core.c 183 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. static int __hrtick_restart(struct rq *rq)
  332. {
  333. struct hrtimer *timer = &rq->hrtick_timer;
  334. ktime_t time = hrtimer_get_softexpires(timer);
  335. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  336. }
  337. /*
  338. * called from hardirq (IPI) context
  339. */
  340. static void __hrtick_start(void *arg)
  341. {
  342. struct rq *rq = arg;
  343. raw_spin_lock(&rq->lock);
  344. __hrtick_restart(rq);
  345. rq->hrtick_csd_pending = 0;
  346. raw_spin_unlock(&rq->lock);
  347. }
  348. /*
  349. * Called to set the hrtick timer state.
  350. *
  351. * called with rq->lock held and irqs disabled
  352. */
  353. void hrtick_start(struct rq *rq, u64 delay)
  354. {
  355. struct hrtimer *timer = &rq->hrtick_timer;
  356. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  357. hrtimer_set_expires(timer, time);
  358. if (rq == this_rq()) {
  359. __hrtick_restart(rq);
  360. } else if (!rq->hrtick_csd_pending) {
  361. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  362. rq->hrtick_csd_pending = 1;
  363. }
  364. }
  365. static int
  366. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  367. {
  368. int cpu = (int)(long)hcpu;
  369. switch (action) {
  370. case CPU_UP_CANCELED:
  371. case CPU_UP_CANCELED_FROZEN:
  372. case CPU_DOWN_PREPARE:
  373. case CPU_DOWN_PREPARE_FROZEN:
  374. case CPU_DEAD:
  375. case CPU_DEAD_FROZEN:
  376. hrtick_clear(cpu_rq(cpu));
  377. return NOTIFY_OK;
  378. }
  379. return NOTIFY_DONE;
  380. }
  381. static __init void init_hrtick(void)
  382. {
  383. hotcpu_notifier(hotplug_hrtick, 0);
  384. }
  385. #else
  386. /*
  387. * Called to set the hrtick timer state.
  388. *
  389. * called with rq->lock held and irqs disabled
  390. */
  391. void hrtick_start(struct rq *rq, u64 delay)
  392. {
  393. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  394. HRTIMER_MODE_REL_PINNED, 0);
  395. }
  396. static inline void init_hrtick(void)
  397. {
  398. }
  399. #endif /* CONFIG_SMP */
  400. static void init_rq_hrtick(struct rq *rq)
  401. {
  402. #ifdef CONFIG_SMP
  403. rq->hrtick_csd_pending = 0;
  404. rq->hrtick_csd.flags = 0;
  405. rq->hrtick_csd.func = __hrtick_start;
  406. rq->hrtick_csd.info = rq;
  407. #endif
  408. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  409. rq->hrtick_timer.function = hrtick;
  410. }
  411. #else /* CONFIG_SCHED_HRTICK */
  412. static inline void hrtick_clear(struct rq *rq)
  413. {
  414. }
  415. static inline void init_rq_hrtick(struct rq *rq)
  416. {
  417. }
  418. static inline void init_hrtick(void)
  419. {
  420. }
  421. #endif /* CONFIG_SCHED_HRTICK */
  422. /*
  423. * resched_task - mark a task 'to be rescheduled now'.
  424. *
  425. * On UP this means the setting of the need_resched flag, on SMP it
  426. * might also involve a cross-CPU call to trigger the scheduler on
  427. * the target CPU.
  428. */
  429. void resched_task(struct task_struct *p)
  430. {
  431. int cpu;
  432. lockdep_assert_held(&task_rq(p)->lock);
  433. if (test_tsk_need_resched(p))
  434. return;
  435. set_tsk_need_resched(p);
  436. cpu = task_cpu(p);
  437. if (cpu == smp_processor_id()) {
  438. set_preempt_need_resched();
  439. return;
  440. }
  441. /* NEED_RESCHED must be visible before we test polling */
  442. smp_mb();
  443. if (!tsk_is_polling(p))
  444. smp_send_reschedule(cpu);
  445. }
  446. void resched_cpu(int cpu)
  447. {
  448. struct rq *rq = cpu_rq(cpu);
  449. unsigned long flags;
  450. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  451. return;
  452. resched_task(cpu_curr(cpu));
  453. raw_spin_unlock_irqrestore(&rq->lock, flags);
  454. }
  455. #ifdef CONFIG_SMP
  456. #ifdef CONFIG_NO_HZ_COMMON
  457. /*
  458. * In the semi idle case, use the nearest busy cpu for migrating timers
  459. * from an idle cpu. This is good for power-savings.
  460. *
  461. * We don't do similar optimization for completely idle system, as
  462. * selecting an idle cpu will add more delays to the timers than intended
  463. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  464. */
  465. int get_nohz_timer_target(void)
  466. {
  467. int cpu = smp_processor_id();
  468. int i;
  469. struct sched_domain *sd;
  470. rcu_read_lock();
  471. for_each_domain(cpu, sd) {
  472. for_each_cpu(i, sched_domain_span(sd)) {
  473. if (!idle_cpu(i)) {
  474. cpu = i;
  475. goto unlock;
  476. }
  477. }
  478. }
  479. unlock:
  480. rcu_read_unlock();
  481. return cpu;
  482. }
  483. /*
  484. * When add_timer_on() enqueues a timer into the timer wheel of an
  485. * idle CPU then this timer might expire before the next timer event
  486. * which is scheduled to wake up that CPU. In case of a completely
  487. * idle system the next event might even be infinite time into the
  488. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  489. * leaves the inner idle loop so the newly added timer is taken into
  490. * account when the CPU goes back to idle and evaluates the timer
  491. * wheel for the next timer event.
  492. */
  493. static void wake_up_idle_cpu(int cpu)
  494. {
  495. struct rq *rq = cpu_rq(cpu);
  496. if (cpu == smp_processor_id())
  497. return;
  498. /*
  499. * This is safe, as this function is called with the timer
  500. * wheel base lock of (cpu) held. When the CPU is on the way
  501. * to idle and has not yet set rq->curr to idle then it will
  502. * be serialized on the timer wheel base lock and take the new
  503. * timer into account automatically.
  504. */
  505. if (rq->curr != rq->idle)
  506. return;
  507. /*
  508. * We can set TIF_RESCHED on the idle task of the other CPU
  509. * lockless. The worst case is that the other CPU runs the
  510. * idle task through an additional NOOP schedule()
  511. */
  512. set_tsk_need_resched(rq->idle);
  513. /* NEED_RESCHED must be visible before we test polling */
  514. smp_mb();
  515. if (!tsk_is_polling(rq->idle))
  516. smp_send_reschedule(cpu);
  517. }
  518. static bool wake_up_full_nohz_cpu(int cpu)
  519. {
  520. if (tick_nohz_full_cpu(cpu)) {
  521. if (cpu != smp_processor_id() ||
  522. tick_nohz_tick_stopped())
  523. smp_send_reschedule(cpu);
  524. return true;
  525. }
  526. return false;
  527. }
  528. void wake_up_nohz_cpu(int cpu)
  529. {
  530. if (!wake_up_full_nohz_cpu(cpu))
  531. wake_up_idle_cpu(cpu);
  532. }
  533. static inline bool got_nohz_idle_kick(void)
  534. {
  535. int cpu = smp_processor_id();
  536. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  537. return false;
  538. if (idle_cpu(cpu) && !need_resched())
  539. return true;
  540. /*
  541. * We can't run Idle Load Balance on this CPU for this time so we
  542. * cancel it and clear NOHZ_BALANCE_KICK
  543. */
  544. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  545. return false;
  546. }
  547. #else /* CONFIG_NO_HZ_COMMON */
  548. static inline bool got_nohz_idle_kick(void)
  549. {
  550. return false;
  551. }
  552. #endif /* CONFIG_NO_HZ_COMMON */
  553. #ifdef CONFIG_NO_HZ_FULL
  554. bool sched_can_stop_tick(void)
  555. {
  556. struct rq *rq;
  557. rq = this_rq();
  558. /* Make sure rq->nr_running update is visible after the IPI */
  559. smp_rmb();
  560. /* More than one running task need preemption */
  561. if (rq->nr_running > 1)
  562. return false;
  563. return true;
  564. }
  565. #endif /* CONFIG_NO_HZ_FULL */
  566. void sched_avg_update(struct rq *rq)
  567. {
  568. s64 period = sched_avg_period();
  569. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  570. /*
  571. * Inline assembly required to prevent the compiler
  572. * optimising this loop into a divmod call.
  573. * See __iter_div_u64_rem() for another example of this.
  574. */
  575. asm("" : "+rm" (rq->age_stamp));
  576. rq->age_stamp += period;
  577. rq->rt_avg /= 2;
  578. }
  579. }
  580. #endif /* CONFIG_SMP */
  581. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  582. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  583. /*
  584. * Iterate task_group tree rooted at *from, calling @down when first entering a
  585. * node and @up when leaving it for the final time.
  586. *
  587. * Caller must hold rcu_lock or sufficient equivalent.
  588. */
  589. int walk_tg_tree_from(struct task_group *from,
  590. tg_visitor down, tg_visitor up, void *data)
  591. {
  592. struct task_group *parent, *child;
  593. int ret;
  594. parent = from;
  595. down:
  596. ret = (*down)(parent, data);
  597. if (ret)
  598. goto out;
  599. list_for_each_entry_rcu(child, &parent->children, siblings) {
  600. parent = child;
  601. goto down;
  602. up:
  603. continue;
  604. }
  605. ret = (*up)(parent, data);
  606. if (ret || parent == from)
  607. goto out;
  608. child = parent;
  609. parent = parent->parent;
  610. if (parent)
  611. goto up;
  612. out:
  613. return ret;
  614. }
  615. int tg_nop(struct task_group *tg, void *data)
  616. {
  617. return 0;
  618. }
  619. #endif
  620. static void set_load_weight(struct task_struct *p)
  621. {
  622. int prio = p->static_prio - MAX_RT_PRIO;
  623. struct load_weight *load = &p->se.load;
  624. /*
  625. * SCHED_IDLE tasks get minimal weight:
  626. */
  627. if (p->policy == SCHED_IDLE) {
  628. load->weight = scale_load(WEIGHT_IDLEPRIO);
  629. load->inv_weight = WMULT_IDLEPRIO;
  630. return;
  631. }
  632. load->weight = scale_load(prio_to_weight[prio]);
  633. load->inv_weight = prio_to_wmult[prio];
  634. }
  635. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  636. {
  637. update_rq_clock(rq);
  638. sched_info_queued(rq, p);
  639. p->sched_class->enqueue_task(rq, p, flags);
  640. }
  641. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  642. {
  643. update_rq_clock(rq);
  644. sched_info_dequeued(rq, p);
  645. p->sched_class->dequeue_task(rq, p, flags);
  646. }
  647. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  648. {
  649. if (task_contributes_to_load(p))
  650. rq->nr_uninterruptible--;
  651. enqueue_task(rq, p, flags);
  652. }
  653. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  654. {
  655. if (task_contributes_to_load(p))
  656. rq->nr_uninterruptible++;
  657. dequeue_task(rq, p, flags);
  658. }
  659. static void update_rq_clock_task(struct rq *rq, s64 delta)
  660. {
  661. /*
  662. * In theory, the compile should just see 0 here, and optimize out the call
  663. * to sched_rt_avg_update. But I don't trust it...
  664. */
  665. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  666. s64 steal = 0, irq_delta = 0;
  667. #endif
  668. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  669. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  670. /*
  671. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  672. * this case when a previous update_rq_clock() happened inside a
  673. * {soft,}irq region.
  674. *
  675. * When this happens, we stop ->clock_task and only update the
  676. * prev_irq_time stamp to account for the part that fit, so that a next
  677. * update will consume the rest. This ensures ->clock_task is
  678. * monotonic.
  679. *
  680. * It does however cause some slight miss-attribution of {soft,}irq
  681. * time, a more accurate solution would be to update the irq_time using
  682. * the current rq->clock timestamp, except that would require using
  683. * atomic ops.
  684. */
  685. if (irq_delta > delta)
  686. irq_delta = delta;
  687. rq->prev_irq_time += irq_delta;
  688. delta -= irq_delta;
  689. #endif
  690. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  691. if (static_key_false((&paravirt_steal_rq_enabled))) {
  692. u64 st;
  693. steal = paravirt_steal_clock(cpu_of(rq));
  694. steal -= rq->prev_steal_time_rq;
  695. if (unlikely(steal > delta))
  696. steal = delta;
  697. st = steal_ticks(steal);
  698. steal = st * TICK_NSEC;
  699. rq->prev_steal_time_rq += steal;
  700. delta -= steal;
  701. }
  702. #endif
  703. rq->clock_task += delta;
  704. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  705. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  706. sched_rt_avg_update(rq, irq_delta + steal);
  707. #endif
  708. }
  709. void sched_set_stop_task(int cpu, struct task_struct *stop)
  710. {
  711. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  712. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  713. if (stop) {
  714. /*
  715. * Make it appear like a SCHED_FIFO task, its something
  716. * userspace knows about and won't get confused about.
  717. *
  718. * Also, it will make PI more or less work without too
  719. * much confusion -- but then, stop work should not
  720. * rely on PI working anyway.
  721. */
  722. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  723. stop->sched_class = &stop_sched_class;
  724. }
  725. cpu_rq(cpu)->stop = stop;
  726. if (old_stop) {
  727. /*
  728. * Reset it back to a normal scheduling class so that
  729. * it can die in pieces.
  730. */
  731. old_stop->sched_class = &rt_sched_class;
  732. }
  733. }
  734. /*
  735. * __normal_prio - return the priority that is based on the static prio
  736. */
  737. static inline int __normal_prio(struct task_struct *p)
  738. {
  739. return p->static_prio;
  740. }
  741. /*
  742. * Calculate the expected normal priority: i.e. priority
  743. * without taking RT-inheritance into account. Might be
  744. * boosted by interactivity modifiers. Changes upon fork,
  745. * setprio syscalls, and whenever the interactivity
  746. * estimator recalculates.
