sched.c 221 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. raw_spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. raw_spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. raw_spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_GROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. #ifdef CONFIG_CGROUP_SCHED
  208. struct cgroup_subsys_state css;
  209. #endif
  210. #ifdef CONFIG_USER_SCHED
  211. uid_t uid;
  212. #endif
  213. #ifdef CONFIG_FAIR_GROUP_SCHED
  214. /* schedulable entities of this group on each cpu */
  215. struct sched_entity **se;
  216. /* runqueue "owned" by this group on each cpu */
  217. struct cfs_rq **cfs_rq;
  218. unsigned long shares;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. };
  231. #ifdef CONFIG_USER_SCHED
  232. /* Helper function to pass uid information to create_sched_user() */
  233. void set_tg_uid(struct user_struct *user)
  234. {
  235. user->tg->uid = user->uid;
  236. }
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
  252. #endif /* CONFIG_RT_GROUP_SCHED */
  253. #else /* !CONFIG_USER_SCHED */
  254. #define root_task_group init_task_group
  255. #endif /* CONFIG_USER_SCHED */
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. #ifdef CONFIG_SMP
  262. static int root_task_group_empty(void)
  263. {
  264. return list_empty(&root_task_group.children);
  265. }
  266. #endif
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else /* !CONFIG_USER_SCHED */
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif /* CONFIG_USER_SCHED */
  272. /*
  273. * A weight of 0 or 1 can cause arithmetics problems.
  274. * A weight of a cfs_rq is the sum of weights of which entities
  275. * are queued on this cfs_rq, so a weight of a entity should not be
  276. * too large, so as the shares value of a task group.
  277. * (The default weight is 1024 - so there's no practical
  278. * limitation from this.)
  279. */
  280. #define MIN_SHARES 2
  281. #define MAX_SHARES (1UL << 18)
  282. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  283. #endif
  284. /* Default task group.
  285. * Every task in system belong to this group at bootup.
  286. */
  287. struct task_group init_task_group;
  288. /* return group to which a task belongs */
  289. static inline struct task_group *task_group(struct task_struct *p)
  290. {
  291. struct task_group *tg;
  292. #ifdef CONFIG_USER_SCHED
  293. rcu_read_lock();
  294. tg = __task_cred(p)->user->tg;
  295. rcu_read_unlock();
  296. #elif defined(CONFIG_CGROUP_SCHED)
  297. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  298. struct task_group, css);
  299. #else
  300. tg = &init_task_group;
  301. #endif
  302. return tg;
  303. }
  304. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  305. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  306. {
  307. #ifdef CONFIG_FAIR_GROUP_SCHED
  308. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  309. p->se.parent = task_group(p)->se[cpu];
  310. #endif
  311. #ifdef CONFIG_RT_GROUP_SCHED
  312. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  313. p->rt.parent = task_group(p)->rt_se[cpu];
  314. #endif
  315. }
  316. #else
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  318. static inline struct task_group *task_group(struct task_struct *p)
  319. {
  320. return NULL;
  321. }
  322. #endif /* CONFIG_GROUP_SCHED */
  323. /* CFS-related fields in a runqueue */
  324. struct cfs_rq {
  325. struct load_weight load;
  326. unsigned long nr_running;
  327. u64 exec_clock;
  328. u64 min_vruntime;
  329. struct rb_root tasks_timeline;
  330. struct rb_node *rb_leftmost;
  331. struct list_head tasks;
  332. struct list_head *balance_iterator;
  333. /*
  334. * 'curr' points to currently running entity on this cfs_rq.
  335. * It is set to NULL otherwise (i.e when none are currently running).
  336. */
  337. struct sched_entity *curr, *next, *last;
  338. unsigned int nr_spread_over;
  339. #ifdef CONFIG_FAIR_GROUP_SCHED
  340. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  341. /*
  342. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344. * (like users, containers etc.)
  345. *
  346. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347. * list is used during load balance.
  348. */
  349. struct list_head leaf_cfs_rq_list;
  350. struct task_group *tg; /* group that "owns" this runqueue */
  351. #ifdef CONFIG_SMP
  352. /*
  353. * the part of load.weight contributed by tasks
  354. */
  355. unsigned long task_weight;
  356. /*
  357. * h_load = weight * f(tg)
  358. *
  359. * Where f(tg) is the recursive weight fraction assigned to
  360. * this group.
  361. */
  362. unsigned long h_load;
  363. /*
  364. * this cpu's part of tg->shares
  365. */
  366. unsigned long shares;
  367. /*
  368. * load.weight at the time we set shares
  369. */
  370. unsigned long rq_weight;
  371. #endif
  372. #endif
  373. };
  374. /* Real-Time classes' related field in a runqueue: */
  375. struct rt_rq {
  376. struct rt_prio_array active;
  377. unsigned long rt_nr_running;
  378. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  379. struct {
  380. int curr; /* highest queued rt task prio */
  381. #ifdef CONFIG_SMP
  382. int next; /* next highest */
  383. #endif
  384. } highest_prio;
  385. #endif
  386. #ifdef CONFIG_SMP
  387. unsigned long rt_nr_migratory;
  388. unsigned long rt_nr_total;
  389. int overloaded;
  390. struct plist_head pushable_tasks;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. raw_spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_var_t span;
  417. cpumask_var_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_var_t rto_mask;
  423. atomic_t rto_count;
  424. #ifdef CONFIG_SMP
  425. struct cpupri cpupri;
  426. #endif
  427. };
  428. /*
  429. * By default the system creates a single root-domain with all cpus as
  430. * members (mimicking the global state we have today).
  431. */
  432. static struct root_domain def_root_domain;
  433. #endif
  434. /*
  435. * This is the main, per-CPU runqueue data structure.
  436. *
  437. * Locking rule: those places that want to lock multiple runqueues
  438. * (such as the load balancing or the thread migration code), lock
  439. * acquire operations must be ordered by ascending &runqueue.
  440. */
  441. struct rq {
  442. /* runqueue lock: */
  443. raw_spinlock_t lock;
  444. /*
  445. * nr_running and cpu_load should be in the same cacheline because
  446. * remote CPUs use both these fields when doing load calculation.
  447. */
  448. unsigned long nr_running;
  449. #define CPU_LOAD_IDX_MAX 5
  450. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  451. #ifdef CONFIG_NO_HZ
  452. unsigned char in_nohz_recently;
  453. #endif
  454. /* capture load from *all* tasks on this cpu: */
  455. struct load_weight load;
  456. unsigned long nr_load_updates;
  457. u64 nr_switches;
  458. struct cfs_rq cfs;
  459. struct rt_rq rt;
  460. #ifdef CONFIG_FAIR_GROUP_SCHED
  461. /* list of leaf cfs_rq on this cpu: */
  462. struct list_head leaf_cfs_rq_list;
  463. #endif
  464. #ifdef CONFIG_RT_GROUP_SCHED
  465. struct list_head leaf_rt_rq_list;
  466. #endif
  467. /*
  468. * This is part of a global counter where only the total sum
  469. * over all CPUs matters. A task can increase this counter on
  470. * one CPU and if it got migrated afterwards it may decrease
  471. * it on another CPU. Always updated under the runqueue lock:
  472. */
  473. unsigned long nr_uninterruptible;
  474. struct task_struct *curr, *idle;
  475. unsigned long next_balance;
  476. struct mm_struct *prev_mm;
  477. u64 clock;
  478. atomic_t nr_iowait;
  479. #ifdef CONFIG_SMP
  480. struct root_domain *rd;
  481. struct sched_domain *sd;
  482. unsigned char idle_at_tick;
  483. /* For active balancing */
  484. int post_schedule;
  485. int active_balance;
  486. int push_cpu;
  487. /* cpu of this runqueue: */
  488. int cpu;
  489. int online;
  490. unsigned long avg_load_per_task;
  491. struct task_struct *migration_thread;
  492. struct list_head migration_queue;
  493. u64 rt_avg;
  494. u64 age_stamp;
  495. u64 idle_stamp;
  496. u64 avg_idle;
  497. #endif
  498. /* calc_load related fields */
  499. unsigned long calc_load_update;
  500. long calc_load_active;
  501. #ifdef CONFIG_SCHED_HRTICK
  502. #ifdef CONFIG_SMP
  503. int hrtick_csd_pending;
  504. struct call_single_data hrtick_csd;
  505. #endif
  506. struct hrtimer hrtick_timer;
  507. #endif
  508. #ifdef CONFIG_SCHEDSTATS
  509. /* latency stats */
  510. struct sched_info rq_sched_info;
  511. unsigned long long rq_cpu_time;
  512. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  513. /* sys_sched_yield() stats */
  514. unsigned int yld_count;
  515. /* schedule() stats */
  516. unsigned int sched_switch;
  517. unsigned int sched_count;
  518. unsigned int sched_goidle;
  519. /* try_to_wake_up() stats */
  520. unsigned int ttwu_count;
  521. unsigned int ttwu_local;
  522. /* BKL stats */
  523. unsigned int bkl_count;
  524. #endif
  525. };
  526. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  527. static inline
  528. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  529. {
  530. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  531. }
  532. static inline int cpu_of(struct rq *rq)
  533. {
  534. #ifdef CONFIG_SMP
  535. return rq->cpu;
  536. #else
  537. return 0;
  538. #endif
  539. }
  540. /*
  541. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  542. * See detach_destroy_domains: synchronize_sched for details.
  543. *
  544. * The domain tree of any CPU may only be accessed from within
  545. * preempt-disabled sections.
  546. */
  547. #define for_each_domain(cpu, __sd) \
  548. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  549. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  550. #define this_rq() (&__get_cpu_var(runqueues))
  551. #define task_rq(p) cpu_rq(task_cpu(p))
  552. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  553. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  554. inline void update_rq_clock(struct rq *rq)
  555. {
  556. rq->clock = sched_clock_cpu(cpu_of(rq));
  557. }
  558. /*
  559. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  560. */
  561. #ifdef CONFIG_SCHED_DEBUG
  562. # define const_debug __read_mostly
  563. #else
  564. # define const_debug static const
  565. #endif
  566. /**
  567. * runqueue_is_locked
  568. * @cpu: the processor in question.
  569. *
  570. * Returns true if the current cpu runqueue is locked.
  571. * This interface allows printk to be called with the runqueue lock
  572. * held and know whether or not it is OK to wake up the klogd.
  573. */
  574. int runqueue_is_locked(int cpu)
  575. {
  576. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  577. }
  578. /*
  579. * Debugging: various feature bits
  580. */
  581. #define SCHED_FEAT(name, enabled) \
  582. __SCHED_FEAT_##name ,
  583. enum {
  584. #include "sched_features.h"
  585. };
  586. #undef SCHED_FEAT
  587. #define SCHED_FEAT(name, enabled) \
  588. (1UL << __SCHED_FEAT_##name) * enabled |
  589. const_debug unsigned int sysctl_sched_features =
  590. #include "sched_features.h"
  591. 0;
  592. #undef SCHED_FEAT
  593. #ifdef CONFIG_SCHED_DEBUG
  594. #define SCHED_FEAT(name, enabled) \
  595. #name ,
  596. static __read_mostly char *sched_feat_names[] = {
  597. #include "sched_features.h"
  598. NULL
  599. };
  600. #undef SCHED_FEAT
  601. static int sched_feat_show(struct seq_file *m, void *v)
  602. {
  603. int i;
  604. for (i = 0; sched_feat_names[i]; i++) {
  605. if (!(sysctl_sched_features & (1UL << i)))
  606. seq_puts(m, "NO_");
  607. seq_printf(m, "%s ", sched_feat_names[i]);
  608. }
  609. seq_puts(m, "\n");
  610. return 0;
  611. }
  612. static ssize_t
  613. sched_feat_write(struct file *filp, const char __user *ubuf,
  614. size_t cnt, loff_t *ppos)
  615. {
  616. char buf[64];
  617. char *cmp = buf;
  618. int neg = 0;
  619. int i;
  620. if (cnt > 63)
  621. cnt = 63;
  622. if (copy_from_user(&buf, ubuf, cnt))
  623. return -EFAULT;
  624. buf[cnt] = 0;
  625. if (strncmp(buf, "NO_", 3) == 0) {
  626. neg = 1;
  627. cmp += 3;
  628. }
  629. for (i = 0; sched_feat_names[i]; i++) {
  630. int len = strlen(sched_feat_names[i]);
  631. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  632. if (neg)
  633. sysctl_sched_features &= ~(1UL << i);
  634. else
  635. sysctl_sched_features |= (1UL << i);
  636. break;
  637. }
  638. }
  639. if (!sched_feat_names[i])
  640. return -EINVAL;
  641. *ppos += cnt;
  642. return cnt;
  643. }
  644. static int sched_feat_open(struct inode *inode, struct file *filp)
  645. {
  646. return single_open(filp, sched_feat_show, NULL);
  647. }
  648. static const struct file_operations sched_feat_fops = {
  649. .open = sched_feat_open,
  650. .write = sched_feat_write,
  651. .read = seq_read,
  652. .llseek = seq_lseek,
  653. .release = single_release,
  654. };
  655. static __init int sched_init_debug(void)
  656. {
  657. debugfs_create_file("sched_features", 0644, NULL, NULL,
  658. &sched_feat_fops);
  659. return 0;
  660. }
  661. late_initcall(sched_init_debug);
  662. #endif
  663. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  664. /*
  665. * Number of tasks to iterate in a single balance run.
  666. * Limited because this is done with IRQs disabled.
  667. */
  668. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  669. /*
  670. * ratelimit for updating the group shares.
  671. * default: 0.25ms
  672. */
  673. unsigned int sysctl_sched_shares_ratelimit = 250000;
  674. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  675. /*
  676. * Inject some fuzzyness into changing the per-cpu group shares
  677. * this avoids remote rq-locks at the expense of fairness.
  678. * default: 4
  679. */
  680. unsigned int sysctl_sched_shares_thresh = 4;
  681. /*
  682. * period over which we average the RT time consumption, measured
  683. * in ms.
  684. *
  685. * default: 1s
  686. */
  687. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  688. /*
  689. * period over which we measure -rt task cpu usage in us.
  690. * default: 1s
  691. */
  692. unsigned int sysctl_sched_rt_period = 1000000;
  693. static __read_mostly int scheduler_running;
  694. /*
  695. * part of the period that we allow rt tasks to run in us.
  696. * default: 0.95s
  697. */
  698. int sysctl_sched_rt_runtime = 950000;
  699. static inline u64 global_rt_period(void)
  700. {
  701. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  702. }
  703. static inline u64 global_rt_runtime(void)
  704. {
  705. if (sysctl_sched_rt_runtime < 0)
  706. return RUNTIME_INF;
  707. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  708. }
  709. #ifndef prepare_arch_switch
  710. # define prepare_arch_switch(next) do { } while (0)
  711. #endif
  712. #ifndef finish_arch_switch
  713. # define finish_arch_switch(prev) do { } while (0)
  714. #endif
  715. static inline int task_current(struct rq *rq, struct task_struct *p)
  716. {
  717. return rq->curr == p;
  718. }
  719. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  720. static inline int task_running(struct rq *rq, struct task_struct *p)
  721. {
  722. return task_current(rq, p);
  723. }
  724. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  725. {
  726. }
  727. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  728. {
  729. #ifdef CONFIG_DEBUG_SPINLOCK
  730. /* this is a valid case when another task releases the spinlock */
  731. rq->lock.owner = current;
  732. #endif
  733. /*
  734. * If we are tracking spinlock dependencies then we have to
  735. * fix up the runqueue lock - which gets 'carried over' from
  736. * prev into current:
  737. */
  738. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  739. raw_spin_unlock_irq(&rq->lock);
  740. }
  741. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  742. static inline int task_running(struct rq *rq, struct task_struct *p)
  743. {
  744. #ifdef CONFIG_SMP
  745. return p->oncpu;
  746. #else
  747. return task_current(rq, p);
  748. #endif
  749. }
  750. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  751. {
  752. #ifdef CONFIG_SMP
  753. /*
  754. * We can optimise this out completely for !SMP, because the
  755. * SMP rebalancing from interrupt is the only thing that cares
  756. * here.
  757. */
  758. next->oncpu = 1;
  759. #endif
  760. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. raw_spin_unlock_irq(&rq->lock);
  762. #else
  763. raw_spin_unlock(&rq->lock);
  764. #endif
  765. }
  766. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  767. {
  768. #ifdef CONFIG_SMP
  769. /*
  770. * After ->oncpu is cleared, the task can be moved to a different CPU.
  771. * We must ensure this doesn't happen until the switch is completely
  772. * finished.
  773. */
  774. smp_wmb();
  775. prev->oncpu = 0;
  776. #endif
  777. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  778. local_irq_enable();
  779. #endif
  780. }
  781. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  782. /*
  783. * __task_rq_lock - lock the runqueue a given task resides on.
  784. * Must be called interrupts disabled.
  785. */
  786. static inline struct rq *__task_rq_lock(struct task_struct *p)
  787. __acquires(rq->lock)
  788. {
  789. for (;;) {
  790. struct rq *rq = task_rq(p);
  791. raw_spin_lock(&rq->lock);
  792. if (likely(rq == task_rq(p)))
  793. return rq;
  794. raw_spin_unlock(&rq->lock);
  795. }
  796. }
  797. /*
  798. * task_rq_lock - lock the runqueue a given task resides on and disable
  799. * interrupts. Note the ordering: we can safely lookup the task_rq without
  800. * explicitly disabling preemption.
  801. */
  802. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  803. __acquires(rq->lock)
  804. {
  805. struct rq *rq;
  806. for (;;) {
  807. local_irq_save(*flags);
  808. rq = task_rq(p);
  809. raw_spin_lock(&rq->lock);
  810. if (likely(rq == task_rq(p)))
  811. return rq;
  812. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  813. }
  814. }
  815. void task_rq_unlock_wait(struct task_struct *p)
  816. {
  817. struct rq *rq = task_rq(p);
  818. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  819. raw_spin_unlock_wait(&rq->lock);
  820. }
  821. static void __task_rq_unlock(struct rq *rq)
  822. __releases(rq->lock)
  823. {
  824. raw_spin_unlock(&rq->lock);
  825. }
  826. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  827. __releases(rq->lock)
  828. {
  829. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  830. }
  831. /*
  832. * this_rq_lock - lock this runqueue and disable interrupts.
  833. */
  834. static struct rq *this_rq_lock(void)
  835. __acquires(rq->lock)
  836. {
  837. struct rq *rq;
  838. local_irq_disable();
  839. rq = this_rq();
  840. raw_spin_lock(&rq->lock);
  841. return rq;
  842. }
  843. #ifdef CONFIG_SCHED_HRTICK
  844. /*
  845. * Use HR-timers to deliver accurate preemption points.
  846. *
  847. * Its all a bit involved since we cannot program an hrt while holding the
  848. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  849. * reschedule event.
  850. *
  851. * When we get rescheduled we reprogram the hrtick_timer outside of the
  852. * rq->lock.
  853. */
  854. /*
  855. * Use hrtick when:
  856. * - enabled by features
  857. * - hrtimer is actually high res
  858. */
  859. static inline int hrtick_enabled(struct rq *rq)
  860. {
  861. if (!sched_feat(HRTICK))
  862. return 0;
  863. if (!cpu_active(cpu_of(rq)))
  864. return 0;
  865. return hrtimer_is_hres_active(&rq->hrtick_timer);
  866. }
  867. static void hrtick_clear(struct rq *rq)
  868. {
  869. if (hrtimer_active(&rq->hrtick_timer))
  870. hrtimer_cancel(&rq->hrtick_timer);
  871. }
  872. /*
  873. * High-resolution timer tick.
  874. * Runs from hardirq context with interrupts disabled.
  875. */
  876. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  877. {
  878. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  879. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  880. raw_spin_lock(&rq->lock);
  881. update_rq_clock(rq);
  882. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  883. raw_spin_unlock(&rq->lock);
  884. return HRTIMER_NORESTART;
  885. }
  886. #ifdef CONFIG_SMP
  887. /*
  888. * called from hardirq (IPI) context
  889. */
  890. static void __hrtick_start(void *arg)
  891. {
  892. struct rq *rq = arg;
  893. raw_spin_lock(&rq->lock);
  894. hrtimer_restart(&rq->hrtick_timer);
  895. rq->hrtick_csd_pending = 0;
  896. raw_spin_unlock(&rq->lock);
  897. }
  898. /*
  899. * Called to set the hrtick timer state.
  900. *
  901. * called with rq->lock held and irqs disabled
  902. */
  903. static void hrtick_start(struct rq *rq, u64 delay)
  904. {
  905. struct hrtimer *timer = &rq->hrtick_timer;
  906. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  907. hrtimer_set_expires(timer, time);
  908. if (rq == this_rq()) {
  909. hrtimer_restart(timer);
  910. } else if (!rq->hrtick_csd_pending) {
  911. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  912. rq->hrtick_csd_pending = 1;
  913. }
  914. }
  915. static int
  916. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  917. {
  918. int cpu = (int)(long)hcpu;
  919. switch (action) {
  920. case CPU_UP_CANCELED:
  921. case CPU_UP_CANCELED_FROZEN:
  922. case CPU_DOWN_PREPARE:
  923. case CPU_DOWN_PREPARE_FROZEN:
  924. case CPU_DEAD:
  925. case CPU_DEAD_FROZEN:
  926. hrtick_clear(cpu_rq(cpu));
  927. return NOTIFY_OK;
  928. }
  929. return NOTIFY_DONE;
  930. }
  931. static __init void init_hrtick(void)
  932. {
  933. hotcpu_notifier(hotplug_hrtick, 0);
  934. }
  935. #else
  936. /*
  937. * Called to set the hrtick timer state.
  938. *
  939. * called with rq->lock held and irqs disabled
  940. */
  941. static void hrtick_start(struct rq *rq, u64 delay)
  942. {
  943. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  944. HRTIMER_MODE_REL_PINNED, 0);
  945. }
  946. static inline void init_hrtick(void)
  947. {
  948. }
  949. #endif /* CONFIG_SMP */
  950. static void init_rq_hrtick(struct rq *rq)
  951. {
  952. #ifdef CONFIG_SMP
  953. rq->hrtick_csd_pending = 0;
  954. rq->hrtick_csd.flags = 0;
  955. rq->hrtick_csd.func = __hrtick_start;
  956. rq->hrtick_csd.info = rq;
  957. #endif
  958. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  959. rq->hrtick_timer.function = hrtick;
  960. }
  961. #else /* CONFIG_SCHED_HRTICK */
  962. static inline void hrtick_clear(struct rq *rq)
  963. {
  964. }
  965. static inline void init_rq_hrtick(struct rq *rq)
  966. {
  967. }
  968. static inline void init_hrtick(void)
  969. {
  970. }
  971. #endif /* CONFIG_SCHED_HRTICK */
  972. /*
  973. * resched_task - mark a task 'to be rescheduled now'.
  974. *
  975. * On UP this means the setting of the need_resched flag, on SMP it
  976. * might also involve a cross-CPU call to trigger the scheduler on
  977. * the target CPU.
  978. */
  979. #ifdef CONFIG_SMP
  980. #ifndef tsk_is_polling
  981. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  982. #endif
  983. static void resched_task(struct task_struct *p)
  984. {
  985. int cpu;
  986. assert_raw_spin_locked(&task_rq(p)->lock);
  987. if (test_tsk_need_resched(p))
  988. return;
  989. set_tsk_need_resched(p);
  990. cpu = task_cpu(p);
  991. if (cpu == smp_processor_id())
  992. return;
  993. /* NEED_RESCHED must be visible before we test polling */
  994. smp_mb();
  995. if (!tsk_is_polling(p))
  996. smp_send_reschedule(cpu);
  997. }
  998. static void resched_cpu(int cpu)
  999. {
  1000. struct rq *rq = cpu_rq(cpu);
  1001. unsigned long flags;
  1002. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1003. return;
  1004. resched_task(cpu_curr(cpu));
  1005. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1006. }
  1007. #ifdef CONFIG_NO_HZ
  1008. /*
  1009. * When add_timer_on() enqueues a timer into the timer wheel of an
  1010. * idle CPU then this timer might expire before the next timer event
  1011. * which is scheduled to wake up that CPU. In case of a completely
  1012. * idle system the next event might even be infinite time into the
  1013. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1014. * leaves the inner idle loop so the newly added timer is taken into
  1015. * account when the CPU goes back to idle and evaluates the timer
  1016. * wheel for the next timer event.
  1017. */
  1018. void wake_up_idle_cpu(int cpu)
  1019. {
  1020. struct rq *rq = cpu_rq(cpu);
  1021. if (cpu == smp_processor_id())
  1022. return;
  1023. /*
  1024. * This is safe, as this function is called with the timer
  1025. * wheel base lock of (cpu) held. When the CPU is on the way
  1026. * to idle and has not yet set rq->curr to idle then it will
  1027. * be serialized on the timer wheel base lock and take the new
  1028. * timer into account automatically.
  1029. */
  1030. if (rq->curr != rq->idle)
  1031. return;
  1032. /*
  1033. * We can set TIF_RESCHED on the idle task of the other CPU
  1034. * lockless. The worst case is that the other CPU runs the
  1035. * idle task through an additional NOOP schedule()
  1036. */
  1037. set_tsk_need_resched(rq->idle);
  1038. /* NEED_RESCHED must be visible before we test polling */
  1039. smp_mb();
  1040. if (!tsk_is_polling(rq->idle))
  1041. smp_send_reschedule(cpu);
  1042. }
  1043. #endif /* CONFIG_NO_HZ */
  1044. static u64 sched_avg_period(void)
  1045. {
  1046. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1047. }
  1048. static void sched_avg_update(struct rq *rq)
  1049. {
  1050. s64 period = sched_avg_period();
  1051. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1052. rq->age_stamp += period;
  1053. rq->rt_avg /= 2;
  1054. }
  1055. }
  1056. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1057. {
  1058. rq->rt_avg += rt_delta;
  1059. sched_avg_update(rq);
  1060. }
  1061. #else /* !CONFIG_SMP */
  1062. static void resched_task(struct task_struct *p)
  1063. {
  1064. assert_raw_spin_locked(&task_rq(p)->lock);
  1065. set_tsk_need_resched(p);
  1066. }
  1067. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1068. {
  1069. }
  1070. #endif /* CONFIG_SMP */
  1071. #if BITS_PER_LONG == 32
  1072. # define WMULT_CONST (~0UL)
  1073. #else
  1074. # define WMULT_CONST (1UL << 32)
  1075. #endif
  1076. #define WMULT_SHIFT 32
  1077. /*
  1078. * Shift right and round:
  1079. */
  1080. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1081. /*
  1082. * delta *= weight / lw
  1083. */
  1084. static unsigned long
  1085. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1086. struct load_weight *lw)
  1087. {
  1088. u64 tmp;
  1089. if (!lw->inv_weight) {
  1090. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1091. lw->inv_weight = 1;
  1092. else
  1093. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1094. / (lw->weight+1);
  1095. }
  1096. tmp = (u64)delta_exec * weight;
  1097. /*
  1098. * Check whether we'd overflow the 64-bit multiplication:
  1099. */
  1100. if (unlikely(tmp > WMULT_CONST))
  1101. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1102. WMULT_SHIFT/2);
  1103. else
  1104. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1105. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1106. }
  1107. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1108. {
  1109. lw->weight += inc;
  1110. lw->inv_weight = 0;
  1111. }
  1112. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1113. {
  1114. lw->weight -= dec;
  1115. lw->inv_weight = 0;
  1116. }
  1117. /*
  1118. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1119. * of tasks with abnormal "nice" values across CPUs the contribution that
  1120. * each task makes to its run queue's load is weighted according to its
  1121. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1122. * scaled version of the new time slice allocation that they receive on time
  1123. * slice expiry etc.
  1124. */
  1125. #define WEIGHT_IDLEPRIO 3
  1126. #define WMULT_IDLEPRIO 1431655765
  1127. /*
  1128. * Nice levels are multiplicative, with a gentle 10% change for every
  1129. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1130. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1131. * that remained on nice 0.
  1132. *
  1133. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1134. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1135. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1136. * If a task goes up by ~10% and another task goes down by ~10% then
  1137. * the relative distance between them is ~25%.)
  1138. */
  1139. static const int prio_to_weight[40] = {
  1140. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1141. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1142. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1143. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1144. /* 0 */ 1024, 820, 655, 526, 423,
  1145. /* 5 */ 335, 272, 215, 172, 137,
  1146. /* 10 */ 110, 87, 70, 56, 45,
  1147. /* 15 */ 36, 29, 23, 18, 15,
  1148. };
  1149. /*
  1150. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1151. *
  1152. * In cases where the weight does not change often, we can use the
  1153. * precalculated inverse to speed up arithmetics by turning divisions
  1154. * into multiplications:
  1155. */
  1156. static const u32 prio_to_wmult[40] = {
  1157. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1158. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1159. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1160. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1161. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1162. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1163. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1164. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1165. };
  1166. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1167. /*
  1168. * runqueue iterator, to support SMP load-balancing between different
  1169. * scheduling classes, without having to expose their internal data
  1170. * structures to the load-balancing proper:
  1171. */
  1172. struct rq_iterator {
  1173. void *arg;
  1174. struct task_struct *(*start)(void *);
  1175. struct task_struct *(*next)(void *);
  1176. };
  1177. #ifdef CONFIG_SMP
  1178. static unsigned long
  1179. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1180. unsigned long max_load_move, struct sched_domain *sd,
  1181. enum cpu_idle_type idle, int *all_pinned,
  1182. int *this_best_prio, struct rq_iterator *iterator);
  1183. static int
  1184. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1185. struct sched_domain *sd, enum cpu_idle_type idle,
  1186. struct rq_iterator *iterator);
  1187. #endif
  1188. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1189. enum cpuacct_stat_index {
  1190. CPUACCT_STAT_USER, /* ... user mode */
  1191. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1192. CPUACCT_STAT_NSTATS,
  1193. };
  1194. #ifdef CONFIG_CGROUP_CPUACCT
  1195. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1196. static void cpuacct_update_stats(struct task_struct *tsk,
  1197. enum cpuacct_stat_index idx, cputime_t val);
  1198. #else
  1199. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1200. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1201. enum cpuacct_stat_index idx, cputime_t val) {}
  1202. #endif
  1203. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1204. {
  1205. update_load_add(&rq->load, load);
  1206. }
  1207. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1208. {
  1209. update_load_sub(&rq->load, load);
  1210. }
  1211. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1212. typedef int (*tg_visitor)(struct task_group *, void *);
  1213. /*
  1214. * Iterate the full tree, calling @down when first entering a node and @up when
  1215. * leaving it for the final time.
  1216. */
  1217. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1218. {
  1219. struct task_group *parent, *child;
  1220. int ret;
  1221. rcu_read_lock();
  1222. parent = &root_task_group;
  1223. down:
  1224. ret = (*down)(parent, data);
  1225. if (ret)
  1226. goto out_unlock;
  1227. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1228. parent = child;
  1229. goto down;
  1230. up:
  1231. continue;
  1232. }
  1233. ret = (*up)(parent, data);
  1234. if (ret)
  1235. goto out_unlock;
  1236. child = parent;
  1237. parent = parent->parent;
  1238. if (parent)
  1239. goto up;
  1240. out_unlock:
  1241. rcu_read_unlock();
  1242. return ret;
  1243. }
  1244. static int tg_nop(struct task_group *tg, void *data)
  1245. {
  1246. return 0;
  1247. }
  1248. #endif
  1249. #ifdef CONFIG_SMP
  1250. /* Used instead of source_load when we know the type == 0 */
  1251. static unsigned long weighted_cpuload(const int cpu)
  1252. {
  1253. return cpu_rq(cpu)->load.weight;
  1254. }
  1255. /*
  1256. * Return a low guess at the load of a migration-source cpu weighted
  1257. * according to the scheduling class and "nice" value.
  1258. *
  1259. * We want to under-estimate the load of migration sources, to
  1260. * balance conservatively.
  1261. */
  1262. static unsigned long source_load(int cpu, int type)
  1263. {
  1264. struct rq *rq = cpu_rq(cpu);
  1265. unsigned long total = weighted_cpuload(cpu);
  1266. if (type == 0 || !sched_feat(LB_BIAS))
  1267. return total;
  1268. return min(rq->cpu_load[type-1], total);
  1269. }
  1270. /*
  1271. * Return a high guess at the load of a migration-target cpu weighted
  1272. * according to the scheduling class and "nice" value.
