);
  3064. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3065. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3066. if (HAS_LLC(dev)) {
  3067. /* On some devices, we can have the GPU use the LLC (the CPU
  3068. * cache) for about a 10% performance improvement
  3069. * compared to uncached. Graphics requests other than
  3070. * display scanout are coherent with the CPU in
  3071. * accessing this cache. This means in this mode we
  3072. * don't need to clflush on the CPU side, and on the
  3073. * GPU side we only need to flush internal caches to
  3074. * get data visible to the CPU.
  3075. *
  3076. * However, we maintain the display planes as UC, and so
  3077. * need to rebind when first used as such.
  3078. */
  3079. obj->cache_level = I915_CACHE_LLC;
  3080. } else
  3081. obj->cache_level = I915_CACHE_NONE;
  3082. return obj;
  3083. }
  3084. int i915_gem_init_object(struct drm_gem_object *obj)
  3085. {
  3086. BUG();
  3087. return 0;
  3088. }
  3089. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3090. {
  3091. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3092. struct drm_device *dev = obj->base.dev;
  3093. drm_i915_private_t *dev_priv = dev->dev_private;
  3094. trace_i915_gem_object_destroy(obj);
  3095. if (obj->phys_obj)
  3096. i915_gem_detach_phys_object(dev, obj);
  3097. obj->pin_count = 0;
  3098. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  3099. bool was_interruptible;
  3100. was_interruptible = dev_priv->mm.interruptible;
  3101. dev_priv->mm.interruptible = false;
  3102. WARN_ON(i915_gem_object_unbind(obj));
  3103. dev_priv->mm.interruptible = was_interruptible;
  3104. }
  3105. obj->pages_pin_count = 0;
  3106. i915_gem_object_put_pages(obj);
  3107. i915_gem_object_free_mmap_offset(obj);
  3108. BUG_ON(obj->pages);
  3109. if (obj->base.import_attach)
  3110. drm_prime_gem_destroy(&obj->base, NULL);
  3111. drm_gem_object_release(&obj->base);
  3112. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3113. kfree(obj->bit_17);
  3114. kfree(obj);
  3115. }
  3116. int
  3117. i915_gem_idle(struct drm_device *dev)
  3118. {
  3119. drm_i915_private_t *dev_priv = dev->dev_private;
  3120. int ret;
  3121. mutex_lock(&dev->struct_mutex);
  3122. if (dev_priv->mm.suspended) {
  3123. mutex_unlock(&dev->struct_mutex);
  3124. return 0;
  3125. }
  3126. ret = i915_gpu_idle(dev);
  3127. if (ret) {
  3128. mutex_unlock(&dev->struct_mutex);
  3129. return ret;
  3130. }
  3131. i915_gem_retire_requests(dev);
  3132. /* Under UMS, be paranoid and evict. */
  3133. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3134. i915_gem_evict_everything(dev);
  3135. i915_gem_reset_fences(dev);
  3136. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3137. * We need to replace this with a semaphore, or something.
  3138. * And not confound mm.suspended!