  747. */
  748. static inline int normal_prio(struct task_struct *p)
  749. {
  750. int prio;
  751. if (task_has_rt_policy(p))
  752. prio = MAX_RT_PRIO-1 - p->rt_priority;
  753. else
  754. prio = __normal_prio(p);
  755. return prio;
  756. }
  757. /*
  758. * Calculate the current priority, i.e. the priority
  759. * taken into account by the scheduler. This value might
  760. * be boosted by RT tasks, or might be boosted by
  761. * interactivity modifiers. Will be RT if the task got
  762. * RT-boosted. If not then it returns p->normal_prio.
  763. */
  764. static int effective_prio(struct task_struct *p)
  765. {
  766. p->normal_prio = normal_prio(p);
  767. /*
  768. * If we are RT tasks or we were boosted to RT priority,
  769. * keep the priority unchanged. Otherwise, update priority
  770. * to the normal priority:
  771. */
  772. if (!rt_prio(p->prio))
  773. return p->normal_prio;
  774. return p->prio;
  775. }
  776. /**
  777. * task_curr - is this task currently executing on a CPU?
  778. * @p: the task in question.
  779. *
  780. * Return: 1 if the task is currently executing. 0 otherwise.
  781. */
  782. inline int task_curr(const struct task_struct *p)
  783. {
  784. return cpu_curr(task_cpu(p)) == p;
  785. }
  786. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  787. const struct sched_class *prev_class,
  788. int oldprio)
  789. {
  790. if (prev_class != p->sched_class) {
  791. if (prev_class->switched_from)
  792. prev_class->switched_from(rq, p);
  793. p->sched_class->switched_to(rq, p);
  794. } else if (oldprio != p->prio)
  795. p->sched_class->prio_changed(rq, p, oldprio);
  796. }
  797. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  798. {
  799. const struct sched_class *class;
  800. if (p->sched_class == rq->curr->sched_class) {
  801. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  802. } else {
  803. for_each_class(class) {
  804. if (class == rq->curr->sched_class)
  805. break;
  806. if (class == p->sched_class) {
  807. resched_task(rq->curr);
  808. break;
  809. }
  810. }
  811. }
  812. /*
  813. * A queue event has occurred, and we're going to schedule. In
  814. * this case, we can save a useless back to back clock update.
  815. */
  816. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  817. rq->skip_clock_update = 1;
  818. }
  819. #ifdef CONFIG_SMP
  820. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  821. {
  822. #ifdef CONFIG_SCHED_DEBUG
  823. /*
  824. * We should never call set_task_cpu() on a blocked task,
  825. * ttwu() will sort out the placement.
  826. */
  827. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  828. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  829. #ifdef CONFIG_LOCKDEP
  830. /*
  831. * The caller should hold either p->pi_lock or rq->lock, when changing
  832. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  833. *
  834. * sched_move_task() holds both and thus holding either pins the cgroup,
  835. * see task_group().
  836. *
  837. * Furthermore, all task_rq users should acquire both locks, see
  838. * task_rq_lock().
  839. */
  840. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  841. lockdep_is_held(&task_rq(p)->lock)));
  842. #endif
  843. #endif
  844. trace_sched_migrate_task(p, new_cpu);
  845. if (task_cpu(p) != new_cpu) {
  846. if (p->sched_class->migrate_task_rq)
  847. p->sched_class->migrate_task_rq(p, new_cpu);
  848. p->se.nr_migrations++;
  849. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  850. }
  851. __set_task_cpu(p, new_cpu);
  852. }
  853. static void __migrate_swap_task(struct task_struct *p, int cpu)
  854. {
  855. if (p->on_rq) {
  856. struct rq *src_rq, *dst_rq;
  857. src_rq = task_rq(p);
  858. dst_rq = cpu_rq(cpu);
  859. deactivate_task(src_rq, p, 0);
  860. set_task_cpu(p, cpu);
  861. activate_task(dst_rq, p, 0);
  862. check_preempt_curr(dst_rq, p, 0);
  863. } else {
  864. /*
  865. * Task isn't running anymore; make it appear like we migrated
  866. * it before it went to sleep. This means on wakeup we make the
  867. * previous cpu our targer instead of where it really is.
  868. */
  869. p->wake_cpu = cpu;
  870. }
  871. }
  872. struct migration_swap_arg {
  873. struct task_struct *src_task, *dst_task;
  874. int src_cpu, dst_cpu;
  875. };
  876. static int migrate_swap_stop(void *data)
  877. {
  878. struct migration_swap_arg *arg = data;
  879. struct rq *src_rq, *dst_rq;
  880. int ret = -EAGAIN;
  881. src_rq = cpu_rq(arg->src_cpu);
  882. dst_rq = cpu_rq(arg->dst_cpu);
  883. double_rq_lock(src_rq, dst_rq);
  884. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  885. goto unlock;
  886. if (task_cpu(arg->src_task) != arg->src_cpu)
  887. goto unlock;
  888. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  889. goto unlock;
  890. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  891. goto unlock;
  892. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  893. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  894. ret = 0;
  895. unlock:
  896. double_rq_unlock(src_rq, dst_rq);
  897. return ret;
  898. }
  899. /*
  900. * Cross migrate two tasks
  901. */
  902. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  903. {
  904. struct migration_swap_arg arg;
  905. int ret = -EINVAL;
  906. get_online_cpus();
  907. arg = (struct migration_swap_arg){
  908. .src_task = cur,
  909. .src_cpu = task_cpu(cur),
  910. .dst_task = p,
  911. .dst_cpu = task_cpu(p),
  912. };
  913. if (arg.src_cpu == arg.dst_cpu)
  914. goto out;
  915. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  916. goto out;
  917. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  918. goto out;
  919. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  920. goto out;
  921. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  922. out:
  923. put_online_cpus();
  924. return ret;
  925. }
  926. struct migration_arg {
  927. struct task_struct *task;
  928. int dest_cpu;
  929. };
  930. static int migration_cpu_stop(void *data);
  931. /*
  932. * wait_task_inactive - wait for a thread to unschedule.
  933. *
  934. * If @match_state is nonzero, it's the @p->state value just checked and
  935. * not expected to change. If it changes, i.e. @p might have woken up,
  936. * then return zero. When we succeed in waiting for @p to be off its CPU,
  937. * we return a positive number (its total switch count). If a second call
  938. * a short while later returns the same number, the caller can be sure that
  939. * @p has remained unscheduled the whole time.
  940. *
  941. * The caller must ensure that the task *will* unschedule sometime soon,
  942. * else this function might spin for a *long* time. This function can't
  943. * be called with interrupts off, or it may introduce deadlock with
  944. * smp_call_function() if an IPI is sent by the same process we are
  945. * waiting to become inactive.
  946. */
  947. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  948. {
  949. unsigned long flags;
  950. int running, on_rq;
  951. unsigned long ncsw;
  952. struct rq *rq;
  953. for (;;) {
  954. /*
  955. * We do the initial early heuristics without holding
  956. * any task-queue locks at all. We'll only try to get
  957. * the runqueue lock when things look like they will
  958. * work out!
  959. */
  960. rq = task_rq(p);
  961. /*
  962. * If the task is actively running on another CPU
  963. * still, just relax and busy-wait without holding
  964. * any locks.
  965. *
  966. * NOTE! Since we don't hold any locks, it's not
  967. * even sure that "rq" stays as the right runqueue!
  968. * But we don't care, since "task_running()" will
  969. * return false if the runqueue has changed and p
  970. * is actually now running somewhere else!
  971. */
  972. while (task_running(rq, p)) {
  973. if (match_state && unlikely(p->state != match_state))
  974. return 0;
  975. cpu_relax();
  976. }
  977. /*
  978. * Ok, time to look more closely! We need the rq
  979. * lock now, to be *sure*. If we're wrong, we'll
  980. * just go back and repeat.
  981. */
  982. rq = task_rq_lock(p, &flags);
  983. trace_sched_wait_task(p);
  984. running = task_running(rq, p);
  985. on_rq = p->on_rq;
  986. ncsw = 0;
  987. if (!match_state || p->state == match_state)
  988. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  989. task_rq_unlock(rq, p, &flags);
  990. /*
  991. * If it changed from the expected state, bail out now.
  992. */
  993. if (unlikely(!ncsw))
  994. break;
  995. /*
  996. * Was it really running after all now that we
  997. * checked with the proper locks actually held?
  998. *
  999. * Oops. Go back and try again..
  1000. */
  1001. if (unlikely(running)) {
  1002. cpu_relax();
  1003. continue;
  1004. }
  1005. /*
  1006. * It's not enough that it's not actively running,
  1007. * it must be off the runqueue _entirely_, and not
  1008. * preempted!
  1009. *
  1010. * So if it was still runnable (but just not actively
  1011. * running right now), it's preempted, and we should
  1012. * yield - it could be a while.
  1013. */
  1014. if (unlikely(on_rq)) {
  1015. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1016. set_current_state(TASK_UNINTERRUPTIBLE);
  1017. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1018. continue;
  1019. }
  1020. /*
  1021. * Ahh, all good. It wasn't running, and it wasn't
  1022. * runnable, which means that it will never become
  1023. * running in the future either. We're all done!
  1024. */
  1025. break;
  1026. }
  1027. return ncsw;
  1028. }
  1029. /***
  1030. * kick_process - kick a running thread to enter/exit the kernel
  1031. * @p: the to-be-kicked thread
  1032. *
  1033. * Cause a process which is running on another CPU to enter
  1034. * kernel-mode, without any delay. (to get signals handled.)
  1035. *
  1036. * NOTE: this function doesn't have to take the runqueue lock,
  1037. * because all it wants to ensure is that the remote task enters
  1038. * the kernel. If the IPI races and the task has been migrated
  1039. * to another CPU then no harm is done and the purpose has been
  1040. * achieved as well.
  1041. */
  1042. void kick_process(struct task_struct *p)
  1043. {
  1044. int cpu;
  1045. preempt_disable();
  1046. cpu = task_cpu(p);
  1047. if ((cpu != smp_processor_id()) && task_curr(p))
  1048. smp_send_reschedule(cpu);
  1049. preempt_enable();
  1050. }
  1051. EXPORT_SYMBOL_GPL(kick_process);
  1052. #endif /* CONFIG_SMP */
  1053. #ifdef CONFIG_SMP
  1054. /*
  1055. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1056. */
  1057. static int select_fallback_rq(int cpu, struct task_struct *p)
  1058. {
  1059. int nid = cpu_to_node(cpu);
  1060. const struct cpumask *nodemask = NULL;
  1061. enum { cpuset, possible, fail } state = cpuset;
  1062. int dest_cpu;
  1063. /*
  1064. * If the node that the cpu is on has been offlined, cpu_to_node()
  1065. * will return -1. There is no cpu on the node, and we should
  1066. * select the cpu on the other node.
  1067. */
  1068. if (nid != -1) {
  1069. nodemask = cpumask_of_node(nid);
  1070. /* Look for allowed, online CPU in same node. */
  1071. for_each_cpu(dest_cpu, nodemask) {
  1072. if (!cpu_online(dest_cpu))
  1073. continue;
  1074. if (!cpu_active(dest_cpu))
  1075. continue;
  1076. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1077. return dest_cpu;
  1078. }
  1079. }
  1080. for (;;) {
  1081. /* Any allowed, online CPU? */
  1082. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1083. if (!cpu_online(dest_cpu))
  1084. continue;
  1085. if (!cpu_active(dest_cpu))
  1086. continue;
  1087. goto out;
  1088. }
  1089. switch (state) {
  1090. case cpuset:
  1091. /* No more Mr. Nice Guy. */
  1092. cpuset_cpus_allowed_fallback(p);
  1093. state = possible;
  1094. break;
  1095. case possible:
  1096. do_set_cpus_allowed(p, cpu_possible_mask);
  1097. state = fail;
  1098. break;
  1099. case fail:
  1100. BUG();
  1101. break;
  1102. }
  1103. }
  1104. out:
  1105. if (state != cpuset) {
  1106. /*
  1107. * Don't tell them about moving exiting tasks or
  1108. * kernel threads (both mm NULL), since they never
  1109. * leave kernel.
  1110. */
  1111. if (p->mm && printk_ratelimit()) {
  1112. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1113. task_pid_nr(p), p->comm, cpu);
  1114. }
  1115. }
  1116. return dest_cpu;
  1117. }
  1118. /*
  1119. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1120. */
  1121. static inline
  1122. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1123. {
  1124. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1125. /*
  1126. * In order not to call set_task_cpu() on a blocking task we need
  1127. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1128. * cpu.
  1129. *
  1130. * Since this is common to all placement strategies, this lives here.
  1131. *
  1132. * [ this allows ->select_task() to simply return task_cpu(p) and
  1133. * not worry about this generic constraint ]
  1134. */
  1135. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1136. !cpu_online(cpu)))
  1137. cpu = select_fallback_rq(task_cpu(p), p);
  1138. return cpu;
  1139. }
  1140. static void update_avg(u64 *avg, u64 sample)
  1141. {
  1142. s64 diff = sample - *avg;
  1143. *avg += diff >> 3;
  1144. }
  1145. #endif
  1146. static void
  1147. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1148. {
  1149. #ifdef CONFIG_SCHEDSTATS
  1150. struct rq *rq = this_rq();
  1151. #ifdef CONFIG_SMP
  1152. int this_cpu = smp_processor_id();
  1153. if (cpu == this_cpu) {
  1154. schedstat_inc(rq, ttwu_local);
  1155. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1156. } else {
  1157. struct sched_domain *sd;
  1158. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1159. rcu_read_lock();
  1160. for_each_domain(this_cpu, sd) {
  1161. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1162. schedstat_inc(sd, ttwu_wake_remote);
  1163. break;
  1164. }
  1165. }
  1166. rcu_read_unlock();
  1167. }
  1168. if (wake_flags & WF_MIGRATED)
  1169. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1170. #endif /* CONFIG_SMP */
  1171. schedstat_inc(rq, ttwu_count);
  1172. schedstat_inc(p, se.statistics.nr_wakeups);
  1173. if (wake_flags & WF_SYNC)
  1174. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1175. #endif /* CONFIG_SCHEDSTATS */
  1176. }
  1177. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1178. {
  1179. activate_task(rq, p, en_flags);
  1180. p->on_rq = 1;
  1181. /* if a worker is waking up, notify workqueue */
  1182. if (p->flags & PF_WQ_WORKER)
  1183. wq_worker_waking_up(p, cpu_of(rq));
  1184. }
  1185. /*
  1186. * Mark the task runnable and perform wakeup-preemption.