  1273. */
  1274. static unsigned long target_load(int cpu, int type)
  1275. {
  1276. struct rq *rq = cpu_rq(cpu);
  1277. unsigned long total = weighted_cpuload(cpu);
  1278. if (type == 0 || !sched_feat(LB_BIAS))
  1279. return total;
  1280. return max(rq->cpu_load[type-1], total);
  1281. }
  1282. static struct sched_group *group_of(int cpu)
  1283. {
  1284. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1285. if (!sd)
  1286. return NULL;
  1287. return sd->groups;
  1288. }
  1289. static unsigned long power_of(int cpu)
  1290. {
  1291. struct sched_group *group = group_of(cpu);
  1292. if (!group)
  1293. return SCHED_LOAD_SCALE;
  1294. return group->cpu_power;
  1295. }
  1296. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1297. static unsigned long cpu_avg_load_per_task(int cpu)
  1298. {
  1299. struct rq *rq = cpu_rq(cpu);
  1300. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1301. if (nr_running)
  1302. rq->avg_load_per_task = rq->load.weight / nr_running;
  1303. else
  1304. rq->avg_load_per_task = 0;
  1305. return rq->avg_load_per_task;
  1306. }
  1307. #ifdef CONFIG_FAIR_GROUP_SCHED
  1308. static __read_mostly unsigned long *update_shares_data;
  1309. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1310. /*
  1311. * Calculate and set the cpu's group shares.
  1312. */
  1313. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1314. unsigned long sd_shares,
  1315. unsigned long sd_rq_weight,
  1316. unsigned long *usd_rq_weight)
  1317. {
  1318. unsigned long shares, rq_weight;
  1319. int boost = 0;
  1320. rq_weight = usd_rq_weight[cpu];
  1321. if (!rq_weight) {
  1322. boost = 1;
  1323. rq_weight = NICE_0_LOAD;
  1324. }
  1325. /*
  1326. * \Sum_j shares_j * rq_weight_i
  1327. * shares_i = -----------------------------
  1328. * \Sum_j rq_weight_j
  1329. */
  1330. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1331. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1332. if (abs(shares - tg->se[cpu]->load.weight) >
  1333. sysctl_sched_shares_thresh) {
  1334. struct rq *rq = cpu_rq(cpu);
  1335. unsigned long flags;
  1336. raw_spin_lock_irqsave(&rq->lock, flags);
  1337. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1338. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1339. __set_se_shares(tg->se[cpu], shares);
  1340. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1341. }
  1342. }
  1343. /*
  1344. * Re-compute the task group their per cpu shares over the given domain.
  1345. * This needs to be done in a bottom-up fashion because the rq weight of a
  1346. * parent group depends on the shares of its child groups.
  1347. */
  1348. static int tg_shares_up(struct task_group *tg, void *data)
  1349. {
  1350. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1351. unsigned long *usd_rq_weight;
  1352. struct sched_domain *sd = data;
  1353. unsigned long flags;
  1354. int i;
  1355. if (!tg->se[0])
  1356. return 0;
  1357. local_irq_save(flags);
  1358. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1359. for_each_cpu(i, sched_domain_span(sd)) {
  1360. weight = tg->cfs_rq[i]->load.weight;
  1361. usd_rq_weight[i] = weight;
  1362. rq_weight += weight;
  1363. /*
  1364. * If there are currently no tasks on the cpu pretend there
  1365. * is one of average load so that when a new task gets to
  1366. * run here it will not get delayed by group starvation.
  1367. */
  1368. if (!weight)
  1369. weight = NICE_0_LOAD;
  1370. sum_weight += weight;
  1371. shares += tg->cfs_rq[i]->shares;
  1372. }
  1373. if (!rq_weight)
  1374. rq_weight = sum_weight;
  1375. if ((!shares && rq_weight) || shares > tg->shares)
  1376. shares = tg->shares;
  1377. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1378. shares = tg->shares;
  1379. for_each_cpu(i, sched_domain_span(sd))
  1380. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1381. local_irq_restore(flags);
  1382. return 0;
  1383. }
  1384. /*
  1385. * Compute the cpu's hierarchical load factor for each task group.
  1386. * This needs to be done in a top-down fashion because the load of a child
  1387. * group is a fraction of its parents load.
  1388. */
  1389. static int tg_load_down(struct task_group *tg, void *data)
  1390. {
  1391. unsigned long load;
  1392. long cpu = (long)data;
  1393. if (!tg->parent) {
  1394. load = cpu_rq(cpu)->load.weight;
  1395. } else {
  1396. load = tg->parent->cfs_rq[cpu]->h_load;
  1397. load *= tg->cfs_rq[cpu]->shares;
  1398. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1399. }
  1400. tg->cfs_rq[cpu]->h_load = load;
  1401. return 0;
  1402. }
  1403. static void update_shares(struct sched_domain *sd)
  1404. {
  1405. s64 elapsed;
  1406. u64 now;
  1407. if (root_task_group_empty())
  1408. return;
  1409. now = cpu_clock(raw_smp_processor_id());
  1410. elapsed = now - sd->last_update;
  1411. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1412. sd->last_update = now;
  1413. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1414. }
  1415. }
  1416. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1417. {
  1418. if (root_task_group_empty())
  1419. return;
  1420. raw_spin_unlock(&rq->lock);
  1421. update_shares(sd);
  1422. raw_spin_lock(&rq->lock);
  1423. }
  1424. static void update_h_load(long cpu)
  1425. {
  1426. if (root_task_group_empty())
  1427. return;
  1428. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1429. }
  1430. #else
  1431. static inline void update_shares(struct sched_domain *sd)
  1432. {
  1433. }
  1434. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1435. {
  1436. }
  1437. #endif
  1438. #ifdef CONFIG_PREEMPT
  1439. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1440. /*
  1441. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1442. * way at the expense of forcing extra atomic operations in all
  1443. * invocations. This assures that the double_lock is acquired using the
  1444. * same underlying policy as the spinlock_t on this architecture, which
  1445. * reduces latency compared to the unfair variant below. However, it
  1446. * also adds more overhead and therefore may reduce throughput.
  1447. */
  1448. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1449. __releases(this_rq->lock)
  1450. __acquires(busiest->lock)
  1451. __acquires(this_rq->lock)
  1452. {
  1453. raw_spin_unlock(&this_rq->lock);
  1454. double_rq_lock(this_rq, busiest);
  1455. return 1;
  1456. }
  1457. #else
  1458. /*
  1459. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1460. * latency by eliminating extra atomic operations when the locks are
  1461. * already in proper order on entry. This favors lower cpu-ids and will
  1462. * grant the double lock to lower cpus over higher ids under contention,
  1463. * regardless of entry order into the function.
  1464. */
  1465. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1466. __releases(this_rq->lock)
  1467. __acquires(busiest->lock)
  1468. __acquires(this_rq->lock)
  1469. {
  1470. int ret = 0;
  1471. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1472. if (busiest < this_rq) {
  1473. raw_spin_unlock(&this_rq->lock);
  1474. raw_spin_lock(&busiest->lock);
  1475. raw_spin_lock_nested(&this_rq->lock,
  1476. SINGLE_DEPTH_NESTING);
  1477. ret = 1;
  1478. } else
  1479. raw_spin_lock_nested(&busiest->lock,
  1480. SINGLE_DEPTH_NESTING);
  1481. }
  1482. return ret;
  1483. }
  1484. #endif /* CONFIG_PREEMPT */
  1485. /*
  1486. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1487. */
  1488. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1489. {
  1490. if (unlikely(!irqs_disabled())) {
  1491. /* printk() doesn't work good under rq->lock */
  1492. raw_spin_unlock(&this_rq->lock);
  1493. BUG_ON(1);
  1494. }
  1495. return _double_lock_balance(this_rq, busiest);
  1496. }
  1497. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1498. __releases(busiest->lock)
  1499. {
  1500. raw_spin_unlock(&busiest->lock);
  1501. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1502. }
  1503. /*
  1504. * double_rq_lock - safely lock two runqueues
  1505. *
  1506. * Note this does not disable interrupts like task_rq_lock,
  1507. * you need to do so manually before calling.
  1508. */
  1509. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1510. __acquires(rq1->lock)
  1511. __acquires(rq2->lock)
  1512. {
  1513. BUG_ON(!irqs_disabled());
  1514. if (rq1 == rq2) {
  1515. raw_spin_lock(&rq1->lock);
  1516. __acquire(rq2->lock); /* Fake it out ;) */
  1517. } else {
  1518. if (rq1 < rq2) {
  1519. raw_spin_lock(&rq1->lock);
  1520. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1521. } else {
  1522. raw_spin_lock(&rq2->lock);
  1523. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1524. }
  1525. }
  1526. update_rq_clock(rq1);
  1527. update_rq_clock(rq2);
  1528. }
  1529. /*
  1530. * double_rq_unlock - safely unlock two runqueues
  1531. *
  1532. * Note this does not restore interrupts like task_rq_unlock,
  1533. * you need to do so manually after calling.
  1534. */
  1535. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1536. __releases(rq1->lock)
  1537. __releases(rq2->lock)
  1538. {
  1539. raw_spin_unlock(&rq1->lock);
  1540. if (rq1 != rq2)
  1541. raw_spin_unlock(&rq2->lock);
  1542. else
  1543. __release(rq2->lock);
  1544. }
  1545. #endif
  1546. #ifdef CONFIG_FAIR_GROUP_SCHED
  1547. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1548. {
  1549. #ifdef CONFIG_SMP
  1550. cfs_rq->shares = shares;
  1551. #endif
  1552. }
  1553. #endif
  1554. static void calc_load_account_active(struct rq *this_rq);
  1555. static void update_sysctl(void);
  1556. static int get_update_sysctl_factor(void);
  1557. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1558. {
  1559. set_task_rq(p, cpu);
  1560. #ifdef CONFIG_SMP
  1561. /*
  1562. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1563. * successfuly executed on another CPU. We must ensure that updates of
  1564. * per-task data have been completed by this moment.
  1565. */
  1566. smp_wmb();
  1567. task_thread_info(p)->cpu = cpu;
  1568. #endif
  1569. }
  1570. static const struct sched_class rt_sched_class;
  1571. #define sched_class_highest (&rt_sched_class)
  1572. #define for_each_class(class) \
  1573. for (class = sched_class_highest; class; class = class->next)
  1574. #include "sched_stats.h"
  1575. static void inc_nr_running(struct rq *rq)
  1576. {
  1577. rq->nr_running++;
  1578. }
  1579. static void dec_nr_running(struct rq *rq)
  1580. {
  1581. rq->nr_running--;
  1582. }
  1583. static void set_load_weight(struct task_struct *p)
  1584. {
  1585. if (task_has_rt_policy(p)) {
  1586. p->se.load.weight = prio_to_weight[0] * 2;
  1587. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1588. return;
  1589. }
  1590. /*
  1591. * SCHED_IDLE tasks get minimal weight:
  1592. */
  1593. if (p->policy == SCHED_IDLE) {
  1594. p->se.load.weight = WEIGHT_IDLEPRIO;
  1595. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1596. return;
  1597. }
  1598. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1599. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1600. }
  1601. static void update_avg(u64 *avg, u64 sample)
  1602. {
  1603. s64 diff = sample - *avg;
  1604. *avg += diff >> 3;
  1605. }
  1606. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1607. {
  1608. if (wakeup)
  1609. p->se.start_runtime = p->se.sum_exec_runtime;
  1610. sched_info_queued(p);
  1611. p->sched_class->enqueue_task(rq, p, wakeup);
  1612. p->se.on_rq = 1;
  1613. }
  1614. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1615. {
  1616. if (sleep) {
  1617. if (p->se.last_wakeup) {
  1618. update_avg(&p->se.avg_overlap,
  1619. p->se.sum_exec_runtime - p->se.last_wakeup);
  1620. p->se.last_wakeup = 0;
  1621. } else {
  1622. update_avg(&p->se.avg_wakeup,
  1623. sysctl_sched_wakeup_granularity);
  1624. }
  1625. }
  1626. sched_info_dequeued(p);
  1627. p->sched_class->dequeue_task(rq, p, sleep);
  1628. p->se.on_rq = 0;
  1629. }
  1630. /*
  1631. * activate_task - move a task to the runqueue.
  1632. */
  1633. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1634. {
  1635. if (task_contributes_to_load(p))
  1636. rq->nr_uninterruptible--;
  1637. enqueue_task(rq, p, wakeup);
  1638. inc_nr_running(rq);
  1639. }
  1640. /*
  1641. * deactivate_task - remove a task from the runqueue.
  1642. */
  1643. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1644. {
  1645. if (task_contributes_to_load(p))
  1646. rq->nr_uninterruptible++;
  1647. dequeue_task(rq, p, sleep);
  1648. dec_nr_running(rq);
  1649. }
  1650. #include "sched_idletask.c"
  1651. #include "sched_fair.c"
  1652. #include "sched_rt.c"
  1653. #ifdef CONFIG_SCHED_DEBUG
  1654. # include "sched_debug.c"
  1655. #endif
  1656. /*
  1657. * __normal_prio - return the priority that is based on the static prio
  1658. */
  1659. static inline int __normal_prio(struct task_struct *p)
  1660. {
  1661. return p->static_prio;
  1662. }
  1663. /*
  1664. * Calculate the expected normal priority: i.e. priority
  1665. * without taking RT-inheritance into account. Might be
  1666. * boosted by interactivity modifiers. Changes upon fork,
  1667. * setprio syscalls, and whenever the interactivity
  1668. * estimator recalculates.
  1669. */
  1670. static inline int normal_prio(struct task_struct *p)
  1671. {
  1672. int prio;
  1673. if (task_has_rt_policy(p))
  1674. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1675. else
  1676. prio = __normal_prio(p);
  1677. return prio;
  1678. }
  1679. /*
  1680. * Calculate the current priority, i.e. the priority
  1681. * taken into account by the scheduler. This value might
  1682. * be boosted by RT tasks, or might be boosted by
  1683. * interactivity modifiers. Will be RT if the task got
  1684. * RT-boosted. If not then it returns p->normal_prio.
  1685. */
  1686. static int effective_prio(struct task_struct *p)
  1687. {
  1688. p->normal_prio = normal_prio(p);
  1689. /*
  1690. * If we are RT tasks or we were boosted to RT priority,
  1691. * keep the priority unchanged. Otherwise, update priority
  1692. * to the normal priority:
  1693. */
  1694. if (!rt_prio(p->prio))
  1695. return p->normal_prio;
  1696. return p->prio;
  1697. }
  1698. /**
  1699. * task_curr - is this task currently executing on a CPU?
  1700. * @p: the task in question.
  1701. */
  1702. inline int task_curr(const struct task_struct *p)
  1703. {
  1704. return cpu_curr(task_cpu(p)) == p;
  1705. }
  1706. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1707. const struct sched_class *prev_class,
  1708. int oldprio, int running)
  1709. {
  1710. if (prev_class != p->sched_class) {
  1711. if (prev_class->switched_from)
  1712. prev_class->switched_from(rq, p, running);
  1713. p->sched_class->switched_to(rq, p, running);
  1714. } else
  1715. p->sched_class->prio_changed(rq, p, oldprio, running);
  1716. }
  1717. #ifdef CONFIG_SMP
  1718. /*
  1719. * Is this task likely cache-hot:
  1720. */
  1721. static int
  1722. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1723. {
  1724. s64 delta;
  1725. if (p->sched_class != &fair_sched_class)
  1726. return 0;
  1727. /*
  1728. * Buddy candidates are cache hot:
  1729. */
  1730. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1731. (&p->se == cfs_rq_of(&p->se)->next ||
  1732. &p->se == cfs_rq_of(&p->se)->last))
  1733. return 1;
  1734. if (sysctl_sched_migration_cost == -1)
  1735. return 1;
  1736. if (sysctl_sched_migration_cost == 0)
  1737. return 0;
  1738. delta = now - p->se.exec_start;
  1739. return delta < (s64)sysctl_sched_migration_cost;
  1740. }
  1741. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1742. {
  1743. #ifdef CONFIG_SCHED_DEBUG
  1744. /*
  1745. * We should never call set_task_cpu() on a blocked task,
  1746. * ttwu() will sort out the placement.
  1747. */
  1748. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1749. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1750. #endif
  1751. trace_sched_migrate_task(p, new_cpu);
  1752. if (task_cpu(p) != new_cpu) {
  1753. p->se.nr_migrations++;
  1754. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1755. }
  1756. __set_task_cpu(p, new_cpu);
  1757. }
  1758. struct migration_req {
  1759. struct list_head list;
  1760. struct task_struct *task;
  1761. int dest_cpu;
  1762. struct completion done;
  1763. };
  1764. /*
  1765. * The task's runqueue lock must be held.
  1766. * Returns true if you have to wait for migration thread.
  1767. */
  1768. static int
  1769. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1770. {
  1771. struct rq *rq = task_rq(p);
  1772. /*
  1773. * If the task is not on a runqueue (and not running), then
  1774. * the next wake-up will properly place the task.
  1775. */
  1776. if (!p->se.on_rq && !task_running(rq, p))
  1777. return 0;
  1778. init_completion(&req->done);
  1779. req->task = p;
  1780. req->dest_cpu = dest_cpu;
  1781. list_add(&req->list, &rq->migration_queue);
  1782. return 1;
  1783. }
  1784. /*
  1785. * wait_task_context_switch - wait for a thread to complete at least one
  1786. * context switch.
  1787. *
  1788. * @p must not be current.
  1789. */
  1790. void wait_task_context_switch(struct task_struct *p)
  1791. {
  1792. unsigned long nvcsw, nivcsw, flags;
  1793. int running;
  1794. struct rq *rq;
  1795. nvcsw = p->nvcsw;
  1796. nivcsw = p->nivcsw;
  1797. for (;;) {
  1798. /*
  1799. * The runqueue is assigned before the actual context
  1800. * switch. We need to take the runqueue lock.
  1801. *
  1802. * We could check initially without the lock but it is
  1803. * very likely that we need to take the lock in every
  1804. * iteration.
  1805. */
  1806. rq = task_rq_lock(p, &flags);
  1807. running = task_running(rq, p);
  1808. task_rq_unlock(rq, &flags);
  1809. if (likely(!running))
  1810. break;
  1811. /*
  1812. * The switch count is incremented before the actual
  1813. * context switch. We thus wait for two switches to be
  1814. * sure at least one completed.
  1815. */
  1816. if ((p->nvcsw - nvcsw) > 1)
  1817. break;
  1818. if ((p->nivcsw - nivcsw) > 1)
  1819. break;
  1820. cpu_relax();
  1821. }
  1822. }
  1823. /*
  1824. * wait_task_inactive - wait for a thread to unschedule.
  1825. *
  1826. * If @match_state is nonzero, it's the @p->state value just checked and
  1827. * not expected to change. If it changes, i.e. @p might have woken up,
  1828. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1829. * we return a positive number (its total switch count). If a second call
  1830. * a short while later returns the same number, the caller can be sure that
  1831. * @p has remained unscheduled the whole time.
  1832. *
  1833. * The caller must ensure that the task *will* unschedule sometime soon,
  1834. * else this function might spin for a *long* time. This function can't
  1835. * be called with interrupts off, or it may introduce deadlock with
  1836. * smp_call_function() if an IPI is sent by the same process we are
  1837. * waiting to become inactive.
  1838. */
  1839. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1840. {
  1841. unsigned long flags;
  1842. int running, on_rq;
  1843. unsigned long ncsw;
  1844. struct rq *rq;
  1845. for (;;) {
  1846. /*
  1847. * We do the initial early heuristics without holding
  1848. * any task-queue locks at all. We'll only try to get
  1849. * the runqueue lock when things look like they will
  1850. * work out!
  1851. */
  1852. rq = task_rq(p);
  1853. /*
  1854. * If the task is actively running on another CPU
  1855. * still, just relax and busy-wait without holding
  1856. * any locks.
  1857. *
  1858. * NOTE! Since we don't hold any locks, it's not
  1859. * even sure that "rq" stays as the right runqueue!
  1860. * But we don't care, since "task_running()" will
  1861. * return false if the runqueue has changed and p
  1862. * is actually now running somewhere else!
  1863. */
  1864. while (task_running(rq, p)) {
  1865. if (match_state && unlikely(p->state != match_state))
  1866. return 0;
  1867. cpu_relax();
  1868. }
  1869. /*
  1870. * Ok, time to look more closely! We need the rq
  1871. * lock now, to be *sure*. If we're wrong, we'll
  1872. * just go back and repeat.
  1873. */
  1874. rq = task_rq_lock(p, &flags);
  1875. trace_sched_wait_task(rq, p);
  1876. running = task_running(rq, p);
  1877. on_rq = p->se.on_rq;
  1878. ncsw = 0;
  1879. if (!match_state || p->state == match_state)
  1880. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1881. task_rq_unlock(rq, &flags);
  1882. /*
  1883. * If it changed from the expected state, bail out now.
  1884. */
  1885. if (unlikely(!ncsw))
  1886. break;
  1887. /*
  1888. * Was it really running after all now that we
  1889. * checked with the proper locks actually held?
  1890. *
  1891. * Oops. Go back and try again..
  1892. */
  1893. if (unlikely(running)) {
  1894. cpu_relax();
  1895. continue;
  1896. }
  1897. /*
  1898. * It's not enough that it's not actively running,
  1899. * it must be off the runqueue _entirely_, and not
  1900. * preempted!
  1901. *
  1902. * So if it was still runnable (but just not actively
  1903. * running right now), it's preempted, and we should
  1904. * yield - it could be a while.
  1905. */
  1906. if (unlikely(on_rq)) {
  1907. schedule_timeout_uninterruptible(1);
  1908. continue;
  1909. }
  1910. /*
  1911. * Ahh, all good. It wasn't running, and it wasn't
  1912. * runnable, which means that it will never become
  1913. * running in the future either. We're all done!
  1914. */
  1915. break;
  1916. }
  1917. return ncsw;
  1918. }
  1919. /***
  1920. * kick_process - kick a running thread to enter/exit the kernel
  1921. * @p: the to-be-kicked thread
  1922. *
  1923. * Cause a process which is running on another CPU to enter
  1924. * kernel-mode, without any delay. (to get signals handled.)
  1925. *
  1926. * NOTE: this function doesnt have to take the runqueue lock,
  1927. * because all it wants to ensure is that the remote task enters
  1928. * the kernel. If the IPI races and the task has been migrated
  1929. * to another CPU then no harm is done and the purpose has been
  1930. * achieved as well.
  1931. */
  1932. void kick_process(struct task_struct *p)
  1933. {
  1934. int cpu;
  1935. preempt_disable();
  1936. cpu = task_cpu(p);
  1937. if ((cpu != smp_processor_id()) && task_curr(p))
  1938. smp_send_reschedule(cpu);
  1939. preempt_enable();
  1940. }
  1941. EXPORT_SYMBOL_GPL(kick_process);
  1942. #endif /* CONFIG_SMP */
  1943. /**
  1944. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1945. * @p: the task to evaluate
  1946. * @func: the function to be called
  1947. * @info: the function call argument
  1948. *
  1949. * Calls the function @func when the task is currently running. This might
  1950. * be on the current CPU, which just calls the function directly
  1951. */
  1952. void task_oncpu_function_call(struct task_struct *p,
  1953. void (*func) (void *info), void *info)
  1954. {
  1955. int cpu;
  1956. preempt_disable();
  1957. cpu = task_cpu(p);
  1958. if (task_curr(p))
  1959. smp_call_function_single(cpu, func, info, 1);
  1960. preempt_enable();
  1961. }
  1962. #ifdef CONFIG_SMP
  1963. static int select_fallback_rq(int cpu, struct task_struct *p)
  1964. {
  1965. int dest_cpu;
  1966. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1967. /* Look for allowed, online CPU in same node. */
  1968. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1969. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1970. return dest_cpu;
  1971. /* Any allowed, online CPU? */
  1972. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1973. if (dest_cpu < nr_cpu_ids)
  1974. return dest_cpu;
  1975. /* No more Mr. Nice Guy. */
  1976. if (dest_cpu >= nr_cpu_ids) {
  1977. rcu_read_lock();
  1978. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  1979. rcu_read_unlock();
  1980. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  1981. /*
  1982. * Don't tell them about moving exiting tasks or
  1983. * kernel threads (both mm NULL), since they never
  1984. * leave kernel.
  1985. */
  1986. if (p->mm && printk_ratelimit()) {
  1987. printk(KERN_INFO "process %d (%s) no "
  1988. "longer affine to cpu%d\n",
  1989. task_pid_nr(p), p->comm, cpu);
  1990. }
  1991. }
  1992. return dest_cpu;
  1993. }
  1994. /*
  1995. * Called from:
  1996. *
  1997. * - fork, @p is stable because it isn't on the tasklist yet
  1998. *
  1999. * - exec, @p is unstable, retry loop
  2000. *
  2001. * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
  2002. * we should be good.
  2003. */
  2004. static inline
  2005. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2006. {
  2007. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2008. /*
  2009. * In order not to call set_task_cpu() on a blocking task we need
  2010. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2011. * cpu.
  2012. *
  2013. * Since this is common to all placement strategies, this lives here.
  2014. *
  2015. * [ this allows ->select_task() to simply return task_cpu(p) and
  2016. * not worry about this generic constraint ]
  2017. */
  2018. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2019. !cpu_online(cpu)))
  2020. cpu = select_fallback_rq(task_cpu(p), p);
  2021. return cpu;
  2022. }
  2023. #endif
  2024. /***
  2025. * try_to_wake_up - wake up a thread
  2026. * @p: the to-be-woken-up thread
  2027. * @state: the mask of task states that can be woken
  2028. * @sync: do a synchronous wakeup?
  2029. *
  2030. * Put it on the run-queue if it's not already there. The "current"
  2031. * thread is always on the run-queue (except when the actual
  2032. * re-schedule is in progress), and as such you're allowed to do
  2033. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2034. * runnable without the overhead of this.
  2035. *
  2036. * returns failure only if the task is already active.
  2037. */
  2038. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2039. int wake_flags)
  2040. {
  2041. int cpu, orig_cpu, this_cpu, success = 0;
  2042. unsigned long flags;
  2043. struct rq *rq, *orig_rq;
  2044. if (!sched_feat(SYNC_WAKEUPS))
  2045. wake_flags &= ~WF_SYNC;
  2046. this_cpu = get_cpu();
  2047. smp_wmb();
  2048. rq = orig_rq = task_rq_lock(p, &flags);
  2049. update_rq_clock(rq);
  2050. if (!(p->state & state))
  2051. goto out;
  2052. if (p->se.on_rq)
  2053. goto out_running;
  2054. cpu = task_cpu(p);
  2055. orig_cpu = cpu;
  2056. #ifdef CONFIG_SMP
  2057. if (unlikely(task_running(rq, p)))
  2058. goto out_activate;
  2059. /*
  2060. * In order to handle concurrent wakeups and release the rq->lock
  2061. * we put the task in TASK_WAKING state.
  2062. *
  2063. * First fix up the nr_uninterruptible count:
  2064. */
  2065. if (task_contributes_to_load(p))
  2066. rq->nr_uninterruptible--;
  2067. p->state = TASK_WAKING;
  2068. if (p->sched_class->task_waking)
  2069. p->sched_class->task_waking(rq, p);
  2070. __task_rq_unlock(rq);
  2071. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2072. if (cpu != orig_cpu)
  2073. set_task_cpu(p, cpu);
  2074. rq = __task_rq_lock(p);
  2075. update_rq_clock(rq);
  2076. WARN_ON(p->state != TASK_WAKING);
  2077. cpu = task_cpu(p);
  2078. #ifdef CONFIG_SCHEDSTATS
  2079. schedstat_inc(rq, ttwu_count);
  2080. if (cpu == this_cpu)
  2081. schedstat_inc(rq, ttwu_local);
  2082. else {
  2083. struct sched_domain *sd;
  2084. for_each_domain(this_cpu, sd) {
  2085. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2086. schedstat_inc(sd, ttwu_wake_remote);
  2087. break;
  2088. }
  2089. }
  2090. }
  2091. #endif /* CONFIG_SCHEDSTATS */
  2092. out_activate:
  2093. #endif /* CONFIG_SMP */
  2094. schedstat_inc(p, se.nr_wakeups);
  2095. if (wake_flags & WF_SYNC)
  2096. schedstat_inc(p, se.nr_wakeups_sync);
  2097. if (orig_cpu != cpu)
  2098. schedstat_inc(p, se.nr_wakeups_migrate);
  2099. if (cpu == this_cpu)
  2100. schedstat_inc(p, se.nr_wakeups_local);
  2101. else
  2102. schedstat_inc(p, se.nr_wakeups_remote);
  2103. activate_task(rq, p, 1);
  2104. success = 1;
  2105. /*
  2106. * Only attribute actual wakeups done by this task.
  2107. */
  2108. if (!in_interrupt()) {
  2109. struct sched_entity *se = &current->se;
  2110. u64 sample = se->sum_exec_runtime;
  2111. if (se->last_wakeup)
  2112. sample -= se->last_wakeup;
  2113. else
  2114. sample -= se->start_runtime;
  2115. update_avg(&se->avg_wakeup, sample);
  2116. se->last_wakeup = se->sum_exec_runtime;
  2117. }
  2118. out_running:
  2119. trace_sched_wakeup(rq, p, success);
  2120. check_preempt_curr(rq, p, wake_flags);
  2121. p->state = TASK_RUNNING;
  2122. #ifdef CONFIG_SMP
  2123. if (p->sched_class->task_woken)
  2124. p->sched_class->task_woken(rq, p);
  2125. if (unlikely(rq->idle_stamp)) {
  2126. u64 delta = rq->clock - rq->idle_stamp;
  2127. u64 max = 2*sysctl_sched_migration_cost;
  2128. if (delta > max)
  2129. rq->avg_idle = max;
  2130. else
  2131. update_avg(&rq->avg_idle, delta);
  2132. rq->idle_stamp = 0;
  2133. }
  2134. #endif
  2135. out:
  2136. task_rq_unlock(rq, &flags);
  2137. put_cpu();
  2138. return success;
  2139. }
  2140. /**
  2141. * wake_up_process - Wake up a specific process
  2142. * @p: The process to be woken up.
  2143. *
  2144. * Attempt to wake up the nominated process and move it to the set of runnable
  2145. * processes. Returns 1 if the process was woken up, 0 if it was already
  2146. * running.
  2147. *
  2148. * It may be assumed that this function implies a write memory barrier before
  2149. * changing the task state if and only if any tasks are woken up.
  2150. */
  2151. int wake_up_process(struct task_struct *p)
  2152. {
  2153. return try_to_wake_up(p, TASK_ALL, 0);
  2154. }
  2155. EXPORT_SYMBOL(wake_up_process);
  2156. int wake_up_state(struct task_struct *p, unsigned int state)
  2157. {
  2158. return try_to_wake_up(p, state, 0);
  2159. }
  2160. /*
  2161. * Perform scheduler related setup for a newly forked process p.
  2162. * p is forked by current.
