mutex.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965
  1. /*
  2. * kernel/mutex.c
  3. *
  4. * Mutexes: blocking mutual exclusion locks
  5. *
  6. * Started by Ingo Molnar:
  7. *
  8. * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  9. *
  10. * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11. * David Howells for suggestions and improvements.
  12. *
  13. * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14. * from the -rt tree, where it was originally implemented for rtmutexes
  15. * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16. * and Sven Dietrich.
  17. *
  18. * Also see Documentation/mutex-design.txt.
  19. */
  20. #include <linux/mutex.h>
  21. #include <linux/ww_mutex.h>
  22. #include <linux/sched.h>
  23. #include <linux/sched/rt.h>
  24. #include <linux/export.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/debug_locks.h>
  28. /*
  29. * In the DEBUG case we are using the "NULL fastpath" for mutexes,
  30. * which forces all calls into the slowpath:
  31. */
  32. #ifdef CONFIG_DEBUG_MUTEXES
  33. # include "mutex-debug.h"
  34. # include <asm-generic/mutex-null.h>
  35. #else
  36. # include "mutex.h"
  37. # include <asm/mutex.h>
  38. #endif
  39. /*
  40. * A negative mutex count indicates that waiters are sleeping waiting for the
  41. * mutex.
  42. */
  43. #define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0)
  44. void
  45. __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  46. {
  47. atomic_set(&lock->count, 1);
  48. spin_lock_init(&lock->wait_lock);
  49. INIT_LIST_HEAD(&lock->wait_list);
  50. mutex_clear_owner(lock);
  51. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  52. lock->spin_mlock = NULL;
  53. #endif
  54. debug_mutex_init(lock, name, key);
  55. }
  56. EXPORT_SYMBOL(__mutex_init);
  57. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  58. /*
  59. * We split the mutex lock/unlock logic into separate fastpath and
  60. * slowpath functions, to reduce the register pressure on the fastpath.
  61. * We also put the fastpath first in the kernel image, to make sure the
  62. * branch is predicted by the CPU as default-untaken.
  63. */
  64. static __used noinline void __sched
  65. __mutex_lock_slowpath(atomic_t *lock_count);
  66. /**
  67. * mutex_lock - acquire the mutex
  68. * @lock: the mutex to be acquired
  69. *
  70. * Lock the mutex exclusively for this task. If the mutex is not
  71. * available right now, it will sleep until it can get it.
  72. *
  73. * The mutex must later on be released by the same task that
  74. * acquired it. Recursive locking is not allowed. The task
  75. * may not exit without first unlocking the mutex. Also, kernel
  76. * memory where the mutex resides mutex must not be freed with
  77. * the mutex still locked. The mutex must first be initialized
  78. * (or statically defined) before it can be locked. memset()-ing
  79. * the mutex to 0 is not allowed.
  80. *
  81. * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
  82. * checks that will enforce the restrictions and will also do
  83. * deadlock debugging. )
  84. *
  85. * This function is similar to (but not equivalent to) down().
  86. */
  87. void __sched mutex_lock(struct mutex *lock)
  88. {
  89. might_sleep();
  90. /*
  91. * The locking fastpath is the 1->0 transition from
  92. * 'unlocked' into 'locked' state.
  93. */
  94. __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
  95. mutex_set_owner(lock);
  96. }
  97. EXPORT_SYMBOL(mutex_lock);
  98. #endif
  99. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  100. /*
  101. * In order to avoid a stampede of mutex spinners from acquiring the mutex
  102. * more or less simultaneously, the spinners need to acquire a MCS lock
  103. * first before spinning on the owner field.
  104. *
  105. * We don't inline mspin_lock() so that perf can correctly account for the
  106. * time spent in this lock function.