  3139. */
  3140. dev_priv->mm.suspended = 1;
  3141. del_timer_sync(&dev_priv->hangcheck_timer);
  3142. i915_kernel_lost_context(dev);
  3143. i915_gem_cleanup_ringbuffer(dev);
  3144. mutex_unlock(&dev->struct_mutex);
  3145. /* Cancel the retire work handler, which should be idle now. */
  3146. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3147. return 0;
  3148. }
  3149. void i915_gem_l3_remap(struct drm_device *dev)
  3150. {
  3151. drm_i915_private_t *dev_priv = dev->dev_private;
  3152. u32 misccpctl;
  3153. int i;
  3154. if (!IS_IVYBRIDGE(dev))
  3155. return;
  3156. if (!dev_priv->mm.l3_remap_info)
  3157. return;
  3158. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3159. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3160. POSTING_READ(GEN7_MISCCPCTL);
  3161. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3162. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3163. if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
  3164. DRM_DEBUG("0x%x was already programmed to %x\n",
  3165. GEN7_L3LOG_BASE + i, remap);
  3166. if (remap && !dev_priv->mm.l3_remap_info[i/4])
  3167. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3168. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
  3169. }
  3170. /* Make sure all the writes land before disabling dop clock gating */
  3171. POSTING_READ(GEN7_L3LOG_BASE);
  3172. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3173. }
  3174. void i915_gem_init_swizzling(struct drm_device *dev)
  3175. {
  3176. drm_i915_private_t *dev_priv = dev->dev_private;
  3177. if (INTEL_INFO(dev)->gen < 5 ||
  3178. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3179. return;
  3180. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3181. DISP_TILE_SURFACE_SWIZZLING);
  3182. if (IS_GEN5(dev))
  3183. return;
  3184. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3185. if (IS_GEN6(dev))
  3186. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3187. else
  3188. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3189. }
  3190. void i915_gem_init_ppgtt(struct drm_device *dev)
  3191. {
  3192. drm_i915_private_t *dev_priv = dev->dev_private;
  3193. uint32_t pd_offset;
  3194. struct intel_ring_buffer *ring;
  3195. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  3196. uint32_t __iomem *pd_addr;
  3197. uint32_t pd_entry;
  3198. int i;
  3199. if (!dev_priv->mm.aliasing_ppgtt)
  3200. return;
  3201. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  3202. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  3203. dma_addr_t pt_addr;
  3204. if (dev_priv->mm.gtt->needs_dmar)
  3205. pt_addr = ppgtt->pt_dma_addr[i];
  3206. else
  3207. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  3208. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  3209. pd_entry |= GEN6_PDE_VALID;
  3210. writel(pd_entry, pd_addr + i);
  3211. }
  3212. readl(pd_addr);
  3213. pd_offset = ppgtt->pd_offset;
  3214. pd_offset /= 64; /* in cachelines, */
  3215. pd_offset <<= 16;
  3216. if (INTEL_INFO(dev)->gen == 6) {
  3217. uint32_t ecochk, gab_ctl, ecobits;
  3218. ecobits = I915_READ(GAC_ECO_BITS);
  3219. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  3220. gab_ctl = I915_READ(GAB_CTL);
  3221. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  3222. ecochk = I915_READ(GAM_ECOCHK);
  3223. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3224. ECOCHK_PPGTT_CACHE64B);
  3225. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3226. } else if (INTEL_INFO(dev)->gen >= 7) {
  3227. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3228. /* GFX_MODE is per-ring on gen7+ */
  3229. }
  3230. for_each_ring(ring, dev_priv, i) {
  3231. if (INTEL_INFO(dev)->gen >= 7)
  3232. I915_WRITE(RING_MODE_GEN7(ring),
  3233. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3234. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3235. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3236. }
  3237. }
  3238. static bool
  3239. intel_enable_blt(struct drm_device *dev)
  3240. {
  3241. if (!HAS_BLT(dev))
  3242. return false;
  3243. /* The blitter was dysfunctional on early prototypes */
  3244. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3245. DRM_INFO("BLT not supported on this pre-production hardware;"
  3246. " graphics performance will be degraded.\n");
  3247. return false;
  3248. }
  3249. return true;
  3250. }
  3251. int
  3252. i915_gem_init_hw(struct drm_device *dev)
  3253. {
  3254. drm_i915_private_t *dev_priv = dev->dev_private;
  3255. int ret;
  3256. if (!intel_enable_gtt())
  3257. return -EIO;
  3258. i915_gem_l3_remap(dev);
  3259. i915_gem_init_swizzling(dev);
  3260. ret = intel_init_render_ring_buffer(dev);
  3261. if (ret)
  3262. return ret;
  3263. if (HAS_BSD(dev)) {
  3264. ret = intel_init_bsd_ring_buffer(dev);
  3265. if (ret)
  3266. goto cleanup_render_ring;
  3267. }
  3268. if (intel_enable_blt(dev)) {
  3269. ret = intel_init_blt_ring_buffer(dev);
  3270. if (ret)
  3271. goto cleanup_bsd_ring;
  3272. }
  3273. dev_priv->next_seqno = 1;
  3274. /*
  3275. * XXX: There was some w/a described somewhere suggesting loading
  3276. * contexts before PPGTT.