  2163. *
  2164. * __sched_fork() is basic setup used by init_idle() too:
  2165. */
  2166. static void __sched_fork(struct task_struct *p)
  2167. {
  2168. p->se.exec_start = 0;
  2169. p->se.sum_exec_runtime = 0;
  2170. p->se.prev_sum_exec_runtime = 0;
  2171. p->se.nr_migrations = 0;
  2172. p->se.last_wakeup = 0;
  2173. p->se.avg_overlap = 0;
  2174. p->se.start_runtime = 0;
  2175. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2176. #ifdef CONFIG_SCHEDSTATS
  2177. p->se.wait_start = 0;
  2178. p->se.wait_max = 0;
  2179. p->se.wait_count = 0;
  2180. p->se.wait_sum = 0;
  2181. p->se.sleep_start = 0;
  2182. p->se.sleep_max = 0;
  2183. p->se.sum_sleep_runtime = 0;
  2184. p->se.block_start = 0;
  2185. p->se.block_max = 0;
  2186. p->se.exec_max = 0;
  2187. p->se.slice_max = 0;
  2188. p->se.nr_migrations_cold = 0;
  2189. p->se.nr_failed_migrations_affine = 0;
  2190. p->se.nr_failed_migrations_running = 0;
  2191. p->se.nr_failed_migrations_hot = 0;
  2192. p->se.nr_forced_migrations = 0;
  2193. p->se.nr_wakeups = 0;
  2194. p->se.nr_wakeups_sync = 0;
  2195. p->se.nr_wakeups_migrate = 0;
  2196. p->se.nr_wakeups_local = 0;
  2197. p->se.nr_wakeups_remote = 0;
  2198. p->se.nr_wakeups_affine = 0;
  2199. p->se.nr_wakeups_affine_attempts = 0;
  2200. p->se.nr_wakeups_passive = 0;
  2201. p->se.nr_wakeups_idle = 0;
  2202. #endif
  2203. INIT_LIST_HEAD(&p->rt.run_list);
  2204. p->se.on_rq = 0;
  2205. INIT_LIST_HEAD(&p->se.group_node);
  2206. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2207. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2208. #endif
  2209. }
  2210. /*
  2211. * fork()/clone()-time setup:
  2212. */
  2213. void sched_fork(struct task_struct *p, int clone_flags)
  2214. {
  2215. int cpu = get_cpu();
  2216. __sched_fork(p);
  2217. /*
  2218. * We mark the process as waking here. This guarantees that
  2219. * nobody will actually run it, and a signal or other external
  2220. * event cannot wake it up and insert it on the runqueue either.
  2221. */
  2222. p->state = TASK_WAKING;
  2223. /*
  2224. * Revert to default priority/policy on fork if requested.
  2225. */
  2226. if (unlikely(p->sched_reset_on_fork)) {
  2227. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2228. p->policy = SCHED_NORMAL;
  2229. p->normal_prio = p->static_prio;
  2230. }
  2231. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2232. p->static_prio = NICE_TO_PRIO(0);
  2233. p->normal_prio = p->static_prio;
  2234. set_load_weight(p);
  2235. }
  2236. /*
  2237. * We don't need the reset flag anymore after the fork. It has
  2238. * fulfilled its duty:
  2239. */
  2240. p->sched_reset_on_fork = 0;
  2241. }
  2242. /*
  2243. * Make sure we do not leak PI boosting priority to the child.
  2244. */
  2245. p->prio = current->normal_prio;
  2246. if (!rt_prio(p->prio))
  2247. p->sched_class = &fair_sched_class;
  2248. if (p->sched_class->task_fork)
  2249. p->sched_class->task_fork(p);
  2250. #ifdef CONFIG_SMP
  2251. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2252. #endif
  2253. set_task_cpu(p, cpu);
  2254. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2255. if (likely(sched_info_on()))
  2256. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2257. #endif
  2258. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2259. p->oncpu = 0;
  2260. #endif
  2261. #ifdef CONFIG_PREEMPT
  2262. /* Want to start with kernel preemption disabled. */
  2263. task_thread_info(p)->preempt_count = 1;
  2264. #endif
  2265. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2266. put_cpu();
  2267. }
  2268. /*
  2269. * wake_up_new_task - wake up a newly created task for the first time.
  2270. *
  2271. * This function will do some initial scheduler statistics housekeeping
  2272. * that must be done for every newly created context, then puts the task
  2273. * on the runqueue and wakes it.
  2274. */
  2275. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2276. {
  2277. unsigned long flags;
  2278. struct rq *rq;
  2279. rq = task_rq_lock(p, &flags);
  2280. BUG_ON(p->state != TASK_WAKING);
  2281. p->state = TASK_RUNNING;
  2282. update_rq_clock(rq);
  2283. activate_task(rq, p, 0);
  2284. trace_sched_wakeup_new(rq, p, 1);
  2285. check_preempt_curr(rq, p, WF_FORK);
  2286. #ifdef CONFIG_SMP
  2287. if (p->sched_class->task_woken)
  2288. p->sched_class->task_woken(rq, p);
  2289. #endif
  2290. task_rq_unlock(rq, &flags);
  2291. }
  2292. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2293. /**
  2294. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2295. * @notifier: notifier struct to register
  2296. */
  2297. void preempt_notifier_register(struct preempt_notifier *notifier)
  2298. {
  2299. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2300. }
  2301. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2302. /**
  2303. * preempt_notifier_unregister - no longer interested in preemption notifications
  2304. * @notifier: notifier struct to unregister
  2305. *
  2306. * This is safe to call from within a preemption notifier.
  2307. */
  2308. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2309. {
  2310. hlist_del(&notifier->link);
  2311. }
  2312. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2313. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2314. {
  2315. struct preempt_notifier *notifier;
  2316. struct hlist_node *node;
  2317. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2318. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2319. }
  2320. static void
  2321. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2322. struct task_struct *next)
  2323. {
  2324. struct preempt_notifier *notifier;
  2325. struct hlist_node *node;
  2326. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2327. notifier->ops->sched_out(notifier, next);
  2328. }
  2329. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2330. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2331. {
  2332. }
  2333. static void
  2334. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2335. struct task_struct *next)
  2336. {
  2337. }
  2338. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2339. /**
  2340. * prepare_task_switch - prepare to switch tasks
  2341. * @rq: the runqueue preparing to switch
  2342. * @prev: the current task that is being switched out
  2343. * @next: the task we are going to switch to.
  2344. *
  2345. * This is called with the rq lock held and interrupts off. It must
  2346. * be paired with a subsequent finish_task_switch after the context
  2347. * switch.
  2348. *
  2349. * prepare_task_switch sets up locking and calls architecture specific
  2350. * hooks.
  2351. */
  2352. static inline void
  2353. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2354. struct task_struct *next)
  2355. {
  2356. fire_sched_out_preempt_notifiers(prev, next);
  2357. prepare_lock_switch(rq, next);
  2358. prepare_arch_switch(next);
  2359. }
  2360. /**
  2361. * finish_task_switch - clean up after a task-switch
  2362. * @rq: runqueue associated with task-switch
  2363. * @prev: the thread we just switched away from.
  2364. *
  2365. * finish_task_switch must be called after the context switch, paired
  2366. * with a prepare_task_switch call before the context switch.
  2367. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2368. * and do any other architecture-specific cleanup actions.
  2369. *
  2370. * Note that we may have delayed dropping an mm in context_switch(). If
  2371. * so, we finish that here outside of the runqueue lock. (Doing it
  2372. * with the lock held can cause deadlocks; see schedule() for
  2373. * details.)
  2374. */
  2375. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2376. __releases(rq->lock)
  2377. {
  2378. struct mm_struct *mm = rq->prev_mm;
  2379. long prev_state;
  2380. rq->prev_mm = NULL;
  2381. /*
  2382. * A task struct has one reference for the use as "current".
  2383. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2384. * schedule one last time. The schedule call will never return, and
  2385. * the scheduled task must drop that reference.
  2386. * The test for TASK_DEAD must occur while the runqueue locks are
  2387. * still held, otherwise prev could be scheduled on another cpu, die
  2388. * there before we look at prev->state, and then the reference would
  2389. * be dropped twice.
  2390. * Manfred Spraul <manfred@colorfullife.com>
  2391. */
  2392. prev_state = prev->state;
  2393. finish_arch_switch(prev);
  2394. perf_event_task_sched_in(current, cpu_of(rq));
  2395. finish_lock_switch(rq, prev);
  2396. fire_sched_in_preempt_notifiers(current);
  2397. if (mm)
  2398. mmdrop(mm);
  2399. if (unlikely(prev_state == TASK_DEAD)) {
  2400. /*
  2401. * Remove function-return probe instances associated with this
  2402. * task and put them back on the free list.
  2403. */
  2404. kprobe_flush_task(prev);
  2405. put_task_struct(prev);
  2406. }
  2407. }
  2408. #ifdef CONFIG_SMP
  2409. /* assumes rq->lock is held */
  2410. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2411. {
  2412. if (prev->sched_class->pre_schedule)
  2413. prev->sched_class->pre_schedule(rq, prev);
  2414. }
  2415. /* rq->lock is NOT held, but preemption is disabled */
  2416. static inline void post_schedule(struct rq *rq)
  2417. {
  2418. if (rq->post_schedule) {
  2419. unsigned long flags;
  2420. raw_spin_lock_irqsave(&rq->lock, flags);
  2421. if (rq->curr->sched_class->post_schedule)
  2422. rq->curr->sched_class->post_schedule(rq);
  2423. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2424. rq->post_schedule = 0;
  2425. }
  2426. }
  2427. #else
  2428. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2429. {
  2430. }
  2431. static inline void post_schedule(struct rq *rq)
  2432. {
  2433. }
  2434. #endif
  2435. /**
  2436. * schedule_tail - first thing a freshly forked thread must call.
  2437. * @prev: the thread we just switched away from.
  2438. */
  2439. asmlinkage void schedule_tail(struct task_struct *prev)
  2440. __releases(rq->lock)
  2441. {
  2442. struct rq *rq = this_rq();
  2443. finish_task_switch(rq, prev);
  2444. /*
  2445. * FIXME: do we need to worry about rq being invalidated by the
  2446. * task_switch?
  2447. */
  2448. post_schedule(rq);
  2449. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2450. /* In this case, finish_task_switch does not reenable preemption */
  2451. preempt_enable();
  2452. #endif
  2453. if (current->set_child_tid)
  2454. put_user(task_pid_vnr(current), current->set_child_tid);
  2455. }
  2456. /*
  2457. * context_switch - switch to the new MM and the new
  2458. * thread's register state.
  2459. */
  2460. static inline void
  2461. context_switch(struct rq *rq, struct task_struct *prev,
  2462. struct task_struct *next)
  2463. {
  2464. struct mm_struct *mm, *oldmm;
  2465. prepare_task_switch(rq, prev, next);
  2466. trace_sched_switch(rq, prev, next);
  2467. mm = next->mm;
  2468. oldmm = prev->active_mm;
  2469. /*
  2470. * For paravirt, this is coupled with an exit in switch_to to
  2471. * combine the page table reload and the switch backend into
  2472. * one hypercall.
  2473. */
  2474. arch_start_context_switch(prev);
  2475. if (likely(!mm)) {
  2476. next->active_mm = oldmm;
  2477. atomic_inc(&oldmm->mm_count);
  2478. enter_lazy_tlb(oldmm, next);
  2479. } else
  2480. switch_mm(oldmm, mm, next);
  2481. if (likely(!prev->mm)) {
  2482. prev->active_mm = NULL;
  2483. rq->prev_mm = oldmm;
  2484. }
  2485. /*
  2486. * Since the runqueue lock will be released by the next
  2487. * task (which is an invalid locking op but in the case
  2488. * of the scheduler it's an obvious special-case), so we
  2489. * do an early lockdep release here:
  2490. */
  2491. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2492. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2493. #endif
  2494. /* Here we just switch the register state and the stack. */
  2495. switch_to(prev, next, prev);
  2496. barrier();
  2497. /*
  2498. * this_rq must be evaluated again because prev may have moved
  2499. * CPUs since it called schedule(), thus the 'rq' on its stack
  2500. * frame will be invalid.
  2501. */
  2502. finish_task_switch(this_rq(), prev);
  2503. }
  2504. /*
  2505. * nr_running, nr_uninterruptible and nr_context_switches:
  2506. *
  2507. * externally visible scheduler statistics: current number of runnable
  2508. * threads, current number of uninterruptible-sleeping threads, total
  2509. * number of context switches performed since bootup.
  2510. */
  2511. unsigned long nr_running(void)
  2512. {
  2513. unsigned long i, sum = 0;
  2514. for_each_online_cpu(i)
  2515. sum += cpu_rq(i)->nr_running;
  2516. return sum;
  2517. }
  2518. unsigned long nr_uninterruptible(void)
  2519. {
  2520. unsigned long i, sum = 0;
  2521. for_each_possible_cpu(i)
  2522. sum += cpu_rq(i)->nr_uninterruptible;
  2523. /*
  2524. * Since we read the counters lockless, it might be slightly
  2525. * inaccurate. Do not allow it to go below zero though:
  2526. */
  2527. if (unlikely((long)sum < 0))
  2528. sum = 0;
  2529. return sum;
  2530. }
  2531. unsigned long long nr_context_switches(void)
  2532. {
  2533. int i;
  2534. unsigned long long sum = 0;
  2535. for_each_possible_cpu(i)
  2536. sum += cpu_rq(i)->nr_switches;
  2537. return sum;
  2538. }
  2539. unsigned long nr_iowait(void)
  2540. {
  2541. unsigned long i, sum = 0;
  2542. for_each_possible_cpu(i)
  2543. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2544. return sum;
  2545. }
  2546. unsigned long nr_iowait_cpu(void)
  2547. {
  2548. struct rq *this = this_rq();
  2549. return atomic_read(&this->nr_iowait);
  2550. }
  2551. unsigned long this_cpu_load(void)
  2552. {
  2553. struct rq *this = this_rq();
  2554. return this->cpu_load[0];
  2555. }
  2556. /* Variables and functions for calc_load */
  2557. static atomic_long_t calc_load_tasks;
  2558. static unsigned long calc_load_update;
  2559. unsigned long avenrun[3];
  2560. EXPORT_SYMBOL(avenrun);
  2561. /**
  2562. * get_avenrun - get the load average array
  2563. * @loads: pointer to dest load array
  2564. * @offset: offset to add
  2565. * @shift: shift count to shift the result left
  2566. *
  2567. * These values are estimates at best, so no need for locking.
  2568. */
  2569. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2570. {
  2571. loads[0] = (avenrun[0] + offset) << shift;
  2572. loads[1] = (avenrun[1] + offset) << shift;
  2573. loads[2] = (avenrun[2] + offset) << shift;
  2574. }
  2575. static unsigned long
  2576. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2577. {
  2578. load *= exp;
  2579. load += active * (FIXED_1 - exp);
  2580. return load >> FSHIFT;
  2581. }
  2582. /*
  2583. * calc_load - update the avenrun load estimates 10 ticks after the
  2584. * CPUs have updated calc_load_tasks.
  2585. */
  2586. void calc_global_load(void)
  2587. {
  2588. unsigned long upd = calc_load_update + 10;
  2589. long active;
  2590. if (time_before(jiffies, upd))
  2591. return;
  2592. active = atomic_long_read(&calc_load_tasks);
  2593. active = active > 0 ? active * FIXED_1 : 0;
  2594. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2595. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2596. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2597. calc_load_update += LOAD_FREQ;
  2598. }
  2599. /*
  2600. * Either called from update_cpu_load() or from a cpu going idle
  2601. */
  2602. static void calc_load_account_active(struct rq *this_rq)
  2603. {
  2604. long nr_active, delta;
  2605. nr_active = this_rq->nr_running;
  2606. nr_active += (long) this_rq->nr_uninterruptible;
  2607. if (nr_active != this_rq->calc_load_active) {
  2608. delta = nr_active - this_rq->calc_load_active;
  2609. this_rq->calc_load_active = nr_active;
  2610. atomic_long_add(delta, &calc_load_tasks);
  2611. }
  2612. }
  2613. /*
  2614. * Update rq->cpu_load[] statistics. This function is usually called every
  2615. * scheduler tick (TICK_NSEC).
  2616. */
  2617. static void update_cpu_load(struct rq *this_rq)
  2618. {
  2619. unsigned long this_load = this_rq->load.weight;
  2620. int i, scale;
  2621. this_rq->nr_load_updates++;
  2622. /* Update our load: */
  2623. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2624. unsigned long old_load, new_load;
  2625. /* scale is effectively 1 << i now, and >> i divides by scale */
  2626. old_load = this_rq->cpu_load[i];
  2627. new_load = this_load;
  2628. /*
  2629. * Round up the averaging division if load is increasing. This
  2630. * prevents us from getting stuck on 9 if the load is 10, for
  2631. * example.
  2632. */
  2633. if (new_load > old_load)
  2634. new_load += scale-1;
  2635. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2636. }
  2637. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2638. this_rq->calc_load_update += LOAD_FREQ;
  2639. calc_load_account_active(this_rq);
  2640. }
  2641. }
  2642. #ifdef CONFIG_SMP
  2643. /*
  2644. * sched_exec - execve() is a valuable balancing opportunity, because at
  2645. * this point the task has the smallest effective memory and cache footprint.
  2646. */
  2647. void sched_exec(void)
  2648. {
  2649. struct task_struct *p = current;
  2650. struct migration_req req;
  2651. int dest_cpu, this_cpu;
  2652. unsigned long flags;
  2653. struct rq *rq;
  2654. again:
  2655. this_cpu = get_cpu();
  2656. dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
  2657. if (dest_cpu == this_cpu) {
  2658. put_cpu();
  2659. return;
  2660. }
  2661. rq = task_rq_lock(p, &flags);
  2662. put_cpu();
  2663. /*
  2664. * select_task_rq() can race against ->cpus_allowed
  2665. */
  2666. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2667. || unlikely(!cpu_active(dest_cpu))) {
  2668. task_rq_unlock(rq, &flags);
  2669. goto again;
  2670. }
  2671. /* force the process onto the specified CPU */
  2672. if (migrate_task(p, dest_cpu, &req)) {
  2673. /* Need to wait for migration thread (might exit: take ref). */
  2674. struct task_struct *mt = rq->migration_thread;
  2675. get_task_struct(mt);
  2676. task_rq_unlock(rq, &flags);
  2677. wake_up_process(mt);
  2678. put_task_struct(mt);
  2679. wait_for_completion(&req.done);
  2680. return;
  2681. }
  2682. task_rq_unlock(rq, &flags);
  2683. }
  2684. #endif
  2685. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2686. EXPORT_PER_CPU_SYMBOL(kstat);
  2687. /*
  2688. * Return any ns on the sched_clock that have not yet been accounted in
  2689. * @p in case that task is currently running.
  2690. *
  2691. * Called with task_rq_lock() held on @rq.
  2692. */
  2693. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2694. {
  2695. u64 ns = 0;
  2696. if (task_current(rq, p)) {
  2697. update_rq_clock(rq);
  2698. ns = rq->clock - p->se.exec_start;
  2699. if ((s64)ns < 0)
  2700. ns = 0;
  2701. }
  2702. return ns;
  2703. }
  2704. unsigned long long task_delta_exec(struct task_struct *p)
  2705. {
  2706. unsigned long flags;
  2707. struct rq *rq;
  2708. u64 ns = 0;
  2709. rq = task_rq_lock(p, &flags);
  2710. ns = do_task_delta_exec(p, rq);
  2711. task_rq_unlock(rq, &flags);
  2712. return ns;
  2713. }
  2714. /*
  2715. * Return accounted runtime for the task.
  2716. * In case the task is currently running, return the runtime plus current's
  2717. * pending runtime that have not been accounted yet.
  2718. */
  2719. unsigned long long task_sched_runtime(struct task_struct *p)
  2720. {
  2721. unsigned long flags;
  2722. struct rq *rq;
  2723. u64 ns = 0;
  2724. rq = task_rq_lock(p, &flags);
  2725. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2726. task_rq_unlock(rq, &flags);
  2727. return ns;
  2728. }
  2729. /*
  2730. * Return sum_exec_runtime for the thread group.
  2731. * In case the task is currently running, return the sum plus current's
  2732. * pending runtime that have not been accounted yet.
  2733. *
  2734. * Note that the thread group might have other running tasks as well,
  2735. * so the return value not includes other pending runtime that other
  2736. * running tasks might have.
  2737. */
  2738. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2739. {
  2740. struct task_cputime totals;
  2741. unsigned long flags;
  2742. struct rq *rq;
  2743. u64 ns;
  2744. rq = task_rq_lock(p, &flags);
  2745. thread_group_cputime(p, &totals);
  2746. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2747. task_rq_unlock(rq, &flags);
  2748. return ns;
  2749. }
  2750. /*
  2751. * Account user cpu time to a process.
  2752. * @p: the process that the cpu time gets accounted to
  2753. * @cputime: the cpu time spent in user space since the last update
  2754. * @cputime_scaled: cputime scaled by cpu frequency
  2755. */
  2756. void account_user_time(struct task_struct *p, cputime_t cputime,
  2757. cputime_t cputime_scaled)
  2758. {
  2759. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2760. cputime64_t tmp;
  2761. /* Add user time to process. */
  2762. p->utime = cputime_add(p->utime, cputime);
  2763. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2764. account_group_user_time(p, cputime);
  2765. /* Add user time to cpustat. */
  2766. tmp = cputime_to_cputime64(cputime);
  2767. if (TASK_NICE(p) > 0)
  2768. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2769. else
  2770. cpustat->user = cputime64_add(cpustat->user, tmp);
  2771. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2772. /* Account for user time used */
  2773. acct_update_integrals(p);
  2774. }
  2775. /*
  2776. * Account guest cpu time to a process.
  2777. * @p: the process that the cpu time gets accounted to
  2778. * @cputime: the cpu time spent in virtual machine since the last update
  2779. * @cputime_scaled: cputime scaled by cpu frequency
  2780. */
  2781. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2782. cputime_t cputime_scaled)
  2783. {
  2784. cputime64_t tmp;
  2785. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2786. tmp = cputime_to_cputime64(cputime);
  2787. /* Add guest time to process. */
  2788. p->utime = cputime_add(p->utime, cputime);
  2789. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2790. account_group_user_time(p, cputime);
  2791. p->gtime = cputime_add(p->gtime, cputime);
  2792. /* Add guest time to cpustat. */
  2793. if (TASK_NICE(p) > 0) {
  2794. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2795. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2796. } else {
  2797. cpustat->user = cputime64_add(cpustat->user, tmp);
  2798. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2799. }
  2800. }
  2801. /*
  2802. * Account system cpu time to a process.
  2803. * @p: the process that the cpu time gets accounted to
  2804. * @hardirq_offset: the offset to subtract from hardirq_count()
  2805. * @cputime: the cpu time spent in kernel space since the last update
  2806. * @cputime_scaled: cputime scaled by cpu frequency
  2807. */
  2808. void account_system_time(struct task_struct *p, int hardirq_offset,
  2809. cputime_t cputime, cputime_t cputime_scaled)
  2810. {
  2811. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2812. cputime64_t tmp;
  2813. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2814. account_guest_time(p, cputime, cputime_scaled);
  2815. return;
  2816. }
  2817. /* Add system time to process. */
  2818. p->stime = cputime_add(p->stime, cputime);
  2819. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2820. account_group_system_time(p, cputime);
  2821. /* Add system time to cpustat. */
  2822. tmp = cputime_to_cputime64(cputime);
  2823. if (hardirq_count() - hardirq_offset)
  2824. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2825. else if (softirq_count())
  2826. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2827. else
  2828. cpustat->system = cputime64_add(cpustat->system, tmp);
  2829. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2830. /* Account for system time used */
  2831. acct_update_integrals(p);
  2832. }
  2833. /*
  2834. * Account for involuntary wait time.
  2835. * @steal: the cpu time spent in involuntary wait
  2836. */
  2837. void account_steal_time(cputime_t cputime)
  2838. {
  2839. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2840. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2841. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2842. }
  2843. /*
  2844. * Account for idle time.
  2845. * @cputime: the cpu time spent in idle wait
  2846. */
  2847. void account_idle_time(cputime_t cputime)
  2848. {
  2849. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2850. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2851. struct rq *rq = this_rq();
  2852. if (atomic_read(&rq->nr_iowait) > 0)
  2853. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2854. else
  2855. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2856. }
  2857. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2858. /*
  2859. * Account a single tick of cpu time.
  2860. * @p: the process that the cpu time gets accounted to
  2861. * @user_tick: indicates if the tick is a user or a system tick
  2862. */
  2863. void account_process_tick(struct task_struct *p, int user_tick)
  2864. {
  2865. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2866. struct rq *rq = this_rq();
  2867. if (user_tick)
  2868. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2869. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2870. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2871. one_jiffy_scaled);
  2872. else
  2873. account_idle_time(cputime_one_jiffy);
  2874. }
  2875. /*
  2876. * Account multiple ticks of steal time.
  2877. * @p: the process from which the cpu time has been stolen
  2878. * @ticks: number of stolen ticks
  2879. */
  2880. void account_steal_ticks(unsigned long ticks)
  2881. {
  2882. account_steal_time(jiffies_to_cputime(ticks));
  2883. }
  2884. /*
  2885. * Account multiple ticks of idle time.
  2886. * @ticks: number of stolen ticks
  2887. */
  2888. void account_idle_ticks(unsigned long ticks)
  2889. {
  2890. account_idle_time(jiffies_to_cputime(ticks));
  2891. }
  2892. #endif
  2893. /*
  2894. * Use precise platform statistics if available:
  2895. */
  2896. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2897. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2898. {
  2899. *ut = p->utime;
  2900. *st = p->stime;
  2901. }
  2902. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2903. {
  2904. struct task_cputime cputime;
  2905. thread_group_cputime(p, &cputime);
  2906. *ut = cputime.utime;
  2907. *st = cputime.stime;
  2908. }
  2909. #else
  2910. #ifndef nsecs_to_cputime
  2911. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2912. #endif
  2913. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2914. {
  2915. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2916. /*
  2917. * Use CFS's precise accounting:
  2918. */
  2919. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2920. if (total) {
  2921. u64 temp;
  2922. temp = (u64)(rtime * utime);
  2923. do_div(temp, total);
  2924. utime = (cputime_t)temp;
  2925. } else
  2926. utime = rtime;
  2927. /*
  2928. * Compare with previous values, to keep monotonicity:
  2929. */
  2930. p->prev_utime = max(p->prev_utime, utime);
  2931. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2932. *ut = p->prev_utime;
  2933. *st = p->prev_stime;
  2934. }
  2935. /*
  2936. * Must be called with siglock held.
  2937. */
  2938. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2939. {
  2940. struct signal_struct *sig = p->signal;
  2941. struct task_cputime cputime;
  2942. cputime_t rtime, utime, total;
  2943. thread_group_cputime(p, &cputime);
  2944. total = cputime_add(cputime.utime, cputime.stime);
  2945. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2946. if (total) {
  2947. u64 temp;
  2948. temp = (u64)(rtime * cputime.utime);
  2949. do_div(temp, total);
  2950. utime = (cputime_t)temp;
  2951. } else
  2952. utime = rtime;
  2953. sig->prev_utime = max(sig->prev_utime, utime);
  2954. sig->prev_stime = max(sig->prev_stime,
  2955. cputime_sub(rtime, sig->prev_utime));
  2956. *ut = sig->prev_utime;
  2957. *st = sig->prev_stime;
  2958. }
  2959. #endif
  2960. /*
  2961. * This function gets called by the timer code, with HZ frequency.
  2962. * We call it with interrupts disabled.
  2963. *
  2964. * It also gets called by the fork code, when changing the parent's
  2965. * timeslices.
  2966. */
  2967. void scheduler_tick(void)
  2968. {
  2969. int cpu = smp_processor_id();
  2970. struct rq *rq = cpu_rq(cpu);
  2971. struct task_struct *curr = rq->curr;
  2972. sched_clock_tick();
  2973. raw_spin_lock(&rq->lock);
  2974. update_rq_clock(rq);
  2975. update_cpu_load(rq);
  2976. curr->sched_class->task_tick(rq, curr, 0);
  2977. raw_spin_unlock(&rq->lock);
  2978. perf_event_task_tick(curr, cpu);
  2979. #ifdef CONFIG_SMP
  2980. rq->idle_at_tick = idle_cpu(cpu);
  2981. trigger_load_balance(rq, cpu);
  2982. #endif
  2983. }
  2984. notrace unsigned long get_parent_ip(unsigned long addr)
  2985. {
  2986. if (in_lock_functions(addr)) {
  2987. addr = CALLER_ADDR2;
  2988. if (in_lock_functions(addr))
  2989. addr = CALLER_ADDR3;
  2990. }
  2991. return addr;
  2992. }
  2993. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2994. defined(CONFIG_PREEMPT_TRACER))
  2995. void __kprobes add_preempt_count(int val)
  2996. {
  2997. #ifdef CONFIG_DEBUG_PREEMPT
  2998. /*
  2999. * Underflow?
  3000. */
  3001. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3002. return;
  3003. #endif
  3004. preempt_count() += val;
  3005. #ifdef CONFIG_DEBUG_PREEMPT
  3006. /*
  3007. * Spinlock count overflowing soon?
  3008. */
  3009. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3010. PREEMPT_MASK - 10);
  3011. #endif
  3012. if (preempt_count() == val)
  3013. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3014. }
  3015. EXPORT_SYMBOL(add_preempt_count);
  3016. void __kprobes sub_preempt_count(int val)
  3017. {
  3018. #ifdef CONFIG_DEBUG_PREEMPT
  3019. /*
  3020. * Underflow?
  3021. */
  3022. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3023. return;
  3024. /*
  3025. * Is the spinlock portion underflowing?
  3026. */
  3027. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3028. !(preempt_count() & PREEMPT_MASK)))
  3029. return;
  3030. #endif
  3031. if (preempt_count() == val)
  3032. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3033. preempt_count() -= val;
  3034. }
  3035. EXPORT_SYMBOL(sub_preempt_count);
  3036. #endif
  3037. /*
  3038. * Print scheduling while atomic bug:
  3039. */
  3040. static noinline void __schedule_bug(struct task_struct *prev)
  3041. {
  3042. struct pt_regs *regs = get_irq_regs();
  3043. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3044. prev->comm, prev->pid, preempt_count());
  3045. debug_show_held_locks(prev);
  3046. print_modules();
  3047. if (irqs_disabled())
  3048. print_irqtrace_events(prev);
  3049. if (regs)
  3050. show_regs(regs);
  3051. else
  3052. dump_stack();
  3053. }
  3054. /*
  3055. * Various schedule()-time debugging checks and statistics:
  3056. */
  3057. static inline void schedule_debug(struct task_struct *prev)
  3058. {
  3059. /*
  3060. * Test if we are atomic. Since do_exit() needs to call into
  3061. * schedule() atomically, we ignore that path for now.
  3062. * Otherwise, whine if we are scheduling when we should not be.
  3063. */
  3064. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3065. __schedule_bug(prev);
  3066. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3067. schedstat_inc(this_rq(), sched_count);
  3068. #ifdef CONFIG_SCHEDSTATS
  3069. if (unlikely(prev->lock_depth >= 0)) {
  3070. schedstat_inc(this_rq(), bkl_count);
  3071. schedstat_inc(prev, sched_info.bkl_count);
  3072. }
  3073. #endif
  3074. }
  3075. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3076. {
  3077. if (prev->state == TASK_RUNNING) {
  3078. u64 runtime = prev->se.sum_exec_runtime;
  3079. runtime -= prev->se.prev_sum_exec_runtime;
  3080. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  3081. /*
  3082. * In order to avoid avg_overlap growing stale when we are
  3083. * indeed overlapping and hence not getting put to sleep, grow
  3084. * the avg_overlap on preemption.
  3085. *
  3086. * We use the average preemption runtime because that
  3087. * correlates to the amount of cache footprint a task can
  3088. * build up.
  3089. */
  3090. update_avg(&prev->se.avg_overlap, runtime);
  3091. }
  3092. prev->sched_class->put_prev_task(rq, prev);
  3093. }
  3094. /*
  3095. * Pick up the highest-prio task:
  3096. */
  3097. static inline struct task_struct *
  3098. pick_next_task(struct rq *rq)
  3099. {
  3100. const struct sched_class *class;
  3101. struct task_struct *p;
  3102. /*
  3103. * Optimization: we know that if all tasks are in
  3104. * the fair class we can call that function directly:
  3105. */
  3106. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3107. p = fair_sched_class.pick_next_task(rq);
  3108. if (likely(p))
  3109. return p;
  3110. }
  3111. class = sched_class_highest;
  3112. for ( ; ; ) {
  3113. p = class->pick_next_task(rq);
  3114. if (p)
  3115. return p;
  3116. /*
  3117. * Will never be NULL as the idle class always
  3118. * returns a non-NULL p:
  3119. */
  3120. class = class->next;
  3121. }
  3122. }
  3123. /*
  3124. * schedule() is the main scheduler function.
