ip_fragment.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The IP fragmentation functionality.
  7. *
  8. * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
  9. *
  10. * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
  11. * Alan Cox <Alan.Cox@linux.org>
  12. *
  13. * Fixes:
  14. * Alan Cox : Split from ip.c , see ip_input.c for history.
  15. * David S. Miller : Begin massive cleanup...
  16. * Andi Kleen : Add sysctls.
  17. * xxxx : Overlapfrag bug.
  18. * Ultima : ip_expire() kernel panic.
  19. * Bill Hawes : Frag accounting and evictor fixes.
  20. * John McDonald : 0 length frag bug.
  21. * Alexey Kuznetsov: SMP races, threading, cleanup.
  22. * Patrick McHardy : LRU queue of frag heads for evictor.
  23. */
  24. #include <linux/compiler.h>
  25. #include <linux/module.h>
  26. #include <linux/types.h>
  27. #include <linux/mm.h>
  28. #include <linux/jiffies.h>
  29. #include <linux/skbuff.h>
  30. #include <linux/list.h>
  31. #include <linux/ip.h>
  32. #include <linux/icmp.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/jhash.h>
  35. #include <linux/random.h>
  36. #include <net/sock.h>
  37. #include <net/ip.h>
  38. #include <net/icmp.h>
  39. #include <net/checksum.h>
  40. #include <net/inetpeer.h>
  41. #include <net/inet_frag.h>
  42. #include <linux/tcp.h>
  43. #include <linux/udp.h>
  44. #include <linux/inet.h>
  45. #include <linux/netfilter_ipv4.h>
  46. /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
  47. * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
  48. * as well. Or notify me, at least. --ANK
  49. */
  50. int sysctl_ipfrag_max_dist __read_mostly = 64;
  51. struct ipfrag_skb_cb
  52. {
  53. struct inet_skb_parm h;
  54. int offset;
  55. };
  56. #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
  57. /* Describe an entry in the "incomplete datagrams" queue. */
  58. struct ipq {
  59. struct inet_frag_queue q;
  60. u32 user;
  61. __be32 saddr;
  62. __be32 daddr;
  63. __be16 id;
  64. u8 protocol;
  65. int iif;
  66. unsigned int rid;
  67. struct inet_peer *peer;
  68. };
  69. struct inet_frags_ctl ip4_frags_ctl __read_mostly = {
  70. /*
  71. * Fragment cache limits. We will commit 256K at one time. Should we
  72. * cross that limit we will prune down to 192K. This should cope with
  73. * even the most extreme cases without allowing an attacker to
  74. * measurably harm machine performance.
  75. */
  76. .high_thresh = 256 * 1024,
  77. .low_thresh = 192 * 1024,
  78. /*
  79. * Important NOTE! Fragment queue must be destroyed before MSL expires.
  80. * RFC791 is wrong proposing to prolongate timer each fragment arrival
  81. * by TTL.
  82. */
  83. .timeout = IP_FRAG_TIME,
  84. .secret_interval = 10 * 60 * HZ,
  85. };
  86. static struct inet_frags ip4_frags;
  87. int ip_frag_nqueues(void)
  88. {
  89. return ip4_frags.nqueues;
  90. }
  91. int ip_frag_mem(void)
  92. {
  93. return atomic_read(&ip4_frags.mem);
  94. }
  95. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  96. struct net_device *dev);
  97. static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
  98. {
  99. return jhash_3words((__force u32)id << 16 | prot,
  100. (__force u32)saddr, (__force u32)daddr,
  101. ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
  102. }
  103. static unsigned int ip4_hashfn(struct inet_frag_queue *q)
  104. {
  105. struct ipq *ipq;
  106. ipq = container_of(q, struct ipq, q);
  107. return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
  108. }
  109. /* Memory Tracking Functions. */
  110. static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work)
  111. {
  112. if (work)
  113. *work -= skb->truesize;
  114. atomic_sub(skb->truesize, &ip4_frags.mem);
  115. kfree_skb(skb);
  116. }
  117. static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
  118. {
  119. struct ipq *qp;
  120. qp = container_of(q, struct ipq, q);
  121. if (qp->peer)
  122. inet_putpeer(qp->peer);
  123. kfree(qp);
  124. }
  125. static __inline__ struct ipq *frag_alloc_queue(void)
  126. {
  127. struct ipq *qp = kmalloc(sizeof(struct ipq), GFP_ATOMIC);
  128. if (!qp)
  129. return NULL;
  130. atomic_add(sizeof(struct ipq), &ip4_frags.mem);
  131. return qp;
  132. }
  133. /* Destruction primitives. */
  134. static __inline__ void ipq_put(struct ipq *ipq, int *work)
  135. {
  136. if (atomic_dec_and_test(&ipq->q.refcnt))
  137. inet_frag_destroy(&ipq->q, &ip4_frags, work);
  138. }
  139. /* Kill ipq entry. It is not destroyed immediately,
  140. * because caller (and someone more) holds reference count.