  1187. */
  1188. static void
  1189. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1190. {
  1191. check_preempt_curr(rq, p, wake_flags);
  1192. trace_sched_wakeup(p, true);
  1193. p->state = TASK_RUNNING;
  1194. #ifdef CONFIG_SMP
  1195. if (p->sched_class->task_woken)
  1196. p->sched_class->task_woken(rq, p);
  1197. if (rq->idle_stamp) {
  1198. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1199. u64 max = 2*rq->max_idle_balance_cost;
  1200. update_avg(&rq->avg_idle, delta);
  1201. if (rq->avg_idle > max)
  1202. rq->avg_idle = max;
  1203. rq->idle_stamp = 0;
  1204. }
  1205. #endif
  1206. }
  1207. static void
  1208. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1209. {
  1210. #ifdef CONFIG_SMP
  1211. if (p->sched_contributes_to_load)
  1212. rq->nr_uninterruptible--;
  1213. #endif
  1214. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1215. ttwu_do_wakeup(rq, p, wake_flags);
  1216. }
  1217. /*
  1218. * Called in case the task @p isn't fully descheduled from its runqueue,
  1219. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1220. * since all we need to do is flip p->state to TASK_RUNNING, since
  1221. * the task is still ->on_rq.
  1222. */
  1223. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1224. {
  1225. struct rq *rq;
  1226. int ret = 0;
  1227. rq = __task_rq_lock(p);
  1228. if (p->on_rq) {
  1229. /* check_preempt_curr() may use rq clock */
  1230. update_rq_clock(rq);
  1231. ttwu_do_wakeup(rq, p, wake_flags);
  1232. ret = 1;
  1233. }
  1234. __task_rq_unlock(rq);
  1235. return ret;
  1236. }
  1237. #ifdef CONFIG_SMP
  1238. static void sched_ttwu_pending(void)
  1239. {
  1240. struct rq *rq = this_rq();
  1241. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1242. struct task_struct *p;
  1243. raw_spin_lock(&rq->lock);
  1244. while (llist) {
  1245. p = llist_entry(llist, struct task_struct, wake_entry);
  1246. llist = llist_next(llist);
  1247. ttwu_do_activate(rq, p, 0);
  1248. }
  1249. raw_spin_unlock(&rq->lock);
  1250. }
  1251. void scheduler_ipi(void)
  1252. {
  1253. /*
  1254. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1255. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1256. * this IPI.
  1257. */
  1258. if (tif_need_resched())
  1259. set_preempt_need_resched();
  1260. if (llist_empty(&this_rq()->wake_list)
  1261. && !tick_nohz_full_cpu(smp_processor_id())
  1262. && !got_nohz_idle_kick())
  1263. return;
  1264. /*
  1265. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1266. * traditionally all their work was done from the interrupt return
  1267. * path. Now that we actually do some work, we need to make sure
  1268. * we do call them.
  1269. *
  1270. * Some archs already do call them, luckily irq_enter/exit nest
  1271. * properly.
  1272. *
  1273. * Arguably we should visit all archs and update all handlers,
  1274. * however a fair share of IPIs are still resched only so this would
  1275. * somewhat pessimize the simple resched case.
  1276. */
  1277. irq_enter();
  1278. tick_nohz_full_check();
  1279. sched_ttwu_pending();
  1280. /*
  1281. * Check if someone kicked us for doing the nohz idle load balance.
  1282. */
  1283. if (unlikely(got_nohz_idle_kick())) {
  1284. this_rq()->idle_balance = 1;
  1285. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1286. }
  1287. irq_exit();
  1288. }
  1289. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1290. {
  1291. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1292. smp_send_reschedule(cpu);
  1293. }
  1294. bool cpus_share_cache(int this_cpu, int that_cpu)
  1295. {
  1296. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1297. }
  1298. #endif /* CONFIG_SMP */
  1299. static void ttwu_queue(struct task_struct *p, int cpu)
  1300. {
  1301. struct rq *rq = cpu_rq(cpu);
  1302. #if defined(CONFIG_SMP)
  1303. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1304. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1305. ttwu_queue_remote(p, cpu);
  1306. return;
  1307. }
  1308. #endif
  1309. raw_spin_lock(&rq->lock);
  1310. ttwu_do_activate(rq, p, 0);
  1311. raw_spin_unlock(&rq->lock);
  1312. }
  1313. /**
  1314. * try_to_wake_up - wake up a thread
  1315. * @p: the thread to be awakened
  1316. * @state: the mask of task states that can be woken
  1317. * @wake_flags: wake modifier flags (WF_*)
  1318. *
  1319. * Put it on the run-queue if it's not already there. The "current"
  1320. * thread is always on the run-queue (except when the actual
  1321. * re-schedule is in progress), and as such you're allowed to do
  1322. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1323. * runnable without the overhead of this.
  1324. *
  1325. * Return: %true if @p was woken up, %false if it was already running.
  1326. * or @state didn't match @p's state.
  1327. */
  1328. static int
  1329. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1330. {
  1331. unsigned long flags;
  1332. int cpu, success = 0;
  1333. /*
  1334. * If we are going to wake up a thread waiting for CONDITION we
  1335. * need to ensure that CONDITION=1 done by the caller can not be
  1336. * reordered with p->state check below. This pairs with mb() in
  1337. * set_current_state() the waiting thread does.
  1338. */
  1339. smp_mb__before_spinlock();
  1340. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1341. if (!(p->state & state))
  1342. goto out;
  1343. success = 1; /* we're going to change ->state */
  1344. cpu = task_cpu(p);
  1345. if (p->on_rq && ttwu_remote(p, wake_flags))
  1346. goto stat;
  1347. #ifdef CONFIG_SMP
  1348. /*
  1349. * If the owning (remote) cpu is still in the middle of schedule() with
  1350. * this task as prev, wait until its done referencing the task.
  1351. */
  1352. while (p->on_cpu)
  1353. cpu_relax();
  1354. /*
  1355. * Pairs with the smp_wmb() in finish_lock_switch().
  1356. */
  1357. smp_rmb();
  1358. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1359. p->state = TASK_WAKING;
  1360. if (p->sched_class->task_waking)
  1361. p->sched_class->task_waking(p);
  1362. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1363. if (task_cpu(p) != cpu) {
  1364. wake_flags |= WF_MIGRATED;
  1365. set_task_cpu(p, cpu);
  1366. }
  1367. #endif /* CONFIG_SMP */
  1368. ttwu_queue(p, cpu);
  1369. stat:
  1370. ttwu_stat(p, cpu, wake_flags);
  1371. out:
  1372. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1373. return success;
  1374. }
  1375. /**
  1376. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1377. * @p: the thread to be awakened
  1378. *
  1379. * Put @p on the run-queue if it's not already there. The caller must
  1380. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1381. * the current task.
  1382. */
  1383. static void try_to_wake_up_local(struct task_struct *p)
  1384. {
  1385. struct rq *rq = task_rq(p);
  1386. if (WARN_ON_ONCE(rq != this_rq()) ||
  1387. WARN_ON_ONCE(p == current))
  1388. return;
  1389. lockdep_assert_held(&rq->lock);
  1390. if (!raw_spin_trylock(&p->pi_lock)) {
  1391. raw_spin_unlock(&rq->lock);
  1392. raw_spin_lock(&p->pi_lock);
  1393. raw_spin_lock(&rq->lock);
  1394. }
  1395. if (!(p->state & TASK_NORMAL))
  1396. goto out;
  1397. if (!p->on_rq)
  1398. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1399. ttwu_do_wakeup(rq, p, 0);
  1400. ttwu_stat(p, smp_processor_id(), 0);
  1401. out:
  1402. raw_spin_unlock(&p->pi_lock);
  1403. }
  1404. /**
  1405. * wake_up_process - Wake up a specific process
  1406. * @p: The process to be woken up.
  1407. *
  1408. * Attempt to wake up the nominated process and move it to the set of runnable
  1409. * processes.
  1410. *
  1411. * Return: 1 if the process was woken up, 0 if it was already running.
  1412. *
  1413. * It may be assumed that this function implies a write memory barrier before
  1414. * changing the task state if and only if any tasks are woken up.
  1415. */
  1416. int wake_up_process(struct task_struct *p)
  1417. {
  1418. WARN_ON(task_is_stopped_or_traced(p));
  1419. return try_to_wake_up(p, TASK_NORMAL, 0);
  1420. }
  1421. EXPORT_SYMBOL(wake_up_process);
  1422. int wake_up_state(struct task_struct *p, unsigned int state)
  1423. {
  1424. return try_to_wake_up(p, state, 0);
  1425. }
  1426. /*
  1427. * Perform scheduler related setup for a newly forked process p.
  1428. * p is forked by current.
  1429. *
  1430. * __sched_fork() is basic setup used by init_idle() too:
  1431. */
  1432. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1433. {
  1434. p->on_rq = 0;
  1435. p->se.on_rq = 0;
  1436. p->se.exec_start = 0;
  1437. p->se.sum_exec_runtime = 0;
  1438. p->se.prev_sum_exec_runtime = 0;
  1439. p->se.nr_migrations = 0;
  1440. p->se.vruntime = 0;
  1441. INIT_LIST_HEAD(&p->se.group_node);
  1442. #ifdef CONFIG_SCHEDSTATS
  1443. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1444. #endif
  1445. INIT_LIST_HEAD(&p->rt.run_list);
  1446. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1447. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1448. #endif
  1449. #ifdef CONFIG_NUMA_BALANCING
  1450. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1451. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1452. p->mm->numa_scan_seq = 0;
  1453. }
  1454. if (clone_flags & CLONE_VM)
  1455. p->numa_preferred_nid = current->numa_preferred_nid;
  1456. else
  1457. p->numa_preferred_nid = -1;
  1458. p->node_stamp = 0ULL;
  1459. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1460. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1461. p->numa_work.next = &p->numa_work;
  1462. p->numa_faults = NULL;
  1463. p->numa_faults_buffer = NULL;
  1464. INIT_LIST_HEAD(&p->numa_entry);
  1465. p->numa_group = NULL;
  1466. #endif /* CONFIG_NUMA_BALANCING */
  1467. }
  1468. #ifdef CONFIG_NUMA_BALANCING
  1469. #ifdef CONFIG_SCHED_DEBUG
  1470. void set_numabalancing_state(bool enabled)
  1471. {
  1472. if (enabled)
  1473. sched_feat_set("NUMA");
  1474. else
  1475. sched_feat_set("NO_NUMA");
  1476. }
  1477. #else
  1478. __read_mostly bool numabalancing_enabled;
  1479. void set_numabalancing_state(bool enabled)
  1480. {
  1481. numabalancing_enabled = enabled;
  1482. }
  1483. #endif /* CONFIG_SCHED_DEBUG */
  1484. #endif /* CONFIG_NUMA_BALANCING */
  1485. /*
  1486. * fork()/clone()-time setup:
  1487. */
  1488. void sched_fork(unsigned long clone_flags, struct task_struct *p)
  1489. {
  1490. unsigned long flags;
  1491. int cpu = get_cpu();
  1492. __sched_fork(clone_flags, p);
  1493. /*
  1494. * We mark the process as running here. This guarantees that
  1495. * nobody will actually run it, and a signal or other external
  1496. * event cannot wake it up and insert it on the runqueue either.
  1497. */
  1498. p->state = TASK_RUNNING;
  1499. /*
  1500. * Make sure we do not leak PI boosting priority to the child.
  1501. */
  1502. p->prio = current->normal_prio;
  1503. /*
  1504. * Revert to default priority/policy on fork if requested.
  1505. */
  1506. if (unlikely(p->sched_reset_on_fork)) {
  1507. if (task_has_rt_policy(p)) {
  1508. p->policy = SCHED_NORMAL;
  1509. p->static_prio = NICE_TO_PRIO(0);
  1510. p->rt_priority = 0;
  1511. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1512. p->static_prio = NICE_TO_PRIO(0);
  1513. p->prio = p->normal_prio = __normal_prio(p);
  1514. set_load_weight(p);
  1515. /*
  1516. * We don't need the reset flag anymore after the fork. It has
  1517. * fulfilled its duty:
  1518. */
  1519. p->sched_reset_on_fork = 0;
  1520. }
  1521. if (!rt_prio(p->prio))
  1522. p->sched_class = &fair_sched_class;
  1523. if (p->sched_class->task_fork)
  1524. p->sched_class->task_fork(p);
  1525. /*
  1526. * The child is not yet in the pid-hash so no cgroup attach races,
  1527. * and the cgroup is pinned to this child due to cgroup_fork()
  1528. * is ran before sched_fork().
  1529. *
  1530. * Silence PROVE_RCU.
  1531. */
  1532. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1533. set_task_cpu(p, cpu);
  1534. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1535. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1536. if (likely(sched_info_on()))
  1537. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1538. #endif
  1539. #if defined(CONFIG_SMP)
  1540. p->on_cpu = 0;
  1541. #endif
  1542. init_task_preempt_count(p);
  1543. #ifdef CONFIG_SMP
  1544. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1545. #endif
  1546. put_cpu();
  1547. }
  1548. /*
  1549. * wake_up_new_task - wake up a newly created task for the first time.
  1550. *
  1551. * This function will do some initial scheduler statistics housekeeping
  1552. * that must be done for every newly created context, then puts the task
  1553. * on the runqueue and wakes it.