  3125. */
  3126. asmlinkage void __sched schedule(void)
  3127. {
  3128. struct task_struct *prev, *next;
  3129. unsigned long *switch_count;
  3130. struct rq *rq;
  3131. int cpu;
  3132. need_resched:
  3133. preempt_disable();
  3134. cpu = smp_processor_id();
  3135. rq = cpu_rq(cpu);
  3136. rcu_sched_qs(cpu);
  3137. prev = rq->curr;
  3138. switch_count = &prev->nivcsw;
  3139. release_kernel_lock(prev);
  3140. need_resched_nonpreemptible:
  3141. schedule_debug(prev);
  3142. if (sched_feat(HRTICK))
  3143. hrtick_clear(rq);
  3144. raw_spin_lock_irq(&rq->lock);
  3145. update_rq_clock(rq);
  3146. clear_tsk_need_resched(prev);
  3147. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3148. if (unlikely(signal_pending_state(prev->state, prev)))
  3149. prev->state = TASK_RUNNING;
  3150. else
  3151. deactivate_task(rq, prev, 1);
  3152. switch_count = &prev->nvcsw;
  3153. }
  3154. pre_schedule(rq, prev);
  3155. if (unlikely(!rq->nr_running))
  3156. idle_balance(cpu, rq);
  3157. put_prev_task(rq, prev);
  3158. next = pick_next_task(rq);
  3159. if (likely(prev != next)) {
  3160. sched_info_switch(prev, next);
  3161. perf_event_task_sched_out(prev, next, cpu);
  3162. rq->nr_switches++;
  3163. rq->curr = next;
  3164. ++*switch_count;
  3165. context_switch(rq, prev, next); /* unlocks the rq */
  3166. /*
  3167. * the context switch might have flipped the stack from under
  3168. * us, hence refresh the local variables.
  3169. */
  3170. cpu = smp_processor_id();
  3171. rq = cpu_rq(cpu);
  3172. } else
  3173. raw_spin_unlock_irq(&rq->lock);
  3174. post_schedule(rq);
  3175. if (unlikely(reacquire_kernel_lock(current) < 0))
  3176. goto need_resched_nonpreemptible;
  3177. preempt_enable_no_resched();
  3178. if (need_resched())
  3179. goto need_resched;
  3180. }
  3181. EXPORT_SYMBOL(schedule);
  3182. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3183. /*
  3184. * Look out! "owner" is an entirely speculative pointer
  3185. * access and not reliable.
  3186. */
  3187. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3188. {
  3189. unsigned int cpu;
  3190. struct rq *rq;
  3191. if (!sched_feat(OWNER_SPIN))
  3192. return 0;
  3193. #ifdef CONFIG_DEBUG_PAGEALLOC
  3194. /*
  3195. * Need to access the cpu field knowing that
  3196. * DEBUG_PAGEALLOC could have unmapped it if
  3197. * the mutex owner just released it and exited.
  3198. */
  3199. if (probe_kernel_address(&owner->cpu, cpu))
  3200. goto out;
  3201. #else
  3202. cpu = owner->cpu;
  3203. #endif
  3204. /*
  3205. * Even if the access succeeded (likely case),
  3206. * the cpu field may no longer be valid.
  3207. */
  3208. if (cpu >= nr_cpumask_bits)
  3209. goto out;
  3210. /*
  3211. * We need to validate that we can do a
  3212. * get_cpu() and that we have the percpu area.
  3213. */
  3214. if (!cpu_online(cpu))
  3215. goto out;
  3216. rq = cpu_rq(cpu);
  3217. for (;;) {
  3218. /*
  3219. * Owner changed, break to re-assess state.
  3220. */
  3221. if (lock->owner != owner)
  3222. break;
  3223. /*
  3224. * Is that owner really running on that cpu?
  3225. */
  3226. if (task_thread_info(rq->curr) != owner || need_resched())
  3227. return 0;
  3228. cpu_relax();
  3229. }
  3230. out:
  3231. return 1;
  3232. }
  3233. #endif
  3234. #ifdef CONFIG_PREEMPT
  3235. /*
  3236. * this is the entry point to schedule() from in-kernel preemption
  3237. * off of preempt_enable. Kernel preemptions off return from interrupt
  3238. * occur there and call schedule directly.
  3239. */
  3240. asmlinkage void __sched preempt_schedule(void)
  3241. {
  3242. struct thread_info *ti = current_thread_info();
  3243. /*
  3244. * If there is a non-zero preempt_count or interrupts are disabled,
  3245. * we do not want to preempt the current task. Just return..
  3246. */
  3247. if (likely(ti->preempt_count || irqs_disabled()))
  3248. return;
  3249. do {
  3250. add_preempt_count(PREEMPT_ACTIVE);
  3251. schedule();
  3252. sub_preempt_count(PREEMPT_ACTIVE);
  3253. /*
  3254. * Check again in case we missed a preemption opportunity
  3255. * between schedule and now.
  3256. */
  3257. barrier();
  3258. } while (need_resched());
  3259. }
  3260. EXPORT_SYMBOL(preempt_schedule);
  3261. /*
  3262. * this is the entry point to schedule() from kernel preemption
  3263. * off of irq context.
  3264. * Note, that this is called and return with irqs disabled. This will
  3265. * protect us against recursive calling from irq.
  3266. */
  3267. asmlinkage void __sched preempt_schedule_irq(void)
  3268. {
  3269. struct thread_info *ti = current_thread_info();
  3270. /* Catch callers which need to be fixed */
  3271. BUG_ON(ti->preempt_count || !irqs_disabled());
  3272. do {
  3273. add_preempt_count(PREEMPT_ACTIVE);
  3274. local_irq_enable();
  3275. schedule();
  3276. local_irq_disable();
  3277. sub_preempt_count(PREEMPT_ACTIVE);
  3278. /*
  3279. * Check again in case we missed a preemption opportunity
  3280. * between schedule and now.
  3281. */
  3282. barrier();
  3283. } while (need_resched());
  3284. }
  3285. #endif /* CONFIG_PREEMPT */
  3286. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3287. void *key)
  3288. {
  3289. return try_to_wake_up(curr->private, mode, wake_flags);
  3290. }
  3291. EXPORT_SYMBOL(default_wake_function);
  3292. /*
  3293. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3294. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3295. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3296. *
  3297. * There are circumstances in which we can try to wake a task which has already
  3298. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3299. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3300. */
  3301. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3302. int nr_exclusive, int wake_flags, void *key)
  3303. {
  3304. wait_queue_t *curr, *next;
  3305. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3306. unsigned flags = curr->flags;
  3307. if (curr->func(curr, mode, wake_flags, key) &&
  3308. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3309. break;
  3310. }
  3311. }
  3312. /**
  3313. * __wake_up - wake up threads blocked on a waitqueue.
  3314. * @q: the waitqueue
  3315. * @mode: which threads
  3316. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3317. * @key: is directly passed to the wakeup function
  3318. *
  3319. * It may be assumed that this function implies a write memory barrier before
  3320. * changing the task state if and only if any tasks are woken up.
  3321. */
  3322. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3323. int nr_exclusive, void *key)
  3324. {
  3325. unsigned long flags;
  3326. spin_lock_irqsave(&q->lock, flags);
  3327. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3328. spin_unlock_irqrestore(&q->lock, flags);
  3329. }
  3330. EXPORT_SYMBOL(__wake_up);
  3331. /*
  3332. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3333. */
  3334. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3335. {
  3336. __wake_up_common(q, mode, 1, 0, NULL);
  3337. }
  3338. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3339. {
  3340. __wake_up_common(q, mode, 1, 0, key);
  3341. }
  3342. /**
  3343. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3344. * @q: the waitqueue
  3345. * @mode: which threads
  3346. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3347. * @key: opaque value to be passed to wakeup targets
  3348. *
  3349. * The sync wakeup differs that the waker knows that it will schedule
  3350. * away soon, so while the target thread will be woken up, it will not
  3351. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3352. * with each other. This can prevent needless bouncing between CPUs.
  3353. *
  3354. * On UP it can prevent extra preemption.
  3355. *
  3356. * It may be assumed that this function implies a write memory barrier before
  3357. * changing the task state if and only if any tasks are woken up.
  3358. */
  3359. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3360. int nr_exclusive, void *key)
  3361. {
  3362. unsigned long flags;
  3363. int wake_flags = WF_SYNC;
  3364. if (unlikely(!q))
  3365. return;
  3366. if (unlikely(!nr_exclusive))
  3367. wake_flags = 0;
  3368. spin_lock_irqsave(&q->lock, flags);
  3369. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3370. spin_unlock_irqrestore(&q->lock, flags);
  3371. }
  3372. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3373. /*
  3374. * __wake_up_sync - see __wake_up_sync_key()
  3375. */
  3376. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3377. {
  3378. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3379. }
  3380. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3381. /**
  3382. * complete: - signals a single thread waiting on this completion
  3383. * @x: holds the state of this particular completion
  3384. *
  3385. * This will wake up a single thread waiting on this completion. Threads will be
  3386. * awakened in the same order in which they were queued.
  3387. *
  3388. * See also complete_all(), wait_for_completion() and related routines.
  3389. *
  3390. * It may be assumed that this function implies a write memory barrier before
  3391. * changing the task state if and only if any tasks are woken up.
  3392. */
  3393. void complete(struct completion *x)
  3394. {
  3395. unsigned long flags;
  3396. spin_lock_irqsave(&x->wait.lock, flags);
  3397. x->done++;
  3398. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3399. spin_unlock_irqrestore(&x->wait.lock, flags);
  3400. }
  3401. EXPORT_SYMBOL(complete);
  3402. /**
  3403. * complete_all: - signals all threads waiting on this completion
  3404. * @x: holds the state of this particular completion
  3405. *
  3406. * This will wake up all threads waiting on this particular completion event.
  3407. *
  3408. * It may be assumed that this function implies a write memory barrier before
  3409. * changing the task state if and only if any tasks are woken up.
  3410. */
  3411. void complete_all(struct completion *x)
  3412. {
  3413. unsigned long flags;
  3414. spin_lock_irqsave(&x->wait.lock, flags);
  3415. x->done += UINT_MAX/2;
  3416. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3417. spin_unlock_irqrestore(&x->wait.lock, flags);
  3418. }
  3419. EXPORT_SYMBOL(complete_all);
  3420. static inline long __sched
  3421. do_wait_for_common(struct completion *x, long timeout, int state)
  3422. {
  3423. if (!x->done) {
  3424. DECLARE_WAITQUEUE(wait, current);
  3425. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3426. __add_wait_queue_tail(&x->wait, &wait);
  3427. do {
  3428. if (signal_pending_state(state, current)) {
  3429. timeout = -ERESTARTSYS;
  3430. break;
  3431. }
  3432. __set_current_state(state);
  3433. spin_unlock_irq(&x->wait.lock);
  3434. timeout = schedule_timeout(timeout);
  3435. spin_lock_irq(&x->wait.lock);
  3436. } while (!x->done && timeout);
  3437. __remove_wait_queue(&x->wait, &wait);
  3438. if (!x->done)
  3439. return timeout;
  3440. }
  3441. x->done--;
  3442. return timeout ?: 1;
  3443. }
  3444. static long __sched
  3445. wait_for_common(struct completion *x, long timeout, int state)
  3446. {
  3447. might_sleep();
  3448. spin_lock_irq(&x->wait.lock);
  3449. timeout = do_wait_for_common(x, timeout, state);
  3450. spin_unlock_irq(&x->wait.lock);
  3451. return timeout;
  3452. }
  3453. /**
  3454. * wait_for_completion: - waits for completion of a task
  3455. * @x: holds the state of this particular completion
  3456. *
  3457. * This waits to be signaled for completion of a specific task. It is NOT
  3458. * interruptible and there is no timeout.
  3459. *
  3460. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3461. * and interrupt capability. Also see complete().
  3462. */
  3463. void __sched wait_for_completion(struct completion *x)
  3464. {
  3465. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3466. }
  3467. EXPORT_SYMBOL(wait_for_completion);
  3468. /**
  3469. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3470. * @x: holds the state of this particular completion
  3471. * @timeout: timeout value in jiffies
  3472. *
  3473. * This waits for either a completion of a specific task to be signaled or for a
  3474. * specified timeout to expire. The timeout is in jiffies. It is not
  3475. * interruptible.
  3476. */
  3477. unsigned long __sched
  3478. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3479. {
  3480. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3481. }
  3482. EXPORT_SYMBOL(wait_for_completion_timeout);
  3483. /**
  3484. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3485. * @x: holds the state of this particular completion
  3486. *
  3487. * This waits for completion of a specific task to be signaled. It is
  3488. * interruptible.
  3489. */
  3490. int __sched wait_for_completion_interruptible(struct completion *x)
  3491. {
  3492. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3493. if (t == -ERESTARTSYS)
  3494. return t;
  3495. return 0;
  3496. }
  3497. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3498. /**
  3499. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3500. * @x: holds the state of this particular completion
  3501. * @timeout: timeout value in jiffies
  3502. *
  3503. * This waits for either a completion of a specific task to be signaled or for a
  3504. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3505. */
  3506. unsigned long __sched
  3507. wait_for_completion_interruptible_timeout(struct completion *x,
  3508. unsigned long timeout)
  3509. {
  3510. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3511. }
  3512. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3513. /**
  3514. * wait_for_completion_killable: - waits for completion of a task (killable)
  3515. * @x: holds the state of this particular completion
  3516. *
  3517. * This waits to be signaled for completion of a specific task. It can be
  3518. * interrupted by a kill signal.
  3519. */
  3520. int __sched wait_for_completion_killable(struct completion *x)
  3521. {
  3522. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3523. if (t == -ERESTARTSYS)
  3524. return t;
  3525. return 0;
  3526. }
  3527. EXPORT_SYMBOL(wait_for_completion_killable);
  3528. /**
  3529. * try_wait_for_completion - try to decrement a completion without blocking
  3530. * @x: completion structure
  3531. *
  3532. * Returns: 0 if a decrement cannot be done without blocking
  3533. * 1 if a decrement succeeded.
  3534. *
  3535. * If a completion is being used as a counting completion,
  3536. * attempt to decrement the counter without blocking. This
  3537. * enables us to avoid waiting if the resource the completion
  3538. * is protecting is not available.
  3539. */
  3540. bool try_wait_for_completion(struct completion *x)
  3541. {
  3542. unsigned long flags;
  3543. int ret = 1;
  3544. spin_lock_irqsave(&x->wait.lock, flags);
  3545. if (!x->done)
  3546. ret = 0;
  3547. else
  3548. x->done--;
  3549. spin_unlock_irqrestore(&x->wait.lock, flags);
  3550. return ret;
  3551. }
  3552. EXPORT_SYMBOL(try_wait_for_completion);
  3553. /**
  3554. * completion_done - Test to see if a completion has any waiters
  3555. * @x: completion structure
  3556. *
  3557. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3558. * 1 if there are no waiters.
  3559. *
  3560. */
  3561. bool completion_done(struct completion *x)
  3562. {
  3563. unsigned long flags;
  3564. int ret = 1;
  3565. spin_lock_irqsave(&x->wait.lock, flags);
  3566. if (!x->done)
  3567. ret = 0;
  3568. spin_unlock_irqrestore(&x->wait.lock, flags);
  3569. return ret;
  3570. }
  3571. EXPORT_SYMBOL(completion_done);
  3572. static long __sched
  3573. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3574. {
  3575. unsigned long flags;
  3576. wait_queue_t wait;
  3577. init_waitqueue_entry(&wait, current);
  3578. __set_current_state(state);
  3579. spin_lock_irqsave(&q->lock, flags);
  3580. __add_wait_queue(q, &wait);
  3581. spin_unlock(&q->lock);
  3582. timeout = schedule_timeout(timeout);
  3583. spin_lock_irq(&q->lock);
  3584. __remove_wait_queue(q, &wait);
  3585. spin_unlock_irqrestore(&q->lock, flags);
  3586. return timeout;
  3587. }
  3588. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3589. {
  3590. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3591. }
  3592. EXPORT_SYMBOL(interruptible_sleep_on);
  3593. long __sched
  3594. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3595. {
  3596. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3597. }
  3598. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3599. void __sched sleep_on(wait_queue_head_t *q)
  3600. {
  3601. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3602. }
  3603. EXPORT_SYMBOL(sleep_on);
  3604. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3605. {
  3606. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3607. }
  3608. EXPORT_SYMBOL(sleep_on_timeout);
  3609. #ifdef CONFIG_RT_MUTEXES
  3610. /*
  3611. * rt_mutex_setprio - set the current priority of a task
  3612. * @p: task
  3613. * @prio: prio value (kernel-internal form)
  3614. *
  3615. * This function changes the 'effective' priority of a task. It does
  3616. * not touch ->normal_prio like __setscheduler().
  3617. *
  3618. * Used by the rt_mutex code to implement priority inheritance logic.
  3619. */
  3620. void rt_mutex_setprio(struct task_struct *p, int prio)
  3621. {
  3622. unsigned long flags;
  3623. int oldprio, on_rq, running;
  3624. struct rq *rq;
  3625. const struct sched_class *prev_class = p->sched_class;
  3626. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3627. rq = task_rq_lock(p, &flags);
  3628. update_rq_clock(rq);
  3629. oldprio = p->prio;
  3630. on_rq = p->se.on_rq;
  3631. running = task_current(rq, p);
  3632. if (on_rq)
  3633. dequeue_task(rq, p, 0);
  3634. if (running)
  3635. p->sched_class->put_prev_task(rq, p);
  3636. if (rt_prio(prio))
  3637. p->sched_class = &rt_sched_class;
  3638. else
  3639. p->sched_class = &fair_sched_class;
  3640. p->prio = prio;
  3641. if (running)
  3642. p->sched_class->set_curr_task(rq);
  3643. if (on_rq) {
  3644. enqueue_task(rq, p, 0);
  3645. check_class_changed(rq, p, prev_class, oldprio, running);
  3646. }
  3647. task_rq_unlock(rq, &flags);
  3648. }
  3649. #endif
  3650. void set_user_nice(struct task_struct *p, long nice)
  3651. {
  3652. int old_prio, delta, on_rq;
  3653. unsigned long flags;
  3654. struct rq *rq;
  3655. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3656. return;
  3657. /*
  3658. * We have to be careful, if called from sys_setpriority(),
  3659. * the task might be in the middle of scheduling on another CPU.
  3660. */
  3661. rq = task_rq_lock(p, &flags);
  3662. update_rq_clock(rq);
  3663. /*
  3664. * The RT priorities are set via sched_setscheduler(), but we still
  3665. * allow the 'normal' nice value to be set - but as expected
  3666. * it wont have any effect on scheduling until the task is
  3667. * SCHED_FIFO/SCHED_RR:
  3668. */
  3669. if (task_has_rt_policy(p)) {
  3670. p->static_prio = NICE_TO_PRIO(nice);
  3671. goto out_unlock;
  3672. }
  3673. on_rq = p->se.on_rq;
  3674. if (on_rq)
  3675. dequeue_task(rq, p, 0);
  3676. p->static_prio = NICE_TO_PRIO(nice);
  3677. set_load_weight(p);
  3678. old_prio = p->prio;
  3679. p->prio = effective_prio(p);
  3680. delta = p->prio - old_prio;
  3681. if (on_rq) {
  3682. enqueue_task(rq, p, 0);
  3683. /*
  3684. * If the task increased its priority or is running and
  3685. * lowered its priority, then reschedule its CPU:
  3686. */
  3687. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3688. resched_task(rq->curr);
  3689. }
  3690. out_unlock:
  3691. task_rq_unlock(rq, &flags);
  3692. }
  3693. EXPORT_SYMBOL(set_user_nice);
  3694. /*
  3695. * can_nice - check if a task can reduce its nice value
  3696. * @p: task
  3697. * @nice: nice value
  3698. */
  3699. int can_nice(const struct task_struct *p, const int nice)
  3700. {
  3701. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3702. int nice_rlim = 20 - nice;
  3703. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3704. capable(CAP_SYS_NICE));
  3705. }
  3706. #ifdef __ARCH_WANT_SYS_NICE
  3707. /*
  3708. * sys_nice - change the priority of the current process.
  3709. * @increment: priority increment
  3710. *
  3711. * sys_setpriority is a more generic, but much slower function that
  3712. * does similar things.
  3713. */
  3714. SYSCALL_DEFINE1(nice, int, increment)
  3715. {
  3716. long nice, retval;
  3717. /*
  3718. * Setpriority might change our priority at the same moment.
  3719. * We don't have to worry. Conceptually one call occurs first
  3720. * and we have a single winner.
  3721. */
  3722. if (increment < -40)
  3723. increment = -40;
  3724. if (increment > 40)
  3725. increment = 40;
  3726. nice = TASK_NICE(current) + increment;
  3727. if (nice < -20)
  3728. nice = -20;
  3729. if (nice > 19)
  3730. nice = 19;
  3731. if (increment < 0 && !can_nice(current, nice))
  3732. return -EPERM;
  3733. retval = security_task_setnice(current, nice);
  3734. if (retval)
  3735. return retval;
  3736. set_user_nice(current, nice);
  3737. return 0;
  3738. }
  3739. #endif
  3740. /**
  3741. * task_prio - return the priority value of a given task.
  3742. * @p: the task in question.
  3743. *
  3744. * This is the priority value as seen by users in /proc.
  3745. * RT tasks are offset by -200. Normal tasks are centered
  3746. * around 0, value goes from -16 to +15.
  3747. */
  3748. int task_prio(const struct task_struct *p)
  3749. {
  3750. return p->prio - MAX_RT_PRIO;
  3751. }
  3752. /**
  3753. * task_nice - return the nice value of a given task.
  3754. * @p: the task in question.
  3755. */
  3756. int task_nice(const struct task_struct *p)
  3757. {
  3758. return TASK_NICE(p);
  3759. }
  3760. EXPORT_SYMBOL(task_nice);
  3761. /**
  3762. * idle_cpu - is a given cpu idle currently?
  3763. * @cpu: the processor in question.
  3764. */
  3765. int idle_cpu(int cpu)
  3766. {
  3767. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3768. }
  3769. /**
  3770. * idle_task - return the idle task for a given cpu.
  3771. * @cpu: the processor in question.
  3772. */
  3773. struct task_struct *idle_task(int cpu)
  3774. {
  3775. return cpu_rq(cpu)->idle;
  3776. }
  3777. /**
  3778. * find_process_by_pid - find a process with a matching PID value.
  3779. * @pid: the pid in question.
  3780. */
  3781. static struct task_struct *find_process_by_pid(pid_t pid)
  3782. {
  3783. return pid ? find_task_by_vpid(pid) : current;
  3784. }
  3785. /* Actually do priority change: must hold rq lock. */
  3786. static void
  3787. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3788. {
  3789. BUG_ON(p->se.on_rq);
  3790. p->policy = policy;
  3791. p->rt_priority = prio;
  3792. p->normal_prio = normal_prio(p);
  3793. /* we are holding p->pi_lock already */
  3794. p->prio = rt_mutex_getprio(p);
  3795. if (rt_prio(p->prio))
  3796. p->sched_class = &rt_sched_class;
  3797. else
  3798. p->sched_class = &fair_sched_class;
  3799. set_load_weight(p);
  3800. }
  3801. /*
  3802. * check the target process has a UID that matches the current process's
  3803. */
  3804. static bool check_same_owner(struct task_struct *p)
  3805. {
  3806. const struct cred *cred = current_cred(), *pcred;
  3807. bool match;
  3808. rcu_read_lock();
  3809. pcred = __task_cred(p);
  3810. match = (cred->euid == pcred->euid ||
  3811. cred->euid == pcred->uid);
  3812. rcu_read_unlock();
  3813. return match;
  3814. }
  3815. static int __sched_setscheduler(struct task_struct *p, int policy,
  3816. struct sched_param *param, bool user)
  3817. {
  3818. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3819. unsigned long flags;
  3820. const struct sched_class *prev_class = p->sched_class;
  3821. struct rq *rq;
  3822. int reset_on_fork;
  3823. /* may grab non-irq protected spin_locks */
  3824. BUG_ON(in_interrupt());
  3825. recheck:
  3826. /* double check policy once rq lock held */
  3827. if (policy < 0) {
  3828. reset_on_fork = p->sched_reset_on_fork;
  3829. policy = oldpolicy = p->policy;
  3830. } else {
  3831. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3832. policy &= ~SCHED_RESET_ON_FORK;
  3833. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3834. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3835. policy != SCHED_IDLE)
  3836. return -EINVAL;
  3837. }
  3838. /*
  3839. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3840. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3841. * SCHED_BATCH and SCHED_IDLE is 0.
  3842. */
  3843. if (param->sched_priority < 0 ||
  3844. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3845. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3846. return -EINVAL;
  3847. if (rt_policy(policy) != (param->sched_priority != 0))
  3848. return -EINVAL;
  3849. /*
  3850. * Allow unprivileged RT tasks to decrease priority:
  3851. */
  3852. if (user && !capable(CAP_SYS_NICE)) {
  3853. if (rt_policy(policy)) {
  3854. unsigned long rlim_rtprio;
  3855. if (!lock_task_sighand(p, &flags))
  3856. return -ESRCH;
  3857. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3858. unlock_task_sighand(p, &flags);
  3859. /* can't set/change the rt policy */
  3860. if (policy != p->policy && !rlim_rtprio)
  3861. return -EPERM;
  3862. /* can't increase priority */
  3863. if (param->sched_priority > p->rt_priority &&
  3864. param->sched_priority > rlim_rtprio)
  3865. return -EPERM;
  3866. }
  3867. /*
  3868. * Like positive nice levels, dont allow tasks to
  3869. * move out of SCHED_IDLE either:
  3870. */
  3871. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3872. return -EPERM;
  3873. /* can't change other user's priorities */
  3874. if (!check_same_owner(p))
  3875. return -EPERM;
  3876. /* Normal users shall not reset the sched_reset_on_fork flag */
  3877. if (p->sched_reset_on_fork && !reset_on_fork)
  3878. return -EPERM;
  3879. }
  3880. if (user) {
  3881. #ifdef CONFIG_RT_GROUP_SCHED
  3882. /*
  3883. * Do not allow realtime tasks into groups that have no runtime
  3884. * assigned.
  3885. */
  3886. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3887. task_group(p)->rt_bandwidth.rt_runtime == 0)
  3888. return -EPERM;
  3889. #endif
  3890. retval = security_task_setscheduler(p, policy, param);
  3891. if (retval)
  3892. return retval;
  3893. }
  3894. /*
  3895. * make sure no PI-waiters arrive (or leave) while we are
  3896. * changing the priority of the task:
  3897. */
  3898. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3899. /*
  3900. * To be able to change p->policy safely, the apropriate
  3901. * runqueue lock must be held.
  3902. */
  3903. rq = __task_rq_lock(p);
  3904. /* recheck policy now with rq lock held */
  3905. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3906. policy = oldpolicy = -1;
  3907. __task_rq_unlock(rq);
  3908. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3909. goto recheck;
  3910. }
  3911. update_rq_clock(rq);
  3912. on_rq = p->se.on_rq;
  3913. running = task_current(rq, p);
  3914. if (on_rq)
  3915. deactivate_task(rq, p, 0);
  3916. if (running)
  3917. p->sched_class->put_prev_task(rq, p);
  3918. p->sched_reset_on_fork = reset_on_fork;
  3919. oldprio = p->prio;
  3920. __setscheduler(rq, p, policy, param->sched_priority);
  3921. if (running)
  3922. p->sched_class->set_curr_task(rq);
  3923. if (on_rq) {
  3924. activate_task(rq, p, 0);
  3925. check_class_changed(rq, p, prev_class, oldprio, running);
  3926. }
  3927. __task_rq_unlock(rq);
  3928. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3929. rt_mutex_adjust_pi(p);
  3930. return 0;
  3931. }
  3932. /**
  3933. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3934. * @p: the task in question.
  3935. * @policy: new policy.
  3936. * @param: structure containing the new RT priority.
  3937. *
  3938. * NOTE that the task may be already dead.
  3939. */
  3940. int sched_setscheduler(struct task_struct *p, int policy,
  3941. struct sched_param *param)
  3942. {
  3943. return __sched_setscheduler(p, policy, param, true);
  3944. }
  3945. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3946. /**
  3947. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3948. * @p: the task in question.
  3949. * @policy: new policy.
  3950. * @param: structure containing the new RT priority.
  3951. *
  3952. * Just like sched_setscheduler, only don't bother checking if the
  3953. * current context has permission. For example, this is needed in
  3954. * stop_machine(): we create temporary high priority worker threads,
  3955. * but our caller might not have that capability.
  3956. */
  3957. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3958. struct sched_param *param)
  3959. {
  3960. return __sched_setscheduler(p, policy, param, false);
  3961. }
  3962. static int
  3963. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3964. {
  3965. struct sched_param lparam;
  3966. struct task_struct *p;
  3967. int retval;
  3968. if (!param || pid < 0)
  3969. return -EINVAL;
  3970. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3971. return -EFAULT;
  3972. rcu_read_lock();
  3973. retval = -ESRCH;
  3974. p = find_process_by_pid(pid);
  3975. if (p != NULL)
  3976. retval = sched_setscheduler(p, policy, &lparam);
  3977. rcu_read_unlock();
  3978. return retval;
  3979. }
  3980. /**
  3981. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3982. * @pid: the pid in question.
  3983. * @policy: new policy.
  3984. * @param: structure containing the new RT priority.
  3985. */
  3986. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3987. struct sched_param __user *, param)
  3988. {
  3989. /* negative values for policy are not valid */
  3990. if (policy < 0)
  3991. return -EINVAL;
  3992. return do_sched_setscheduler(pid, policy, param);
  3993. }
  3994. /**
  3995. * sys_sched_setparam - set/change the RT priority of a thread
  3996. * @pid: the pid in question.
  3997. * @param: structure containing the new RT priority.
  3998. */
  3999. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4000. {
  4001. return do_sched_setscheduler(pid, -1, param);
  4002. }
  4003. /**
  4004. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4005. * @pid: the pid in question.
  4006. */
  4007. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4008. {
  4009. struct task_struct *p;
  4010. int retval;
  4011. if (pid < 0)
  4012. return -EINVAL;
  4013. retval = -ESRCH;
  4014. rcu_read_lock();
  4015. p = find_process_by_pid(pid);
  4016. if (p) {
  4017. retval = security_task_getscheduler(p);
  4018. if (!retval)
  4019. retval = p->policy
  4020. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4021. }
  4022. rcu_read_unlock();
  4023. return retval;
  4024. }
  4025. /**
  4026. * sys_sched_getparam - get the RT priority of a thread
  4027. * @pid: the pid in question.
  4028. * @param: structure containing the RT priority.
  4029. */
  4030. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4031. {
  4032. struct sched_param lp;
  4033. struct task_struct *p;
  4034. int retval;
  4035. if (!param || pid < 0)
  4036. return -EINVAL;
  4037. rcu_read_lock();
  4038. p = find_process_by_pid(pid);
  4039. retval = -ESRCH;
  4040. if (!p)
  4041. goto out_unlock;
  4042. retval = security_task_getscheduler(p);
  4043. if (retval)
  4044. goto out_unlock;
  4045. lp.sched_priority = p->rt_priority;
  4046. rcu_read_unlock();
  4047. /*
  4048. * This one might sleep, we cannot do it with a spinlock held ...