  3277. */
  3278. i915_gem_context_init(dev);
  3279. i915_gem_init_ppgtt(dev);
  3280. return 0;
  3281. cleanup_bsd_ring:
  3282. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3283. cleanup_render_ring:
  3284. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3285. return ret;
  3286. }
  3287. static bool
  3288. intel_enable_ppgtt(struct drm_device *dev)
  3289. {
  3290. if (i915_enable_ppgtt >= 0)
  3291. return i915_enable_ppgtt;
  3292. #ifdef CONFIG_INTEL_IOMMU
  3293. /* Disable ppgtt on SNB if VT-d is on. */
  3294. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3295. return false;
  3296. #endif
  3297. return true;
  3298. }
  3299. int i915_gem_init(struct drm_device *dev)
  3300. {
  3301. struct drm_i915_private *dev_priv = dev->dev_private;
  3302. unsigned long gtt_size, mappable_size;
  3303. int ret;
  3304. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3305. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3306. mutex_lock(&dev->struct_mutex);
  3307. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3308. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3309. * aperture accordingly when using aliasing ppgtt. */
  3310. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3311. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3312. ret = i915_gem_init_aliasing_ppgtt(dev);
  3313. if (ret) {
  3314. mutex_unlock(&dev->struct_mutex);
  3315. return ret;
  3316. }
  3317. } else {
  3318. /* Let GEM Manage all of the aperture.
  3319. *
  3320. * However, leave one page at the end still bound to the scratch
  3321. * page. There are a number of places where the hardware
  3322. * apparently prefetches past the end of the object, and we've
  3323. * seen multiple hangs with the GPU head pointer stuck in a
  3324. * batchbuffer bound at the last page of the aperture. One page
  3325. * should be enough to keep any prefetching inside of the
  3326. * aperture.
  3327. */
  3328. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3329. gtt_size);
  3330. }
  3331. ret = i915_gem_init_hw(dev);
  3332. mutex_unlock(&dev->struct_mutex);
  3333. if (ret) {
  3334. i915_gem_cleanup_aliasing_ppgtt(dev);
  3335. return ret;
  3336. }
  3337. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3338. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3339. dev_priv->dri1.allow_batchbuffer = 1;
  3340. return 0;
  3341. }
  3342. void
  3343. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3344. {
  3345. drm_i915_private_t *dev_priv = dev->dev_private;
  3346. struct intel_ring_buffer *ring;
  3347. int i;
  3348. for_each_ring(ring, dev_priv, i)
  3349. intel_cleanup_ring_buffer(ring);
  3350. }
  3351. int
  3352. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3353. struct drm_file *file_priv)
  3354. {
  3355. drm_i915_private_t *dev_priv = dev->dev_private;
  3356. int ret;
  3357. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3358. return 0;
  3359. if (atomic_read(&dev_priv->mm.wedged)) {
  3360. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3361. atomic_set(&dev_priv->mm.wedged, 0);
  3362. }
  3363. mutex_lock(&dev->struct_mutex);
  3364. dev_priv->mm.suspended = 0;
  3365. ret = i915_gem_init_hw(dev);
  3366. if (ret != 0) {
  3367. mutex_unlock(&dev->struct_mutex);
  3368. return ret;
  3369. }
  3370. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3371. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3372. mutex_unlock(&dev->struct_mutex);
  3373. ret = drm_irq_install(dev);
  3374. if (ret)
  3375. goto cleanup_ringbuffer;
  3376. return 0;
  3377. cleanup_ringbuffer:
  3378. mutex_lock(&dev->struct_mutex);
  3379. i915_gem_cleanup_ringbuffer(dev);
  3380. dev_priv->mm.suspended = 1;
  3381. mutex_unlock(&dev->struct_mutex);
  3382. return ret;
  3383. }
  3384. int
  3385. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3386. struct drm_file *file_priv)
  3387. {
  3388. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3389. return 0;
  3390. drm_irq_uninstall(dev);
  3391. return i915_gem_idle(dev);
  3392. }
  3393. void
  3394. i915_gem_lastclose(struct drm_device *dev)
  3395. {
  3396. int ret;
  3397. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3398. return;
  3399. ret = i915_gem_idle(dev);
  3400. if (ret)
  3401. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3402. }