  1554. */
  1555. void wake_up_new_task(struct task_struct *p)
  1556. {
  1557. unsigned long flags;
  1558. struct rq *rq;
  1559. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1560. #ifdef CONFIG_SMP
  1561. /*
  1562. * Fork balancing, do it here and not earlier because:
  1563. * - cpus_allowed can change in the fork path
  1564. * - any previously selected cpu might disappear through hotplug
  1565. */
  1566. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1567. #endif
  1568. /* Initialize new task's runnable average */
  1569. init_task_runnable_average(p);
  1570. rq = __task_rq_lock(p);
  1571. activate_task(rq, p, 0);
  1572. p->on_rq = 1;
  1573. trace_sched_wakeup_new(p, true);
  1574. check_preempt_curr(rq, p, WF_FORK);
  1575. #ifdef CONFIG_SMP
  1576. if (p->sched_class->task_woken)
  1577. p->sched_class->task_woken(rq, p);
  1578. #endif
  1579. task_rq_unlock(rq, p, &flags);
  1580. }
  1581. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1582. /**
  1583. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1584. * @notifier: notifier struct to register
  1585. */
  1586. void preempt_notifier_register(struct preempt_notifier *notifier)
  1587. {
  1588. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1589. }
  1590. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1591. /**
  1592. * preempt_notifier_unregister - no longer interested in preemption notifications
  1593. * @notifier: notifier struct to unregister
  1594. *
  1595. * This is safe to call from within a preemption notifier.
  1596. */
  1597. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1598. {
  1599. hlist_del(&notifier->link);
  1600. }
  1601. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1602. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1603. {
  1604. struct preempt_notifier *notifier;
  1605. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1606. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1607. }
  1608. static void
  1609. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1610. struct task_struct *next)
  1611. {
  1612. struct preempt_notifier *notifier;
  1613. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1614. notifier->ops->sched_out(notifier, next);
  1615. }
  1616. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1617. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1618. {
  1619. }
  1620. static void
  1621. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1622. struct task_struct *next)
  1623. {
  1624. }
  1625. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1626. /**
  1627. * prepare_task_switch - prepare to switch tasks
  1628. * @rq: the runqueue preparing to switch
  1629. * @prev: the current task that is being switched out
  1630. * @next: the task we are going to switch to.
  1631. *
  1632. * This is called with the rq lock held and interrupts off. It must
  1633. * be paired with a subsequent finish_task_switch after the context
  1634. * switch.
  1635. *
  1636. * prepare_task_switch sets up locking and calls architecture specific
  1637. * hooks.
  1638. */
  1639. static inline void
  1640. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1641. struct task_struct *next)
  1642. {
  1643. trace_sched_switch(prev, next);
  1644. sched_info_switch(rq, prev, next);
  1645. perf_event_task_sched_out(prev, next);
  1646. fire_sched_out_preempt_notifiers(prev, next);
  1647. prepare_lock_switch(rq, next);
  1648. prepare_arch_switch(next);
  1649. }
  1650. /**
  1651. * finish_task_switch - clean up after a task-switch
  1652. * @rq: runqueue associated with task-switch
  1653. * @prev: the thread we just switched away from.
  1654. *
  1655. * finish_task_switch must be called after the context switch, paired
  1656. * with a prepare_task_switch call before the context switch.
  1657. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1658. * and do any other architecture-specific cleanup actions.
  1659. *
  1660. * Note that we may have delayed dropping an mm in context_switch(). If
  1661. * so, we finish that here outside of the runqueue lock. (Doing it
  1662. * with the lock held can cause deadlocks; see schedule() for
  1663. * details.)
  1664. */
  1665. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1666. __releases(rq->lock)
  1667. {
  1668. struct mm_struct *mm = rq->prev_mm;
  1669. long prev_state;
  1670. rq->prev_mm = NULL;
  1671. /*
  1672. * A task struct has one reference for the use as "current".
  1673. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1674. * schedule one last time. The schedule call will never return, and
  1675. * the scheduled task must drop that reference.
  1676. * The test for TASK_DEAD must occur while the runqueue locks are
  1677. * still held, otherwise prev could be scheduled on another cpu, die
  1678. * there before we look at prev->state, and then the reference would
  1679. * be dropped twice.
  1680. * Manfred Spraul <manfred@colorfullife.com>
  1681. */
  1682. prev_state = prev->state;
  1683. vtime_task_switch(prev);
  1684. finish_arch_switch(prev);
  1685. perf_event_task_sched_in(prev, current);
  1686. finish_lock_switch(rq, prev);
  1687. finish_arch_post_lock_switch();
  1688. fire_sched_in_preempt_notifiers(current);
  1689. if (mm)
  1690. mmdrop(mm);
  1691. if (unlikely(prev_state == TASK_DEAD)) {
  1692. task_numa_free(prev);
  1693. /*
  1694. * Remove function-return probe instances associated with this
  1695. * task and put them back on the free list.
  1696. */
  1697. kprobe_flush_task(prev);
  1698. put_task_struct(prev);
  1699. }
  1700. tick_nohz_task_switch(current);
  1701. }
  1702. #ifdef CONFIG_SMP
  1703. /* assumes rq->lock is held */
  1704. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1705. {
  1706. if (prev->sched_class->pre_schedule)
  1707. prev->sched_class->pre_schedule(rq, prev);
  1708. }
  1709. /* rq->lock is NOT held, but preemption is disabled */
  1710. static inline void post_schedule(struct rq *rq)
  1711. {
  1712. if (rq->post_schedule) {
  1713. unsigned long flags;
  1714. raw_spin_lock_irqsave(&rq->lock, flags);
  1715. if (rq->curr->sched_class->post_schedule)
  1716. rq->curr->sched_class->post_schedule(rq);
  1717. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1718. rq->post_schedule = 0;
  1719. }
  1720. }
  1721. #else
  1722. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1723. {
  1724. }
  1725. static inline void post_schedule(struct rq *rq)
  1726. {
  1727. }
  1728. #endif
  1729. /**
  1730. * schedule_tail - first thing a freshly forked thread must call.
  1731. * @prev: the thread we just switched away from.
  1732. */
  1733. asmlinkage void schedule_tail(struct task_struct *prev)
  1734. __releases(rq->lock)
  1735. {
  1736. struct rq *rq = this_rq();
  1737. finish_task_switch(rq, prev);
  1738. /*
  1739. * FIXME: do we need to worry about rq being invalidated by the
  1740. * task_switch?
  1741. */
  1742. post_schedule(rq);
  1743. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1744. /* In this case, finish_task_switch does not reenable preemption */
  1745. preempt_enable();
  1746. #endif
  1747. if (current->set_child_tid)
  1748. put_user(task_pid_vnr(current), current->set_child_tid);
  1749. }
  1750. /*
  1751. * context_switch - switch to the new MM and the new
  1752. * thread's register state.
  1753. */
  1754. static inline void
  1755. context_switch(struct rq *rq, struct task_struct *prev,
  1756. struct task_struct *next)
  1757. {
  1758. struct mm_struct *mm, *oldmm;
  1759. prepare_task_switch(rq, prev, next);
  1760. mm = next->mm;
  1761. oldmm = prev->active_mm;
  1762. /*
  1763. * For paravirt, this is coupled with an exit in switch_to to
  1764. * combine the page table reload and the switch backend into
  1765. * one hypercall.
  1766. */
  1767. arch_start_context_switch(prev);
  1768. if (!mm) {
  1769. next->active_mm = oldmm;
  1770. atomic_inc(&oldmm->mm_count);
  1771. enter_lazy_tlb(oldmm, next);
  1772. } else
  1773. switch_mm(oldmm, mm, next);
  1774. if (!prev->mm) {
  1775. prev->active_mm = NULL;
  1776. rq->prev_mm = oldmm;
  1777. }
  1778. /*
  1779. * Since the runqueue lock will be released by the next
  1780. * task (which is an invalid locking op but in the case
  1781. * of the scheduler it's an obvious special-case), so we
  1782. * do an early lockdep release here:
  1783. */
  1784. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1785. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1786. #endif
  1787. context_tracking_task_switch(prev, next);
  1788. /* Here we just switch the register state and the stack. */
  1789. switch_to(prev, next, prev);
  1790. barrier();
  1791. /*
  1792. * this_rq must be evaluated again because prev may have moved
  1793. * CPUs since it called schedule(), thus the 'rq' on its stack
  1794. * frame will be invalid.
  1795. */
  1796. finish_task_switch(this_rq(), prev);
  1797. }
  1798. /*
  1799. * nr_running and nr_context_switches:
  1800. *
  1801. * externally visible scheduler statistics: current number of runnable
  1802. * threads, total number of context switches performed since bootup.
  1803. */
  1804. unsigned long nr_running(void)
  1805. {
  1806. unsigned long i, sum = 0;
  1807. for_each_online_cpu(i)
  1808. sum += cpu_rq(i)->nr_running;
  1809. return sum;
  1810. }
  1811. unsigned long long nr_context_switches(void)
  1812. {
  1813. int i;
  1814. unsigned long long sum = 0;
  1815. for_each_possible_cpu(i)
  1816. sum += cpu_rq(i)->nr_switches;
  1817. return sum;
  1818. }
  1819. unsigned long nr_iowait(void)
  1820. {
  1821. unsigned long i, sum = 0;
  1822. for_each_possible_cpu(i)
  1823. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1824. return sum;
  1825. }
  1826. unsigned long nr_iowait_cpu(int cpu)
  1827. {
  1828. struct rq *this = cpu_rq(cpu);
  1829. return atomic_read(&this->nr_iowait);
  1830. }
  1831. #ifdef CONFIG_SMP
  1832. /*
  1833. * sched_exec - execve() is a valuable balancing opportunity, because at
  1834. * this point the task has the smallest effective memory and cache footprint.
  1835. */
  1836. void sched_exec(void)
  1837. {
  1838. struct task_struct *p = current;
  1839. unsigned long flags;
  1840. int dest_cpu;
  1841. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1842. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  1843. if (dest_cpu == smp_processor_id())
  1844. goto unlock;
  1845. if (likely(cpu_active(dest_cpu))) {
  1846. struct migration_arg arg = { p, dest_cpu };
  1847. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1848. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1849. return;
  1850. }
  1851. unlock:
  1852. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1853. }
  1854. #endif
  1855. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1856. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  1857. EXPORT_PER_CPU_SYMBOL(kstat);
  1858. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  1859. /*
  1860. * Return any ns on the sched_clock that have not yet been accounted in
  1861. * @p in case that task is currently running.
  1862. *
  1863. * Called with task_rq_lock() held on @rq.
  1864. */
  1865. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  1866. {
  1867. u64 ns = 0;
  1868. if (task_current(rq, p)) {
  1869. update_rq_clock(rq);
  1870. ns = rq_clock_task(rq) - p->se.exec_start;
  1871. if ((s64)ns < 0)
  1872. ns = 0;
  1873. }
  1874. return ns;
  1875. }
  1876. unsigned long long task_delta_exec(struct task_struct *p)
  1877. {
  1878. unsigned long flags;
  1879. struct rq *rq;
  1880. u64 ns = 0;
  1881. rq = task_rq_lock(p, &flags);
  1882. ns = do_task_delta_exec(p, rq);
  1883. task_rq_unlock(rq, p, &flags);
  1884. return ns;
  1885. }
  1886. /*
  1887. * Return accounted runtime for the task.
  1888. * In case the task is currently running, return the runtime plus current's
  1889. * pending runtime that have not been accounted yet.
  1890. */
  1891. unsigned long long task_sched_runtime(struct task_struct *p)
  1892. {
  1893. unsigned long flags;
  1894. struct rq *rq;
  1895. u64 ns = 0;
  1896. rq = task_rq_lock(p, &flags);
  1897. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  1898. task_rq_unlock(rq, p, &flags);
  1899. return ns;
  1900. }
  1901. /*
  1902. * This function gets called by the timer code, with HZ frequency.
  1903. * We call it with interrupts disabled.
  1904. */
  1905. void scheduler_tick(void)
  1906. {
  1907. int cpu = smp_processor_id();
  1908. struct rq *rq = cpu_rq(cpu);
  1909. struct task_struct *curr = rq->curr;
  1910. sched_clock_tick();
  1911. raw_spin_lock(&rq->lock);
  1912. update_rq_clock(rq);
  1913. curr->sched_class->task_tick(rq, curr, 0);
  1914. update_cpu_load_active(rq);
  1915. raw_spin_unlock(&rq->lock);
  1916. perf_event_task_tick();
  1917. #ifdef CONFIG_SMP
  1918. rq->idle_balance = idle_cpu(cpu);
  1919. trigger_load_balance(rq, cpu);
  1920. #endif
  1921. rq_last_tick_reset(rq);
  1922. }
  1923. #ifdef CONFIG_NO_HZ_FULL
  1924. /**
  1925. * scheduler_tick_max_deferment
  1926. *
  1927. * Keep at least one tick per second when a single
  1928. * active task is running because the scheduler doesn't
  1929. * yet completely support full dynticks environment.
  1930. *
  1931. * This makes sure that uptime, CFS vruntime, load
  1932. * balancing, etc... continue to move forward, even
  1933. * with a very low granularity.
  1934. *
  1935. * Return: Maximum deferment in nanoseconds.
  1936. */
  1937. u64 scheduler_tick_max_deferment(void)
  1938. {
  1939. struct rq *rq = this_rq();
  1940. unsigned long next, now = ACCESS_ONCE(jiffies);
  1941. next = rq->last_sched_tick + HZ;
  1942. if (time_before_eq(next, now))
  1943. return 0;
  1944. return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
  1945. }
  1946. #endif
  1947. notrace unsigned long get_parent_ip(unsigned long addr)
  1948. {
  1949. if (in_lock_functions(addr)) {
  1950. addr = CALLER_ADDR2;
  1951. if (in_lock_functions(addr))
  1952. addr = CALLER_ADDR3;
  1953. }
  1954. return addr;
  1955. }
  1956. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  1957. defined(CONFIG_PREEMPT_TRACER))
  1958. void __kprobes preempt_count_add(int val)
  1959. {
  1960. #ifdef CONFIG_DEBUG_PREEMPT
  1961. /*
  1962. * Underflow?
  1963. */
  1964. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  1965. return;
  1966. #endif
  1967. __preempt_count_add(val);
  1968. #ifdef CONFIG_DEBUG_PREEMPT
  1969. /*
  1970. * Spinlock count overflowing soon?