  4049. */
  4050. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4051. return retval;
  4052. out_unlock:
  4053. rcu_read_unlock();
  4054. return retval;
  4055. }
  4056. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4057. {
  4058. cpumask_var_t cpus_allowed, new_mask;
  4059. struct task_struct *p;
  4060. int retval;
  4061. get_online_cpus();
  4062. rcu_read_lock();
  4063. p = find_process_by_pid(pid);
  4064. if (!p) {
  4065. rcu_read_unlock();
  4066. put_online_cpus();
  4067. return -ESRCH;
  4068. }
  4069. /* Prevent p going away */
  4070. get_task_struct(p);
  4071. rcu_read_unlock();
  4072. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4073. retval = -ENOMEM;
  4074. goto out_put_task;
  4075. }
  4076. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4077. retval = -ENOMEM;
  4078. goto out_free_cpus_allowed;
  4079. }
  4080. retval = -EPERM;
  4081. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4082. goto out_unlock;
  4083. retval = security_task_setscheduler(p, 0, NULL);
  4084. if (retval)
  4085. goto out_unlock;
  4086. cpuset_cpus_allowed(p, cpus_allowed);
  4087. cpumask_and(new_mask, in_mask, cpus_allowed);
  4088. again:
  4089. retval = set_cpus_allowed_ptr(p, new_mask);
  4090. if (!retval) {
  4091. cpuset_cpus_allowed(p, cpus_allowed);
  4092. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4093. /*
  4094. * We must have raced with a concurrent cpuset
  4095. * update. Just reset the cpus_allowed to the
  4096. * cpuset's cpus_allowed
  4097. */
  4098. cpumask_copy(new_mask, cpus_allowed);
  4099. goto again;
  4100. }
  4101. }
  4102. out_unlock:
  4103. free_cpumask_var(new_mask);
  4104. out_free_cpus_allowed:
  4105. free_cpumask_var(cpus_allowed);
  4106. out_put_task:
  4107. put_task_struct(p);
  4108. put_online_cpus();
  4109. return retval;
  4110. }
  4111. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4112. struct cpumask *new_mask)
  4113. {
  4114. if (len < cpumask_size())
  4115. cpumask_clear(new_mask);
  4116. else if (len > cpumask_size())
  4117. len = cpumask_size();
  4118. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4119. }
  4120. /**
  4121. * sys_sched_setaffinity - set the cpu affinity of a process
  4122. * @pid: pid of the process
  4123. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4124. * @user_mask_ptr: user-space pointer to the new cpu mask
  4125. */
  4126. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4127. unsigned long __user *, user_mask_ptr)
  4128. {
  4129. cpumask_var_t new_mask;
  4130. int retval;
  4131. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4132. return -ENOMEM;
  4133. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4134. if (retval == 0)
  4135. retval = sched_setaffinity(pid, new_mask);
  4136. free_cpumask_var(new_mask);
  4137. return retval;
  4138. }
  4139. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4140. {
  4141. struct task_struct *p;
  4142. unsigned long flags;
  4143. struct rq *rq;
  4144. int retval;
  4145. get_online_cpus();
  4146. rcu_read_lock();
  4147. retval = -ESRCH;
  4148. p = find_process_by_pid(pid);
  4149. if (!p)
  4150. goto out_unlock;
  4151. retval = security_task_getscheduler(p);
  4152. if (retval)
  4153. goto out_unlock;
  4154. rq = task_rq_lock(p, &flags);
  4155. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4156. task_rq_unlock(rq, &flags);
  4157. out_unlock:
  4158. rcu_read_unlock();
  4159. put_online_cpus();
  4160. return retval;
  4161. }
  4162. /**
  4163. * sys_sched_getaffinity - get the cpu affinity of a process
  4164. * @pid: pid of the process
  4165. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4166. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4167. */
  4168. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4169. unsigned long __user *, user_mask_ptr)
  4170. {
  4171. int ret;
  4172. cpumask_var_t mask;
  4173. if (len < cpumask_size())
  4174. return -EINVAL;
  4175. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4176. return -ENOMEM;
  4177. ret = sched_getaffinity(pid, mask);
  4178. if (ret == 0) {
  4179. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  4180. ret = -EFAULT;
  4181. else
  4182. ret = cpumask_size();
  4183. }
  4184. free_cpumask_var(mask);
  4185. return ret;
  4186. }
  4187. /**
  4188. * sys_sched_yield - yield the current processor to other threads.
  4189. *
  4190. * This function yields the current CPU to other tasks. If there are no
  4191. * other threads running on this CPU then this function will return.
  4192. */
  4193. SYSCALL_DEFINE0(sched_yield)
  4194. {
  4195. struct rq *rq = this_rq_lock();
  4196. schedstat_inc(rq, yld_count);
  4197. current->sched_class->yield_task(rq);
  4198. /*
  4199. * Since we are going to call schedule() anyway, there's
  4200. * no need to preempt or enable interrupts:
  4201. */
  4202. __release(rq->lock);
  4203. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4204. do_raw_spin_unlock(&rq->lock);
  4205. preempt_enable_no_resched();
  4206. schedule();
  4207. return 0;
  4208. }
  4209. static inline int should_resched(void)
  4210. {
  4211. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4212. }
  4213. static void __cond_resched(void)
  4214. {
  4215. add_preempt_count(PREEMPT_ACTIVE);
  4216. schedule();
  4217. sub_preempt_count(PREEMPT_ACTIVE);
  4218. }
  4219. int __sched _cond_resched(void)
  4220. {
  4221. if (should_resched()) {
  4222. __cond_resched();
  4223. return 1;
  4224. }
  4225. return 0;
  4226. }
  4227. EXPORT_SYMBOL(_cond_resched);
  4228. /*
  4229. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4230. * call schedule, and on return reacquire the lock.
  4231. *
  4232. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4233. * operations here to prevent schedule() from being called twice (once via
  4234. * spin_unlock(), once by hand).
  4235. */
  4236. int __cond_resched_lock(spinlock_t *lock)
  4237. {
  4238. int resched = should_resched();
  4239. int ret = 0;
  4240. lockdep_assert_held(lock);
  4241. if (spin_needbreak(lock) || resched) {
  4242. spin_unlock(lock);
  4243. if (resched)
  4244. __cond_resched();
  4245. else
  4246. cpu_relax();
  4247. ret = 1;
  4248. spin_lock(lock);
  4249. }
  4250. return ret;
  4251. }
  4252. EXPORT_SYMBOL(__cond_resched_lock);
  4253. int __sched __cond_resched_softirq(void)
  4254. {
  4255. BUG_ON(!in_softirq());
  4256. if (should_resched()) {
  4257. local_bh_enable();
  4258. __cond_resched();
  4259. local_bh_disable();
  4260. return 1;
  4261. }
  4262. return 0;
  4263. }
  4264. EXPORT_SYMBOL(__cond_resched_softirq);
  4265. /**
  4266. * yield - yield the current processor to other threads.
  4267. *
  4268. * This is a shortcut for kernel-space yielding - it marks the
  4269. * thread runnable and calls sys_sched_yield().
  4270. */
  4271. void __sched yield(void)
  4272. {
  4273. set_current_state(TASK_RUNNING);
  4274. sys_sched_yield();
  4275. }
  4276. EXPORT_SYMBOL(yield);
  4277. /*
  4278. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4279. * that process accounting knows that this is a task in IO wait state.
  4280. */
  4281. void __sched io_schedule(void)
  4282. {
  4283. struct rq *rq = raw_rq();
  4284. delayacct_blkio_start();
  4285. atomic_inc(&rq->nr_iowait);
  4286. current->in_iowait = 1;
  4287. schedule();
  4288. current->in_iowait = 0;
  4289. atomic_dec(&rq->nr_iowait);
  4290. delayacct_blkio_end();
  4291. }
  4292. EXPORT_SYMBOL(io_schedule);
  4293. long __sched io_schedule_timeout(long timeout)
  4294. {
  4295. struct rq *rq = raw_rq();
  4296. long ret;
  4297. delayacct_blkio_start();
  4298. atomic_inc(&rq->nr_iowait);
  4299. current->in_iowait = 1;
  4300. ret = schedule_timeout(timeout);
  4301. current->in_iowait = 0;
  4302. atomic_dec(&rq->nr_iowait);
  4303. delayacct_blkio_end();
  4304. return ret;
  4305. }
  4306. /**
  4307. * sys_sched_get_priority_max - return maximum RT priority.
  4308. * @policy: scheduling class.
  4309. *
  4310. * this syscall returns the maximum rt_priority that can be used
  4311. * by a given scheduling class.
  4312. */
  4313. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4314. {
  4315. int ret = -EINVAL;
  4316. switch (policy) {
  4317. case SCHED_FIFO:
  4318. case SCHED_RR:
  4319. ret = MAX_USER_RT_PRIO-1;
  4320. break;
  4321. case SCHED_NORMAL:
  4322. case SCHED_BATCH:
  4323. case SCHED_IDLE:
  4324. ret = 0;
  4325. break;
  4326. }
  4327. return ret;
  4328. }
  4329. /**
  4330. * sys_sched_get_priority_min - return minimum RT priority.
  4331. * @policy: scheduling class.
  4332. *
  4333. * this syscall returns the minimum rt_priority that can be used
  4334. * by a given scheduling class.
  4335. */
  4336. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4337. {
  4338. int ret = -EINVAL;
  4339. switch (policy) {
  4340. case SCHED_FIFO:
  4341. case SCHED_RR:
  4342. ret = 1;
  4343. break;
  4344. case SCHED_NORMAL:
  4345. case SCHED_BATCH:
  4346. case SCHED_IDLE:
  4347. ret = 0;
  4348. }
  4349. return ret;
  4350. }
  4351. /**
  4352. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4353. * @pid: pid of the process.
  4354. * @interval: userspace pointer to the timeslice value.
  4355. *
  4356. * this syscall writes the default timeslice value of a given process
  4357. * into the user-space timespec buffer. A value of '0' means infinity.
  4358. */
  4359. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4360. struct timespec __user *, interval)
  4361. {
  4362. struct task_struct *p;
  4363. unsigned int time_slice;
  4364. unsigned long flags;
  4365. struct rq *rq;
  4366. int retval;
  4367. struct timespec t;
  4368. if (pid < 0)
  4369. return -EINVAL;
  4370. retval = -ESRCH;
  4371. rcu_read_lock();
  4372. p = find_process_by_pid(pid);
  4373. if (!p)
  4374. goto out_unlock;
  4375. retval = security_task_getscheduler(p);
  4376. if (retval)
  4377. goto out_unlock;
  4378. rq = task_rq_lock(p, &flags);
  4379. time_slice = p->sched_class->get_rr_interval(rq, p);
  4380. task_rq_unlock(rq, &flags);
  4381. rcu_read_unlock();
  4382. jiffies_to_timespec(time_slice, &t);
  4383. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4384. return retval;
  4385. out_unlock:
  4386. rcu_read_unlock();
  4387. return retval;
  4388. }
  4389. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4390. void sched_show_task(struct task_struct *p)
  4391. {
  4392. unsigned long free = 0;
  4393. unsigned state;
  4394. state = p->state ? __ffs(p->state) + 1 : 0;
  4395. printk(KERN_INFO "%-13.13s %c", p->comm,
  4396. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4397. #if BITS_PER_LONG == 32
  4398. if (state == TASK_RUNNING)
  4399. printk(KERN_CONT " running ");
  4400. else
  4401. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4402. #else
  4403. if (state == TASK_RUNNING)
  4404. printk(KERN_CONT " running task ");
  4405. else
  4406. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4407. #endif
  4408. #ifdef CONFIG_DEBUG_STACK_USAGE
  4409. free = stack_not_used(p);
  4410. #endif
  4411. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4412. task_pid_nr(p), task_pid_nr(p->real_parent),
  4413. (unsigned long)task_thread_info(p)->flags);
  4414. show_stack(p, NULL);
  4415. }
  4416. void show_state_filter(unsigned long state_filter)
  4417. {
  4418. struct task_struct *g, *p;
  4419. #if BITS_PER_LONG == 32
  4420. printk(KERN_INFO
  4421. " task PC stack pid father\n");
  4422. #else
  4423. printk(KERN_INFO
  4424. " task PC stack pid father\n");
  4425. #endif
  4426. read_lock(&tasklist_lock);
  4427. do_each_thread(g, p) {
  4428. /*
  4429. * reset the NMI-timeout, listing all files on a slow
  4430. * console might take alot of time:
  4431. */
  4432. touch_nmi_watchdog();
  4433. if (!state_filter || (p->state & state_filter))
  4434. sched_show_task(p);
  4435. } while_each_thread(g, p);
  4436. touch_all_softlockup_watchdogs();
  4437. #ifdef CONFIG_SCHED_DEBUG
  4438. sysrq_sched_debug_show();
  4439. #endif
  4440. read_unlock(&tasklist_lock);
  4441. /*
  4442. * Only show locks if all tasks are dumped:
  4443. */
  4444. if (!state_filter)
  4445. debug_show_all_locks();
  4446. }
  4447. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4448. {
  4449. idle->sched_class = &idle_sched_class;
  4450. }
  4451. /**
  4452. * init_idle - set up an idle thread for a given CPU
  4453. * @idle: task in question
  4454. * @cpu: cpu the idle task belongs to
  4455. *
  4456. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4457. * flag, to make booting more robust.
  4458. */
  4459. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4460. {
  4461. struct rq *rq = cpu_rq(cpu);
  4462. unsigned long flags;
  4463. raw_spin_lock_irqsave(&rq->lock, flags);
  4464. __sched_fork(idle);
  4465. idle->state = TASK_RUNNING;
  4466. idle->se.exec_start = sched_clock();
  4467. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4468. __set_task_cpu(idle, cpu);
  4469. rq->curr = rq->idle = idle;
  4470. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4471. idle->oncpu = 1;
  4472. #endif
  4473. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4474. /* Set the preempt count _outside_ the spinlocks! */
  4475. #if defined(CONFIG_PREEMPT)
  4476. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4477. #else
  4478. task_thread_info(idle)->preempt_count = 0;
  4479. #endif
  4480. /*
  4481. * The idle tasks have their own, simple scheduling class:
  4482. */
  4483. idle->sched_class = &idle_sched_class;
  4484. ftrace_graph_init_task(idle);
  4485. }
  4486. /*
  4487. * In a system that switches off the HZ timer nohz_cpu_mask
  4488. * indicates which cpus entered this state. This is used
  4489. * in the rcu update to wait only for active cpus. For system
  4490. * which do not switch off the HZ timer nohz_cpu_mask should
  4491. * always be CPU_BITS_NONE.
  4492. */
  4493. cpumask_var_t nohz_cpu_mask;
  4494. /*
  4495. * Increase the granularity value when there are more CPUs,
  4496. * because with more CPUs the 'effective latency' as visible
  4497. * to users decreases. But the relationship is not linear,
  4498. * so pick a second-best guess by going with the log2 of the
  4499. * number of CPUs.
  4500. *
  4501. * This idea comes from the SD scheduler of Con Kolivas:
  4502. */
  4503. static int get_update_sysctl_factor(void)
  4504. {
  4505. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4506. unsigned int factor;
  4507. switch (sysctl_sched_tunable_scaling) {
  4508. case SCHED_TUNABLESCALING_NONE:
  4509. factor = 1;
  4510. break;
  4511. case SCHED_TUNABLESCALING_LINEAR:
  4512. factor = cpus;
  4513. break;
  4514. case SCHED_TUNABLESCALING_LOG:
  4515. default:
  4516. factor = 1 + ilog2(cpus);
  4517. break;
  4518. }
  4519. return factor;
  4520. }
  4521. static void update_sysctl(void)
  4522. {
  4523. unsigned int factor = get_update_sysctl_factor();
  4524. #define SET_SYSCTL(name) \
  4525. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4526. SET_SYSCTL(sched_min_granularity);
  4527. SET_SYSCTL(sched_latency);
  4528. SET_SYSCTL(sched_wakeup_granularity);
  4529. SET_SYSCTL(sched_shares_ratelimit);
  4530. #undef SET_SYSCTL
  4531. }
  4532. static inline void sched_init_granularity(void)
  4533. {
  4534. update_sysctl();
  4535. }
  4536. #ifdef CONFIG_SMP
  4537. /*
  4538. * This is how migration works:
  4539. *
  4540. * 1) we queue a struct migration_req structure in the source CPU's
  4541. * runqueue and wake up that CPU's migration thread.
  4542. * 2) we down() the locked semaphore => thread blocks.
  4543. * 3) migration thread wakes up (implicitly it forces the migrated
  4544. * thread off the CPU)
  4545. * 4) it gets the migration request and checks whether the migrated
  4546. * task is still in the wrong runqueue.
  4547. * 5) if it's in the wrong runqueue then the migration thread removes
  4548. * it and puts it into the right queue.
  4549. * 6) migration thread up()s the semaphore.
  4550. * 7) we wake up and the migration is done.
  4551. */
  4552. /*
  4553. * Change a given task's CPU affinity. Migrate the thread to a
  4554. * proper CPU and schedule it away if the CPU it's executing on
  4555. * is removed from the allowed bitmask.
  4556. *
  4557. * NOTE: the caller must have a valid reference to the task, the
  4558. * task must not exit() & deallocate itself prematurely. The
  4559. * call is not atomic; no spinlocks may be held.
  4560. */
  4561. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4562. {
  4563. struct migration_req req;
  4564. unsigned long flags;
  4565. struct rq *rq;
  4566. int ret = 0;
  4567. /*
  4568. * Since we rely on wake-ups to migrate sleeping tasks, don't change
  4569. * the ->cpus_allowed mask from under waking tasks, which would be
  4570. * possible when we change rq->lock in ttwu(), so synchronize against
  4571. * TASK_WAKING to avoid that.
  4572. */
  4573. again:
  4574. while (p->state == TASK_WAKING)
  4575. cpu_relax();
  4576. rq = task_rq_lock(p, &flags);
  4577. if (p->state == TASK_WAKING) {
  4578. task_rq_unlock(rq, &flags);
  4579. goto again;
  4580. }
  4581. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4582. ret = -EINVAL;
  4583. goto out;
  4584. }
  4585. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4586. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4587. ret = -EINVAL;
  4588. goto out;
  4589. }
  4590. if (p->sched_class->set_cpus_allowed)
  4591. p->sched_class->set_cpus_allowed(p, new_mask);
  4592. else {
  4593. cpumask_copy(&p->cpus_allowed, new_mask);
  4594. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4595. }
  4596. /* Can the task run on the task's current CPU? If so, we're done */
  4597. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4598. goto out;
  4599. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  4600. /* Need help from migration thread: drop lock and wait. */
  4601. struct task_struct *mt = rq->migration_thread;
  4602. get_task_struct(mt);
  4603. task_rq_unlock(rq, &flags);
  4604. wake_up_process(rq->migration_thread);
  4605. put_task_struct(mt);
  4606. wait_for_completion(&req.done);
  4607. tlb_migrate_finish(p->mm);
  4608. return 0;
  4609. }
  4610. out:
  4611. task_rq_unlock(rq, &flags);
  4612. return ret;
  4613. }
  4614. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4615. /*
  4616. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4617. * this because either it can't run here any more (set_cpus_allowed()
  4618. * away from this CPU, or CPU going down), or because we're
  4619. * attempting to rebalance this task on exec (sched_exec).
  4620. *
  4621. * So we race with normal scheduler movements, but that's OK, as long
  4622. * as the task is no longer on this CPU.
  4623. *
  4624. * Returns non-zero if task was successfully migrated.
  4625. */
  4626. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4627. {
  4628. struct rq *rq_dest, *rq_src;
  4629. int ret = 0;
  4630. if (unlikely(!cpu_active(dest_cpu)))
  4631. return ret;
  4632. rq_src = cpu_rq(src_cpu);
  4633. rq_dest = cpu_rq(dest_cpu);
  4634. double_rq_lock(rq_src, rq_dest);
  4635. /* Already moved. */
  4636. if (task_cpu(p) != src_cpu)
  4637. goto done;
  4638. /* Affinity changed (again). */
  4639. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4640. goto fail;
  4641. /*
  4642. * If we're not on a rq, the next wake-up will ensure we're
  4643. * placed properly.
  4644. */
  4645. if (p->se.on_rq) {
  4646. deactivate_task(rq_src, p, 0);
  4647. set_task_cpu(p, dest_cpu);
  4648. activate_task(rq_dest, p, 0);
  4649. check_preempt_curr(rq_dest, p, 0);
  4650. }
  4651. done:
  4652. ret = 1;
  4653. fail:
  4654. double_rq_unlock(rq_src, rq_dest);
  4655. return ret;
  4656. }
  4657. #define RCU_MIGRATION_IDLE 0
  4658. #define RCU_MIGRATION_NEED_QS 1
  4659. #define RCU_MIGRATION_GOT_QS 2
  4660. #define RCU_MIGRATION_MUST_SYNC 3
  4661. /*
  4662. * migration_thread - this is a highprio system thread that performs
  4663. * thread migration by bumping thread off CPU then 'pushing' onto
  4664. * another runqueue.
  4665. */
  4666. static int migration_thread(void *data)
  4667. {
  4668. int badcpu;
  4669. int cpu = (long)data;
  4670. struct rq *rq;
  4671. rq = cpu_rq(cpu);
  4672. BUG_ON(rq->migration_thread != current);
  4673. set_current_state(TASK_INTERRUPTIBLE);
  4674. while (!kthread_should_stop()) {
  4675. struct migration_req *req;
  4676. struct list_head *head;
  4677. raw_spin_lock_irq(&rq->lock);
  4678. if (cpu_is_offline(cpu)) {
  4679. raw_spin_unlock_irq(&rq->lock);
  4680. break;
  4681. }
  4682. if (rq->active_balance) {
  4683. active_load_balance(rq, cpu);
  4684. rq->active_balance = 0;
  4685. }
  4686. head = &rq->migration_queue;
  4687. if (list_empty(head)) {
  4688. raw_spin_unlock_irq(&rq->lock);
  4689. schedule();
  4690. set_current_state(TASK_INTERRUPTIBLE);
  4691. continue;
  4692. }
  4693. req = list_entry(head->next, struct migration_req, list);
  4694. list_del_init(head->next);
  4695. if (req->task != NULL) {
  4696. raw_spin_unlock(&rq->lock);
  4697. __migrate_task(req->task, cpu, req->dest_cpu);
  4698. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  4699. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  4700. raw_spin_unlock(&rq->lock);
  4701. } else {
  4702. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  4703. raw_spin_unlock(&rq->lock);
  4704. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  4705. }
  4706. local_irq_enable();
  4707. complete(&req->done);
  4708. }
  4709. __set_current_state(TASK_RUNNING);
  4710. return 0;
  4711. }
  4712. #ifdef CONFIG_HOTPLUG_CPU
  4713. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4714. {
  4715. int ret;
  4716. local_irq_disable();
  4717. ret = __migrate_task(p, src_cpu, dest_cpu);
  4718. local_irq_enable();
  4719. return ret;
  4720. }
  4721. /*
  4722. * Figure out where task on dead CPU should go, use force if necessary.
  4723. */
  4724. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4725. {
  4726. int dest_cpu;
  4727. again:
  4728. dest_cpu = select_fallback_rq(dead_cpu, p);
  4729. /* It can have affinity changed while we were choosing. */
  4730. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  4731. goto again;
  4732. }
  4733. /*
  4734. * While a dead CPU has no uninterruptible tasks queued at this point,
  4735. * it might still have a nonzero ->nr_uninterruptible counter, because
  4736. * for performance reasons the counter is not stricly tracking tasks to
  4737. * their home CPUs. So we just add the counter to another CPU's counter,
  4738. * to keep the global sum constant after CPU-down:
  4739. */
  4740. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4741. {
  4742. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4743. unsigned long flags;
  4744. local_irq_save(flags);
  4745. double_rq_lock(rq_src, rq_dest);
  4746. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4747. rq_src->nr_uninterruptible = 0;
  4748. double_rq_unlock(rq_src, rq_dest);
  4749. local_irq_restore(flags);
  4750. }
  4751. /* Run through task list and migrate tasks from the dead cpu. */
  4752. static void migrate_live_tasks(int src_cpu)
  4753. {
  4754. struct task_struct *p, *t;
  4755. read_lock(&tasklist_lock);
  4756. do_each_thread(t, p) {
  4757. if (p == current)
  4758. continue;
  4759. if (task_cpu(p) == src_cpu)
  4760. move_task_off_dead_cpu(src_cpu, p);
  4761. } while_each_thread(t, p);
  4762. read_unlock(&tasklist_lock);
  4763. }
  4764. /*
  4765. * Schedules idle task to be the next runnable task on current CPU.
  4766. * It does so by boosting its priority to highest possible.
  4767. * Used by CPU offline code.
  4768. */
  4769. void sched_idle_next(void)
  4770. {
  4771. int this_cpu = smp_processor_id();
  4772. struct rq *rq = cpu_rq(this_cpu);
  4773. struct task_struct *p = rq->idle;
  4774. unsigned long flags;
  4775. /* cpu has to be offline */
  4776. BUG_ON(cpu_online(this_cpu));
  4777. /*
  4778. * Strictly not necessary since rest of the CPUs are stopped by now
  4779. * and interrupts disabled on the current cpu.
  4780. */
  4781. raw_spin_lock_irqsave(&rq->lock, flags);
  4782. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4783. update_rq_clock(rq);
  4784. activate_task(rq, p, 0);
  4785. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4786. }
  4787. /*
  4788. * Ensures that the idle task is using init_mm right before its cpu goes
  4789. * offline.
  4790. */
  4791. void idle_task_exit(void)
  4792. {
  4793. struct mm_struct *mm = current->active_mm;
  4794. BUG_ON(cpu_online(smp_processor_id()));
  4795. if (mm != &init_mm)
  4796. switch_mm(mm, &init_mm, current);
  4797. mmdrop(mm);
  4798. }
  4799. /* called under rq->lock with disabled interrupts */
  4800. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4801. {
  4802. struct rq *rq = cpu_rq(dead_cpu);
  4803. /* Must be exiting, otherwise would be on tasklist. */
  4804. BUG_ON(!p->exit_state);
  4805. /* Cannot have done final schedule yet: would have vanished. */
  4806. BUG_ON(p->state == TASK_DEAD);
  4807. get_task_struct(p);
  4808. /*
  4809. * Drop lock around migration; if someone else moves it,
  4810. * that's OK. No task can be added to this CPU, so iteration is
  4811. * fine.
  4812. */
  4813. raw_spin_unlock_irq(&rq->lock);
  4814. move_task_off_dead_cpu(dead_cpu, p);
  4815. raw_spin_lock_irq(&rq->lock);
  4816. put_task_struct(p);
  4817. }
  4818. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4819. static void migrate_dead_tasks(unsigned int dead_cpu)
  4820. {
  4821. struct rq *rq = cpu_rq(dead_cpu);
  4822. struct task_struct *next;
  4823. for ( ; ; ) {
  4824. if (!rq->nr_running)
  4825. break;
  4826. update_rq_clock(rq);
  4827. next = pick_next_task(rq);
  4828. if (!next)
  4829. break;
  4830. next->sched_class->put_prev_task(rq, next);
  4831. migrate_dead(dead_cpu, next);
  4832. }
  4833. }
  4834. /*
  4835. * remove the tasks which were accounted by rq from calc_load_tasks.
  4836. */
  4837. static void calc_global_load_remove(struct rq *rq)
  4838. {
  4839. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4840. rq->calc_load_active = 0;
  4841. }
  4842. #endif /* CONFIG_HOTPLUG_CPU */
  4843. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4844. static struct ctl_table sd_ctl_dir[] = {
  4845. {
  4846. .procname = "sched_domain",
  4847. .mode = 0555,
  4848. },
  4849. {}
  4850. };
  4851. static struct ctl_table sd_ctl_root[] = {
  4852. {
  4853. .procname = "kernel",
  4854. .mode = 0555,
  4855. .child = sd_ctl_dir,
  4856. },
  4857. {}
  4858. };
  4859. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4860. {
  4861. struct ctl_table *entry =
  4862. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4863. return entry;
  4864. }
  4865. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4866. {
  4867. struct ctl_table *entry;
  4868. /*
  4869. * In the intermediate directories, both the child directory and
  4870. * procname are dynamically allocated and could fail but the mode
  4871. * will always be set. In the lowest directory the names are
  4872. * static strings and all have proc handlers.
  4873. */
  4874. for (entry = *tablep; entry->mode; entry++) {
  4875. if (entry->child)
  4876. sd_free_ctl_entry(&entry->child);
  4877. if (entry->proc_handler == NULL)
  4878. kfree(entry->procname);
  4879. }
  4880. kfree(*tablep);
  4881. *tablep = NULL;
  4882. }
  4883. static void
  4884. set_table_entry(struct ctl_table *entry,
  4885. const char *procname, void *data, int maxlen,
  4886. mode_t mode, proc_handler *proc_handler)
  4887. {
  4888. entry->procname = procname;
  4889. entry->data = data;
  4890. entry->maxlen = maxlen;
  4891. entry->mode = mode;
  4892. entry->proc_handler = proc_handler;
  4893. }
  4894. static struct ctl_table *
  4895. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4896. {
  4897. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4898. if (table == NULL)
  4899. return NULL;
  4900. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4901. sizeof(long), 0644, proc_doulongvec_minmax);
  4902. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4903. sizeof(long), 0644, proc_doulongvec_minmax);
  4904. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4905. sizeof(int), 0644, proc_dointvec_minmax);
  4906. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4907. sizeof(int), 0644, proc_dointvec_minmax);
  4908. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4909. sizeof(int), 0644, proc_dointvec_minmax);
  4910. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4911. sizeof(int), 0644, proc_dointvec_minmax);
  4912. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4913. sizeof(int), 0644, proc_dointvec_minmax);
  4914. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4915. sizeof(int), 0644, proc_dointvec_minmax);
  4916. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4917. sizeof(int), 0644, proc_dointvec_minmax);
  4918. set_table_entry(&table[9], "cache_nice_tries",
  4919. &sd->cache_nice_tries,
  4920. sizeof(int), 0644, proc_dointvec_minmax);
  4921. set_table_entry(&table[10], "flags", &sd->flags,
  4922. sizeof(int), 0644, proc_dointvec_minmax);
  4923. set_table_entry(&table[11], "name", sd->name,
  4924. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4925. /* &table[12] is terminator */
  4926. return table;
  4927. }
  4928. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4929. {
  4930. struct ctl_table *entry, *table;
  4931. struct sched_domain *sd;
  4932. int domain_num = 0, i;
  4933. char buf[32];
  4934. for_each_domain(cpu, sd)
  4935. domain_num++;
  4936. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4937. if (table == NULL)
  4938. return NULL;
  4939. i = 0;
  4940. for_each_domain(cpu, sd) {
  4941. snprintf(buf, 32, "domain%d", i);
  4942. entry->procname = kstrdup(buf, GFP_KERNEL);
  4943. entry->mode = 0555;
  4944. entry->child = sd_alloc_ctl_domain_table(sd);
  4945. entry++;
  4946. i++;
  4947. }
  4948. return table;
  4949. }
  4950. static struct ctl_table_header *sd_sysctl_header;
  4951. static void register_sched_domain_sysctl(void)
  4952. {
  4953. int i, cpu_num = num_possible_cpus();
  4954. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4955. char buf[32];
  4956. WARN_ON(sd_ctl_dir[0].child);
  4957. sd_ctl_dir[0].child = entry;
  4958. if (entry == NULL)
  4959. return;
  4960. for_each_possible_cpu(i) {
  4961. snprintf(buf, 32, "cpu%d", i);
  4962. entry->procname = kstrdup(buf, GFP_KERNEL);
  4963. entry->mode = 0555;
  4964. entry->child = sd_alloc_ctl_cpu_table(i);
  4965. entry++;
  4966. }
  4967. WARN_ON(sd_sysctl_header);
  4968. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4969. }
  4970. /* may be called multiple times per register */
  4971. static void unregister_sched_domain_sysctl(void)
  4972. {
  4973. if (sd_sysctl_header)
  4974. unregister_sysctl_table(sd_sysctl_header);
  4975. sd_sysctl_header = NULL;
  4976. if (sd_ctl_dir[0].child)
  4977. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4978. }
  4979. #else
  4980. static void register_sched_domain_sysctl(void)
  4981. {
  4982. }
  4983. static void unregister_sched_domain_sysctl(void)
  4984. {
  4985. }
  4986. #endif
  4987. static void set_rq_online(struct rq *rq)
  4988. {
  4989. if (!rq->online) {
  4990. const struct sched_class *class;
  4991. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4992. rq->online = 1;
  4993. for_each_class(class) {
  4994. if (class->rq_online)
  4995. class->rq_online(rq);
  4996. }
  4997. }
  4998. }
  4999. static void set_rq_offline(struct rq *rq)
  5000. {
  5001. if (rq->online) {
  5002. const struct sched_class *class;
  5003. for_each_class(class) {
  5004. if (class->rq_offline)
  5005. class->rq_offline(rq);
  5006. }
  5007. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5008. rq->online = 0;
  5009. }
  5010. }
  5011. /*
  5012. * migration_call - callback that gets triggered when a CPU is added.
  5013. * Here we can start up the necessary migration thread for the new CPU.