  107. */
  108. struct mspin_node {
  109. struct mspin_node *next ;
  110. int locked; /* 1 if lock acquired */
  111. };
  112. #define MLOCK(mutex) ((struct mspin_node **)&((mutex)->spin_mlock))
  113. static noinline
  114. void mspin_lock(struct mspin_node **lock, struct mspin_node *node)
  115. {
  116. struct mspin_node *prev;
  117. /* Init node */
  118. node->locked = 0;
  119. node->next = NULL;
  120. prev = xchg(lock, node);
  121. if (likely(prev == NULL)) {
  122. /* Lock acquired */
  123. node->locked = 1;
  124. return;
  125. }
  126. ACCESS_ONCE(prev->next) = node;
  127. smp_wmb();
  128. /* Wait until the lock holder passes the lock down */
  129. while (!ACCESS_ONCE(node->locked))
  130. arch_mutex_cpu_relax();
  131. }
  132. static void mspin_unlock(struct mspin_node **lock, struct mspin_node *node)
  133. {
  134. struct mspin_node *next = ACCESS_ONCE(node->next);
  135. if (likely(!next)) {
  136. /*
  137. * Release the lock by setting it to NULL
  138. */
  139. if (cmpxchg(lock, node, NULL) == node)
  140. return;
  141. /* Wait until the next pointer is set */
  142. while (!(next = ACCESS_ONCE(node->next)))
  143. arch_mutex_cpu_relax();
  144. }
  145. ACCESS_ONCE(next->locked) = 1;
  146. smp_wmb();
  147. }
  148. /*
  149. * Mutex spinning code migrated from kernel/sched/core.c
  150. */
  151. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  152. {
  153. if (lock->owner != owner)
  154. return false;
  155. /*
  156. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  157. * lock->owner still matches owner, if that fails, owner might
  158. * point to free()d memory, if it still matches, the rcu_read_lock()
  159. * ensures the memory stays valid.
  160. */
  161. barrier();
  162. return owner->on_cpu;
  163. }
  164. /*
  165. * Look out! "owner" is an entirely speculative pointer
  166. * access and not reliable.
  167. */
  168. static noinline
  169. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  170. {
  171. rcu_read_lock();
  172. while (owner_running(lock, owner)) {
  173. if (need_resched())
  174. break;
  175. arch_mutex_cpu_relax();
  176. }
  177. rcu_read_unlock();
  178. /*
  179. * We break out the loop above on need_resched() and when the
  180. * owner changed, which is a sign for heavy contention. Return
  181. * success only when lock->owner is NULL.
  182. */
  183. return lock->owner == NULL;
  184. }
  185. /*
  186. * Initial check for entering the mutex spinning loop
  187. */
  188. static inline int mutex_can_spin_on_owner(struct mutex *lock)
  189. {
  190. struct task_struct *owner;
  191. int retval = 1;
  192. rcu_read_lock();
  193. owner = ACCESS_ONCE(lock->owner);
  194. if (owner)
  195. retval = owner->on_cpu;
  196. rcu_read_unlock();
  197. /*
  198. * if lock->owner is not set, the mutex owner may have just acquired
  199. * it and not set the owner yet or the mutex has been released.
  200. */
  201. return retval;
  202. }
  203. #endif
  204. static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
  205. /**
  206. * mutex_unlock - release the mutex
  207. * @lock: the mutex to be released
  208. *
  209. * Unlock a mutex that has been locked by this task previously.
  210. *
  211. * This function must not be used in interrupt context. Unlocking
  212. * of a not locked mutex is not allowed.
  213. *
  214. * This function is similar to (but not equivalent to) up().
  215. */
  216. void __sched mutex_unlock(struct mutex *lock)
  217. {
  218. /*
  219. * The unlocking fastpath is the 0->1 transition from 'locked'
  220. * into 'unlocked' state:
  221. */
  222. #ifndef CONFIG_DEBUG_MUTEXES
  223. /*
  224. * When debugging is enabled we must not clear the owner before time,
  225. * the slow path will always be taken, and that clears the owner field
  226. * after verifying that it was indeed current.
  227. */
  228. mutex_clear_owner(lock);
  229. #endif
  230. __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
  231. }
  232. EXPORT_SYMBOL(mutex_unlock);
  233. /**
  234. * ww_mutex_unlock - release the w/w mutex
  235. * @lock: the mutex to be released
  236. *
  237. * Unlock a mutex that has been locked by this task previously with any of the
  238. * ww_mutex_lock* functions (with or without an acquire context). It is
  239. * forbidden to release the locks after releasing the acquire context.
  240. *
  241. * This function must not be used in interrupt context. Unlocking
  242. * of a unlocked mutex is not allowed.