  1971. */
  1972. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  1973. PREEMPT_MASK - 10);
  1974. #endif
  1975. if (preempt_count() == val)
  1976. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1977. }
  1978. EXPORT_SYMBOL(preempt_count_add);
  1979. void __kprobes preempt_count_sub(int val)
  1980. {
  1981. #ifdef CONFIG_DEBUG_PREEMPT
  1982. /*
  1983. * Underflow?
  1984. */
  1985. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  1986. return;
  1987. /*
  1988. * Is the spinlock portion underflowing?
  1989. */
  1990. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  1991. !(preempt_count() & PREEMPT_MASK)))
  1992. return;
  1993. #endif
  1994. if (preempt_count() == val)
  1995. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1996. __preempt_count_sub(val);
  1997. }
  1998. EXPORT_SYMBOL(preempt_count_sub);
  1999. #endif
  2000. /*
  2001. * Print scheduling while atomic bug:
  2002. */
  2003. static noinline void __schedule_bug(struct task_struct *prev)
  2004. {
  2005. if (oops_in_progress)
  2006. return;
  2007. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2008. prev->comm, prev->pid, preempt_count());
  2009. debug_show_held_locks(prev);
  2010. print_modules();
  2011. if (irqs_disabled())
  2012. print_irqtrace_events(prev);
  2013. dump_stack();
  2014. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2015. }
  2016. /*
  2017. * Various schedule()-time debugging checks and statistics:
  2018. */
  2019. static inline void schedule_debug(struct task_struct *prev)
  2020. {
  2021. /*
  2022. * Test if we are atomic. Since do_exit() needs to call into
  2023. * schedule() atomically, we ignore that path for now.
  2024. * Otherwise, whine if we are scheduling when we should not be.
  2025. */
  2026. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2027. __schedule_bug(prev);
  2028. rcu_sleep_check();
  2029. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2030. schedstat_inc(this_rq(), sched_count);
  2031. }
  2032. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2033. {
  2034. if (prev->on_rq || rq->skip_clock_update < 0)
  2035. update_rq_clock(rq);
  2036. prev->sched_class->put_prev_task(rq, prev);
  2037. }
  2038. /*
  2039. * Pick up the highest-prio task:
  2040. */
  2041. static inline struct task_struct *
  2042. pick_next_task(struct rq *rq)
  2043. {
  2044. const struct sched_class *class;
  2045. struct task_struct *p;
  2046. /*
  2047. * Optimization: we know that if all tasks are in
  2048. * the fair class we can call that function directly:
  2049. */
  2050. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2051. p = fair_sched_class.pick_next_task(rq);
  2052. if (likely(p))
  2053. return p;
  2054. }
  2055. for_each_class(class) {
  2056. p = class->pick_next_task(rq);
  2057. if (p)
  2058. return p;
  2059. }
  2060. BUG(); /* the idle class will always have a runnable task */
  2061. }
  2062. /*
  2063. * __schedule() is the main scheduler function.
  2064. *
  2065. * The main means of driving the scheduler and thus entering this function are:
  2066. *
  2067. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2068. *
  2069. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2070. * paths. For example, see arch/x86/entry_64.S.
  2071. *
  2072. * To drive preemption between tasks, the scheduler sets the flag in timer
  2073. * interrupt handler scheduler_tick().
  2074. *
  2075. * 3. Wakeups don't really cause entry into schedule(). They add a
  2076. * task to the run-queue and that's it.
  2077. *
  2078. * Now, if the new task added to the run-queue preempts the current
  2079. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2080. * called on the nearest possible occasion:
  2081. *
  2082. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2083. *
  2084. * - in syscall or exception context, at the next outmost
  2085. * preempt_enable(). (this might be as soon as the wake_up()'s
  2086. * spin_unlock()!)
  2087. *
  2088. * - in IRQ context, return from interrupt-handler to
  2089. * preemptible context
  2090. *
  2091. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2092. * then at the next:
  2093. *
  2094. * - cond_resched() call
  2095. * - explicit schedule() call
  2096. * - return from syscall or exception to user-space
  2097. * - return from interrupt-handler to user-space
  2098. */
  2099. static void __sched __schedule(void)
  2100. {
  2101. struct task_struct *prev, *next;
  2102. unsigned long *switch_count;
  2103. struct rq *rq;
  2104. int cpu;
  2105. need_resched:
  2106. preempt_disable();
  2107. cpu = smp_processor_id();
  2108. rq = cpu_rq(cpu);
  2109. rcu_note_context_switch(cpu);
  2110. prev = rq->curr;
  2111. schedule_debug(prev);
  2112. if (sched_feat(HRTICK))
  2113. hrtick_clear(rq);
  2114. /*
  2115. * Make sure that signal_pending_state()->signal_pending() below
  2116. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2117. * done by the caller to avoid the race with signal_wake_up().
  2118. */
  2119. smp_mb__before_spinlock();
  2120. raw_spin_lock_irq(&rq->lock);
  2121. switch_count = &prev->nivcsw;
  2122. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2123. if (unlikely(signal_pending_state(prev->state, prev))) {
  2124. prev->state = TASK_RUNNING;
  2125. } else {
  2126. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2127. prev->on_rq = 0;
  2128. /*
  2129. * If a worker went to sleep, notify and ask workqueue
  2130. * whether it wants to wake up a task to maintain
  2131. * concurrency.
  2132. */
  2133. if (prev->flags & PF_WQ_WORKER) {
  2134. struct task_struct *to_wakeup;
  2135. to_wakeup = wq_worker_sleeping(prev, cpu);
  2136. if (to_wakeup)
  2137. try_to_wake_up_local(to_wakeup);
  2138. }
  2139. }
  2140. switch_count = &prev->nvcsw;
  2141. }
  2142. pre_schedule(rq, prev);
  2143. if (unlikely(!rq->nr_running))
  2144. idle_balance(cpu, rq);
  2145. put_prev_task(rq, prev);
  2146. next = pick_next_task(rq);
  2147. clear_tsk_need_resched(prev);
  2148. clear_preempt_need_resched();
  2149. rq->skip_clock_update = 0;
  2150. if (likely(prev != next)) {
  2151. rq->nr_switches++;
  2152. rq->curr = next;
  2153. ++*switch_count;
  2154. context_switch(rq, prev, next); /* unlocks the rq */
  2155. /*
  2156. * The context switch have flipped the stack from under us
  2157. * and restored the local variables which were saved when
  2158. * this task called schedule() in the past. prev == current
  2159. * is still correct, but it can be moved to another cpu/rq.
  2160. */
  2161. cpu = smp_processor_id();
  2162. rq = cpu_rq(cpu);
  2163. } else
  2164. raw_spin_unlock_irq(&rq->lock);
  2165. post_schedule(rq);
  2166. sched_preempt_enable_no_resched();
  2167. if (need_resched())
  2168. goto need_resched;
  2169. }
  2170. static inline void sched_submit_work(struct task_struct *tsk)
  2171. {
  2172. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2173. return;
  2174. /*
  2175. * If we are going to sleep and we have plugged IO queued,
  2176. * make sure to submit it to avoid deadlocks.
  2177. */
  2178. if (blk_needs_flush_plug(tsk))
  2179. blk_schedule_flush_plug(tsk);
  2180. }
  2181. asmlinkage void __sched schedule(void)
  2182. {
  2183. struct task_struct *tsk = current;
  2184. sched_submit_work(tsk);
  2185. __schedule();
  2186. }
  2187. EXPORT_SYMBOL(schedule);
  2188. #ifdef CONFIG_CONTEXT_TRACKING
  2189. asmlinkage void __sched schedule_user(void)
  2190. {
  2191. /*
  2192. * If we come here after a random call to set_need_resched(),
  2193. * or we have been woken up remotely but the IPI has not yet arrived,
  2194. * we haven't yet exited the RCU idle mode. Do it here manually until
  2195. * we find a better solution.
  2196. */
  2197. user_exit();
  2198. schedule();
  2199. user_enter();
  2200. }
  2201. #endif
  2202. /**
  2203. * schedule_preempt_disabled - called with preemption disabled
  2204. *
  2205. * Returns with preemption disabled. Note: preempt_count must be 1
  2206. */
  2207. void __sched schedule_preempt_disabled(void)
  2208. {
  2209. sched_preempt_enable_no_resched();
  2210. schedule();
  2211. preempt_disable();
  2212. }
  2213. #ifdef CONFIG_PREEMPT
  2214. /*
  2215. * this is the entry point to schedule() from in-kernel preemption
  2216. * off of preempt_enable. Kernel preemptions off return from interrupt
  2217. * occur there and call schedule directly.
  2218. */
  2219. asmlinkage void __sched notrace preempt_schedule(void)
  2220. {
  2221. /*
  2222. * If there is a non-zero preempt_count or interrupts are disabled,
  2223. * we do not want to preempt the current task. Just return..
  2224. */
  2225. if (likely(!preemptible()))
  2226. return;
  2227. do {
  2228. __preempt_count_add(PREEMPT_ACTIVE);
  2229. __schedule();
  2230. __preempt_count_sub(PREEMPT_ACTIVE);
  2231. /*
  2232. * Check again in case we missed a preemption opportunity
  2233. * between schedule and now.
  2234. */
  2235. barrier();
  2236. } while (need_resched());
  2237. }
  2238. EXPORT_SYMBOL(preempt_schedule);
  2239. /*
  2240. * this is the entry point to schedule() from kernel preemption
  2241. * off of irq context.
  2242. * Note, that this is called and return with irqs disabled. This will
  2243. * protect us against recursive calling from irq.
  2244. */
  2245. asmlinkage void __sched preempt_schedule_irq(void)
  2246. {
  2247. enum ctx_state prev_state;
  2248. /* Catch callers which need to be fixed */
  2249. BUG_ON(preempt_count() || !irqs_disabled());
  2250. prev_state = exception_enter();
  2251. do {
  2252. __preempt_count_add(PREEMPT_ACTIVE);
  2253. local_irq_enable();
  2254. __schedule();
  2255. local_irq_disable();
  2256. __preempt_count_sub(PREEMPT_ACTIVE);
  2257. /*
  2258. * Check again in case we missed a preemption opportunity
  2259. * between schedule and now.
  2260. */
  2261. barrier();
  2262. } while (need_resched());
  2263. exception_exit(prev_state);
  2264. }
  2265. #endif /* CONFIG_PREEMPT */
  2266. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2267. void *key)
  2268. {
  2269. return try_to_wake_up(curr->private, mode, wake_flags);
  2270. }
  2271. EXPORT_SYMBOL(default_wake_function);
  2272. /*
  2273. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2274. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2275. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2276. *
  2277. * There are circumstances in which we can try to wake a task which has already
  2278. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2279. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2280. */
  2281. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2282. int nr_exclusive, int wake_flags, void *key)
  2283. {
  2284. wait_queue_t *curr, *next;
  2285. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2286. unsigned flags = curr->flags;
  2287. if (curr->func(curr, mode, wake_flags, key) &&
  2288. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2289. break;
  2290. }
  2291. }
  2292. /**
  2293. * __wake_up - wake up threads blocked on a waitqueue.
  2294. * @q: the waitqueue
  2295. * @mode: which threads
  2296. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2297. * @key: is directly passed to the wakeup function
  2298. *
  2299. * It may be assumed that this function implies a write memory barrier before
  2300. * changing the task state if and only if any tasks are woken up.
  2301. */
  2302. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2303. int nr_exclusive, void *key)
  2304. {
  2305. unsigned long flags;
  2306. spin_lock_irqsave(&q->lock, flags);
  2307. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2308. spin_unlock_irqrestore(&q->lock, flags);
  2309. }
  2310. EXPORT_SYMBOL(__wake_up);
  2311. /*
  2312. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2313. */
  2314. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2315. {
  2316. __wake_up_common(q, mode, nr, 0, NULL);
  2317. }
  2318. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2319. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2320. {
  2321. __wake_up_common(q, mode, 1, 0, key);
  2322. }
  2323. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2324. /**
  2325. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2326. * @q: the waitqueue
  2327. * @mode: which threads
  2328. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2329. * @key: opaque value to be passed to wakeup targets
  2330. *
  2331. * The sync wakeup differs that the waker knows that it will schedule
  2332. * away soon, so while the target thread will be woken up, it will not
  2333. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2334. * with each other. This can prevent needless bouncing between CPUs.
  2335. *
  2336. * On UP it can prevent extra preemption.
  2337. *
  2338. * It may be assumed that this function implies a write memory barrier before
  2339. * changing the task state if and only if any tasks are woken up.
  2340. */
  2341. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2342. int nr_exclusive, void *key)
  2343. {
  2344. unsigned long flags;
  2345. int wake_flags = WF_SYNC;
  2346. if (unlikely(!q))
  2347. return;
  2348. if (unlikely(nr_exclusive != 1))
  2349. wake_flags = 0;
  2350. spin_lock_irqsave(&q->lock, flags);
  2351. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2352. spin_unlock_irqrestore(&q->lock, flags);
  2353. }
  2354. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2355. /*
  2356. * __wake_up_sync - see __wake_up_sync_key()
  2357. */
  2358. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2359. {
  2360. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2361. }
  2362. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2363. /**
  2364. * complete: - signals a single thread waiting on this completion
  2365. * @x: holds the state of this particular completion
  2366. *
  2367. * This will wake up a single thread waiting on this completion. Threads will be
  2368. * awakened in the same order in which they were queued.
  2369. *
  2370. * See also complete_all(), wait_for_completion() and related routines.
  2371. *
  2372. * It may be assumed that this function implies a write memory barrier before
  2373. * changing the task state if and only if any tasks are woken up.
  2374. */
  2375. void complete(struct completion *x)
  2376. {
  2377. unsigned long flags;
  2378. spin_lock_irqsave(&x->wait.lock, flags);
  2379. x->done++;
  2380. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2381. spin_unlock_irqrestore(&x->wait.lock, flags);
  2382. }
  2383. EXPORT_SYMBOL(complete);
  2384. /**
  2385. * complete_all: - signals all threads waiting on this completion
  2386. * @x: holds the state of this particular completion
  2387. *
  2388. * This will wake up all threads waiting on this particular completion event.