  5014. */
  5015. static int __cpuinit
  5016. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5017. {
  5018. struct task_struct *p;
  5019. int cpu = (long)hcpu;
  5020. unsigned long flags;
  5021. struct rq *rq;
  5022. switch (action) {
  5023. case CPU_UP_PREPARE:
  5024. case CPU_UP_PREPARE_FROZEN:
  5025. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5026. if (IS_ERR(p))
  5027. return NOTIFY_BAD;
  5028. kthread_bind(p, cpu);
  5029. /* Must be high prio: stop_machine expects to yield to it. */
  5030. rq = task_rq_lock(p, &flags);
  5031. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5032. task_rq_unlock(rq, &flags);
  5033. get_task_struct(p);
  5034. cpu_rq(cpu)->migration_thread = p;
  5035. rq->calc_load_update = calc_load_update;
  5036. break;
  5037. case CPU_ONLINE:
  5038. case CPU_ONLINE_FROZEN:
  5039. /* Strictly unnecessary, as first user will wake it. */
  5040. wake_up_process(cpu_rq(cpu)->migration_thread);
  5041. /* Update our root-domain */
  5042. rq = cpu_rq(cpu);
  5043. raw_spin_lock_irqsave(&rq->lock, flags);
  5044. if (rq->rd) {
  5045. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5046. set_rq_online(rq);
  5047. }
  5048. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5049. break;
  5050. #ifdef CONFIG_HOTPLUG_CPU
  5051. case CPU_UP_CANCELED:
  5052. case CPU_UP_CANCELED_FROZEN:
  5053. if (!cpu_rq(cpu)->migration_thread)
  5054. break;
  5055. /* Unbind it from offline cpu so it can run. Fall thru. */
  5056. kthread_bind(cpu_rq(cpu)->migration_thread,
  5057. cpumask_any(cpu_online_mask));
  5058. kthread_stop(cpu_rq(cpu)->migration_thread);
  5059. put_task_struct(cpu_rq(cpu)->migration_thread);
  5060. cpu_rq(cpu)->migration_thread = NULL;
  5061. break;
  5062. case CPU_DEAD:
  5063. case CPU_DEAD_FROZEN:
  5064. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5065. migrate_live_tasks(cpu);
  5066. rq = cpu_rq(cpu);
  5067. kthread_stop(rq->migration_thread);
  5068. put_task_struct(rq->migration_thread);
  5069. rq->migration_thread = NULL;
  5070. /* Idle task back to normal (off runqueue, low prio) */
  5071. raw_spin_lock_irq(&rq->lock);
  5072. update_rq_clock(rq);
  5073. deactivate_task(rq, rq->idle, 0);
  5074. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5075. rq->idle->sched_class = &idle_sched_class;
  5076. migrate_dead_tasks(cpu);
  5077. raw_spin_unlock_irq(&rq->lock);
  5078. cpuset_unlock();
  5079. migrate_nr_uninterruptible(rq);
  5080. BUG_ON(rq->nr_running != 0);
  5081. calc_global_load_remove(rq);
  5082. /*
  5083. * No need to migrate the tasks: it was best-effort if
  5084. * they didn't take sched_hotcpu_mutex. Just wake up
  5085. * the requestors.
  5086. */
  5087. raw_spin_lock_irq(&rq->lock);
  5088. while (!list_empty(&rq->migration_queue)) {
  5089. struct migration_req *req;
  5090. req = list_entry(rq->migration_queue.next,
  5091. struct migration_req, list);
  5092. list_del_init(&req->list);
  5093. raw_spin_unlock_irq(&rq->lock);
  5094. complete(&req->done);
  5095. raw_spin_lock_irq(&rq->lock);
  5096. }
  5097. raw_spin_unlock_irq(&rq->lock);
  5098. break;
  5099. case CPU_DYING:
  5100. case CPU_DYING_FROZEN:
  5101. /* Update our root-domain */
  5102. rq = cpu_rq(cpu);
  5103. raw_spin_lock_irqsave(&rq->lock, flags);
  5104. if (rq->rd) {
  5105. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5106. set_rq_offline(rq);
  5107. }
  5108. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5109. break;
  5110. #endif
  5111. }
  5112. return NOTIFY_OK;
  5113. }
  5114. /*
  5115. * Register at high priority so that task migration (migrate_all_tasks)
  5116. * happens before everything else. This has to be lower priority than
  5117. * the notifier in the perf_event subsystem, though.
  5118. */
  5119. static struct notifier_block __cpuinitdata migration_notifier = {
  5120. .notifier_call = migration_call,
  5121. .priority = 10
  5122. };
  5123. static int __init migration_init(void)
  5124. {
  5125. void *cpu = (void *)(long)smp_processor_id();
  5126. int err;
  5127. /* Start one for the boot CPU: */
  5128. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5129. BUG_ON(err == NOTIFY_BAD);
  5130. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5131. register_cpu_notifier(&migration_notifier);
  5132. return 0;
  5133. }
  5134. early_initcall(migration_init);
  5135. #endif
  5136. #ifdef CONFIG_SMP
  5137. #ifdef CONFIG_SCHED_DEBUG
  5138. static __read_mostly int sched_domain_debug_enabled;
  5139. static int __init sched_domain_debug_setup(char *str)
  5140. {
  5141. sched_domain_debug_enabled = 1;
  5142. return 0;
  5143. }
  5144. early_param("sched_debug", sched_domain_debug_setup);
  5145. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5146. struct cpumask *groupmask)
  5147. {
  5148. struct sched_group *group = sd->groups;
  5149. char str[256];
  5150. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5151. cpumask_clear(groupmask);
  5152. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5153. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5154. printk("does not load-balance\n");
  5155. if (sd->parent)
  5156. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5157. " has parent");
  5158. return -1;
  5159. }
  5160. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5161. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5162. printk(KERN_ERR "ERROR: domain->span does not contain "
  5163. "CPU%d\n", cpu);
  5164. }
  5165. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5166. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5167. " CPU%d\n", cpu);
  5168. }
  5169. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5170. do {
  5171. if (!group) {
  5172. printk("\n");
  5173. printk(KERN_ERR "ERROR: group is NULL\n");
  5174. break;
  5175. }
  5176. if (!group->cpu_power) {
  5177. printk(KERN_CONT "\n");
  5178. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5179. "set\n");
  5180. break;
  5181. }
  5182. if (!cpumask_weight(sched_group_cpus(group))) {
  5183. printk(KERN_CONT "\n");
  5184. printk(KERN_ERR "ERROR: empty group\n");
  5185. break;
  5186. }
  5187. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5188. printk(KERN_CONT "\n");
  5189. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5190. break;
  5191. }
  5192. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5193. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5194. printk(KERN_CONT " %s", str);
  5195. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5196. printk(KERN_CONT " (cpu_power = %d)",
  5197. group->cpu_power);
  5198. }
  5199. group = group->next;
  5200. } while (group != sd->groups);
  5201. printk(KERN_CONT "\n");
  5202. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5203. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5204. if (sd->parent &&
  5205. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5206. printk(KERN_ERR "ERROR: parent span is not a superset "
  5207. "of domain->span\n");
  5208. return 0;
  5209. }
  5210. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5211. {
  5212. cpumask_var_t groupmask;
  5213. int level = 0;
  5214. if (!sched_domain_debug_enabled)
  5215. return;
  5216. if (!sd) {
  5217. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5218. return;
  5219. }
  5220. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5221. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5222. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5223. return;
  5224. }
  5225. for (;;) {
  5226. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5227. break;
  5228. level++;
  5229. sd = sd->parent;
  5230. if (!sd)
  5231. break;
  5232. }
  5233. free_cpumask_var(groupmask);
  5234. }
  5235. #else /* !CONFIG_SCHED_DEBUG */
  5236. # define sched_domain_debug(sd, cpu) do { } while (0)
  5237. #endif /* CONFIG_SCHED_DEBUG */
  5238. static int sd_degenerate(struct sched_domain *sd)
  5239. {
  5240. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5241. return 1;
  5242. /* Following flags need at least 2 groups */
  5243. if (sd->flags & (SD_LOAD_BALANCE |
  5244. SD_BALANCE_NEWIDLE |
  5245. SD_BALANCE_FORK |
  5246. SD_BALANCE_EXEC |
  5247. SD_SHARE_CPUPOWER |
  5248. SD_SHARE_PKG_RESOURCES)) {
  5249. if (sd->groups != sd->groups->next)
  5250. return 0;
  5251. }
  5252. /* Following flags don't use groups */
  5253. if (sd->flags & (SD_WAKE_AFFINE))
  5254. return 0;
  5255. return 1;
  5256. }
  5257. static int
  5258. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5259. {
  5260. unsigned long cflags = sd->flags, pflags = parent->flags;
  5261. if (sd_degenerate(parent))
  5262. return 1;
  5263. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5264. return 0;
  5265. /* Flags needing groups don't count if only 1 group in parent */
  5266. if (parent->groups == parent->groups->next) {
  5267. pflags &= ~(SD_LOAD_BALANCE |
  5268. SD_BALANCE_NEWIDLE |
  5269. SD_BALANCE_FORK |
  5270. SD_BALANCE_EXEC |
  5271. SD_SHARE_CPUPOWER |
  5272. SD_SHARE_PKG_RESOURCES);
  5273. if (nr_node_ids == 1)
  5274. pflags &= ~SD_SERIALIZE;
  5275. }
  5276. if (~cflags & pflags)
  5277. return 0;
  5278. return 1;
  5279. }
  5280. static void free_rootdomain(struct root_domain *rd)
  5281. {
  5282. synchronize_sched();
  5283. cpupri_cleanup(&rd->cpupri);
  5284. free_cpumask_var(rd->rto_mask);
  5285. free_cpumask_var(rd->online);
  5286. free_cpumask_var(rd->span);
  5287. kfree(rd);
  5288. }
  5289. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5290. {
  5291. struct root_domain *old_rd = NULL;
  5292. unsigned long flags;
  5293. raw_spin_lock_irqsave(&rq->lock, flags);
  5294. if (rq->rd) {
  5295. old_rd = rq->rd;
  5296. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5297. set_rq_offline(rq);
  5298. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5299. /*
  5300. * If we dont want to free the old_rt yet then
  5301. * set old_rd to NULL to skip the freeing later
  5302. * in this function:
  5303. */
  5304. if (!atomic_dec_and_test(&old_rd->refcount))
  5305. old_rd = NULL;
  5306. }
  5307. atomic_inc(&rd->refcount);
  5308. rq->rd = rd;
  5309. cpumask_set_cpu(rq->cpu, rd->span);
  5310. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5311. set_rq_online(rq);
  5312. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5313. if (old_rd)
  5314. free_rootdomain(old_rd);
  5315. }
  5316. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5317. {
  5318. gfp_t gfp = GFP_KERNEL;
  5319. memset(rd, 0, sizeof(*rd));
  5320. if (bootmem)
  5321. gfp = GFP_NOWAIT;
  5322. if (!alloc_cpumask_var(&rd->span, gfp))
  5323. goto out;
  5324. if (!alloc_cpumask_var(&rd->online, gfp))
  5325. goto free_span;
  5326. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  5327. goto free_online;
  5328. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  5329. goto free_rto_mask;
  5330. return 0;
  5331. free_rto_mask:
  5332. free_cpumask_var(rd->rto_mask);
  5333. free_online:
  5334. free_cpumask_var(rd->online);
  5335. free_span:
  5336. free_cpumask_var(rd->span);
  5337. out:
  5338. return -ENOMEM;
  5339. }
  5340. static void init_defrootdomain(void)
  5341. {
  5342. init_rootdomain(&def_root_domain, true);
  5343. atomic_set(&def_root_domain.refcount, 1);
  5344. }
  5345. static struct root_domain *alloc_rootdomain(void)
  5346. {
  5347. struct root_domain *rd;
  5348. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5349. if (!rd)
  5350. return NULL;
  5351. if (init_rootdomain(rd, false) != 0) {
  5352. kfree(rd);
  5353. return NULL;
  5354. }
  5355. return rd;
  5356. }
  5357. /*
  5358. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5359. * hold the hotplug lock.
  5360. */
  5361. static void
  5362. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5363. {
  5364. struct rq *rq = cpu_rq(cpu);
  5365. struct sched_domain *tmp;
  5366. /* Remove the sched domains which do not contribute to scheduling. */
  5367. for (tmp = sd; tmp; ) {
  5368. struct sched_domain *parent = tmp->parent;
  5369. if (!parent)
  5370. break;
  5371. if (sd_parent_degenerate(tmp, parent)) {
  5372. tmp->parent = parent->parent;
  5373. if (parent->parent)
  5374. parent->parent->child = tmp;
  5375. } else
  5376. tmp = tmp->parent;
  5377. }
  5378. if (sd && sd_degenerate(sd)) {
  5379. sd = sd->parent;
  5380. if (sd)
  5381. sd->child = NULL;
  5382. }
  5383. sched_domain_debug(sd, cpu);
  5384. rq_attach_root(rq, rd);
  5385. rcu_assign_pointer(rq->sd, sd);
  5386. }
  5387. /* cpus with isolated domains */
  5388. static cpumask_var_t cpu_isolated_map;
  5389. /* Setup the mask of cpus configured for isolated domains */
  5390. static int __init isolated_cpu_setup(char *str)
  5391. {
  5392. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5393. cpulist_parse(str, cpu_isolated_map);
  5394. return 1;
  5395. }
  5396. __setup("isolcpus=", isolated_cpu_setup);
  5397. /*
  5398. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5399. * to a function which identifies what group(along with sched group) a CPU
  5400. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5401. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5402. *
  5403. * init_sched_build_groups will build a circular linked list of the groups
  5404. * covered by the given span, and will set each group's ->cpumask correctly,
  5405. * and ->cpu_power to 0.
  5406. */
  5407. static void
  5408. init_sched_build_groups(const struct cpumask *span,
  5409. const struct cpumask *cpu_map,
  5410. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5411. struct sched_group **sg,
  5412. struct cpumask *tmpmask),
  5413. struct cpumask *covered, struct cpumask *tmpmask)
  5414. {
  5415. struct sched_group *first = NULL, *last = NULL;
  5416. int i;
  5417. cpumask_clear(covered);
  5418. for_each_cpu(i, span) {
  5419. struct sched_group *sg;
  5420. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5421. int j;
  5422. if (cpumask_test_cpu(i, covered))
  5423. continue;
  5424. cpumask_clear(sched_group_cpus(sg));
  5425. sg->cpu_power = 0;
  5426. for_each_cpu(j, span) {
  5427. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5428. continue;
  5429. cpumask_set_cpu(j, covered);
  5430. cpumask_set_cpu(j, sched_group_cpus(sg));
  5431. }
  5432. if (!first)
  5433. first = sg;
  5434. if (last)
  5435. last->next = sg;
  5436. last = sg;
  5437. }
  5438. last->next = first;
  5439. }
  5440. #define SD_NODES_PER_DOMAIN 16
  5441. #ifdef CONFIG_NUMA
  5442. /**
  5443. * find_next_best_node - find the next node to include in a sched_domain
  5444. * @node: node whose sched_domain we're building
  5445. * @used_nodes: nodes already in the sched_domain
  5446. *
  5447. * Find the next node to include in a given scheduling domain. Simply
  5448. * finds the closest node not already in the @used_nodes map.
  5449. *
  5450. * Should use nodemask_t.
  5451. */
  5452. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5453. {
  5454. int i, n, val, min_val, best_node = 0;
  5455. min_val = INT_MAX;
  5456. for (i = 0; i < nr_node_ids; i++) {
  5457. /* Start at @node */
  5458. n = (node + i) % nr_node_ids;
  5459. if (!nr_cpus_node(n))
  5460. continue;
  5461. /* Skip already used nodes */
  5462. if (node_isset(n, *used_nodes))
  5463. continue;
  5464. /* Simple min distance search */
  5465. val = node_distance(node, n);
  5466. if (val < min_val) {
  5467. min_val = val;
  5468. best_node = n;
  5469. }
  5470. }
  5471. node_set(best_node, *used_nodes);
  5472. return best_node;
  5473. }
  5474. /**
  5475. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5476. * @node: node whose cpumask we're constructing
  5477. * @span: resulting cpumask
  5478. *
  5479. * Given a node, construct a good cpumask for its sched_domain to span. It
  5480. * should be one that prevents unnecessary balancing, but also spreads tasks
  5481. * out optimally.
  5482. */
  5483. static void sched_domain_node_span(int node, struct cpumask *span)
  5484. {
  5485. nodemask_t used_nodes;
  5486. int i;
  5487. cpumask_clear(span);
  5488. nodes_clear(used_nodes);
  5489. cpumask_or(span, span, cpumask_of_node(node));
  5490. node_set(node, used_nodes);
  5491. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5492. int next_node = find_next_best_node(node, &used_nodes);
  5493. cpumask_or(span, span, cpumask_of_node(next_node));
  5494. }
  5495. }
  5496. #endif /* CONFIG_NUMA */
  5497. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5498. /*
  5499. * The cpus mask in sched_group and sched_domain hangs off the end.
  5500. *
  5501. * ( See the the comments in include/linux/sched.h:struct sched_group
  5502. * and struct sched_domain. )
  5503. */
  5504. struct static_sched_group {
  5505. struct sched_group sg;
  5506. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5507. };
  5508. struct static_sched_domain {
  5509. struct sched_domain sd;
  5510. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5511. };
  5512. struct s_data {
  5513. #ifdef CONFIG_NUMA
  5514. int sd_allnodes;
  5515. cpumask_var_t domainspan;
  5516. cpumask_var_t covered;
  5517. cpumask_var_t notcovered;
  5518. #endif
  5519. cpumask_var_t nodemask;
  5520. cpumask_var_t this_sibling_map;
  5521. cpumask_var_t this_core_map;
  5522. cpumask_var_t send_covered;
  5523. cpumask_var_t tmpmask;
  5524. struct sched_group **sched_group_nodes;
  5525. struct root_domain *rd;
  5526. };
  5527. enum s_alloc {
  5528. sa_sched_groups = 0,
  5529. sa_rootdomain,
  5530. sa_tmpmask,
  5531. sa_send_covered,
  5532. sa_this_core_map,
  5533. sa_this_sibling_map,
  5534. sa_nodemask,
  5535. sa_sched_group_nodes,
  5536. #ifdef CONFIG_NUMA
  5537. sa_notcovered,
  5538. sa_covered,
  5539. sa_domainspan,
  5540. #endif
  5541. sa_none,
  5542. };
  5543. /*
  5544. * SMT sched-domains:
  5545. */
  5546. #ifdef CONFIG_SCHED_SMT
  5547. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5548. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5549. static int
  5550. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5551. struct sched_group **sg, struct cpumask *unused)
  5552. {
  5553. if (sg)
  5554. *sg = &per_cpu(sched_groups, cpu).sg;
  5555. return cpu;
  5556. }
  5557. #endif /* CONFIG_SCHED_SMT */
  5558. /*
  5559. * multi-core sched-domains:
  5560. */
  5561. #ifdef CONFIG_SCHED_MC
  5562. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5563. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5564. #endif /* CONFIG_SCHED_MC */
  5565. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5566. static int
  5567. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5568. struct sched_group **sg, struct cpumask *mask)
  5569. {
  5570. int group;
  5571. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5572. group = cpumask_first(mask);
  5573. if (sg)
  5574. *sg = &per_cpu(sched_group_core, group).sg;
  5575. return group;
  5576. }
  5577. #elif defined(CONFIG_SCHED_MC)
  5578. static int
  5579. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5580. struct sched_group **sg, struct cpumask *unused)
  5581. {
  5582. if (sg)
  5583. *sg = &per_cpu(sched_group_core, cpu).sg;
  5584. return cpu;
  5585. }
  5586. #endif
  5587. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5588. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5589. static int
  5590. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5591. struct sched_group **sg, struct cpumask *mask)
  5592. {
  5593. int group;
  5594. #ifdef CONFIG_SCHED_MC
  5595. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5596. group = cpumask_first(mask);
  5597. #elif defined(CONFIG_SCHED_SMT)
  5598. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5599. group = cpumask_first(mask);
  5600. #else
  5601. group = cpu;
  5602. #endif
  5603. if (sg)
  5604. *sg = &per_cpu(sched_group_phys, group).sg;
  5605. return group;
  5606. }
  5607. #ifdef CONFIG_NUMA
  5608. /*
  5609. * The init_sched_build_groups can't handle what we want to do with node
  5610. * groups, so roll our own. Now each node has its own list of groups which
  5611. * gets dynamically allocated.
  5612. */
  5613. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5614. static struct sched_group ***sched_group_nodes_bycpu;
  5615. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5616. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5617. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5618. struct sched_group **sg,
  5619. struct cpumask *nodemask)
  5620. {
  5621. int group;
  5622. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5623. group = cpumask_first(nodemask);
  5624. if (sg)
  5625. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5626. return group;
  5627. }
  5628. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5629. {
  5630. struct sched_group *sg = group_head;
  5631. int j;
  5632. if (!sg)
  5633. return;
  5634. do {
  5635. for_each_cpu(j, sched_group_cpus(sg)) {
  5636. struct sched_domain *sd;
  5637. sd = &per_cpu(phys_domains, j).sd;
  5638. if (j != group_first_cpu(sd->groups)) {
  5639. /*
  5640. * Only add "power" once for each
  5641. * physical package.
  5642. */
  5643. continue;
  5644. }
  5645. sg->cpu_power += sd->groups->cpu_power;
  5646. }
  5647. sg = sg->next;
  5648. } while (sg != group_head);
  5649. }
  5650. static int build_numa_sched_groups(struct s_data *d,
  5651. const struct cpumask *cpu_map, int num)
  5652. {
  5653. struct sched_domain *sd;
  5654. struct sched_group *sg, *prev;
  5655. int n, j;
  5656. cpumask_clear(d->covered);
  5657. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5658. if (cpumask_empty(d->nodemask)) {
  5659. d->sched_group_nodes[num] = NULL;
  5660. goto out;
  5661. }
  5662. sched_domain_node_span(num, d->domainspan);
  5663. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5664. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5665. GFP_KERNEL, num);
  5666. if (!sg) {
  5667. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5668. num);
  5669. return -ENOMEM;
  5670. }
  5671. d->sched_group_nodes[num] = sg;
  5672. for_each_cpu(j, d->nodemask) {
  5673. sd = &per_cpu(node_domains, j).sd;
  5674. sd->groups = sg;
  5675. }
  5676. sg->cpu_power = 0;
  5677. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5678. sg->next = sg;
  5679. cpumask_or(d->covered, d->covered, d->nodemask);
  5680. prev = sg;
  5681. for (j = 0; j < nr_node_ids; j++) {
  5682. n = (num + j) % nr_node_ids;
  5683. cpumask_complement(d->notcovered, d->covered);
  5684. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5685. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5686. if (cpumask_empty(d->tmpmask))
  5687. break;
  5688. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5689. if (cpumask_empty(d->tmpmask))
  5690. continue;
  5691. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5692. GFP_KERNEL, num);
  5693. if (!sg) {
  5694. printk(KERN_WARNING
  5695. "Can not alloc domain group for node %d\n", j);
  5696. return -ENOMEM;
  5697. }
  5698. sg->cpu_power = 0;
  5699. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5700. sg->next = prev->next;
  5701. cpumask_or(d->covered, d->covered, d->tmpmask);
  5702. prev->next = sg;
  5703. prev = sg;
  5704. }
  5705. out:
  5706. return 0;
  5707. }
  5708. #endif /* CONFIG_NUMA */
  5709. #ifdef CONFIG_NUMA
  5710. /* Free memory allocated for various sched_group structures */
  5711. static void free_sched_groups(const struct cpumask *cpu_map,
  5712. struct cpumask *nodemask)
  5713. {
  5714. int cpu, i;
  5715. for_each_cpu(cpu, cpu_map) {
  5716. struct sched_group **sched_group_nodes
  5717. = sched_group_nodes_bycpu[cpu];
  5718. if (!sched_group_nodes)
  5719. continue;
  5720. for (i = 0; i < nr_node_ids; i++) {
  5721. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5722. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5723. if (cpumask_empty(nodemask))
  5724. continue;
  5725. if (sg == NULL)
  5726. continue;
  5727. sg = sg->next;
  5728. next_sg:
  5729. oldsg = sg;
  5730. sg = sg->next;
  5731. kfree(oldsg);
  5732. if (oldsg != sched_group_nodes[i])
  5733. goto next_sg;
  5734. }
  5735. kfree(sched_group_nodes);
  5736. sched_group_nodes_bycpu[cpu] = NULL;
  5737. }
  5738. }
  5739. #else /* !CONFIG_NUMA */
  5740. static void free_sched_groups(const struct cpumask *cpu_map,
  5741. struct cpumask *nodemask)
  5742. {
  5743. }
  5744. #endif /* CONFIG_NUMA */
  5745. /*
  5746. * Initialize sched groups cpu_power.
  5747. *
  5748. * cpu_power indicates the capacity of sched group, which is used while
  5749. * distributing the load between different sched groups in a sched domain.
  5750. * Typically cpu_power for all the groups in a sched domain will be same unless
  5751. * there are asymmetries in the topology. If there are asymmetries, group
  5752. * having more cpu_power will pickup more load compared to the group having
  5753. * less cpu_power.
  5754. */
  5755. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5756. {
  5757. struct sched_domain *child;
  5758. struct sched_group *group;
  5759. long power;
  5760. int weight;
  5761. WARN_ON(!sd || !sd->groups);
  5762. if (cpu != group_first_cpu(sd->groups))
  5763. return;
  5764. child = sd->child;
  5765. sd->groups->cpu_power = 0;
  5766. if (!child) {
  5767. power = SCHED_LOAD_SCALE;
  5768. weight = cpumask_weight(sched_domain_span(sd));
  5769. /*
  5770. * SMT siblings share the power of a single core.
  5771. * Usually multiple threads get a better yield out of
  5772. * that one core than a single thread would have,
  5773. * reflect that in sd->smt_gain.
  5774. */
  5775. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5776. power *= sd->smt_gain;
  5777. power /= weight;
  5778. power >>= SCHED_LOAD_SHIFT;
  5779. }
  5780. sd->groups->cpu_power += power;
  5781. return;
  5782. }
  5783. /*
  5784. * Add cpu_power of each child group to this groups cpu_power.
  5785. */
  5786. group = child->groups;
  5787. do {
  5788. sd->groups->cpu_power += group->cpu_power;
  5789. group = group->next;
  5790. } while (group != child->groups);
  5791. }
  5792. /*
  5793. * Initializers for schedule domains
  5794. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5795. */
  5796. #ifdef CONFIG_SCHED_DEBUG
  5797. # define SD_INIT_NAME(sd, type) sd->name = #type
  5798. #else
  5799. # define SD_INIT_NAME(sd, type) do { } while (0)
  5800. #endif
  5801. #define SD_INIT(sd, type) sd_init_##type(sd)
  5802. #define SD_INIT_FUNC(type) \
  5803. static noinline void sd_init_##type(struct sched_domain *sd) \
  5804. { \
  5805. memset(sd, 0, sizeof(*sd)); \
  5806. *sd = SD_##type##_INIT; \
  5807. sd->level = SD_LV_##type; \
  5808. SD_INIT_NAME(sd, type); \
  5809. }
  5810. SD_INIT_FUNC(CPU)
  5811. #ifdef CONFIG_NUMA
  5812. SD_INIT_FUNC(ALLNODES)
  5813. SD_INIT_FUNC(NODE)
  5814. #endif
  5815. #ifdef CONFIG_SCHED_SMT
  5816. SD_INIT_FUNC(SIBLING)
  5817. #endif
  5818. #ifdef CONFIG_SCHED_MC
  5819. SD_INIT_FUNC(MC)
  5820. #endif
  5821. static int default_relax_domain_level = -1;
  5822. static int __init setup_relax_domain_level(char *str)
  5823. {
  5824. unsigned long val;
  5825. val = simple_strtoul(str, NULL, 0);
  5826. if (val < SD_LV_MAX)
  5827. default_relax_domain_level = val;
  5828. return 1;
  5829. }
  5830. __setup("relax_domain_level=", setup_relax_domain_level);
  5831. static void set_domain_attribute(struct sched_domain *sd,
  5832. struct sched_domain_attr *attr)
  5833. {
  5834. int request;
  5835. if (!attr || attr->relax_domain_level < 0) {
  5836. if (default_relax_domain_level < 0)
  5837. return;
  5838. else
  5839. request = default_relax_domain_level;
  5840. } else
  5841. request = attr->relax_domain_level;
  5842. if (request < sd->level) {
  5843. /* turn off idle balance on this domain */
  5844. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5845. } else {
  5846. /* turn on idle balance on this domain */
  5847. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5848. }
  5849. }
  5850. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5851. const struct cpumask *cpu_map)
  5852. {
  5853. switch (what) {
  5854. case sa_sched_groups:
  5855. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5856. d->sched_group_nodes = NULL;
  5857. case sa_rootdomain:
  5858. free_rootdomain(d->rd); /* fall through */
  5859. case sa_tmpmask:
  5860. free_cpumask_var(d->tmpmask); /* fall through */
  5861. case sa_send_covered:
  5862. free_cpumask_var(d->send_covered); /* fall through */
  5863. case sa_this_core_map:
  5864. free_cpumask_var(d->this_core_map); /* fall through */
  5865. case sa_this_sibling_map:
  5866. free_cpumask_var(d->this_sibling_map); /* fall through */
  5867. case sa_nodemask:
  5868. free_cpumask_var(d->nodemask); /* fall through */
  5869. case sa_sched_group_nodes:
  5870. #ifdef CONFIG_NUMA
  5871. kfree(d->sched_group_nodes); /* fall through */
  5872. case sa_notcovered:
  5873. free_cpumask_var(d->notcovered); /* fall through */
  5874. case sa_covered:
  5875. free_cpumask_var(d->covered); /* fall through */
  5876. case sa_domainspan:
  5877. free_cpumask_var(d->domainspan); /* fall through */
  5878. #endif
  5879. case sa_none:
  5880. break;
  5881. }
  5882. }
  5883. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5884. const struct cpumask *cpu_map)
  5885. {
  5886. #ifdef CONFIG_NUMA
  5887. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5888. return sa_none;
  5889. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5890. return sa_domainspan;
  5891. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5892. return sa_covered;
  5893. /* Allocate the per-node list of sched groups */
  5894. d->sched_group_nodes = kcalloc(nr_node_ids,
  5895. sizeof(struct sched_group *), GFP_KERNEL);
  5896. if (!d->sched_group_nodes) {
  5897. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5898. return sa_notcovered;
  5899. }
  5900. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5901. #endif
  5902. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5903. return sa_sched_group_nodes;
  5904. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5905. return sa_nodemask;
  5906. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5907. return sa_this_sibling_map;
  5908. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5909. return sa_this_core_map;
  5910. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5911. return sa_send_covered;
  5912. d->rd = alloc_rootdomain();
  5913. if (!d->rd) {
  5914. printk(KERN_WARNING "Cannot alloc root domain\n");
  5915. return sa_tmpmask;
  5916. }
  5917. return sa_rootdomain;
  5918. }
  5919. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5920. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5921. {
  5922. struct sched_domain *sd = NULL;
  5923. #ifdef CONFIG_NUMA
  5924. struct sched_domain *parent;
  5925. d->sd_allnodes = 0;
  5926. if (cpumask_weight(cpu_map) >
  5927. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5928. sd = &per_cpu(allnodes_domains, i).sd;
  5929. SD_INIT(sd, ALLNODES);
  5930. set_domain_attribute(sd, attr);
  5931. cpumask_copy(sched_domain_span(sd), cpu_map);
  5932. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5933. d->sd_allnodes = 1;
  5934. }
  5935. parent = sd;
  5936. sd = &per_cpu(node_domains, i).sd;
  5937. SD_INIT(sd, NODE);
  5938. set_domain_attribute(sd, attr);
  5939. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5940. sd->parent = parent;
  5941. if (parent)
  5942. parent->child = sd;
  5943. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5944. #endif
  5945. return sd;
  5946. }
  5947. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5948. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5949. struct sched_domain *parent, int i)
  5950. {
  5951. struct sched_domain *sd;
  5952. sd = &per_cpu(phys_domains, i).sd;
  5953. SD_INIT(sd, CPU);
  5954. set_domain_attribute(sd, attr);
  5955. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5956. sd->parent = parent;
  5957. if (parent)
  5958. parent->child = sd;
  5959. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5960. return sd;
  5961. }
  5962. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5963. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5964. struct sched_domain *parent, int i)
  5965. {
  5966. struct sched_domain *sd = parent;
  5967. #ifdef CONFIG_SCHED_MC
  5968. sd = &per_cpu(core_domains, i).sd;
  5969. SD_INIT(sd, MC);
  5970. set_domain_attribute(sd, attr);
  5971. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5972. sd->parent = parent;
  5973. parent->child = sd;
  5974. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5975. #endif
  5976. return sd;
  5977. }
  5978. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5979. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5980. struct sched_domain *parent, int i)
  5981. {
  5982. struct sched_domain *sd = parent;
  5983. #ifdef CONFIG_SCHED_SMT
  5984. sd = &per_cpu(cpu_domains, i).sd;
  5985. SD_INIT(sd, SIBLING);
  5986. set_domain_attribute(sd, attr);
  5987. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5988. sd->parent = parent;
  5989. parent->child = sd;
  5990. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5991. #endif
  5992. return sd;
  5993. }
  5994. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5995. const struct cpumask *cpu_map, int cpu)
  5996. {
  5997. switch (l) {
  5998. #ifdef CONFIG_SCHED_SMT
  5999. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6000. cpumask_and(d->this_sibling_map, cpu_map,
  6001. topology_thread_cpumask(cpu));
  6002. if (cpu == cpumask_first(d->this_sibling_map))
  6003. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6004. &cpu_to_cpu_group,
  6005. d->send_covered, d->tmpmask);
  6006. break;
  6007. #endif
  6008. #ifdef CONFIG_SCHED_MC
  6009. case SD_LV_MC: /* set up multi-core groups */
  6010. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6011. if (cpu == cpumask_first(d->this_core_map))
  6012. init_sched_build_groups(d->this_core_map, cpu_map,
  6013. &cpu_to_core_group,
  6014. d->send_covered, d->tmpmask);
  6015. break;
  6016. #endif
  6017. case SD_LV_CPU: /* set up physical groups */
  6018. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6019. if (!cpumask_empty(d->nodemask))
  6020. init_sched_build_groups(d->nodemask, cpu_map,
  6021. &cpu_to_phys_group,
  6022. d->send_covered, d->tmpmask);
  6023. break;
  6024. #ifdef CONFIG_NUMA
  6025. case SD_LV_ALLNODES:
  6026. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6027. d->send_covered, d->tmpmask);
  6028. break;
  6029. #endif
  6030. default:
  6031. break;
  6032. }
  6033. }
  6034. /*
  6035. * Build sched domains for a given set of cpus and attach the sched domains
  6036. * to the individual cpus
  6037. */
  6038. static int __build_sched_domains(const struct cpumask *cpu_map,
  6039. struct sched_domain_attr *attr)
  6040. {
  6041. enum s_alloc alloc_state = sa_none;
  6042. struct s_data d;
  6043. struct sched_domain *sd;
  6044. int i;
  6045. #ifdef CONFIG_NUMA
  6046. d.sd_allnodes = 0;
  6047. #endif
  6048. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6049. if (alloc_state != sa_rootdomain)
  6050. goto error;
  6051. alloc_state = sa_sched_groups;
  6052. /*
  6053. * Set up domains for cpus specified by the cpu_map.