  243. */
  244. void __sched ww_mutex_unlock(struct ww_mutex *lock)
  245. {
  246. /*
  247. * The unlocking fastpath is the 0->1 transition from 'locked'
  248. * into 'unlocked' state:
  249. */
  250. if (lock->ctx) {
  251. #ifdef CONFIG_DEBUG_MUTEXES
  252. DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
  253. #endif
  254. if (lock->ctx->acquired > 0)
  255. lock->ctx->acquired--;
  256. lock->ctx = NULL;
  257. }
  258. #ifndef CONFIG_DEBUG_MUTEXES
  259. /*
  260. * When debugging is enabled we must not clear the owner before time,
  261. * the slow path will always be taken, and that clears the owner field
  262. * after verifying that it was indeed current.
  263. */
  264. mutex_clear_owner(&lock->base);
  265. #endif
  266. __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
  267. }
  268. EXPORT_SYMBOL(ww_mutex_unlock);
  269. static inline int __sched
  270. __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
  271. {
  272. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  273. struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
  274. if (!hold_ctx)
  275. return 0;
  276. if (unlikely(ctx == hold_ctx))
  277. return -EALREADY;
  278. if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
  279. (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
  280. #ifdef CONFIG_DEBUG_MUTEXES
  281. DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
  282. ctx->contending_lock = ww;
  283. #endif
  284. return -EDEADLK;
  285. }
  286. return 0;
  287. }
  288. static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
  289. struct ww_acquire_ctx *ww_ctx)
  290. {
  291. #ifdef CONFIG_DEBUG_MUTEXES
  292. /*
  293. * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
  294. * but released with a normal mutex_unlock in this call.
  295. *
  296. * This should never happen, always use ww_mutex_unlock.
  297. */
  298. DEBUG_LOCKS_WARN_ON(ww->ctx);
  299. /*
  300. * Not quite done after calling ww_acquire_done() ?
  301. */
  302. DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
  303. if (ww_ctx->contending_lock) {
  304. /*
  305. * After -EDEADLK you tried to
  306. * acquire a different ww_mutex? Bad!
  307. */
  308. DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
  309. /*
  310. * You called ww_mutex_lock after receiving -EDEADLK,
  311. * but 'forgot' to unlock everything else first?
  312. */
  313. DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
  314. ww_ctx->contending_lock = NULL;
  315. }
  316. /*
  317. * Naughty, using a different class will lead to undefined behavior!
  318. */
  319. DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
  320. #endif
  321. ww_ctx->acquired++;
  322. }
  323. /*
  324. * after acquiring lock with fastpath or when we lost out in contested
  325. * slowpath, set ctx and wake up any waiters so they can recheck.
  326. *
  327. * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
  328. * as the fastpath and opportunistic spinning are disabled in that case.
  329. */
  330. static __always_inline void
  331. ww_mutex_set_context_fastpath(struct ww_mutex *lock,
  332. struct ww_acquire_ctx *ctx)
  333. {
  334. unsigned long flags;
  335. struct mutex_waiter *cur;
  336. ww_mutex_lock_acquired(lock, ctx);
  337. lock->ctx = ctx;
  338. /*
  339. * The lock->ctx update should be visible on all cores before
  340. * the atomic read is done, otherwise contended waiters might be
  341. * missed. The contended waiters will either see ww_ctx == NULL
  342. * and keep spinning, or it will acquire wait_lock, add itself
  343. * to waiter list and sleep.
  344. */
  345. smp_mb(); /* ^^^ */
  346. /*
  347. * Check if lock is contended, if not there is nobody to wake up
  348. */
  349. if (likely(atomic_read(&lock->base.count) == 0))
  350. return;
  351. /*
  352. * Uh oh, we raced in fastpath, wake up everyone in this case,
  353. * so they can see the new lock->ctx.
  354. */
  355. spin_lock_mutex(&lock->base.wait_lock, flags);
  356. list_for_each_entry(cur, &lock->base.wait_list, list) {
  357. debug_mutex_wake_waiter(&lock->base, cur);
  358. wake_up_process(cur->task);
  359. }
  360. spin_unlock_mutex(&lock->base.wait_lock, flags);
  361. }
  362. /*
  363. * Lock a mutex (possibly interruptible), slowpath:
  364. */
  365. static __always_inline int __sched
  366. __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
  367. struct lockdep_map *nest_lock, unsigned long ip,
  368. struct ww_acquire_ctx *ww_ctx)
  369. {
  370. struct task_struct *task = current;
  371. struct mutex_waiter waiter;
  372. unsigned long flags;
  373. int ret;
  374. preempt_disable();
  375. mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
  376. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  377. /*
  378. * Optimistic spinning.