  2389. *
  2390. * It may be assumed that this function implies a write memory barrier before
  2391. * changing the task state if and only if any tasks are woken up.
  2392. */
  2393. void complete_all(struct completion *x)
  2394. {
  2395. unsigned long flags;
  2396. spin_lock_irqsave(&x->wait.lock, flags);
  2397. x->done += UINT_MAX/2;
  2398. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2399. spin_unlock_irqrestore(&x->wait.lock, flags);
  2400. }
  2401. EXPORT_SYMBOL(complete_all);
  2402. static inline long __sched
  2403. do_wait_for_common(struct completion *x,
  2404. long (*action)(long), long timeout, int state)
  2405. {
  2406. if (!x->done) {
  2407. DECLARE_WAITQUEUE(wait, current);
  2408. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2409. do {
  2410. if (signal_pending_state(state, current)) {
  2411. timeout = -ERESTARTSYS;
  2412. break;
  2413. }
  2414. __set_current_state(state);
  2415. spin_unlock_irq(&x->wait.lock);
  2416. timeout = action(timeout);
  2417. spin_lock_irq(&x->wait.lock);
  2418. } while (!x->done && timeout);
  2419. __remove_wait_queue(&x->wait, &wait);
  2420. if (!x->done)
  2421. return timeout;
  2422. }
  2423. x->done--;
  2424. return timeout ?: 1;
  2425. }
  2426. static inline long __sched
  2427. __wait_for_common(struct completion *x,
  2428. long (*action)(long), long timeout, int state)
  2429. {
  2430. might_sleep();
  2431. spin_lock_irq(&x->wait.lock);
  2432. timeout = do_wait_for_common(x, action, timeout, state);
  2433. spin_unlock_irq(&x->wait.lock);
  2434. return timeout;
  2435. }
  2436. static long __sched
  2437. wait_for_common(struct completion *x, long timeout, int state)
  2438. {
  2439. return __wait_for_common(x, schedule_timeout, timeout, state);
  2440. }
  2441. static long __sched
  2442. wait_for_common_io(struct completion *x, long timeout, int state)
  2443. {
  2444. return __wait_for_common(x, io_schedule_timeout, timeout, state);
  2445. }
  2446. /**
  2447. * wait_for_completion: - waits for completion of a task
  2448. * @x: holds the state of this particular completion
  2449. *
  2450. * This waits to be signaled for completion of a specific task. It is NOT
  2451. * interruptible and there is no timeout.
  2452. *
  2453. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2454. * and interrupt capability. Also see complete().
  2455. */
  2456. void __sched wait_for_completion(struct completion *x)
  2457. {
  2458. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2459. }
  2460. EXPORT_SYMBOL(wait_for_completion);
  2461. /**
  2462. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2463. * @x: holds the state of this particular completion
  2464. * @timeout: timeout value in jiffies
  2465. *
  2466. * This waits for either a completion of a specific task to be signaled or for a
  2467. * specified timeout to expire. The timeout is in jiffies. It is not
  2468. * interruptible.
  2469. *
  2470. * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
  2471. * till timeout) if completed.
  2472. */
  2473. unsigned long __sched
  2474. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2475. {
  2476. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2477. }
  2478. EXPORT_SYMBOL(wait_for_completion_timeout);
  2479. /**
  2480. * wait_for_completion_io: - waits for completion of a task
  2481. * @x: holds the state of this particular completion
  2482. *
  2483. * This waits to be signaled for completion of a specific task. It is NOT
  2484. * interruptible and there is no timeout. The caller is accounted as waiting
  2485. * for IO.
  2486. */
  2487. void __sched wait_for_completion_io(struct completion *x)
  2488. {
  2489. wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2490. }
  2491. EXPORT_SYMBOL(wait_for_completion_io);
  2492. /**
  2493. * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
  2494. * @x: holds the state of this particular completion
  2495. * @timeout: timeout value in jiffies
  2496. *
  2497. * This waits for either a completion of a specific task to be signaled or for a
  2498. * specified timeout to expire. The timeout is in jiffies. It is not
  2499. * interruptible. The caller is accounted as waiting for IO.
  2500. *
  2501. * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
  2502. * till timeout) if completed.
  2503. */
  2504. unsigned long __sched
  2505. wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
  2506. {
  2507. return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
  2508. }
  2509. EXPORT_SYMBOL(wait_for_completion_io_timeout);
  2510. /**
  2511. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2512. * @x: holds the state of this particular completion
  2513. *
  2514. * This waits for completion of a specific task to be signaled. It is
  2515. * interruptible.
  2516. *
  2517. * Return: -ERESTARTSYS if interrupted, 0 if completed.
  2518. */
  2519. int __sched wait_for_completion_interruptible(struct completion *x)
  2520. {
  2521. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2522. if (t == -ERESTARTSYS)
  2523. return t;
  2524. return 0;
  2525. }
  2526. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2527. /**
  2528. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2529. * @x: holds the state of this particular completion
  2530. * @timeout: timeout value in jiffies
  2531. *
  2532. * This waits for either a completion of a specific task to be signaled or for a
  2533. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2534. *
  2535. * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
  2536. * or number of jiffies left till timeout) if completed.
  2537. */
  2538. long __sched
  2539. wait_for_completion_interruptible_timeout(struct completion *x,
  2540. unsigned long timeout)
  2541. {
  2542. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2543. }
  2544. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2545. /**
  2546. * wait_for_completion_killable: - waits for completion of a task (killable)
  2547. * @x: holds the state of this particular completion
  2548. *
  2549. * This waits to be signaled for completion of a specific task. It can be
  2550. * interrupted by a kill signal.
  2551. *
  2552. * Return: -ERESTARTSYS if interrupted, 0 if completed.
  2553. */
  2554. int __sched wait_for_completion_killable(struct completion *x)
  2555. {
  2556. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2557. if (t == -ERESTARTSYS)
  2558. return t;
  2559. return 0;
  2560. }
  2561. EXPORT_SYMBOL(wait_for_completion_killable);
  2562. /**
  2563. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2564. * @x: holds the state of this particular completion
  2565. * @timeout: timeout value in jiffies
  2566. *
  2567. * This waits for either a completion of a specific task to be
  2568. * signaled or for a specified timeout to expire. It can be
  2569. * interrupted by a kill signal. The timeout is in jiffies.
  2570. *
  2571. * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
  2572. * or number of jiffies left till timeout) if completed.
  2573. */
  2574. long __sched
  2575. wait_for_completion_killable_timeout(struct completion *x,
  2576. unsigned long timeout)
  2577. {
  2578. return wait_for_common(x, timeout, TASK_KILLABLE);
  2579. }
  2580. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2581. /**
  2582. * try_wait_for_completion - try to decrement a completion without blocking
  2583. * @x: completion structure
  2584. *
  2585. * Return: 0 if a decrement cannot be done without blocking
  2586. * 1 if a decrement succeeded.
  2587. *
  2588. * If a completion is being used as a counting completion,
  2589. * attempt to decrement the counter without blocking. This
  2590. * enables us to avoid waiting if the resource the completion
  2591. * is protecting is not available.
  2592. */
  2593. bool try_wait_for_completion(struct completion *x)
  2594. {
  2595. unsigned long flags;
  2596. int ret = 1;
  2597. spin_lock_irqsave(&x->wait.lock, flags);
  2598. if (!x->done)
  2599. ret = 0;
  2600. else
  2601. x->done--;
  2602. spin_unlock_irqrestore(&x->wait.lock, flags);
  2603. return ret;
  2604. }
  2605. EXPORT_SYMBOL(try_wait_for_completion);
  2606. /**
  2607. * completion_done - Test to see if a completion has any waiters
  2608. * @x: completion structure
  2609. *
  2610. * Return: 0 if there are waiters (wait_for_completion() in progress)
  2611. * 1 if there are no waiters.
  2612. *
  2613. */
  2614. bool completion_done(struct completion *x)
  2615. {
  2616. unsigned long flags;
  2617. int ret = 1;
  2618. spin_lock_irqsave(&x->wait.lock, flags);
  2619. if (!x->done)
  2620. ret = 0;
  2621. spin_unlock_irqrestore(&x->wait.lock, flags);
  2622. return ret;
  2623. }
  2624. EXPORT_SYMBOL(completion_done);
  2625. static long __sched
  2626. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2627. {
  2628. unsigned long flags;
  2629. wait_queue_t wait;
  2630. init_waitqueue_entry(&wait, current);
  2631. __set_current_state(state);
  2632. spin_lock_irqsave(&q->lock, flags);
  2633. __add_wait_queue(q, &wait);
  2634. spin_unlock(&q->lock);
  2635. timeout = schedule_timeout(timeout);
  2636. spin_lock_irq(&q->lock);
  2637. __remove_wait_queue(q, &wait);
  2638. spin_unlock_irqrestore(&q->lock, flags);
  2639. return timeout;
  2640. }
  2641. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2642. {
  2643. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2644. }
  2645. EXPORT_SYMBOL(interruptible_sleep_on);
  2646. long __sched
  2647. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2648. {
  2649. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2650. }
  2651. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2652. void __sched sleep_on(wait_queue_head_t *q)
  2653. {
  2654. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2655. }
  2656. EXPORT_SYMBOL(sleep_on);
  2657. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2658. {
  2659. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2660. }
  2661. EXPORT_SYMBOL(sleep_on_timeout);
  2662. #ifdef CONFIG_RT_MUTEXES
  2663. /*
  2664. * rt_mutex_setprio - set the current priority of a task
  2665. * @p: task
  2666. * @prio: prio value (kernel-internal form)
  2667. *
  2668. * This function changes the 'effective' priority of a task. It does
  2669. * not touch ->normal_prio like __setscheduler().
  2670. *
  2671. * Used by the rt_mutex code to implement priority inheritance logic.
  2672. */
  2673. void rt_mutex_setprio(struct task_struct *p, int prio)
  2674. {
  2675. int oldprio, on_rq, running;
  2676. struct rq *rq;
  2677. const struct sched_class *prev_class;
  2678. BUG_ON(prio < 0 || prio > MAX_PRIO);
  2679. rq = __task_rq_lock(p);
  2680. /*
  2681. * Idle task boosting is a nono in general. There is one
  2682. * exception, when PREEMPT_RT and NOHZ is active:
  2683. *
  2684. * The idle task calls get_next_timer_interrupt() and holds
  2685. * the timer wheel base->lock on the CPU and another CPU wants
  2686. * to access the timer (probably to cancel it). We can safely
  2687. * ignore the boosting request, as the idle CPU runs this code
  2688. * with interrupts disabled and will complete the lock
  2689. * protected section without being interrupted. So there is no
  2690. * real need to boost.
  2691. */
  2692. if (unlikely(p == rq->idle)) {
  2693. WARN_ON(p != rq->curr);
  2694. WARN_ON(p->pi_blocked_on);
  2695. goto out_unlock;
  2696. }
  2697. trace_sched_pi_setprio(p, prio);
  2698. oldprio = p->prio;
  2699. prev_class = p->sched_class;
  2700. on_rq = p->on_rq;
  2701. running = task_current(rq, p);
  2702. if (on_rq)
  2703. dequeue_task(rq, p, 0);
  2704. if (running)
  2705. p->sched_class->put_prev_task(rq, p);
  2706. if (rt_prio(prio))
  2707. p->sched_class = &rt_sched_class;
  2708. else
  2709. p->sched_class = &fair_sched_class;
  2710. p->prio = prio;
  2711. if (running)
  2712. p->sched_class->set_curr_task(rq);
  2713. if (on_rq)
  2714. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  2715. check_class_changed(rq, p, prev_class, oldprio);
  2716. out_unlock:
  2717. __task_rq_unlock(rq);
  2718. }
  2719. #endif
  2720. void set_user_nice(struct task_struct *p, long nice)
  2721. {
  2722. int old_prio, delta, on_rq;
  2723. unsigned long flags;
  2724. struct rq *rq;
  2725. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  2726. return;
  2727. /*
  2728. * We have to be careful, if called from sys_setpriority(),
  2729. * the task might be in the middle of scheduling on another CPU.
  2730. */
  2731. rq = task_rq_lock(p, &flags);
  2732. /*
  2733. * The RT priorities are set via sched_setscheduler(), but we still
  2734. * allow the 'normal' nice value to be set - but as expected
  2735. * it wont have any effect on scheduling until the task is
  2736. * SCHED_FIFO/SCHED_RR:
  2737. */
  2738. if (task_has_rt_policy(p)) {
  2739. p->static_prio = NICE_TO_PRIO(nice);
  2740. goto out_unlock;
  2741. }
  2742. on_rq = p->on_rq;
  2743. if (on_rq)
  2744. dequeue_task(rq, p, 0);
  2745. p->static_prio = NICE_TO_PRIO(nice);
  2746. set_load_weight(p);
  2747. old_prio = p->prio;
  2748. p->prio = effective_prio(p);
  2749. delta = p->prio - old_prio;
  2750. if (on_rq) {
  2751. enqueue_task(rq, p, 0);
  2752. /*
  2753. * If the task increased its priority or is running and
  2754. * lowered its priority, then reschedule its CPU:
  2755. */
  2756. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2757. resched_task(rq->curr);
  2758. }
  2759. out_unlock:
  2760. task_rq_unlock(rq, p, &flags);
  2761. }
  2762. EXPORT_SYMBOL(set_user_nice);
  2763. /*
  2764. * can_nice - check if a task can reduce its nice value
  2765. * @p: task
  2766. * @nice: nice value
  2767. */
  2768. int can_nice(const struct task_struct *p, const int nice)
  2769. {
  2770. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2771. int nice_rlim = 20 - nice;
  2772. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2773. capable(CAP_SYS_NICE));
  2774. }
  2775. #ifdef __ARCH_WANT_SYS_NICE
  2776. /*
  2777. * sys_nice - change the priority of the current process.
  2778. * @increment: priority increment
  2779. *
  2780. * sys_setpriority is a more generic, but much slower function that
  2781. * does similar things.
  2782. */
  2783. SYSCALL_DEFINE1(nice, int, increment)
  2784. {
  2785. long nice, retval;
  2786. /*
  2787. * Setpriority might change our priority at the same moment.