  6054. */
  6055. for_each_cpu(i, cpu_map) {
  6056. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6057. cpu_map);
  6058. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6059. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6060. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6061. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6062. }
  6063. for_each_cpu(i, cpu_map) {
  6064. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6065. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6066. }
  6067. /* Set up physical groups */
  6068. for (i = 0; i < nr_node_ids; i++)
  6069. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6070. #ifdef CONFIG_NUMA
  6071. /* Set up node groups */
  6072. if (d.sd_allnodes)
  6073. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6074. for (i = 0; i < nr_node_ids; i++)
  6075. if (build_numa_sched_groups(&d, cpu_map, i))
  6076. goto error;
  6077. #endif
  6078. /* Calculate CPU power for physical packages and nodes */
  6079. #ifdef CONFIG_SCHED_SMT
  6080. for_each_cpu(i, cpu_map) {
  6081. sd = &per_cpu(cpu_domains, i).sd;
  6082. init_sched_groups_power(i, sd);
  6083. }
  6084. #endif
  6085. #ifdef CONFIG_SCHED_MC
  6086. for_each_cpu(i, cpu_map) {
  6087. sd = &per_cpu(core_domains, i).sd;
  6088. init_sched_groups_power(i, sd);
  6089. }
  6090. #endif
  6091. for_each_cpu(i, cpu_map) {
  6092. sd = &per_cpu(phys_domains, i).sd;
  6093. init_sched_groups_power(i, sd);
  6094. }
  6095. #ifdef CONFIG_NUMA
  6096. for (i = 0; i < nr_node_ids; i++)
  6097. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6098. if (d.sd_allnodes) {
  6099. struct sched_group *sg;
  6100. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6101. d.tmpmask);
  6102. init_numa_sched_groups_power(sg);
  6103. }
  6104. #endif
  6105. /* Attach the domains */
  6106. for_each_cpu(i, cpu_map) {
  6107. #ifdef CONFIG_SCHED_SMT
  6108. sd = &per_cpu(cpu_domains, i).sd;
  6109. #elif defined(CONFIG_SCHED_MC)
  6110. sd = &per_cpu(core_domains, i).sd;
  6111. #else
  6112. sd = &per_cpu(phys_domains, i).sd;
  6113. #endif
  6114. cpu_attach_domain(sd, d.rd, i);
  6115. }
  6116. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6117. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6118. return 0;
  6119. error:
  6120. __free_domain_allocs(&d, alloc_state, cpu_map);
  6121. return -ENOMEM;
  6122. }
  6123. static int build_sched_domains(const struct cpumask *cpu_map)
  6124. {
  6125. return __build_sched_domains(cpu_map, NULL);
  6126. }
  6127. static cpumask_var_t *doms_cur; /* current sched domains */
  6128. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6129. static struct sched_domain_attr *dattr_cur;
  6130. /* attribues of custom domains in 'doms_cur' */
  6131. /*
  6132. * Special case: If a kmalloc of a doms_cur partition (array of
  6133. * cpumask) fails, then fallback to a single sched domain,
  6134. * as determined by the single cpumask fallback_doms.
  6135. */
  6136. static cpumask_var_t fallback_doms;
  6137. /*
  6138. * arch_update_cpu_topology lets virtualized architectures update the
  6139. * cpu core maps. It is supposed to return 1 if the topology changed
  6140. * or 0 if it stayed the same.
  6141. */
  6142. int __attribute__((weak)) arch_update_cpu_topology(void)
  6143. {
  6144. return 0;
  6145. }
  6146. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6147. {
  6148. int i;
  6149. cpumask_var_t *doms;
  6150. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6151. if (!doms)
  6152. return NULL;
  6153. for (i = 0; i < ndoms; i++) {
  6154. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6155. free_sched_domains(doms, i);
  6156. return NULL;
  6157. }
  6158. }
  6159. return doms;
  6160. }
  6161. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6162. {
  6163. unsigned int i;
  6164. for (i = 0; i < ndoms; i++)
  6165. free_cpumask_var(doms[i]);
  6166. kfree(doms);
  6167. }
  6168. /*
  6169. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6170. * For now this just excludes isolated cpus, but could be used to
  6171. * exclude other special cases in the future.
  6172. */
  6173. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6174. {
  6175. int err;
  6176. arch_update_cpu_topology();
  6177. ndoms_cur = 1;
  6178. doms_cur = alloc_sched_domains(ndoms_cur);
  6179. if (!doms_cur)
  6180. doms_cur = &fallback_doms;
  6181. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6182. dattr_cur = NULL;
  6183. err = build_sched_domains(doms_cur[0]);
  6184. register_sched_domain_sysctl();
  6185. return err;
  6186. }
  6187. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6188. struct cpumask *tmpmask)
  6189. {
  6190. free_sched_groups(cpu_map, tmpmask);
  6191. }
  6192. /*
  6193. * Detach sched domains from a group of cpus specified in cpu_map
  6194. * These cpus will now be attached to the NULL domain
  6195. */
  6196. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6197. {
  6198. /* Save because hotplug lock held. */
  6199. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6200. int i;
  6201. for_each_cpu(i, cpu_map)
  6202. cpu_attach_domain(NULL, &def_root_domain, i);
  6203. synchronize_sched();
  6204. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6205. }
  6206. /* handle null as "default" */
  6207. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6208. struct sched_domain_attr *new, int idx_new)
  6209. {
  6210. struct sched_domain_attr tmp;
  6211. /* fast path */
  6212. if (!new && !cur)
  6213. return 1;
  6214. tmp = SD_ATTR_INIT;
  6215. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6216. new ? (new + idx_new) : &tmp,
  6217. sizeof(struct sched_domain_attr));
  6218. }
  6219. /*
  6220. * Partition sched domains as specified by the 'ndoms_new'
  6221. * cpumasks in the array doms_new[] of cpumasks. This compares
  6222. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6223. * It destroys each deleted domain and builds each new domain.
  6224. *
  6225. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6226. * The masks don't intersect (don't overlap.) We should setup one
  6227. * sched domain for each mask. CPUs not in any of the cpumasks will
  6228. * not be load balanced. If the same cpumask appears both in the
  6229. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6230. * it as it is.
  6231. *
  6232. * The passed in 'doms_new' should be allocated using
  6233. * alloc_sched_domains. This routine takes ownership of it and will
  6234. * free_sched_domains it when done with it. If the caller failed the
  6235. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6236. * and partition_sched_domains() will fallback to the single partition
  6237. * 'fallback_doms', it also forces the domains to be rebuilt.
  6238. *
  6239. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6240. * ndoms_new == 0 is a special case for destroying existing domains,
  6241. * and it will not create the default domain.
  6242. *
  6243. * Call with hotplug lock held
  6244. */
  6245. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6246. struct sched_domain_attr *dattr_new)
  6247. {
  6248. int i, j, n;
  6249. int new_topology;
  6250. mutex_lock(&sched_domains_mutex);
  6251. /* always unregister in case we don't destroy any domains */
  6252. unregister_sched_domain_sysctl();
  6253. /* Let architecture update cpu core mappings. */
  6254. new_topology = arch_update_cpu_topology();
  6255. n = doms_new ? ndoms_new : 0;
  6256. /* Destroy deleted domains */
  6257. for (i = 0; i < ndoms_cur; i++) {
  6258. for (j = 0; j < n && !new_topology; j++) {
  6259. if (cpumask_equal(doms_cur[i], doms_new[j])
  6260. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6261. goto match1;
  6262. }
  6263. /* no match - a current sched domain not in new doms_new[] */
  6264. detach_destroy_domains(doms_cur[i]);
  6265. match1:
  6266. ;
  6267. }
  6268. if (doms_new == NULL) {
  6269. ndoms_cur = 0;
  6270. doms_new = &fallback_doms;
  6271. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6272. WARN_ON_ONCE(dattr_new);
  6273. }
  6274. /* Build new domains */
  6275. for (i = 0; i < ndoms_new; i++) {
  6276. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6277. if (cpumask_equal(doms_new[i], doms_cur[j])
  6278. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6279. goto match2;
  6280. }
  6281. /* no match - add a new doms_new */
  6282. __build_sched_domains(doms_new[i],
  6283. dattr_new ? dattr_new + i : NULL);
  6284. match2:
  6285. ;
  6286. }
  6287. /* Remember the new sched domains */
  6288. if (doms_cur != &fallback_doms)
  6289. free_sched_domains(doms_cur, ndoms_cur);
  6290. kfree(dattr_cur); /* kfree(NULL) is safe */
  6291. doms_cur = doms_new;
  6292. dattr_cur = dattr_new;
  6293. ndoms_cur = ndoms_new;
  6294. register_sched_domain_sysctl();
  6295. mutex_unlock(&sched_domains_mutex);
  6296. }
  6297. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6298. static void arch_reinit_sched_domains(void)
  6299. {
  6300. get_online_cpus();
  6301. /* Destroy domains first to force the rebuild */
  6302. partition_sched_domains(0, NULL, NULL);
  6303. rebuild_sched_domains();
  6304. put_online_cpus();
  6305. }
  6306. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6307. {
  6308. unsigned int level = 0;
  6309. if (sscanf(buf, "%u", &level) != 1)
  6310. return -EINVAL;
  6311. /*
  6312. * level is always be positive so don't check for
  6313. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6314. * What happens on 0 or 1 byte write,
  6315. * need to check for count as well?
  6316. */
  6317. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6318. return -EINVAL;
  6319. if (smt)
  6320. sched_smt_power_savings = level;
  6321. else
  6322. sched_mc_power_savings = level;
  6323. arch_reinit_sched_domains();
  6324. return count;
  6325. }
  6326. #ifdef CONFIG_SCHED_MC
  6327. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6328. char *page)
  6329. {
  6330. return sprintf(page, "%u\n", sched_mc_power_savings);
  6331. }
  6332. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6333. const char *buf, size_t count)
  6334. {
  6335. return sched_power_savings_store(buf, count, 0);
  6336. }
  6337. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6338. sched_mc_power_savings_show,
  6339. sched_mc_power_savings_store);
  6340. #endif
  6341. #ifdef CONFIG_SCHED_SMT
  6342. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6343. char *page)
  6344. {
  6345. return sprintf(page, "%u\n", sched_smt_power_savings);
  6346. }
  6347. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6348. const char *buf, size_t count)
  6349. {
  6350. return sched_power_savings_store(buf, count, 1);
  6351. }
  6352. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6353. sched_smt_power_savings_show,
  6354. sched_smt_power_savings_store);
  6355. #endif
  6356. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6357. {
  6358. int err = 0;
  6359. #ifdef CONFIG_SCHED_SMT
  6360. if (smt_capable())
  6361. err = sysfs_create_file(&cls->kset.kobj,
  6362. &attr_sched_smt_power_savings.attr);
  6363. #endif
  6364. #ifdef CONFIG_SCHED_MC
  6365. if (!err && mc_capable())
  6366. err = sysfs_create_file(&cls->kset.kobj,
  6367. &attr_sched_mc_power_savings.attr);
  6368. #endif
  6369. return err;
  6370. }
  6371. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6372. #ifndef CONFIG_CPUSETS
  6373. /*
  6374. * Add online and remove offline CPUs from the scheduler domains.
  6375. * When cpusets are enabled they take over this function.
  6376. */
  6377. static int update_sched_domains(struct notifier_block *nfb,
  6378. unsigned long action, void *hcpu)
  6379. {
  6380. switch (action) {
  6381. case CPU_ONLINE:
  6382. case CPU_ONLINE_FROZEN:
  6383. case CPU_DOWN_PREPARE:
  6384. case CPU_DOWN_PREPARE_FROZEN:
  6385. case CPU_DOWN_FAILED:
  6386. case CPU_DOWN_FAILED_FROZEN:
  6387. partition_sched_domains(1, NULL, NULL);
  6388. return NOTIFY_OK;
  6389. default:
  6390. return NOTIFY_DONE;
  6391. }
  6392. }
  6393. #endif
  6394. static int update_runtime(struct notifier_block *nfb,
  6395. unsigned long action, void *hcpu)
  6396. {
  6397. int cpu = (int)(long)hcpu;
  6398. switch (action) {
  6399. case CPU_DOWN_PREPARE:
  6400. case CPU_DOWN_PREPARE_FROZEN:
  6401. disable_runtime(cpu_rq(cpu));
  6402. return NOTIFY_OK;
  6403. case CPU_DOWN_FAILED:
  6404. case CPU_DOWN_FAILED_FROZEN:
  6405. case CPU_ONLINE:
  6406. case CPU_ONLINE_FROZEN:
  6407. enable_runtime(cpu_rq(cpu));
  6408. return NOTIFY_OK;
  6409. default:
  6410. return NOTIFY_DONE;
  6411. }
  6412. }
  6413. void __init sched_init_smp(void)
  6414. {
  6415. cpumask_var_t non_isolated_cpus;
  6416. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6417. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6418. #if defined(CONFIG_NUMA)
  6419. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6420. GFP_KERNEL);
  6421. BUG_ON(sched_group_nodes_bycpu == NULL);
  6422. #endif
  6423. get_online_cpus();
  6424. mutex_lock(&sched_domains_mutex);
  6425. arch_init_sched_domains(cpu_active_mask);
  6426. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6427. if (cpumask_empty(non_isolated_cpus))
  6428. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6429. mutex_unlock(&sched_domains_mutex);
  6430. put_online_cpus();
  6431. #ifndef CONFIG_CPUSETS
  6432. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6433. hotcpu_notifier(update_sched_domains, 0);
  6434. #endif
  6435. /* RT runtime code needs to handle some hotplug events */
  6436. hotcpu_notifier(update_runtime, 0);
  6437. init_hrtick();
  6438. /* Move init over to a non-isolated CPU */
  6439. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6440. BUG();
  6441. sched_init_granularity();
  6442. free_cpumask_var(non_isolated_cpus);
  6443. init_sched_rt_class();
  6444. }
  6445. #else
  6446. void __init sched_init_smp(void)
  6447. {
  6448. sched_init_granularity();
  6449. }
  6450. #endif /* CONFIG_SMP */
  6451. const_debug unsigned int sysctl_timer_migration = 1;
  6452. int in_sched_functions(unsigned long addr)
  6453. {
  6454. return in_lock_functions(addr) ||
  6455. (addr >= (unsigned long)__sched_text_start
  6456. && addr < (unsigned long)__sched_text_end);
  6457. }
  6458. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6459. {
  6460. cfs_rq->tasks_timeline = RB_ROOT;
  6461. INIT_LIST_HEAD(&cfs_rq->tasks);
  6462. #ifdef CONFIG_FAIR_GROUP_SCHED
  6463. cfs_rq->rq = rq;
  6464. #endif
  6465. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6466. }
  6467. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6468. {
  6469. struct rt_prio_array *array;
  6470. int i;
  6471. array = &rt_rq->active;
  6472. for (i = 0; i < MAX_RT_PRIO; i++) {
  6473. INIT_LIST_HEAD(array->queue + i);
  6474. __clear_bit(i, array->bitmap);
  6475. }
  6476. /* delimiter for bitsearch: */
  6477. __set_bit(MAX_RT_PRIO, array->bitmap);
  6478. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6479. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6480. #ifdef CONFIG_SMP
  6481. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6482. #endif
  6483. #endif
  6484. #ifdef CONFIG_SMP
  6485. rt_rq->rt_nr_migratory = 0;
  6486. rt_rq->overloaded = 0;
  6487. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6488. #endif
  6489. rt_rq->rt_time = 0;
  6490. rt_rq->rt_throttled = 0;
  6491. rt_rq->rt_runtime = 0;
  6492. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6493. #ifdef CONFIG_RT_GROUP_SCHED
  6494. rt_rq->rt_nr_boosted = 0;
  6495. rt_rq->rq = rq;
  6496. #endif
  6497. }
  6498. #ifdef CONFIG_FAIR_GROUP_SCHED
  6499. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6500. struct sched_entity *se, int cpu, int add,
  6501. struct sched_entity *parent)
  6502. {
  6503. struct rq *rq = cpu_rq(cpu);
  6504. tg->cfs_rq[cpu] = cfs_rq;
  6505. init_cfs_rq(cfs_rq, rq);
  6506. cfs_rq->tg = tg;
  6507. if (add)
  6508. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6509. tg->se[cpu] = se;
  6510. /* se could be NULL for init_task_group */
  6511. if (!se)
  6512. return;
  6513. if (!parent)
  6514. se->cfs_rq = &rq->cfs;
  6515. else
  6516. se->cfs_rq = parent->my_q;
  6517. se->my_q = cfs_rq;
  6518. se->load.weight = tg->shares;
  6519. se->load.inv_weight = 0;
  6520. se->parent = parent;
  6521. }
  6522. #endif
  6523. #ifdef CONFIG_RT_GROUP_SCHED
  6524. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6525. struct sched_rt_entity *rt_se, int cpu, int add,
  6526. struct sched_rt_entity *parent)
  6527. {
  6528. struct rq *rq = cpu_rq(cpu);
  6529. tg->rt_rq[cpu] = rt_rq;
  6530. init_rt_rq(rt_rq, rq);
  6531. rt_rq->tg = tg;
  6532. rt_rq->rt_se = rt_se;
  6533. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6534. if (add)
  6535. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6536. tg->rt_se[cpu] = rt_se;
  6537. if (!rt_se)
  6538. return;
  6539. if (!parent)
  6540. rt_se->rt_rq = &rq->rt;
  6541. else
  6542. rt_se->rt_rq = parent->my_q;
  6543. rt_se->my_q = rt_rq;
  6544. rt_se->parent = parent;
  6545. INIT_LIST_HEAD(&rt_se->run_list);
  6546. }
  6547. #endif
  6548. void __init sched_init(void)
  6549. {
  6550. int i, j;
  6551. unsigned long alloc_size = 0, ptr;
  6552. #ifdef CONFIG_FAIR_GROUP_SCHED
  6553. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6554. #endif
  6555. #ifdef CONFIG_RT_GROUP_SCHED
  6556. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6557. #endif
  6558. #ifdef CONFIG_USER_SCHED
  6559. alloc_size *= 2;
  6560. #endif
  6561. #ifdef CONFIG_CPUMASK_OFFSTACK
  6562. alloc_size += num_possible_cpus() * cpumask_size();
  6563. #endif
  6564. if (alloc_size) {
  6565. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6566. #ifdef CONFIG_FAIR_GROUP_SCHED
  6567. init_task_group.se = (struct sched_entity **)ptr;
  6568. ptr += nr_cpu_ids * sizeof(void **);
  6569. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6570. ptr += nr_cpu_ids * sizeof(void **);
  6571. #ifdef CONFIG_USER_SCHED
  6572. root_task_group.se = (struct sched_entity **)ptr;
  6573. ptr += nr_cpu_ids * sizeof(void **);
  6574. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6575. ptr += nr_cpu_ids * sizeof(void **);
  6576. #endif /* CONFIG_USER_SCHED */
  6577. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6578. #ifdef CONFIG_RT_GROUP_SCHED
  6579. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6580. ptr += nr_cpu_ids * sizeof(void **);
  6581. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6582. ptr += nr_cpu_ids * sizeof(void **);
  6583. #ifdef CONFIG_USER_SCHED
  6584. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6585. ptr += nr_cpu_ids * sizeof(void **);
  6586. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6587. ptr += nr_cpu_ids * sizeof(void **);
  6588. #endif /* CONFIG_USER_SCHED */
  6589. #endif /* CONFIG_RT_GROUP_SCHED */
  6590. #ifdef CONFIG_CPUMASK_OFFSTACK
  6591. for_each_possible_cpu(i) {
  6592. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6593. ptr += cpumask_size();
  6594. }
  6595. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6596. }
  6597. #ifdef CONFIG_SMP
  6598. init_defrootdomain();
  6599. #endif
  6600. init_rt_bandwidth(&def_rt_bandwidth,
  6601. global_rt_period(), global_rt_runtime());
  6602. #ifdef CONFIG_RT_GROUP_SCHED
  6603. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6604. global_rt_period(), global_rt_runtime());
  6605. #ifdef CONFIG_USER_SCHED
  6606. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6607. global_rt_period(), RUNTIME_INF);
  6608. #endif /* CONFIG_USER_SCHED */
  6609. #endif /* CONFIG_RT_GROUP_SCHED */
  6610. #ifdef CONFIG_GROUP_SCHED
  6611. list_add(&init_task_group.list, &task_groups);
  6612. INIT_LIST_HEAD(&init_task_group.children);
  6613. #ifdef CONFIG_USER_SCHED
  6614. INIT_LIST_HEAD(&root_task_group.children);
  6615. init_task_group.parent = &root_task_group;
  6616. list_add(&init_task_group.siblings, &root_task_group.children);
  6617. #endif /* CONFIG_USER_SCHED */
  6618. #endif /* CONFIG_GROUP_SCHED */
  6619. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6620. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6621. __alignof__(unsigned long));
  6622. #endif
  6623. for_each_possible_cpu(i) {
  6624. struct rq *rq;
  6625. rq = cpu_rq(i);
  6626. raw_spin_lock_init(&rq->lock);
  6627. rq->nr_running = 0;
  6628. rq->calc_load_active = 0;
  6629. rq->calc_load_update = jiffies + LOAD_FREQ;
  6630. init_cfs_rq(&rq->cfs, rq);
  6631. init_rt_rq(&rq->rt, rq);
  6632. #ifdef CONFIG_FAIR_GROUP_SCHED
  6633. init_task_group.shares = init_task_group_load;
  6634. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6635. #ifdef CONFIG_CGROUP_SCHED
  6636. /*
  6637. * How much cpu bandwidth does init_task_group get?
  6638. *
  6639. * In case of task-groups formed thr' the cgroup filesystem, it
  6640. * gets 100% of the cpu resources in the system. This overall
  6641. * system cpu resource is divided among the tasks of
  6642. * init_task_group and its child task-groups in a fair manner,
  6643. * based on each entity's (task or task-group's) weight
  6644. * (se->load.weight).
  6645. *
  6646. * In other words, if init_task_group has 10 tasks of weight
  6647. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6648. * then A0's share of the cpu resource is:
  6649. *
  6650. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6651. *
  6652. * We achieve this by letting init_task_group's tasks sit
  6653. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6654. */
  6655. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6656. #elif defined CONFIG_USER_SCHED
  6657. root_task_group.shares = NICE_0_LOAD;
  6658. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6659. /*
  6660. * In case of task-groups formed thr' the user id of tasks,
  6661. * init_task_group represents tasks belonging to root user.
  6662. * Hence it forms a sibling of all subsequent groups formed.
  6663. * In this case, init_task_group gets only a fraction of overall
  6664. * system cpu resource, based on the weight assigned to root
  6665. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6666. * by letting tasks of init_task_group sit in a separate cfs_rq
  6667. * (init_tg_cfs_rq) and having one entity represent this group of
  6668. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6669. */
  6670. init_tg_cfs_entry(&init_task_group,
  6671. &per_cpu(init_tg_cfs_rq, i),
  6672. &per_cpu(init_sched_entity, i), i, 1,
  6673. root_task_group.se[i]);
  6674. #endif
  6675. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6676. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6677. #ifdef CONFIG_RT_GROUP_SCHED
  6678. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6679. #ifdef CONFIG_CGROUP_SCHED
  6680. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6681. #elif defined CONFIG_USER_SCHED
  6682. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6683. init_tg_rt_entry(&init_task_group,
  6684. &per_cpu(init_rt_rq_var, i),
  6685. &per_cpu(init_sched_rt_entity, i), i, 1,
  6686. root_task_group.rt_se[i]);
  6687. #endif
  6688. #endif
  6689. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6690. rq->cpu_load[j] = 0;
  6691. #ifdef CONFIG_SMP
  6692. rq->sd = NULL;
  6693. rq->rd = NULL;
  6694. rq->post_schedule = 0;
  6695. rq->active_balance = 0;
  6696. rq->next_balance = jiffies;
  6697. rq->push_cpu = 0;
  6698. rq->cpu = i;
  6699. rq->online = 0;
  6700. rq->migration_thread = NULL;
  6701. rq->idle_stamp = 0;
  6702. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6703. INIT_LIST_HEAD(&rq->migration_queue);
  6704. rq_attach_root(rq, &def_root_domain);
  6705. #endif
  6706. init_rq_hrtick(rq);
  6707. atomic_set(&rq->nr_iowait, 0);
  6708. }
  6709. set_load_weight(&init_task);
  6710. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6711. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6712. #endif
  6713. #ifdef CONFIG_SMP
  6714. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6715. #endif
  6716. #ifdef CONFIG_RT_MUTEXES
  6717. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6718. #endif
  6719. /*
  6720. * The boot idle thread does lazy MMU switching as well:
  6721. */
  6722. atomic_inc(&init_mm.mm_count);
  6723. enter_lazy_tlb(&init_mm, current);
  6724. /*
  6725. * Make us the idle thread. Technically, schedule() should not be
  6726. * called from this thread, however somewhere below it might be,
  6727. * but because we are the idle thread, we just pick up running again
  6728. * when this runqueue becomes "idle".
  6729. */
  6730. init_idle(current, smp_processor_id());
  6731. calc_load_update = jiffies + LOAD_FREQ;
  6732. /*
  6733. * During early bootup we pretend to be a normal task:
  6734. */
  6735. current->sched_class = &fair_sched_class;
  6736. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6737. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6738. #ifdef CONFIG_SMP
  6739. #ifdef CONFIG_NO_HZ
  6740. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  6741. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  6742. #endif
  6743. /* May be allocated at isolcpus cmdline parse time */
  6744. if (cpu_isolated_map == NULL)
  6745. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6746. #endif /* SMP */
  6747. perf_event_init();
  6748. scheduler_running = 1;
  6749. }
  6750. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6751. static inline int preempt_count_equals(int preempt_offset)
  6752. {
  6753. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6754. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6755. }
  6756. void __might_sleep(const char *file, int line, int preempt_offset)
  6757. {
  6758. #ifdef in_atomic
  6759. static unsigned long prev_jiffy; /* ratelimiting */
  6760. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6761. system_state != SYSTEM_RUNNING || oops_in_progress)
  6762. return;
  6763. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6764. return;
  6765. prev_jiffy = jiffies;
  6766. printk(KERN_ERR
  6767. "BUG: sleeping function called from invalid context at %s:%d\n",
  6768. file, line);
  6769. printk(KERN_ERR
  6770. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6771. in_atomic(), irqs_disabled(),
  6772. current->pid, current->comm);
  6773. debug_show_held_locks(current);
  6774. if (irqs_disabled())
  6775. print_irqtrace_events(current);
  6776. dump_stack();
  6777. #endif
  6778. }
  6779. EXPORT_SYMBOL(__might_sleep);
  6780. #endif
  6781. #ifdef CONFIG_MAGIC_SYSRQ
  6782. static void normalize_task(struct rq *rq, struct task_struct *p)
  6783. {
  6784. int on_rq;
  6785. update_rq_clock(rq);
  6786. on_rq = p->se.on_rq;
  6787. if (on_rq)
  6788. deactivate_task(rq, p, 0);
  6789. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6790. if (on_rq) {
  6791. activate_task(rq, p, 0);
  6792. resched_task(rq->curr);
  6793. }
  6794. }
  6795. void normalize_rt_tasks(void)
  6796. {
  6797. struct task_struct *g, *p;
  6798. unsigned long flags;
  6799. struct rq *rq;
  6800. read_lock_irqsave(&tasklist_lock, flags);
  6801. do_each_thread(g, p) {
  6802. /*
  6803. * Only normalize user tasks:
  6804. */
  6805. if (!p->mm)
  6806. continue;
  6807. p->se.exec_start = 0;
  6808. #ifdef CONFIG_SCHEDSTATS
  6809. p->se.wait_start = 0;
  6810. p->se.sleep_start = 0;
  6811. p->se.block_start = 0;
  6812. #endif
  6813. if (!rt_task(p)) {
  6814. /*
  6815. * Renice negative nice level userspace
  6816. * tasks back to 0:
  6817. */
  6818. if (TASK_NICE(p) < 0 && p->mm)
  6819. set_user_nice(p, 0);
  6820. continue;
  6821. }
  6822. raw_spin_lock(&p->pi_lock);
  6823. rq = __task_rq_lock(p);
  6824. normalize_task(rq, p);
  6825. __task_rq_unlock(rq);
  6826. raw_spin_unlock(&p->pi_lock);
  6827. } while_each_thread(g, p);
  6828. read_unlock_irqrestore(&tasklist_lock, flags);
  6829. }
  6830. #endif /* CONFIG_MAGIC_SYSRQ */
  6831. #ifdef CONFIG_IA64
  6832. /*
  6833. * These functions are only useful for the IA64 MCA handling.
  6834. *
  6835. * They can only be called when the whole system has been
  6836. * stopped - every CPU needs to be quiescent, and no scheduling
  6837. * activity can take place. Using them for anything else would
  6838. * be a serious bug, and as a result, they aren't even visible
  6839. * under any other configuration.
  6840. */
  6841. /**
  6842. * curr_task - return the current task for a given cpu.
  6843. * @cpu: the processor in question.
  6844. *
  6845. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6846. */
  6847. struct task_struct *curr_task(int cpu)
  6848. {
  6849. return cpu_curr(cpu);
  6850. }
  6851. /**
  6852. * set_curr_task - set the current task for a given cpu.