  141. */
  142. static void ipq_kill(struct ipq *ipq)
  143. {
  144. inet_frag_kill(&ipq->q, &ip4_frags);
  145. }
  146. /* Memory limiting on fragments. Evictor trashes the oldest
  147. * fragment queue until we are back under the threshold.
  148. */
  149. static void ip_evictor(void)
  150. {
  151. struct ipq *qp;
  152. struct list_head *tmp;
  153. int work;
  154. work = atomic_read(&ip4_frags.mem) - ip4_frags_ctl.low_thresh;
  155. if (work <= 0)
  156. return;
  157. while (work > 0) {
  158. read_lock(&ip4_frags.lock);
  159. if (list_empty(&ip4_frags.lru_list)) {
  160. read_unlock(&ip4_frags.lock);
  161. return;
  162. }
  163. tmp = ip4_frags.lru_list.next;
  164. qp = list_entry(tmp, struct ipq, q.lru_list);
  165. atomic_inc(&qp->q.refcnt);
  166. read_unlock(&ip4_frags.lock);
  167. spin_lock(&qp->q.lock);
  168. if (!(qp->q.last_in&COMPLETE))
  169. ipq_kill(qp);
  170. spin_unlock(&qp->q.lock);
  171. ipq_put(qp, &work);
  172. IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
  173. }
  174. }
  175. /*
  176. * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
  177. */
  178. static void ip_expire(unsigned long arg)
  179. {
  180. struct ipq *qp = (struct ipq *) arg;
  181. spin_lock(&qp->q.lock);
  182. if (qp->q.last_in & COMPLETE)
  183. goto out;
  184. ipq_kill(qp);
  185. IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
  186. IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
  187. if ((qp->q.last_in&FIRST_IN) && qp->q.fragments != NULL) {
  188. struct sk_buff *head = qp->q.fragments;
  189. /* Send an ICMP "Fragment Reassembly Timeout" message. */
  190. if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) {
  191. icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
  192. dev_put(head->dev);
  193. }
  194. }
  195. out:
  196. spin_unlock(&qp->q.lock);
  197. ipq_put(qp, NULL);
  198. }
  199. /* Creation primitives. */
  200. static struct ipq *ip_frag_intern(struct ipq *qp_in)
  201. {
  202. struct ipq *qp;
  203. #ifdef CONFIG_SMP
  204. struct hlist_node *n;
  205. #endif
  206. unsigned int hash;
  207. write_lock(&ip4_frags.lock);
  208. hash = ipqhashfn(qp_in->id, qp_in->saddr, qp_in->daddr,
  209. qp_in->protocol);
  210. #ifdef CONFIG_SMP
  211. /* With SMP race we have to recheck hash table, because
  212. * such entry could be created on other cpu, while we
  213. * promoted read lock to write lock.
  214. */
  215. hlist_for_each_entry(qp, n, &ip4_frags.hash[hash], q.list) {
  216. if (qp->id == qp_in->id &&
  217. qp->saddr == qp_in->saddr &&
  218. qp->daddr == qp_in->daddr &&
  219. qp->protocol == qp_in->protocol &&
  220. qp->user == qp_in->user) {
  221. atomic_inc(&qp->q.refcnt);
  222. write_unlock(&ip4_frags.lock);
  223. qp_in->q.last_in |= COMPLETE;
  224. ipq_put(qp_in, NULL);
  225. return qp;
  226. }
  227. }
  228. #endif
  229. qp = qp_in;
  230. if (!mod_timer(&qp->q.timer, jiffies + ip4_frags_ctl.timeout))
  231. atomic_inc(&qp->q.refcnt);
  232. atomic_inc(&qp->q.refcnt);
  233. hlist_add_head(&qp->q.list, &ip4_frags.hash[hash]);
  234. INIT_LIST_HEAD(&qp->q.lru_list);
  235. list_add_tail(&qp->q.lru_list, &ip4_frags.lru_list);
  236. ip4_frags.nqueues++;
  237. write_unlock(&ip4_frags.lock);
  238. return qp;
  239. }
  240. /* Add an entry to the 'ipq' queue for a newly received IP datagram. */
  241. static struct ipq *ip_frag_create(struct iphdr *iph, u32 user)
  242. {
  243. struct ipq *qp;
  244. if ((qp = frag_alloc_queue()) == NULL)
  245. goto out_nomem;
  246. qp->protocol = iph->protocol;
  247. qp->q.last_in = 0;
  248. qp->id = iph->id;
  249. qp->saddr = iph->saddr;
  250. qp->daddr = iph->daddr;
  251. qp->user = user;
  252. qp->q.len = 0;
  253. qp->q.meat = 0;
  254. qp->q.fragments = NULL;
  255. qp->iif = 0;
  256. qp->peer = sysctl_ipfrag_max_dist ? inet_getpeer(iph->saddr, 1) : NULL;
  257. /* Initialize a timer for this entry. */
  258. init_timer(&qp->q.timer);
  259. qp->q.timer.data = (unsigned long) qp; /* pointer to queue */
  260. qp->q.timer.function = ip_expire; /* expire function */
  261. spin_lock_init(&qp->q.lock);
  262. atomic_set(&qp->q.refcnt, 1);
  263. return ip_frag_intern(qp);
  264. out_nomem:
  265. LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
  266. return NULL;
  267. }
  268. /* Find the correct entry in the "incomplete datagrams" queue for
  269. * this IP datagram, and create new one, if nothing is found.