  2788. * We don't have to worry. Conceptually one call occurs first
  2789. * and we have a single winner.
  2790. */
  2791. if (increment < -40)
  2792. increment = -40;
  2793. if (increment > 40)
  2794. increment = 40;
  2795. nice = TASK_NICE(current) + increment;
  2796. if (nice < -20)
  2797. nice = -20;
  2798. if (nice > 19)
  2799. nice = 19;
  2800. if (increment < 0 && !can_nice(current, nice))
  2801. return -EPERM;
  2802. retval = security_task_setnice(current, nice);
  2803. if (retval)
  2804. return retval;
  2805. set_user_nice(current, nice);
  2806. return 0;
  2807. }
  2808. #endif
  2809. /**
  2810. * task_prio - return the priority value of a given task.
  2811. * @p: the task in question.
  2812. *
  2813. * Return: The priority value as seen by users in /proc.
  2814. * RT tasks are offset by -200. Normal tasks are centered
  2815. * around 0, value goes from -16 to +15.
  2816. */
  2817. int task_prio(const struct task_struct *p)
  2818. {
  2819. return p->prio - MAX_RT_PRIO;
  2820. }
  2821. /**
  2822. * task_nice - return the nice value of a given task.
  2823. * @p: the task in question.
  2824. *
  2825. * Return: The nice value [ -20 ... 0 ... 19 ].
  2826. */
  2827. int task_nice(const struct task_struct *p)
  2828. {
  2829. return TASK_NICE(p);
  2830. }
  2831. EXPORT_SYMBOL(task_nice);
  2832. /**
  2833. * idle_cpu - is a given cpu idle currently?
  2834. * @cpu: the processor in question.
  2835. *
  2836. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2837. */
  2838. int idle_cpu(int cpu)
  2839. {
  2840. struct rq *rq = cpu_rq(cpu);
  2841. if (rq->curr != rq->idle)
  2842. return 0;
  2843. if (rq->nr_running)
  2844. return 0;
  2845. #ifdef CONFIG_SMP
  2846. if (!llist_empty(&rq->wake_list))
  2847. return 0;
  2848. #endif
  2849. return 1;
  2850. }
  2851. /**
  2852. * idle_task - return the idle task for a given cpu.
  2853. * @cpu: the processor in question.
  2854. *
  2855. * Return: The idle task for the cpu @cpu.
  2856. */
  2857. struct task_struct *idle_task(int cpu)
  2858. {
  2859. return cpu_rq(cpu)->idle;
  2860. }
  2861. /**
  2862. * find_process_by_pid - find a process with a matching PID value.
  2863. * @pid: the pid in question.
  2864. *
  2865. * The task of @pid, if found. %NULL otherwise.
  2866. */
  2867. static struct task_struct *find_process_by_pid(pid_t pid)
  2868. {
  2869. return pid ? find_task_by_vpid(pid) : current;
  2870. }
  2871. /* Actually do priority change: must hold rq lock. */
  2872. static void
  2873. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  2874. {
  2875. p->policy = policy;
  2876. p->rt_priority = prio;
  2877. p->normal_prio = normal_prio(p);
  2878. /* we are holding p->pi_lock already */
  2879. p->prio = rt_mutex_getprio(p);
  2880. if (rt_prio(p->prio))
  2881. p->sched_class = &rt_sched_class;
  2882. else
  2883. p->sched_class = &fair_sched_class;
  2884. set_load_weight(p);
  2885. }
  2886. /*
  2887. * check the target process has a UID that matches the current process's
  2888. */
  2889. static bool check_same_owner(struct task_struct *p)
  2890. {
  2891. const struct cred *cred = current_cred(), *pcred;
  2892. bool match;
  2893. rcu_read_lock();
  2894. pcred = __task_cred(p);
  2895. match = (uid_eq(cred->euid, pcred->euid) ||
  2896. uid_eq(cred->euid, pcred->uid));
  2897. rcu_read_unlock();
  2898. return match;
  2899. }
  2900. static int __sched_setscheduler(struct task_struct *p, int policy,
  2901. const struct sched_param *param, bool user)
  2902. {
  2903. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2904. unsigned long flags;
  2905. const struct sched_class *prev_class;
  2906. struct rq *rq;
  2907. int reset_on_fork;
  2908. /* may grab non-irq protected spin_locks */
  2909. BUG_ON(in_interrupt());
  2910. recheck:
  2911. /* double check policy once rq lock held */
  2912. if (policy < 0) {
  2913. reset_on_fork = p->sched_reset_on_fork;
  2914. policy = oldpolicy = p->policy;
  2915. } else {
  2916. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  2917. policy &= ~SCHED_RESET_ON_FORK;
  2918. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  2919. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2920. policy != SCHED_IDLE)
  2921. return -EINVAL;
  2922. }
  2923. /*
  2924. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2925. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2926. * SCHED_BATCH and SCHED_IDLE is 0.
  2927. */
  2928. if (param->sched_priority < 0 ||
  2929. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  2930. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  2931. return -EINVAL;
  2932. if (rt_policy(policy) != (param->sched_priority != 0))
  2933. return -EINVAL;
  2934. /*
  2935. * Allow unprivileged RT tasks to decrease priority:
  2936. */
  2937. if (user && !capable(CAP_SYS_NICE)) {
  2938. if (rt_policy(policy)) {
  2939. unsigned long rlim_rtprio =
  2940. task_rlimit(p, RLIMIT_RTPRIO);
  2941. /* can't set/change the rt policy */
  2942. if (policy != p->policy && !rlim_rtprio)
  2943. return -EPERM;
  2944. /* can't increase priority */
  2945. if (param->sched_priority > p->rt_priority &&
  2946. param->sched_priority > rlim_rtprio)
  2947. return -EPERM;
  2948. }
  2949. /*
  2950. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2951. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2952. */
  2953. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2954. if (!can_nice(p, TASK_NICE(p)))
  2955. return -EPERM;
  2956. }
  2957. /* can't change other user's priorities */
  2958. if (!check_same_owner(p))
  2959. return -EPERM;
  2960. /* Normal users shall not reset the sched_reset_on_fork flag */
  2961. if (p->sched_reset_on_fork && !reset_on_fork)
  2962. return -EPERM;
  2963. }
  2964. if (user) {
  2965. retval = security_task_setscheduler(p);
  2966. if (retval)
  2967. return retval;
  2968. }
  2969. /*
  2970. * make sure no PI-waiters arrive (or leave) while we are
  2971. * changing the priority of the task:
  2972. *
  2973. * To be able to change p->policy safely, the appropriate
  2974. * runqueue lock must be held.
  2975. */
  2976. rq = task_rq_lock(p, &flags);
  2977. /*
  2978. * Changing the policy of the stop threads its a very bad idea
  2979. */
  2980. if (p == rq->stop) {
  2981. task_rq_unlock(rq, p, &flags);
  2982. return -EINVAL;
  2983. }
  2984. /*
  2985. * If not changing anything there's no need to proceed further:
  2986. */
  2987. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  2988. param->sched_priority == p->rt_priority))) {
  2989. task_rq_unlock(rq, p, &flags);
  2990. return 0;
  2991. }
  2992. #ifdef CONFIG_RT_GROUP_SCHED
  2993. if (user) {
  2994. /*
  2995. * Do not allow realtime tasks into groups that have no runtime
  2996. * assigned.
  2997. */
  2998. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2999. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3000. !task_group_is_autogroup(task_group(p))) {
  3001. task_rq_unlock(rq, p, &flags);
  3002. return -EPERM;
  3003. }
  3004. }
  3005. #endif
  3006. /* recheck policy now with rq lock held */
  3007. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3008. policy = oldpolicy = -1;
  3009. task_rq_unlock(rq, p, &flags);
  3010. goto recheck;
  3011. }
  3012. on_rq = p->on_rq;
  3013. running = task_current(rq, p);
  3014. if (on_rq)
  3015. dequeue_task(rq, p, 0);
  3016. if (running)
  3017. p->sched_class->put_prev_task(rq, p);
  3018. p->sched_reset_on_fork = reset_on_fork;
  3019. oldprio = p->prio;
  3020. prev_class = p->sched_class;
  3021. __setscheduler(rq, p, policy, param->sched_priority);
  3022. if (running)
  3023. p->sched_class->set_curr_task(rq);
  3024. if (on_rq)
  3025. enqueue_task(rq, p, 0);
  3026. check_class_changed(rq, p, prev_class, oldprio);
  3027. task_rq_unlock(rq, p, &flags);
  3028. rt_mutex_adjust_pi(p);
  3029. return 0;
  3030. }
  3031. /**
  3032. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3033. * @p: the task in question.
  3034. * @policy: new policy.
  3035. * @param: structure containing the new RT priority.
  3036. *
  3037. * Return: 0 on success. An error code otherwise.
  3038. *
  3039. * NOTE that the task may be already dead.
  3040. */
  3041. int sched_setscheduler(struct task_struct *p, int policy,
  3042. const struct sched_param *param)
  3043. {
  3044. return __sched_setscheduler(p, policy, param, true);
  3045. }
  3046. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3047. /**
  3048. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3049. * @p: the task in question.
  3050. * @policy: new policy.
  3051. * @param: structure containing the new RT priority.
  3052. *
  3053. * Just like sched_setscheduler, only don't bother checking if the
  3054. * current context has permission. For example, this is needed in
  3055. * stop_machine(): we create temporary high priority worker threads,
  3056. * but our caller might not have that capability.
  3057. *
  3058. * Return: 0 on success. An error code otherwise.
  3059. */
  3060. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3061. const struct sched_param *param)
  3062. {
  3063. return __sched_setscheduler(p, policy, param, false);
  3064. }
  3065. static int
  3066. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3067. {
  3068. struct sched_param lparam;
  3069. struct task_struct *p;
  3070. int retval;
  3071. if (!param || pid < 0)
  3072. return -EINVAL;
  3073. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3074. return -EFAULT;
  3075. rcu_read_lock();
  3076. retval = -ESRCH;
  3077. p = find_process_by_pid(pid);
  3078. if (p != NULL)
  3079. retval = sched_setscheduler(p, policy, &lparam);
  3080. rcu_read_unlock();
  3081. return retval;
  3082. }
  3083. /**
  3084. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3085. * @pid: the pid in question.
  3086. * @policy: new policy.
  3087. * @param: structure containing the new RT priority.
  3088. *
  3089. * Return: 0 on success. An error code otherwise.
  3090. */
  3091. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3092. struct sched_param __user *, param)
  3093. {
  3094. /* negative values for policy are not valid */
  3095. if (policy < 0)
  3096. return -EINVAL;
  3097. return do_sched_setscheduler(pid, policy, param);
  3098. }
  3099. /**
  3100. * sys_sched_setparam - set/change the RT priority of a thread
  3101. * @pid: the pid in question.
  3102. * @param: structure containing the new RT priority.
  3103. *
  3104. * Return: 0 on success. An error code otherwise.
  3105. */
  3106. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3107. {
  3108. return do_sched_setscheduler(pid, -1, param);
  3109. }
  3110. /**
  3111. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3112. * @pid: the pid in question.
  3113. *
  3114. * Return: On success, the policy of the thread. Otherwise, a negative error
  3115. * code.
  3116. */
  3117. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3118. {
  3119. struct task_struct *p;
  3120. int retval;
  3121. if (pid < 0)
  3122. return -EINVAL;
  3123. retval = -ESRCH;
  3124. rcu_read_lock();
  3125. p = find_process_by_pid(pid);
  3126. if (p) {
  3127. retval = security_task_getscheduler(p);
  3128. if (!retval)
  3129. retval = p->policy
  3130. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3131. }
  3132. rcu_read_unlock();
  3133. return retval;
  3134. }
  3135. /**
  3136. * sys_sched_getparam - get the RT priority of a thread
  3137. * @pid: the pid in question.
  3138. * @param: structure containing the RT priority.
  3139. *
  3140. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3141. * code.
  3142. */
  3143. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3144. {
  3145. struct sched_param lp;
  3146. struct task_struct *p;
  3147. int retval;
  3148. if (!param || pid < 0)
  3149. return -EINVAL;
  3150. rcu_read_lock();
  3151. p = find_process_by_pid(pid);
  3152. retval = -ESRCH;
  3153. if (!p)
  3154. goto out_unlock;
  3155. retval = security_task_getscheduler(p);
  3156. if (retval)
  3157. goto out_unlock;
  3158. lp.sched_priority = p->rt_priority;
  3159. rcu_read_unlock();
  3160. /*
  3161. * This one might sleep, we cannot do it with a spinlock held ...
  3162. */
  3163. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3164. return retval;
  3165. out_unlock:
  3166. rcu_read_unlock();
  3167. return retval;
  3168. }
  3169. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3170. {
  3171. cpumask_var_t cpus_allowed, new_mask;
  3172. struct task_struct *p;
  3173. int retval;
  3174. get_online_cpus();
  3175. rcu_read_lock();
  3176. p = find_process_by_pid(pid);
  3177. if (!p) {
  3178. rcu_read_unlock();
  3179. put_online_cpus();
  3180. return -ESRCH;
  3181. }
  3182. /* Prevent p going away */
  3183. get_task_struct(p);
  3184. rcu_read_unlock();
  3185. if (p->flags & PF_NO_SETAFFINITY) {
  3186. retval = -EINVAL;
  3187. goto out_put_task;
  3188. }
  3189. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3190. retval = -ENOMEM;
  3191. goto out_put_task;
  3192. }
  3193. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3194. retval = -ENOMEM;
  3195. goto out_free_cpus_allowed;
  3196. }
  3197. retval = -EPERM;
  3198. if (!check_same_owner(p)) {
  3199. rcu_read_lock();
  3200. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3201. rcu_read_unlock();
  3202. goto out_unlock;
  3203. }
  3204. rcu_read_unlock();
  3205. }
  3206. retval = security_task_setscheduler(p);
  3207. if (retval)
  3208. goto out_unlock;
  3209. cpuset_cpus_allowed(p, cpus_allowed);
  3210. cpumask_and(new_mask, in_mask, cpus_allowed);
  3211. again:
  3212. retval = set_cpus_allowed_ptr(p, new_mask);
  3213. if (!retval) {
  3214. cpuset_cpus_allowed(p, cpus_allowed);
  3215. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3216. /*
  3217. * We must have raced with a concurrent cpuset
  3218. * update. Just reset the cpus_allowed to the
  3219. * cpuset's cpus_allowed
  3220. */
  3221. cpumask_copy(new_mask, cpus_allowed);
  3222. goto again;
  3223. }
  3224. }
  3225. out_unlock:
  3226. free_cpumask_var(new_mask);
  3227. out_free_cpus_allowed:
  3228. free_cpumask_var(cpus_allowed);
  3229. out_put_task:
  3230. put_task_struct(p);
  3231. put_online_cpus();
  3232. return retval;
  3233. }
  3234. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3235. struct cpumask *new_mask)
  3236. {
  3237. if (len < cpumask_size())
  3238. cpumask_clear(new_mask);
  3239. else if (len > cpumask_size())
  3240. len = cpumask_size();
  3241. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3242. }
  3243. /**
  3244. * sys_sched_setaffinity - set the cpu affinity of a process
  3245. * @pid: pid of the process
  3246. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3247. * @user_mask_ptr: user-space pointer to the new cpu mask
  3248. *
  3249. * Return: 0 on success. An error code otherwise.