  379. *
  380. * We try to spin for acquisition when we find that there are no
  381. * pending waiters and the lock owner is currently running on a
  382. * (different) CPU.
  383. *
  384. * The rationale is that if the lock owner is running, it is likely to
  385. * release the lock soon.
  386. *
  387. * Since this needs the lock owner, and this mutex implementation
  388. * doesn't track the owner atomically in the lock field, we need to
  389. * track it non-atomically.
  390. *
  391. * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
  392. * to serialize everything.
  393. *
  394. * The mutex spinners are queued up using MCS lock so that only one
  395. * spinner can compete for the mutex. However, if mutex spinning isn't
  396. * going to happen, there is no point in going through the lock/unlock
  397. * overhead.
  398. */
  399. if (!mutex_can_spin_on_owner(lock))
  400. goto slowpath;
  401. for (;;) {
  402. struct task_struct *owner;
  403. struct mspin_node node;
  404. if (!__builtin_constant_p(ww_ctx == NULL) && ww_ctx->acquired > 0) {
  405. struct ww_mutex *ww;
  406. ww = container_of(lock, struct ww_mutex, base);
  407. /*
  408. * If ww->ctx is set the contents are undefined, only
  409. * by acquiring wait_lock there is a guarantee that
  410. * they are not invalid when reading.
  411. *
  412. * As such, when deadlock detection needs to be
  413. * performed the optimistic spinning cannot be done.
  414. */
  415. if (ACCESS_ONCE(ww->ctx))
  416. break;
  417. }
  418. /*
  419. * If there's an owner, wait for it to either
  420. * release the lock or go to sleep.
  421. */
  422. mspin_lock(MLOCK(lock), &node);
  423. owner = ACCESS_ONCE(lock->owner);
  424. if (owner && !mutex_spin_on_owner(lock, owner)) {
  425. mspin_unlock(MLOCK(lock), &node);
  426. break;
  427. }
  428. if ((atomic_read(&lock->count) == 1) &&
  429. (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
  430. lock_acquired(&lock->dep_map, ip);
  431. if (!__builtin_constant_p(ww_ctx == NULL)) {
  432. struct ww_mutex *ww;
  433. ww = container_of(lock, struct ww_mutex, base);
  434. ww_mutex_set_context_fastpath(ww, ww_ctx);
  435. }
  436. mutex_set_owner(lock);
  437. mspin_unlock(MLOCK(lock), &node);
  438. preempt_enable();
  439. return 0;
  440. }
  441. mspin_unlock(MLOCK(lock), &node);
  442. /*
  443. * When there's no owner, we might have preempted between the
  444. * owner acquiring the lock and setting the owner field. If
  445. * we're an RT task that will live-lock because we won't let
  446. * the owner complete.
  447. */
  448. if (!owner && (need_resched() || rt_task(task)))
  449. break;
  450. /*
  451. * The cpu_relax() call is a compiler barrier which forces
  452. * everything in this loop to be re-loaded. We don't need
  453. * memory barriers as we'll eventually observe the right
  454. * values at the cost of a few extra spins.
  455. */
  456. arch_mutex_cpu_relax();
  457. }
  458. slowpath:
  459. #endif
  460. spin_lock_mutex(&lock->wait_lock, flags);
  461. debug_mutex_lock_common(lock, &waiter);
  462. debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
  463. /* add waiting tasks to the end of the waitqueue (FIFO): */
  464. list_add_tail(&waiter.list, &lock->wait_list);
  465. waiter.task = task;
  466. if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, -1) == 1))
  467. goto done;
  468. lock_contended(&lock->dep_map, ip);
  469. for (;;) {
  470. /*
  471. * Lets try to take the lock again - this is needed even if
  472. * we get here for the first time (shortly after failing to
  473. * acquire the lock), to make sure that we get a wakeup once
  474. * it's unlocked. Later on, if we sleep, this is the
  475. * operation that gives us the lock. We xchg it to -1, so
  476. * that when we release the lock, we properly wake up the
  477. * other waiters:
  478. */
  479. if (MUTEX_SHOW_NO_WAITER(lock) &&
  480. (atomic_xchg(&lock->count, -1) == 1))
  481. break;
  482. /*
  483. * got a signal? (This code gets eliminated in the
  484. * TASK_UNINTERRUPTIBLE case.)