  270. */
  271. static inline struct ipq *ip_find(struct iphdr *iph, u32 user)
  272. {
  273. __be16 id = iph->id;
  274. __be32 saddr = iph->saddr;
  275. __be32 daddr = iph->daddr;
  276. __u8 protocol = iph->protocol;
  277. unsigned int hash;
  278. struct ipq *qp;
  279. struct hlist_node *n;
  280. read_lock(&ip4_frags.lock);
  281. hash = ipqhashfn(id, saddr, daddr, protocol);
  282. hlist_for_each_entry(qp, n, &ip4_frags.hash[hash], q.list) {
  283. if (qp->id == id &&
  284. qp->saddr == saddr &&
  285. qp->daddr == daddr &&
  286. qp->protocol == protocol &&
  287. qp->user == user) {
  288. atomic_inc(&qp->q.refcnt);
  289. read_unlock(&ip4_frags.lock);
  290. return qp;
  291. }
  292. }
  293. read_unlock(&ip4_frags.lock);
  294. return ip_frag_create(iph, user);
  295. }
  296. /* Is the fragment too far ahead to be part of ipq? */
  297. static inline int ip_frag_too_far(struct ipq *qp)
  298. {
  299. struct inet_peer *peer = qp->peer;
  300. unsigned int max = sysctl_ipfrag_max_dist;
  301. unsigned int start, end;
  302. int rc;
  303. if (!peer || !max)
  304. return 0;
  305. start = qp->rid;
  306. end = atomic_inc_return(&peer->rid);
  307. qp->rid = end;
  308. rc = qp->q.fragments && (end - start) > max;
  309. if (rc) {
  310. IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
  311. }
  312. return rc;
  313. }
  314. static int ip_frag_reinit(struct ipq *qp)
  315. {
  316. struct sk_buff *fp;
  317. if (!mod_timer(&qp->q.timer, jiffies + ip4_frags_ctl.timeout)) {
  318. atomic_inc(&qp->q.refcnt);
  319. return -ETIMEDOUT;
  320. }
  321. fp = qp->q.fragments;
  322. do {
  323. struct sk_buff *xp = fp->next;
  324. frag_kfree_skb(fp, NULL);
  325. fp = xp;
  326. } while (fp);
  327. qp->q.last_in = 0;
  328. qp->q.len = 0;
  329. qp->q.meat = 0;
  330. qp->q.fragments = NULL;
  331. qp->iif = 0;
  332. return 0;
  333. }
  334. /* Add new segment to existing queue. */
  335. static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
  336. {
  337. struct sk_buff *prev, *next;
  338. struct net_device *dev;
  339. int flags, offset;
  340. int ihl, end;
  341. int err = -ENOENT;
  342. if (qp->q.last_in & COMPLETE)
  343. goto err;
  344. if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
  345. unlikely(ip_frag_too_far(qp)) &&
  346. unlikely(err = ip_frag_reinit(qp))) {
  347. ipq_kill(qp);
  348. goto err;
  349. }
  350. offset = ntohs(ip_hdr(skb)->frag_off);
  351. flags = offset & ~IP_OFFSET;
  352. offset &= IP_OFFSET;
  353. offset <<= 3; /* offset is in 8-byte chunks */
  354. ihl = ip_hdrlen(skb);
  355. /* Determine the position of this fragment. */
  356. end = offset + skb->len - ihl;
  357. err = -EINVAL;
  358. /* Is this the final fragment? */
  359. if ((flags & IP_MF) == 0) {
  360. /* If we already have some bits beyond end
  361. * or have different end, the segment is corrrupted.