  6853. * @cpu: the processor in question.
  6854. * @p: the task pointer to set.
  6855. *
  6856. * Description: This function must only be used when non-maskable interrupts
  6857. * are serviced on a separate stack. It allows the architecture to switch the
  6858. * notion of the current task on a cpu in a non-blocking manner. This function
  6859. * must be called with all CPU's synchronized, and interrupts disabled, the
  6860. * and caller must save the original value of the current task (see
  6861. * curr_task() above) and restore that value before reenabling interrupts and
  6862. * re-starting the system.
  6863. *
  6864. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6865. */
  6866. void set_curr_task(int cpu, struct task_struct *p)
  6867. {
  6868. cpu_curr(cpu) = p;
  6869. }
  6870. #endif
  6871. #ifdef CONFIG_FAIR_GROUP_SCHED
  6872. static void free_fair_sched_group(struct task_group *tg)
  6873. {
  6874. int i;
  6875. for_each_possible_cpu(i) {
  6876. if (tg->cfs_rq)
  6877. kfree(tg->cfs_rq[i]);
  6878. if (tg->se)
  6879. kfree(tg->se[i]);
  6880. }
  6881. kfree(tg->cfs_rq);
  6882. kfree(tg->se);
  6883. }
  6884. static
  6885. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6886. {
  6887. struct cfs_rq *cfs_rq;
  6888. struct sched_entity *se;
  6889. struct rq *rq;
  6890. int i;
  6891. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6892. if (!tg->cfs_rq)
  6893. goto err;
  6894. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6895. if (!tg->se)
  6896. goto err;
  6897. tg->shares = NICE_0_LOAD;
  6898. for_each_possible_cpu(i) {
  6899. rq = cpu_rq(i);
  6900. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6901. GFP_KERNEL, cpu_to_node(i));
  6902. if (!cfs_rq)
  6903. goto err;
  6904. se = kzalloc_node(sizeof(struct sched_entity),
  6905. GFP_KERNEL, cpu_to_node(i));
  6906. if (!se)
  6907. goto err_free_rq;
  6908. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6909. }
  6910. return 1;
  6911. err_free_rq:
  6912. kfree(cfs_rq);
  6913. err:
  6914. return 0;
  6915. }
  6916. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6917. {
  6918. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6919. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6920. }
  6921. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6922. {
  6923. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6924. }
  6925. #else /* !CONFG_FAIR_GROUP_SCHED */
  6926. static inline void free_fair_sched_group(struct task_group *tg)
  6927. {
  6928. }
  6929. static inline
  6930. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6931. {
  6932. return 1;
  6933. }
  6934. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6935. {
  6936. }
  6937. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6938. {
  6939. }
  6940. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6941. #ifdef CONFIG_RT_GROUP_SCHED
  6942. static void free_rt_sched_group(struct task_group *tg)
  6943. {
  6944. int i;
  6945. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6946. for_each_possible_cpu(i) {
  6947. if (tg->rt_rq)
  6948. kfree(tg->rt_rq[i]);
  6949. if (tg->rt_se)
  6950. kfree(tg->rt_se[i]);
  6951. }
  6952. kfree(tg->rt_rq);
  6953. kfree(tg->rt_se);
  6954. }
  6955. static
  6956. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6957. {
  6958. struct rt_rq *rt_rq;
  6959. struct sched_rt_entity *rt_se;
  6960. struct rq *rq;
  6961. int i;
  6962. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6963. if (!tg->rt_rq)
  6964. goto err;
  6965. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6966. if (!tg->rt_se)
  6967. goto err;
  6968. init_rt_bandwidth(&tg->rt_bandwidth,
  6969. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6970. for_each_possible_cpu(i) {
  6971. rq = cpu_rq(i);
  6972. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6973. GFP_KERNEL, cpu_to_node(i));
  6974. if (!rt_rq)
  6975. goto err;
  6976. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6977. GFP_KERNEL, cpu_to_node(i));
  6978. if (!rt_se)
  6979. goto err_free_rq;
  6980. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6981. }
  6982. return 1;
  6983. err_free_rq:
  6984. kfree(rt_rq);
  6985. err:
  6986. return 0;
  6987. }
  6988. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6989. {
  6990. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6991. &cpu_rq(cpu)->leaf_rt_rq_list);
  6992. }
  6993. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6994. {
  6995. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6996. }
  6997. #else /* !CONFIG_RT_GROUP_SCHED */
  6998. static inline void free_rt_sched_group(struct task_group *tg)
  6999. {
  7000. }
  7001. static inline
  7002. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7003. {
  7004. return 1;
  7005. }
  7006. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7007. {
  7008. }
  7009. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7010. {
  7011. }
  7012. #endif /* CONFIG_RT_GROUP_SCHED */
  7013. #ifdef CONFIG_GROUP_SCHED
  7014. static void free_sched_group(struct task_group *tg)
  7015. {
  7016. free_fair_sched_group(tg);
  7017. free_rt_sched_group(tg);
  7018. kfree(tg);
  7019. }
  7020. /* allocate runqueue etc for a new task group */
  7021. struct task_group *sched_create_group(struct task_group *parent)
  7022. {
  7023. struct task_group *tg;
  7024. unsigned long flags;
  7025. int i;
  7026. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7027. if (!tg)
  7028. return ERR_PTR(-ENOMEM);
  7029. if (!alloc_fair_sched_group(tg, parent))
  7030. goto err;
  7031. if (!alloc_rt_sched_group(tg, parent))
  7032. goto err;
  7033. spin_lock_irqsave(&task_group_lock, flags);
  7034. for_each_possible_cpu(i) {
  7035. register_fair_sched_group(tg, i);
  7036. register_rt_sched_group(tg, i);
  7037. }
  7038. list_add_rcu(&tg->list, &task_groups);
  7039. WARN_ON(!parent); /* root should already exist */
  7040. tg->parent = parent;
  7041. INIT_LIST_HEAD(&tg->children);
  7042. list_add_rcu(&tg->siblings, &parent->children);
  7043. spin_unlock_irqrestore(&task_group_lock, flags);
  7044. return tg;
  7045. err:
  7046. free_sched_group(tg);
  7047. return ERR_PTR(-ENOMEM);
  7048. }
  7049. /* rcu callback to free various structures associated with a task group */
  7050. static void free_sched_group_rcu(struct rcu_head *rhp)
  7051. {
  7052. /* now it should be safe to free those cfs_rqs */
  7053. free_sched_group(container_of(rhp, struct task_group, rcu));
  7054. }
  7055. /* Destroy runqueue etc associated with a task group */
  7056. void sched_destroy_group(struct task_group *tg)
  7057. {
  7058. unsigned long flags;
  7059. int i;
  7060. spin_lock_irqsave(&task_group_lock, flags);
  7061. for_each_possible_cpu(i) {
  7062. unregister_fair_sched_group(tg, i);
  7063. unregister_rt_sched_group(tg, i);
  7064. }
  7065. list_del_rcu(&tg->list);
  7066. list_del_rcu(&tg->siblings);
  7067. spin_unlock_irqrestore(&task_group_lock, flags);
  7068. /* wait for possible concurrent references to cfs_rqs complete */
  7069. call_rcu(&tg->rcu, free_sched_group_rcu);
  7070. }
  7071. /* change task's runqueue when it moves between groups.
  7072. * The caller of this function should have put the task in its new group
  7073. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7074. * reflect its new group.
  7075. */
  7076. void sched_move_task(struct task_struct *tsk)
  7077. {
  7078. int on_rq, running;
  7079. unsigned long flags;
  7080. struct rq *rq;
  7081. rq = task_rq_lock(tsk, &flags);
  7082. update_rq_clock(rq);
  7083. running = task_current(rq, tsk);
  7084. on_rq = tsk->se.on_rq;
  7085. if (on_rq)
  7086. dequeue_task(rq, tsk, 0);
  7087. if (unlikely(running))
  7088. tsk->sched_class->put_prev_task(rq, tsk);
  7089. set_task_rq(tsk, task_cpu(tsk));
  7090. #ifdef CONFIG_FAIR_GROUP_SCHED
  7091. if (tsk->sched_class->moved_group)
  7092. tsk->sched_class->moved_group(tsk, on_rq);
  7093. #endif
  7094. if (unlikely(running))
  7095. tsk->sched_class->set_curr_task(rq);
  7096. if (on_rq)
  7097. enqueue_task(rq, tsk, 0);
  7098. task_rq_unlock(rq, &flags);
  7099. }
  7100. #endif /* CONFIG_GROUP_SCHED */
  7101. #ifdef CONFIG_FAIR_GROUP_SCHED
  7102. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7103. {
  7104. struct cfs_rq *cfs_rq = se->cfs_rq;
  7105. int on_rq;
  7106. on_rq = se->on_rq;
  7107. if (on_rq)
  7108. dequeue_entity(cfs_rq, se, 0);
  7109. se->load.weight = shares;
  7110. se->load.inv_weight = 0;
  7111. if (on_rq)
  7112. enqueue_entity(cfs_rq, se, 0);
  7113. }
  7114. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7115. {
  7116. struct cfs_rq *cfs_rq = se->cfs_rq;
  7117. struct rq *rq = cfs_rq->rq;
  7118. unsigned long flags;
  7119. raw_spin_lock_irqsave(&rq->lock, flags);
  7120. __set_se_shares(se, shares);
  7121. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7122. }
  7123. static DEFINE_MUTEX(shares_mutex);
  7124. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7125. {
  7126. int i;
  7127. unsigned long flags;
  7128. /*
  7129. * We can't change the weight of the root cgroup.
  7130. */
  7131. if (!tg->se[0])
  7132. return -EINVAL;
  7133. if (shares < MIN_SHARES)
  7134. shares = MIN_SHARES;
  7135. else if (shares > MAX_SHARES)
  7136. shares = MAX_SHARES;
  7137. mutex_lock(&shares_mutex);
  7138. if (tg->shares == shares)
  7139. goto done;
  7140. spin_lock_irqsave(&task_group_lock, flags);
  7141. for_each_possible_cpu(i)
  7142. unregister_fair_sched_group(tg, i);
  7143. list_del_rcu(&tg->siblings);
  7144. spin_unlock_irqrestore(&task_group_lock, flags);
  7145. /* wait for any ongoing reference to this group to finish */
  7146. synchronize_sched();
  7147. /*
  7148. * Now we are free to modify the group's share on each cpu
  7149. * w/o tripping rebalance_share or load_balance_fair.
  7150. */
  7151. tg->shares = shares;
  7152. for_each_possible_cpu(i) {
  7153. /*
  7154. * force a rebalance
  7155. */
  7156. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7157. set_se_shares(tg->se[i], shares);
  7158. }
  7159. /*
  7160. * Enable load balance activity on this group, by inserting it back on
  7161. * each cpu's rq->leaf_cfs_rq_list.
  7162. */
  7163. spin_lock_irqsave(&task_group_lock, flags);
  7164. for_each_possible_cpu(i)
  7165. register_fair_sched_group(tg, i);
  7166. list_add_rcu(&tg->siblings, &tg->parent->children);
  7167. spin_unlock_irqrestore(&task_group_lock, flags);
  7168. done:
  7169. mutex_unlock(&shares_mutex);
  7170. return 0;
  7171. }
  7172. unsigned long sched_group_shares(struct task_group *tg)
  7173. {
  7174. return tg->shares;
  7175. }
  7176. #endif
  7177. #ifdef CONFIG_RT_GROUP_SCHED
  7178. /*
  7179. * Ensure that the real time constraints are schedulable.
  7180. */
  7181. static DEFINE_MUTEX(rt_constraints_mutex);
  7182. static unsigned long to_ratio(u64 period, u64 runtime)
  7183. {
  7184. if (runtime == RUNTIME_INF)
  7185. return 1ULL << 20;
  7186. return div64_u64(runtime << 20, period);
  7187. }
  7188. /* Must be called with tasklist_lock held */
  7189. static inline int tg_has_rt_tasks(struct task_group *tg)
  7190. {
  7191. struct task_struct *g, *p;
  7192. do_each_thread(g, p) {
  7193. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7194. return 1;
  7195. } while_each_thread(g, p);
  7196. return 0;
  7197. }
  7198. struct rt_schedulable_data {
  7199. struct task_group *tg;
  7200. u64 rt_period;
  7201. u64 rt_runtime;
  7202. };
  7203. static int tg_schedulable(struct task_group *tg, void *data)
  7204. {
  7205. struct rt_schedulable_data *d = data;
  7206. struct task_group *child;
  7207. unsigned long total, sum = 0;
  7208. u64 period, runtime;
  7209. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7210. runtime = tg->rt_bandwidth.rt_runtime;
  7211. if (tg == d->tg) {
  7212. period = d->rt_period;
  7213. runtime = d->rt_runtime;
  7214. }
  7215. #ifdef CONFIG_USER_SCHED
  7216. if (tg == &root_task_group) {
  7217. period = global_rt_period();
  7218. runtime = global_rt_runtime();
  7219. }
  7220. #endif
  7221. /*
  7222. * Cannot have more runtime than the period.
  7223. */
  7224. if (runtime > period && runtime != RUNTIME_INF)
  7225. return -EINVAL;
  7226. /*
  7227. * Ensure we don't starve existing RT tasks.
  7228. */
  7229. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7230. return -EBUSY;
  7231. total = to_ratio(period, runtime);
  7232. /*
  7233. * Nobody can have more than the global setting allows.
  7234. */
  7235. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7236. return -EINVAL;
  7237. /*
  7238. * The sum of our children's runtime should not exceed our own.
  7239. */
  7240. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7241. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7242. runtime = child->rt_bandwidth.rt_runtime;
  7243. if (child == d->tg) {
  7244. period = d->rt_period;
  7245. runtime = d->rt_runtime;
  7246. }
  7247. sum += to_ratio(period, runtime);
  7248. }
  7249. if (sum > total)
  7250. return -EINVAL;
  7251. return 0;
  7252. }
  7253. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7254. {
  7255. struct rt_schedulable_data data = {
  7256. .tg = tg,
  7257. .rt_period = period,
  7258. .rt_runtime = runtime,
  7259. };
  7260. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7261. }
  7262. static int tg_set_bandwidth(struct task_group *tg,
  7263. u64 rt_period, u64 rt_runtime)
  7264. {
  7265. int i, err = 0;
  7266. mutex_lock(&rt_constraints_mutex);
  7267. read_lock(&tasklist_lock);
  7268. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7269. if (err)
  7270. goto unlock;
  7271. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7272. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7273. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7274. for_each_possible_cpu(i) {
  7275. struct rt_rq *rt_rq = tg->rt_rq[i];
  7276. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7277. rt_rq->rt_runtime = rt_runtime;
  7278. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7279. }
  7280. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7281. unlock:
  7282. read_unlock(&tasklist_lock);
  7283. mutex_unlock(&rt_constraints_mutex);
  7284. return err;
  7285. }
  7286. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7287. {
  7288. u64 rt_runtime, rt_period;
  7289. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7290. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7291. if (rt_runtime_us < 0)
  7292. rt_runtime = RUNTIME_INF;
  7293. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7294. }
  7295. long sched_group_rt_runtime(struct task_group *tg)
  7296. {
  7297. u64 rt_runtime_us;
  7298. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7299. return -1;
  7300. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7301. do_div(rt_runtime_us, NSEC_PER_USEC);
  7302. return rt_runtime_us;
  7303. }
  7304. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7305. {
  7306. u64 rt_runtime, rt_period;
  7307. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7308. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7309. if (rt_period == 0)
  7310. return -EINVAL;
  7311. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7312. }
  7313. long sched_group_rt_period(struct task_group *tg)
  7314. {
  7315. u64 rt_period_us;
  7316. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7317. do_div(rt_period_us, NSEC_PER_USEC);
  7318. return rt_period_us;
  7319. }
  7320. static int sched_rt_global_constraints(void)
  7321. {
  7322. u64 runtime, period;
  7323. int ret = 0;
  7324. if (sysctl_sched_rt_period <= 0)
  7325. return -EINVAL;
  7326. runtime = global_rt_runtime();
  7327. period = global_rt_period();
  7328. /*
  7329. * Sanity check on the sysctl variables.
  7330. */
  7331. if (runtime > period && runtime != RUNTIME_INF)
  7332. return -EINVAL;
  7333. mutex_lock(&rt_constraints_mutex);
  7334. read_lock(&tasklist_lock);
  7335. ret = __rt_schedulable(NULL, 0, 0);
  7336. read_unlock(&tasklist_lock);
  7337. mutex_unlock(&rt_constraints_mutex);
  7338. return ret;
  7339. }
  7340. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7341. {
  7342. /* Don't accept realtime tasks when there is no way for them to run */
  7343. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7344. return 0;
  7345. return 1;
  7346. }
  7347. #else /* !CONFIG_RT_GROUP_SCHED */
  7348. static int sched_rt_global_constraints(void)
  7349. {
  7350. unsigned long flags;
  7351. int i;
  7352. if (sysctl_sched_rt_period <= 0)
  7353. return -EINVAL;
  7354. /*
  7355. * There's always some RT tasks in the root group
  7356. * -- migration, kstopmachine etc..
  7357. */
  7358. if (sysctl_sched_rt_runtime == 0)
  7359. return -EBUSY;
  7360. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7361. for_each_possible_cpu(i) {
  7362. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7363. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7364. rt_rq->rt_runtime = global_rt_runtime();
  7365. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7366. }
  7367. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7368. return 0;
  7369. }
  7370. #endif /* CONFIG_RT_GROUP_SCHED */
  7371. int sched_rt_handler(struct ctl_table *table, int write,
  7372. void __user *buffer, size_t *lenp,
  7373. loff_t *ppos)
  7374. {
  7375. int ret;
  7376. int old_period, old_runtime;
  7377. static DEFINE_MUTEX(mutex);
  7378. mutex_lock(&mutex);
  7379. old_period = sysctl_sched_rt_period;
  7380. old_runtime = sysctl_sched_rt_runtime;
  7381. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7382. if (!ret && write) {
  7383. ret = sched_rt_global_constraints();
  7384. if (ret) {
  7385. sysctl_sched_rt_period = old_period;
  7386. sysctl_sched_rt_runtime = old_runtime;
  7387. } else {
  7388. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7389. def_rt_bandwidth.rt_period =
  7390. ns_to_ktime(global_rt_period());
  7391. }
  7392. }
  7393. mutex_unlock(&mutex);
  7394. return ret;
  7395. }
  7396. #ifdef CONFIG_CGROUP_SCHED
  7397. /* return corresponding task_group object of a cgroup */
  7398. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7399. {
  7400. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7401. struct task_group, css);
  7402. }
  7403. static struct cgroup_subsys_state *
  7404. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7405. {
  7406. struct task_group *tg, *parent;
  7407. if (!cgrp->parent) {
  7408. /* This is early initialization for the top cgroup */
  7409. return &init_task_group.css;
  7410. }
  7411. parent = cgroup_tg(cgrp->parent);
  7412. tg = sched_create_group(parent);
  7413. if (IS_ERR(tg))
  7414. return ERR_PTR(-ENOMEM);
  7415. return &tg->css;
  7416. }
  7417. static void
  7418. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7419. {
  7420. struct task_group *tg = cgroup_tg(cgrp);
  7421. sched_destroy_group(tg);
  7422. }
  7423. static int
  7424. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7425. {
  7426. #ifdef CONFIG_RT_GROUP_SCHED
  7427. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7428. return -EINVAL;
  7429. #else
  7430. /* We don't support RT-tasks being in separate groups */
  7431. if (tsk->sched_class != &fair_sched_class)
  7432. return -EINVAL;
  7433. #endif
  7434. return 0;
  7435. }
  7436. static int
  7437. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7438. struct task_struct *tsk, bool threadgroup)
  7439. {
  7440. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7441. if (retval)
  7442. return retval;
  7443. if (threadgroup) {
  7444. struct task_struct *c;
  7445. rcu_read_lock();
  7446. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7447. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7448. if (retval) {
  7449. rcu_read_unlock();
  7450. return retval;
  7451. }
  7452. }
  7453. rcu_read_unlock();
  7454. }
  7455. return 0;
  7456. }
  7457. static void
  7458. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7459. struct cgroup *old_cont, struct task_struct *tsk,
  7460. bool threadgroup)
  7461. {
  7462. sched_move_task(tsk);
  7463. if (threadgroup) {
  7464. struct task_struct *c;
  7465. rcu_read_lock();
  7466. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7467. sched_move_task(c);
  7468. }
  7469. rcu_read_unlock();
  7470. }
  7471. }
  7472. #ifdef CONFIG_FAIR_GROUP_SCHED
  7473. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7474. u64 shareval)
  7475. {
  7476. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7477. }
  7478. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7479. {
  7480. struct task_group *tg = cgroup_tg(cgrp);
  7481. return (u64) tg->shares;
  7482. }
  7483. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7484. #ifdef CONFIG_RT_GROUP_SCHED
  7485. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7486. s64 val)
  7487. {
  7488. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7489. }
  7490. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7491. {
  7492. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7493. }
  7494. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7495. u64 rt_period_us)
  7496. {
  7497. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7498. }
  7499. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7500. {
  7501. return sched_group_rt_period(cgroup_tg(cgrp));
  7502. }
  7503. #endif /* CONFIG_RT_GROUP_SCHED */
  7504. static struct cftype cpu_files[] = {
  7505. #ifdef CONFIG_FAIR_GROUP_SCHED
  7506. {
  7507. .name = "shares",
  7508. .read_u64 = cpu_shares_read_u64,
  7509. .write_u64 = cpu_shares_write_u64,
  7510. },
  7511. #endif
  7512. #ifdef CONFIG_RT_GROUP_SCHED
  7513. {
  7514. .name = "rt_runtime_us",
  7515. .read_s64 = cpu_rt_runtime_read,
  7516. .write_s64 = cpu_rt_runtime_write,
  7517. },
  7518. {
  7519. .name = "rt_period_us",
  7520. .read_u64 = cpu_rt_period_read_uint,
  7521. .write_u64 = cpu_rt_period_write_uint,
  7522. },
  7523. #endif
  7524. };
  7525. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7526. {
  7527. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7528. }
  7529. struct cgroup_subsys cpu_cgroup_subsys = {
  7530. .name = "cpu",
  7531. .create = cpu_cgroup_create,
  7532. .destroy = cpu_cgroup_destroy,
  7533. .can_attach = cpu_cgroup_can_attach,
  7534. .attach = cpu_cgroup_attach,
  7535. .populate = cpu_cgroup_populate,
  7536. .subsys_id = cpu_cgroup_subsys_id,
  7537. .early_init = 1,
  7538. };
  7539. #endif /* CONFIG_CGROUP_SCHED */
  7540. #ifdef CONFIG_CGROUP_CPUACCT
  7541. /*
  7542. * CPU accounting code for task groups.
  7543. *
  7544. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7545. * (balbir@in.ibm.com).
  7546. */
  7547. /* track cpu usage of a group of tasks and its child groups */
  7548. struct cpuacct {
  7549. struct cgroup_subsys_state css;
  7550. /* cpuusage holds pointer to a u64-type object on every cpu */
  7551. u64 *cpuusage;
  7552. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7553. struct cpuacct *parent;
  7554. };
  7555. struct cgroup_subsys cpuacct_subsys;
  7556. /* return cpu accounting group corresponding to this container */
  7557. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7558. {
  7559. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7560. struct cpuacct, css);
  7561. }
  7562. /* return cpu accounting group to which this task belongs */
  7563. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7564. {
  7565. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7566. struct cpuacct, css);
  7567. }
  7568. /* create a new cpu accounting group */
  7569. static struct cgroup_subsys_state *cpuacct_create(
  7570. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7571. {
  7572. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7573. int i;
  7574. if (!ca)
  7575. goto out;
  7576. ca->cpuusage = alloc_percpu(u64);
  7577. if (!ca->cpuusage)
  7578. goto out_free_ca;
  7579. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7580. if (percpu_counter_init(&ca->cpustat[i], 0))
  7581. goto out_free_counters;
  7582. if (cgrp->parent)
  7583. ca->parent = cgroup_ca(cgrp->parent);
  7584. return &ca->css;
  7585. out_free_counters:
  7586. while (--i >= 0)
  7587. percpu_counter_destroy(&ca->cpustat[i]);
  7588. free_percpu(ca->cpuusage);
  7589. out_free_ca:
  7590. kfree(ca);
  7591. out:
  7592. return ERR_PTR(-ENOMEM);
  7593. }
  7594. /* destroy an existing cpu accounting group */
  7595. static void
  7596. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7597. {
  7598. struct cpuacct *ca = cgroup_ca(cgrp);
  7599. int i;
  7600. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7601. percpu_counter_destroy(&ca->cpustat[i]);
  7602. free_percpu(ca->cpuusage);
  7603. kfree(ca);
  7604. }
  7605. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7606. {
  7607. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7608. u64 data;
  7609. #ifndef CONFIG_64BIT
  7610. /*
  7611. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7612. */
  7613. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7614. data = *cpuusage;
  7615. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7616. #else
  7617. data = *cpuusage;
  7618. #endif
  7619. return data;
  7620. }
  7621. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7622. {
  7623. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7624. #ifndef CONFIG_64BIT
  7625. /*
  7626. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7627. */
  7628. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7629. *cpuusage = val;
  7630. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7631. #else
  7632. *cpuusage = val;
  7633. #endif
  7634. }
  7635. /* return total cpu usage (in nanoseconds) of a group */
  7636. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7637. {
  7638. struct cpuacct *ca = cgroup_ca(cgrp);
  7639. u64 totalcpuusage = 0;
  7640. int i;
  7641. for_each_present_cpu(i)
  7642. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7643. return totalcpuusage;
  7644. }
  7645. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7646. u64 reset)
  7647. {
  7648. struct cpuacct *ca = cgroup_ca(cgrp);
  7649. int err = 0;
  7650. int i;
  7651. if (reset) {
  7652. err = -EINVAL;
  7653. goto out;
  7654. }
  7655. for_each_present_cpu(i)
  7656. cpuacct_cpuusage_write(ca, i, 0);
  7657. out:
  7658. return err;
  7659. }
  7660. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7661. struct seq_file *m)
  7662. {
  7663. struct cpuacct *ca = cgroup_ca(cgroup);
  7664. u64 percpu;
  7665. int i;
  7666. for_each_present_cpu(i) {
  7667. percpu = cpuacct_cpuusage_read(ca, i);
  7668. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7669. }
  7670. seq_printf(m, "\n");
  7671. return 0;
  7672. }
  7673. static const char *cpuacct_stat_desc[] = {
  7674. [CPUACCT_STAT_USER] = "user",
  7675. [CPUACCT_STAT_SYSTEM] = "system",
  7676. };
  7677. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7678. struct cgroup_map_cb *cb)
  7679. {
  7680. struct cpuacct *ca = cgroup_ca(cgrp);
  7681. int i;
  7682. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7683. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7684. val = cputime64_to_clock_t(val);
  7685. cb->fill(cb, cpuacct_stat_desc[i], val);
  7686. }
  7687. return 0;
  7688. }
  7689. static struct cftype files[] = {
  7690. {
  7691. .name = "usage",
  7692. .read_u64 = cpuusage_read,
  7693. .write_u64 = cpuusage_write,
  7694. },
  7695. {
  7696. .name = "usage_percpu",
  7697. .read_seq_string = cpuacct_percpu_seq_read,
  7698. },
  7699. {
  7700. .name = "stat",
  7701. .read_map = cpuacct_stats_show,
  7702. },
  7703. };
  7704. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7705. {
  7706. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7707. }
  7708. /*
  7709. * charge this task's execution time to its accounting group.
  7710. *
  7711. * called with rq->lock held.
  7712. */
  7713. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7714. {
  7715. struct cpuacct *ca;
  7716. int cpu;
  7717. if (unlikely(!cpuacct_subsys.active))
  7718. return;
  7719. cpu = task_cpu(tsk);
  7720. rcu_read_lock();
  7721. ca = task_ca(tsk);
  7722. for (; ca; ca = ca->parent) {
  7723. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7724. *cpuusage += cputime;
  7725. }
  7726. rcu_read_unlock();
  7727. }
  7728. /*
  7729. * Charge the system/user time to the task's accounting group.
  7730. */
  7731. static void cpuacct_update_stats(struct task_struct *tsk,
  7732. enum cpuacct_stat_index idx, cputime_t val)
  7733. {
  7734. struct cpuacct *ca;
  7735. if (unlikely(!cpuacct_subsys.active))
  7736. return;
  7737. rcu_read_lock();
  7738. ca = task_ca(tsk);
  7739. do {
  7740. percpu_counter_add(&ca->cpustat[idx], val);
  7741. ca = ca->parent;
  7742. } while (ca);
  7743. rcu_read_unlock();
  7744. }
  7745. struct cgroup_subsys cpuacct_subsys = {
  7746. .name = "cpuacct",
  7747. .create = cpuacct_create,
  7748. .destroy = cpuacct_destroy,
  7749. .populate = cpuacct_populate,
  7750. .subsys_id = cpuacct_subsys_id,
  7751. };
  7752. #endif /* CONFIG_CGROUP_CPUACCT */
  7753. #ifndef CONFIG_SMP
  7754. int rcu_expedited_torture_stats(char *page)
  7755. {
  7756. return 0;
  7757. }
  7758. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7759. void synchronize_sched_expedited(void)
  7760. {
  7761. }
  7762. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7763. #else /* #ifndef CONFIG_SMP */
  7764. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  7765. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  7766. #define RCU_EXPEDITED_STATE_POST -2
  7767. #define RCU_EXPEDITED_STATE_IDLE -1
  7768. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7769. int rcu_expedited_torture_stats(char *page)
  7770. {
  7771. int cnt = 0;
  7772. int cpu;
  7773. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  7774. for_each_online_cpu(cpu) {
  7775. cnt += sprintf(&page[cnt], " %d:%d",
  7776. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  7777. }
  7778. cnt += sprintf(&page[cnt], "\n");
  7779. return cnt;
  7780. }
  7781. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7782. static long synchronize_sched_expedited_count;
  7783. /*
  7784. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7785. * approach to force grace period to end quickly. This consumes
  7786. * significant time on all CPUs, and is thus not recommended for
  7787. * any sort of common-case code.
  7788. *
  7789. * Note that it is illegal to call this function while holding any
  7790. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7791. * observe this restriction will result in deadlock.
  7792. */
  7793. void synchronize_sched_expedited(void)
  7794. {
  7795. int cpu;
  7796. unsigned long flags;
  7797. bool need_full_sync = 0;
  7798. struct rq *rq;
  7799. struct migration_req *req;
  7800. long snap;
  7801. int trycount = 0;
  7802. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7803. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  7804. get_online_cpus();
  7805. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  7806. put_online_cpus();
  7807. if (trycount++ < 10)
  7808. udelay(trycount * num_online_cpus());
  7809. else {
  7810. synchronize_sched();
  7811. return;
  7812. }
  7813. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  7814. smp_mb(); /* ensure test happens before caller kfree */
  7815. return;
  7816. }
  7817. get_online_cpus();
  7818. }
  7819. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  7820. for_each_online_cpu(cpu) {
  7821. rq = cpu_rq(cpu);
  7822. req = &per_cpu(rcu_migration_req, cpu);
  7823. init_completion(&req->done);
  7824. req->task = NULL;
  7825. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  7826. raw_spin_lock_irqsave(&rq->lock, flags);
  7827. list_add(&req->list, &rq->migration_queue);
  7828. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7829. wake_up_process(rq->migration_thread);
  7830. }
  7831. for_each_online_cpu(cpu) {
  7832. rcu_expedited_state = cpu;
  7833. req = &per_cpu(rcu_migration_req, cpu);
  7834. rq = cpu_rq(cpu);
  7835. wait_for_completion(&req->done);
  7836. raw_spin_lock_irqsave(&rq->lock, flags);
  7837. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  7838. need_full_sync = 1;
  7839. req->dest_cpu = RCU_MIGRATION_IDLE;
  7840. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7841. }
  7842. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7843. synchronize_sched_expedited_count++;
  7844. mutex_unlock(&rcu_sched_expedited_mutex);
  7845. put_online_cpus();
  7846. if (need_full_sync)
  7847. synchronize_sched();
  7848. }
  7849. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7850. #endif /* #else #ifndef CONFIG_SMP */