  485. */
  486. if (unlikely(signal_pending_state(state, task))) {
  487. ret = -EINTR;
  488. goto err;
  489. }
  490. if (!__builtin_constant_p(ww_ctx == NULL) && ww_ctx->acquired > 0) {
  491. ret = __mutex_lock_check_stamp(lock, ww_ctx);
  492. if (ret)
  493. goto err;
  494. }
  495. __set_task_state(task, state);
  496. /* didn't get the lock, go to sleep: */
  497. spin_unlock_mutex(&lock->wait_lock, flags);
  498. schedule_preempt_disabled();
  499. spin_lock_mutex(&lock->wait_lock, flags);
  500. }
  501. done:
  502. lock_acquired(&lock->dep_map, ip);
  503. /* got the lock - rejoice! */
  504. mutex_remove_waiter(lock, &waiter, current_thread_info());
  505. mutex_set_owner(lock);
  506. if (!__builtin_constant_p(ww_ctx == NULL)) {
  507. struct ww_mutex *ww = container_of(lock,
  508. struct ww_mutex,
  509. base);
  510. struct mutex_waiter *cur;
  511. /*
  512. * This branch gets optimized out for the common case,
  513. * and is only important for ww_mutex_lock.
  514. */
  515. ww_mutex_lock_acquired(ww, ww_ctx);
  516. ww->ctx = ww_ctx;
  517. /*
  518. * Give any possible sleeping processes the chance to wake up,
  519. * so they can recheck if they have to back off.
  520. */
  521. list_for_each_entry(cur, &lock->wait_list, list) {
  522. debug_mutex_wake_waiter(lock, cur);
  523. wake_up_process(cur->task);
  524. }
  525. }
  526. /* set it to 0 if there are no waiters left: */
  527. if (likely(list_empty(&lock->wait_list)))
  528. atomic_set(&lock->count, 0);
  529. spin_unlock_mutex(&lock->wait_lock, flags);
  530. debug_mutex_free_waiter(&waiter);
  531. preempt_enable();
  532. return 0;
  533. err:
  534. mutex_remove_waiter(lock, &waiter, task_thread_info(task));
  535. spin_unlock_mutex(&lock->wait_lock, flags);
  536. debug_mutex_free_waiter(&waiter);
  537. mutex_release(&lock->dep_map, 1, ip);
  538. preempt_enable();
  539. return ret;
  540. }
  541. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  542. void __sched
  543. mutex_lock_nested(struct mutex *lock, unsigned int subclass)
  544. {
  545. might_sleep();
  546. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  547. subclass, NULL, _RET_IP_, NULL);
  548. }
  549. EXPORT_SYMBOL_GPL(mutex_lock_nested);
  550. void __sched
  551. _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
  552. {
  553. might_sleep();
  554. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  555. 0, nest, _RET_IP_, NULL);
  556. }
  557. EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
  558. int __sched
  559. mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
  560. {
  561. might_sleep();
  562. return __mutex_lock_common(lock, TASK_KILLABLE,
  563. subclass, NULL, _RET_IP_, NULL);
  564. }
  565. EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
  566. int __sched
  567. mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
  568. {
  569. might_sleep();
  570. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
  571. subclass, NULL, _RET_IP_, NULL);
  572. }
  573. EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
  574. static inline int
  575. ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  576. {
  577. #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
  578. unsigned tmp;
  579. if (ctx->deadlock_inject_countdown-- == 0) {