  362. */
  363. if (end < qp->q.len ||
  364. ((qp->q.last_in & LAST_IN) && end != qp->q.len))
  365. goto err;
  366. qp->q.last_in |= LAST_IN;
  367. qp->q.len = end;
  368. } else {
  369. if (end&7) {
  370. end &= ~7;
  371. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  372. skb->ip_summed = CHECKSUM_NONE;
  373. }
  374. if (end > qp->q.len) {
  375. /* Some bits beyond end -> corruption. */
  376. if (qp->q.last_in & LAST_IN)
  377. goto err;
  378. qp->q.len = end;
  379. }
  380. }
  381. if (end == offset)
  382. goto err;
  383. err = -ENOMEM;
  384. if (pskb_pull(skb, ihl) == NULL)
  385. goto err;
  386. err = pskb_trim_rcsum(skb, end - offset);
  387. if (err)
  388. goto err;
  389. /* Find out which fragments are in front and at the back of us
  390. * in the chain of fragments so far. We must know where to put
  391. * this fragment, right?
  392. */
  393. prev = NULL;
  394. for (next = qp->q.fragments; next != NULL; next = next->next) {
  395. if (FRAG_CB(next)->offset >= offset)
  396. break; /* bingo! */
  397. prev = next;
  398. }
  399. /* We found where to put this one. Check for overlap with
  400. * preceding fragment, and, if needed, align things so that
  401. * any overlaps are eliminated.
  402. */
  403. if (prev) {
  404. int i = (FRAG_CB(prev)->offset + prev->len) - offset;
  405. if (i > 0) {
  406. offset += i;
  407. err = -EINVAL;
  408. if (end <= offset)
  409. goto err;
  410. err = -ENOMEM;
  411. if (!pskb_pull(skb, i))
  412. goto err;
  413. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  414. skb->ip_summed = CHECKSUM_NONE;
  415. }
  416. }
  417. err = -ENOMEM;
  418. while (next && FRAG_CB(next)->offset < end) {
  419. int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
  420. if (i < next->len) {
  421. /* Eat head of the next overlapped fragment
  422. * and leave the loop. The next ones cannot overlap.
  423. */
  424. if (!pskb_pull(next, i))
  425. goto err;
  426. FRAG_CB(next)->offset += i;
  427. qp->q.meat -= i;
  428. if (next->ip_summed != CHECKSUM_UNNECESSARY)
  429. next->ip_summed = CHECKSUM_NONE;
  430. break;
  431. } else {
  432. struct sk_buff *free_it = next;
  433. /* Old fragment is completely overridden with
  434. * new one drop it.
  435. */
  436. next = next->next;
  437. if (prev)
  438. prev->next = next;
  439. else
  440. qp->q.fragments = next;
  441. qp->q.meat -= free_it->len;
  442. frag_kfree_skb(free_it, NULL);
  443. }
  444. }
  445. FRAG_CB(skb)->offset = offset;
  446. /* Insert this fragment in the chain of fragments. */
  447. skb->next = next;
  448. if (prev)
  449. prev->next = skb;
  450. else
  451. qp->q.fragments = skb;
  452. dev = skb->dev;
  453. if (dev) {
  454. qp->iif = dev->ifindex;
  455. skb->dev = NULL;
  456. }
  457. qp->q.stamp = skb->tstamp;
  458. qp->q.meat += skb->len;
  459. atomic_add(skb->truesize, &ip4_frags.mem);
  460. if (offset == 0)
  461. qp->q.last_in |= FIRST_IN;
  462. if (qp->q.last_in == (FIRST_IN | LAST_IN) && qp->q.meat == qp->q.len)
  463. return ip_frag_reasm(qp, prev, dev);
  464. write_lock(&ip4_frags.lock);
  465. list_move_tail(&qp->q.lru_list, &ip4_frags.lru_list);
  466. write_unlock(&ip4_frags.lock);
  467. return -EINPROGRESS;
  468. err:
  469. kfree_skb(skb);
  470. return err;
  471. }
  472. /* Build a new IP datagram from all its fragments. */
  473. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  474. struct net_device *dev)
  475. {
  476. struct iphdr *iph;
  477. struct sk_buff *fp, *head = qp->q.fragments;
  478. int len;
  479. int ihlen;
  480. int err;
  481. ipq_kill(qp);
  482. /* Make the one we just received the head. */
  483. if (prev) {
  484. head = prev->next;
  485. fp = skb_clone(head, GFP_ATOMIC);
  486. if (!fp)
  487. goto out_nomem;