  3403. static void
  3404. init_ring_lists(struct intel_ring_buffer *ring)
  3405. {
  3406. INIT_LIST_HEAD(&ring->active_list);
  3407. INIT_LIST_HEAD(&ring->request_list);
  3408. }
  3409. void
  3410. i915_gem_load(struct drm_device *dev)
  3411. {
  3412. int i;
  3413. drm_i915_private_t *dev_priv = dev->dev_private;
  3414. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3415. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3416. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3417. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3418. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3419. for (i = 0; i < I915_NUM_RINGS; i++)
  3420. init_ring_lists(&dev_priv->ring[i]);
  3421. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3422. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3423. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3424. i915_gem_retire_work_handler);
  3425. init_completion(&dev_priv->error_completion);
  3426. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3427. if (IS_GEN3(dev)) {
  3428. I915_WRITE(MI_ARB_STATE,
  3429. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3430. }
  3431. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3432. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3433. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3434. dev_priv->fence_reg_start = 3;
  3435. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3436. dev_priv->num_fence_regs = 16;
  3437. else
  3438. dev_priv->num_fence_regs = 8;
  3439. /* Initialize fence registers to zero */
  3440. i915_gem_reset_fences(dev);
  3441. i915_gem_detect_bit_6_swizzle(dev);
  3442. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3443. dev_priv->mm.interruptible = true;
  3444. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3445. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3446. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3447. }
  3448. /*
  3449. * Create a physically contiguous memory object for this object
  3450. * e.g. for cursor + overlay regs
  3451. */
  3452. static int i915_gem_init_phys_object(struct drm_device *dev,
  3453. int id, int size, int align)
  3454. {
  3455. drm_i915_private_t *dev_priv = dev->dev_private;
  3456. struct drm_i915_gem_phys_object *phys_obj;
  3457. int ret;
  3458. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3459. return 0;
  3460. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3461. if (!phys_obj)
  3462. return -ENOMEM;
  3463. phys_obj->id = id;
  3464. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3465. if (!phys_obj->handle) {
  3466. ret = -ENOMEM;
  3467. goto kfree_obj;
  3468. }
  3469. #ifdef CONFIG_X86
  3470. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3471. #endif
  3472. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3473. return 0;
  3474. kfree_obj:
  3475. kfree(phys_obj);
  3476. return ret;
  3477. }
  3478. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3479. {
  3480. drm_i915_private_t *dev_priv = dev->dev_private;
  3481. struct drm_i915_gem_phys_object *phys_obj;
  3482. if (!dev_priv->mm.phys_objs[id - 1])
  3483. return;
  3484. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3485. if (phys_obj->cur_obj) {
  3486. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3487. }
  3488. #ifdef CONFIG_X86
  3489. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3490. #endif
  3491. drm_pci_free(dev, phys_obj->handle);
  3492. kfree(phys_obj);
  3493. dev_priv->mm.phys_objs[id - 1] = NULL;
  3494. }
  3495. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3496. {
  3497. int i;
  3498. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3499. i915_gem_free_phys_object(dev, i);
  3500. }
  3501. void i915_gem_detach_phys_object(struct drm_device *dev,
  3502. struct drm_i915_gem_object *obj)
  3503. {
  3504. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3505. char *vaddr;
  3506. int i;
  3507. int page_count;
  3508. if (!obj->phys_obj)
  3509. return;
  3510. vaddr = obj->phys_obj->handle->vaddr;
  3511. page_count = obj->base.size / PAGE_SIZE;
  3512. for (i = 0; i < page_count; i++) {
  3513. struct page *page = shmem_read_mapping_page(mapping, i);
  3514. if (!IS_ERR(page)) {
  3515. char *dst = kmap_atomic(page);
  3516. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3517. kunmap_atomic(dst);