  580. tmp = ctx->deadlock_inject_interval;
  581. if (tmp > UINT_MAX/4)
  582. tmp = UINT_MAX;
  583. else
  584. tmp = tmp*2 + tmp + tmp/2;
  585. ctx->deadlock_inject_interval = tmp;
  586. ctx->deadlock_inject_countdown = tmp;
  587. ctx->contending_lock = lock;
  588. ww_mutex_unlock(lock);
  589. return -EDEADLK;
  590. }
  591. #endif
  592. return 0;
  593. }
  594. int __sched
  595. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  596. {
  597. int ret;
  598. might_sleep();
  599. ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
  600. 0, &ctx->dep_map, _RET_IP_, ctx);
  601. if (!ret && ctx->acquired > 0)
  602. return ww_mutex_deadlock_injection(lock, ctx);
  603. return ret;
  604. }
  605. EXPORT_SYMBOL_GPL(__ww_mutex_lock);
  606. int __sched
  607. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  608. {
  609. int ret;
  610. might_sleep();
  611. ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
  612. 0, &ctx->dep_map, _RET_IP_, ctx);
  613. if (!ret && ctx->acquired > 0)
  614. return ww_mutex_deadlock_injection(lock, ctx);
  615. return ret;
  616. }
  617. EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
  618. #endif
  619. /*
  620. * Release the lock, slowpath:
  621. */
  622. static inline void
  623. __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
  624. {
  625. struct mutex *lock = container_of(lock_count, struct mutex, count);
  626. unsigned long flags;
  627. spin_lock_mutex(&lock->wait_lock, flags);
  628. mutex_release(&lock->dep_map, nested, _RET_IP_);
  629. debug_mutex_unlock(lock);
  630. /*
  631. * some architectures leave the lock unlocked in the fastpath failure
  632. * case, others need to leave it locked. In the later case we have to
  633. * unlock it here
  634. */
  635. if (__mutex_slowpath_needs_to_unlock())
  636. atomic_set(&lock->count, 1);
  637. if (!list_empty(&lock->wait_list)) {
  638. /* get the first entry from the wait-list: */
  639. struct mutex_waiter *waiter =
  640. list_entry(lock->wait_list.next,
  641. struct mutex_waiter, list);
  642. debug_mutex_wake_waiter(lock, waiter);
  643. wake_up_process(waiter->task);
  644. }
  645. spin_unlock_mutex(&lock->wait_lock, flags);
  646. }
  647. /*
  648. * Release the lock, slowpath:
  649. */
  650. static __used noinline void
  651. __mutex_unlock_slowpath(atomic_t *lock_count)
  652. {
  653. __mutex_unlock_common_slowpath(lock_count, 1);
  654. }
  655. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  656. /*
  657. * Here come the less common (and hence less performance-critical) APIs:
  658. * mutex_lock_interruptible() and mutex_trylock().
  659. */
  660. static noinline int __sched
  661. __mutex_lock_killable_slowpath(struct mutex *lock);
  662. static noinline int __sched
  663. __mutex_lock_interruptible_slowpath(struct mutex *lock);
  664. /**
  665. * mutex_lock_interruptible - acquire the mutex, interruptible
  666. * @lock: the mutex to be acquired
  667. *
  668. * Lock the mutex like mutex_lock(), and return 0 if the mutex has
  669. * been acquired or sleep until the mutex becomes available. If a
  670. * signal arrives while waiting for the lock then this function
  671. * returns -EINTR.
  672. *
  673. * This function is similar to (but not equivalent to) down_interruptible().