  488. fp->next = head->next;
  489. prev->next = fp;
  490. skb_morph(head, qp->q.fragments);
  491. head->next = qp->q.fragments->next;
  492. kfree_skb(qp->q.fragments);
  493. qp->q.fragments = head;
  494. }
  495. BUG_TRAP(head != NULL);
  496. BUG_TRAP(FRAG_CB(head)->offset == 0);
  497. /* Allocate a new buffer for the datagram. */
  498. ihlen = ip_hdrlen(head);
  499. len = ihlen + qp->q.len;
  500. err = -E2BIG;
  501. if (len > 65535)
  502. goto out_oversize;
  503. /* Head of list must not be cloned. */
  504. err = -ENOMEM;
  505. if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
  506. goto out_nomem;
  507. /* If the first fragment is fragmented itself, we split
  508. * it to two chunks: the first with data and paged part
  509. * and the second, holding only fragments. */
  510. if (skb_shinfo(head)->frag_list) {
  511. struct sk_buff *clone;
  512. int i, plen = 0;
  513. if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
  514. goto out_nomem;
  515. clone->next = head->next;
  516. head->next = clone;
  517. skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
  518. skb_shinfo(head)->frag_list = NULL;
  519. for (i=0; i<skb_shinfo(head)->nr_frags; i++)
  520. plen += skb_shinfo(head)->frags[i].size;
  521. clone->len = clone->data_len = head->data_len - plen;
  522. head->data_len -= clone->len;
  523. head->len -= clone->len;
  524. clone->csum = 0;
  525. clone->ip_summed = head->ip_summed;
  526. atomic_add(clone->truesize, &ip4_frags.mem);
  527. }
  528. skb_shinfo(head)->frag_list = head->next;
  529. skb_push(head, head->data - skb_network_header(head));
  530. atomic_sub(head->truesize, &ip4_frags.mem);
  531. for (fp=head->next; fp; fp = fp->next) {
  532. head->data_len += fp->len;
  533. head->len += fp->len;
  534. if (head->ip_summed != fp->ip_summed)
  535. head->ip_summed = CHECKSUM_NONE;
  536. else if (head->ip_summed == CHECKSUM_COMPLETE)
  537. head->csum = csum_add(head->csum, fp->csum);
  538. head->truesize += fp->truesize;
  539. atomic_sub(fp->truesize, &ip4_frags.mem);
  540. }
  541. head->next = NULL;
  542. head->dev = dev;
  543. head->tstamp = qp->q.stamp;
  544. iph = ip_hdr(head);
  545. iph->frag_off = 0;
  546. iph->tot_len = htons(len);
  547. IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
  548. qp->q.fragments = NULL;
  549. return 0;
  550. out_nomem:
  551. LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
  552. "queue %p\n", qp);
  553. goto out_fail;
  554. out_oversize:
  555. if (net_ratelimit())
  556. printk(KERN_INFO
  557. "Oversized IP packet from %d.%d.%d.%d.\n",
  558. NIPQUAD(qp->saddr));
  559. out_fail:
  560. IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
  561. return err;
  562. }
  563. /* Process an incoming IP datagram fragment. */
  564. int ip_defrag(struct sk_buff *skb, u32 user)
  565. {
  566. struct ipq *qp;
  567. IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
  568. /* Start by cleaning up the memory. */
  569. if (atomic_read(&ip4_frags.mem) > ip4_frags_ctl.high_thresh)
  570. ip_evictor();
  571. /* Lookup (or create) queue header */
  572. if ((qp = ip_find(ip_hdr(skb), user)) != NULL) {
  573. int ret;
  574. spin_lock(&qp->q.lock);
  575. ret = ip_frag_queue(qp, skb);
  576. spin_unlock(&qp->q.lock);
  577. ipq_put(qp, NULL);
  578. return ret;
  579. }
  580. IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
  581. kfree_skb(skb);
  582. return -ENOMEM;
  583. }
  584. void __init ipfrag_init(void)
  585. {
  586. ip4_frags.ctl = &ip4_frags_ctl;
  587. ip4_frags.hashfn = ip4_hashfn;
  588. ip4_frags.destructor = ip4_frag_free;
  589. ip4_frags.skb_free = NULL;
  590. ip4_frags.qsize = sizeof(struct ipq);
  591. inet_frags_init(&ip4_frags);
  592. }
  593. EXPORT_SYMBOL(ip_defrag);