  3518. drm_clflush_pages(&page, 1);
  3519. set_page_dirty(page);
  3520. mark_page_accessed(page);
  3521. page_cache_release(page);
  3522. }
  3523. }
  3524. intel_gtt_chipset_flush();
  3525. obj->phys_obj->cur_obj = NULL;
  3526. obj->phys_obj = NULL;
  3527. }
  3528. int
  3529. i915_gem_attach_phys_object(struct drm_device *dev,
  3530. struct drm_i915_gem_object *obj,
  3531. int id,
  3532. int align)
  3533. {
  3534. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3535. drm_i915_private_t *dev_priv = dev->dev_private;
  3536. int ret = 0;
  3537. int page_count;
  3538. int i;
  3539. if (id > I915_MAX_PHYS_OBJECT)
  3540. return -EINVAL;
  3541. if (obj->phys_obj) {
  3542. if (obj->phys_obj->id == id)
  3543. return 0;
  3544. i915_gem_detach_phys_object(dev, obj);
  3545. }
  3546. /* create a new object */
  3547. if (!dev_priv->mm.phys_objs[id - 1]) {
  3548. ret = i915_gem_init_phys_object(dev, id,
  3549. obj->base.size, align);
  3550. if (ret) {
  3551. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3552. id, obj->base.size);
  3553. return ret;
  3554. }
  3555. }
  3556. /* bind to the object */
  3557. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3558. obj->phys_obj->cur_obj = obj;
  3559. page_count = obj->base.size / PAGE_SIZE;
  3560. for (i = 0; i < page_count; i++) {
  3561. struct page *page;
  3562. char *dst, *src;
  3563. page = shmem_read_mapping_page(mapping, i);
  3564. if (IS_ERR(page))
  3565. return PTR_ERR(page);
  3566. src = kmap_atomic(page);
  3567. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3568. memcpy(dst, src, PAGE_SIZE);
  3569. kunmap_atomic(src);
  3570. mark_page_accessed(page);
  3571. page_cache_release(page);
  3572. }
  3573. return 0;
  3574. }
  3575. static int
  3576. i915_gem_phys_pwrite(struct drm_device *dev,
  3577. struct drm_i915_gem_object *obj,
  3578. struct drm_i915_gem_pwrite *args,
  3579. struct drm_file *file_priv)
  3580. {
  3581. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3582. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3583. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3584. unsigned long unwritten;
  3585. /* The physical object once assigned is fixed for the lifetime
  3586. * of the obj, so we can safely drop the lock and continue
  3587. * to access vaddr.
  3588. */
  3589. mutex_unlock(&dev->struct_mutex);
  3590. unwritten = copy_from_user(vaddr, user_data, args->size);
  3591. mutex_lock(&dev->struct_mutex);
  3592. if (unwritten)
  3593. return -EFAULT;
  3594. }
  3595. intel_gtt_chipset_flush();
  3596. return 0;
  3597. }
  3598. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3599. {
  3600. struct drm_i915_file_private *file_priv = file->driver_priv;
  3601. /* Clean up our request list when the client is going away, so that
  3602. * later retire_requests won't dereference our soon-to-be-gone
  3603. * file_priv.
  3604. */
  3605. spin_lock(&file_priv->mm.lock);
  3606. while (!list_empty(&file_priv->mm.request_list)) {
  3607. struct drm_i915_gem_request *request;
  3608. request = list_first_entry(&file_priv->mm.request_list,
  3609. struct drm_i915_gem_request,
  3610. client_list);
  3611. list_del(&request->client_list);
  3612. request->file_priv = NULL;
  3613. }
  3614. spin_unlock(&file_priv->mm.lock);
  3615. }
  3616. static int
  3617. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3618. {
  3619. struct drm_i915_private *dev_priv =
  3620. container_of(shrinker,
  3621. struct drm_i915_private,
  3622. mm.inactive_shrinker);
  3623. struct drm_device *dev = dev_priv->dev;
  3624. struct drm_i915_gem_object *obj;
  3625. int nr_to_scan = sc->nr_to_scan;
  3626. int cnt;
  3627. if (!mutex_trylock(&dev->struct_mutex))
  3628. return 0;
  3629. if (nr_to_scan) {
  3630. nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
  3631. if (nr_to_scan > 0)
  3632. i915_gem_shrink_all(dev_priv);
  3633. }
  3634. cnt = 0;
  3635. list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
  3636. if (obj->pages_pin_count == 0)
  3637. cnt += obj->base.size >> PAGE_SHIFT;
  3638. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  3639. if (obj->pin_count == 0 && obj->pages_pin_count == 0)
  3640. cnt += obj->base.size >> PAGE_SHIFT;
  3641. mutex_unlock(&dev->struct_mutex);
  3642. return cnt;
  3643. }