  674. */
  675. int __sched mutex_lock_interruptible(struct mutex *lock)
  676. {
  677. int ret;
  678. might_sleep();
  679. ret = __mutex_fastpath_lock_retval(&lock->count);
  680. if (likely(!ret)) {
  681. mutex_set_owner(lock);
  682. return 0;
  683. } else
  684. return __mutex_lock_interruptible_slowpath(lock);
  685. }
  686. EXPORT_SYMBOL(mutex_lock_interruptible);
  687. int __sched mutex_lock_killable(struct mutex *lock)
  688. {
  689. int ret;
  690. might_sleep();
  691. ret = __mutex_fastpath_lock_retval(&lock->count);
  692. if (likely(!ret)) {
  693. mutex_set_owner(lock);
  694. return 0;
  695. } else
  696. return __mutex_lock_killable_slowpath(lock);
  697. }
  698. EXPORT_SYMBOL(mutex_lock_killable);
  699. static __used noinline void __sched
  700. __mutex_lock_slowpath(atomic_t *lock_count)
  701. {
  702. struct mutex *lock = container_of(lock_count, struct mutex, count);
  703. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
  704. NULL, _RET_IP_, NULL);
  705. }
  706. static noinline int __sched
  707. __mutex_lock_killable_slowpath(struct mutex *lock)
  708. {
  709. return __mutex_lock_common(lock, TASK_KILLABLE, 0,
  710. NULL, _RET_IP_, NULL);
  711. }
  712. static noinline int __sched
  713. __mutex_lock_interruptible_slowpath(struct mutex *lock)
  714. {
  715. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
  716. NULL, _RET_IP_, NULL);
  717. }
  718. static noinline int __sched
  719. __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  720. {
  721. return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
  722. NULL, _RET_IP_, ctx);
  723. }
  724. static noinline int __sched
  725. __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
  726. struct ww_acquire_ctx *ctx)
  727. {
  728. return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
  729. NULL, _RET_IP_, ctx);
  730. }
  731. #endif
  732. /*
  733. * Spinlock based trylock, we take the spinlock and check whether we
  734. * can get the lock:
  735. */
  736. static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
  737. {
  738. struct mutex *lock = container_of(lock_count, struct mutex, count);
  739. unsigned long flags;
  740. int prev;
  741. spin_lock_mutex(&lock->wait_lock, flags);
  742. prev = atomic_xchg(&lock->count, -1);
  743. if (likely(prev == 1)) {
  744. mutex_set_owner(lock);
  745. mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
  746. }
  747. /* Set it back to 0 if there are no waiters: */
  748. if (likely(list_empty(&lock->wait_list)))
  749. atomic_set(&lock->count, 0);
  750. spin_unlock_mutex(&lock->wait_lock, flags);
  751. return prev == 1;
  752. }
  753. /**
  754. * mutex_trylock - try to acquire the mutex, without waiting
  755. * @lock: the mutex to be acquired
  756. *
  757. * Try to acquire the mutex atomically. Returns 1 if the mutex
  758. * has been acquired successfully, and 0 on contention.
  759. *
  760. * NOTE: this function follows the spin_trylock() convention, so
  761. * it is negated from the down_trylock() return values! Be careful
  762. * about this when converting semaphore users to mutexes.
  763. *
  764. * This function must not be used in interrupt context. The
  765. * mutex must be released by the same task that acquired it.
  766. */
  767. int __sched mutex_trylock(struct mutex *lock)
  768. {
  769. int ret;
  770. ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
  771. if (ret)
  772. mutex_set_owner(lock);
  773. return ret;
  774. }
  775. EXPORT_SYMBOL(mutex_trylock);
  776. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  777. int __sched
  778. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  779. {
  780. int ret;
  781. might_sleep();
  782. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  783. if (likely(!ret)) {
  784. ww_mutex_set_context_fastpath(lock, ctx);
  785. mutex_set_owner(&lock->base);
  786. } else
  787. ret = __ww_mutex_lock_slowpath(lock, ctx);
  788. return ret;
  789. }
  790. EXPORT_SYMBOL(__ww_mutex_lock);
  791. int __sched
  792. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  793. {
  794. int ret;
  795. might_sleep();
  796. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  797. if (likely(!ret)) {
  798. ww_mutex_set_context_fastpath(lock, ctx);
  799. mutex_set_owner(&lock->base);
  800. } else
  801. ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
  802. return ret;
  803. }
  804. EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
  805. #endif
  806. /**
  807. * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
  808. * @cnt: the atomic which we are to dec
  809. * @lock: the mutex to return holding if we dec to 0
  810. *
  811. * return true and hold lock if we dec to 0, return false otherwise
  812. */
  813. int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
  814. {
  815. /* dec if we can't possibly hit 0 */
  816. if (atomic_add_unless(cnt, -1, 1))
  817. return 0;
  818. /* we might hit 0, so take the lock */
  819. mutex_lock(lock);
  820. if (!atomic_dec_and_test(cnt)) {
  821. /* when we actually did the dec, we didn't hit 0 */
  822. mutex_unlock(lock);
  823. return 0;
  824. }
  825. /* we hit 0, and we hold the lock */
  826. return 1;
  827. }
  828. EXPORT_SYMBOL(atomic_dec_and_mutex_lock);