  3250. */
  3251. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3252. unsigned long __user *, user_mask_ptr)
  3253. {
  3254. cpumask_var_t new_mask;
  3255. int retval;
  3256. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3257. return -ENOMEM;
  3258. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3259. if (retval == 0)
  3260. retval = sched_setaffinity(pid, new_mask);
  3261. free_cpumask_var(new_mask);
  3262. return retval;
  3263. }
  3264. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3265. {
  3266. struct task_struct *p;
  3267. unsigned long flags;
  3268. int retval;
  3269. get_online_cpus();
  3270. rcu_read_lock();
  3271. retval = -ESRCH;
  3272. p = find_process_by_pid(pid);
  3273. if (!p)
  3274. goto out_unlock;
  3275. retval = security_task_getscheduler(p);
  3276. if (retval)
  3277. goto out_unlock;
  3278. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3279. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3280. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3281. out_unlock:
  3282. rcu_read_unlock();
  3283. put_online_cpus();
  3284. return retval;
  3285. }
  3286. /**
  3287. * sys_sched_getaffinity - get the cpu affinity of a process
  3288. * @pid: pid of the process
  3289. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3290. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3291. *
  3292. * Return: 0 on success. An error code otherwise.
  3293. */
  3294. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3295. unsigned long __user *, user_mask_ptr)
  3296. {
  3297. int ret;
  3298. cpumask_var_t mask;
  3299. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3300. return -EINVAL;
  3301. if (len & (sizeof(unsigned long)-1))
  3302. return -EINVAL;
  3303. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3304. return -ENOMEM;
  3305. ret = sched_getaffinity(pid, mask);
  3306. if (ret == 0) {
  3307. size_t retlen = min_t(size_t, len, cpumask_size());
  3308. if (copy_to_user(user_mask_ptr, mask, retlen))
  3309. ret = -EFAULT;
  3310. else
  3311. ret = retlen;
  3312. }
  3313. free_cpumask_var(mask);
  3314. return ret;
  3315. }
  3316. /**
  3317. * sys_sched_yield - yield the current processor to other threads.
  3318. *
  3319. * This function yields the current CPU to other tasks. If there are no
  3320. * other threads running on this CPU then this function will return.
  3321. *
  3322. * Return: 0.
  3323. */
  3324. SYSCALL_DEFINE0(sched_yield)
  3325. {
  3326. struct rq *rq = this_rq_lock();
  3327. schedstat_inc(rq, yld_count);
  3328. current->sched_class->yield_task(rq);
  3329. /*
  3330. * Since we are going to call schedule() anyway, there's
  3331. * no need to preempt or enable interrupts:
  3332. */
  3333. __release(rq->lock);
  3334. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3335. do_raw_spin_unlock(&rq->lock);
  3336. sched_preempt_enable_no_resched();
  3337. schedule();
  3338. return 0;
  3339. }
  3340. static void __cond_resched(void)
  3341. {
  3342. __preempt_count_add(PREEMPT_ACTIVE);
  3343. __schedule();
  3344. __preempt_count_sub(PREEMPT_ACTIVE);
  3345. }
  3346. int __sched _cond_resched(void)
  3347. {
  3348. if (should_resched()) {
  3349. __cond_resched();
  3350. return 1;
  3351. }
  3352. return 0;
  3353. }
  3354. EXPORT_SYMBOL(_cond_resched);
  3355. /*
  3356. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3357. * call schedule, and on return reacquire the lock.
  3358. *
  3359. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3360. * operations here to prevent schedule() from being called twice (once via
  3361. * spin_unlock(), once by hand).
  3362. */
  3363. int __cond_resched_lock(spinlock_t *lock)
  3364. {
  3365. int resched = should_resched();
  3366. int ret = 0;
  3367. lockdep_assert_held(lock);
  3368. if (spin_needbreak(lock) || resched) {
  3369. spin_unlock(lock);
  3370. if (resched)
  3371. __cond_resched();
  3372. else
  3373. cpu_relax();
  3374. ret = 1;
  3375. spin_lock(lock);
  3376. }
  3377. return ret;
  3378. }
  3379. EXPORT_SYMBOL(__cond_resched_lock);
  3380. int __sched __cond_resched_softirq(void)
  3381. {
  3382. BUG_ON(!in_softirq());
  3383. if (should_resched()) {
  3384. local_bh_enable();
  3385. __cond_resched();
  3386. local_bh_disable();
  3387. return 1;
  3388. }
  3389. return 0;
  3390. }
  3391. EXPORT_SYMBOL(__cond_resched_softirq);
  3392. /**
  3393. * yield - yield the current processor to other threads.
  3394. *
  3395. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3396. *
  3397. * The scheduler is at all times free to pick the calling task as the most
  3398. * eligible task to run, if removing the yield() call from your code breaks
  3399. * it, its already broken.
  3400. *
  3401. * Typical broken usage is:
  3402. *
  3403. * while (!event)
  3404. * yield();
  3405. *
  3406. * where one assumes that yield() will let 'the other' process run that will
  3407. * make event true. If the current task is a SCHED_FIFO task that will never
  3408. * happen. Never use yield() as a progress guarantee!!
  3409. *
  3410. * If you want to use yield() to wait for something, use wait_event().
  3411. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3412. * If you still want to use yield(), do not!
  3413. */
  3414. void __sched yield(void)
  3415. {
  3416. set_current_state(TASK_RUNNING);
  3417. sys_sched_yield();
  3418. }
  3419. EXPORT_SYMBOL(yield);
  3420. /**
  3421. * yield_to - yield the current processor to another thread in
  3422. * your thread group, or accelerate that thread toward the
  3423. * processor it's on.
  3424. * @p: target task
  3425. * @preempt: whether task preemption is allowed or not
  3426. *
  3427. * It's the caller's job to ensure that the target task struct
  3428. * can't go away on us before we can do any checks.
  3429. *
  3430. * Return:
  3431. * true (>0) if we indeed boosted the target task.
  3432. * false (0) if we failed to boost the target.
  3433. * -ESRCH if there's no task to yield to.
  3434. */
  3435. bool __sched yield_to(struct task_struct *p, bool preempt)
  3436. {
  3437. struct task_struct *curr = current;
  3438. struct rq *rq, *p_rq;
  3439. unsigned long flags;
  3440. int yielded = 0;
  3441. local_irq_save(flags);
  3442. rq = this_rq();
  3443. again:
  3444. p_rq = task_rq(p);
  3445. /*
  3446. * If we're the only runnable task on the rq and target rq also
  3447. * has only one task, there's absolutely no point in yielding.
  3448. */
  3449. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3450. yielded = -ESRCH;
  3451. goto out_irq;
  3452. }
  3453. double_rq_lock(rq, p_rq);
  3454. while (task_rq(p) != p_rq) {
  3455. double_rq_unlock(rq, p_rq);
  3456. goto again;
  3457. }
  3458. if (!curr->sched_class->yield_to_task)
  3459. goto out_unlock;
  3460. if (curr->sched_class != p->sched_class)
  3461. goto out_unlock;
  3462. if (task_running(p_rq, p) || p->state)
  3463. goto out_unlock;
  3464. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3465. if (yielded) {
  3466. schedstat_inc(rq, yld_count);
  3467. /*
  3468. * Make p's CPU reschedule; pick_next_entity takes care of
  3469. * fairness.
  3470. */
  3471. if (preempt && rq != p_rq)
  3472. resched_task(p_rq->curr);
  3473. }
  3474. out_unlock:
  3475. double_rq_unlock(rq, p_rq);
  3476. out_irq:
  3477. local_irq_restore(flags);
  3478. if (yielded > 0)
  3479. schedule();
  3480. return yielded;
  3481. }
  3482. EXPORT_SYMBOL_GPL(yield_to);
  3483. /*
  3484. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3485. * that process accounting knows that this is a task in IO wait state.
  3486. */
  3487. void __sched io_schedule(void)
  3488. {
  3489. struct rq *rq = raw_rq();
  3490. delayacct_blkio_start();
  3491. atomic_inc(&rq->nr_iowait);
  3492. blk_flush_plug(current);
  3493. current->in_iowait = 1;
  3494. schedule();
  3495. current->in_iowait = 0;
  3496. atomic_dec(&rq->nr_iowait);
  3497. delayacct_blkio_end();
  3498. }
  3499. EXPORT_SYMBOL(io_schedule);
  3500. long __sched io_schedule_timeout(long timeout)
  3501. {
  3502. struct rq *rq = raw_rq();
  3503. long ret;
  3504. delayacct_blkio_start();
  3505. atomic_inc(&rq->nr_iowait);
  3506. blk_flush_plug(current);
  3507. current->in_iowait = 1;
  3508. ret = schedule_timeout(timeout);
  3509. current->in_iowait = 0;
  3510. atomic_dec(&rq->nr_iowait);
  3511. delayacct_blkio_end();
  3512. return ret;
  3513. }
  3514. /**
  3515. * sys_sched_get_priority_max - return maximum RT priority.
  3516. * @policy: scheduling class.
  3517. *
  3518. * Return: On success, this syscall returns the maximum
  3519. * rt_priority that can be used by a given scheduling class.
  3520. * On failure, a negative error code is returned.
  3521. */
  3522. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3523. {
  3524. int ret = -EINVAL;
  3525. switch (policy) {
  3526. case SCHED_FIFO:
  3527. case SCHED_RR:
  3528. ret = MAX_USER_RT_PRIO-1;
  3529. break;
  3530. case SCHED_NORMAL:
  3531. case SCHED_BATCH:
  3532. case SCHED_IDLE:
  3533. ret = 0;
  3534. break;
  3535. }
  3536. return ret;
  3537. }
  3538. /**
  3539. * sys_sched_get_priority_min - return minimum RT priority.
  3540. * @policy: scheduling class.
  3541. *
  3542. * Return: On success, this syscall returns the minimum
  3543. * rt_priority that can be used by a given scheduling class.
  3544. * On failure, a negative error code is returned.
  3545. */
  3546. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3547. {
  3548. int ret = -EINVAL;
  3549. switch (policy) {
  3550. case SCHED_FIFO:
  3551. case SCHED_RR:
  3552. ret = 1;
  3553. break;
  3554. case SCHED_NORMAL:
  3555. case SCHED_BATCH:
  3556. case SCHED_IDLE:
  3557. ret = 0;
  3558. }
  3559. return ret;
  3560. }
  3561. /**
  3562. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3563. * @pid: pid of the process.
  3564. * @interval: userspace pointer to the timeslice value.
  3565. *
  3566. * this syscall writes the default timeslice value of a given process
  3567. * into the user-space timespec buffer. A value of '0' means infinity.
  3568. *
  3569. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3570. * an error code.
  3571. */
  3572. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3573. struct timespec __user *, interval)
  3574. {
  3575. struct task_struct *p;
  3576. unsigned int time_slice;
  3577. unsigned long flags;
  3578. struct rq *rq;
  3579. int retval;
  3580. struct timespec t;
  3581. if (pid < 0)
  3582. return -EINVAL;
  3583. retval = -ESRCH;
  3584. rcu_read_lock();
  3585. p = find_process_by_pid(pid);
  3586. if (!p)
  3587. goto out_unlock;
  3588. retval = security_task_getscheduler(p);
  3589. if (retval)
  3590. goto out_unlock;
  3591. rq = task_rq_lock(p, &flags);
  3592. time_slice = p->sched_class->get_rr_interval(rq, p);
  3593. task_rq_unlock(rq, p, &flags);
  3594. rcu_read_unlock();
  3595. jiffies_to_timespec(time_slice, &t);
  3596. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3597. return retval;
  3598. out_unlock:
  3599. rcu_read_unlock();
  3600. return retval;
  3601. }
  3602. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3603. void sched_show_task(struct task_struct *p)
  3604. {
  3605. unsigned long free = 0;
  3606. int ppid;
  3607. unsigned state;
  3608. state = p->state ? __ffs(p->state) + 1 : 0;
  3609. printk(KERN_INFO "%-15.15s %c", p->comm,
  3610. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3611. #if BITS_PER_LONG == 32
  3612. if (state == TASK_RUNNING)
  3613. printk(KERN_CONT " running ");
  3614. else
  3615. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3616. #else
  3617. if (state == TASK_RUNNING)
  3618. printk(KERN_CONT " running task ");
  3619. else
  3620. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3621. #endif
  3622. #ifdef CONFIG_DEBUG_STACK_USAGE
  3623. free = stack_not_used(p);
  3624. #endif
  3625. rcu_read_lock();
  3626. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3627. rcu_read_unlock();
  3628. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3629. task_pid_nr(p), ppid,
  3630. (unsigned long)task_thread_info(p)->flags);
  3631. print_worker_info(KERN_INFO, p);
  3632. show_stack(p, NULL);
  3633. }
  3634. void show_state_filter(unsigned long state_filter)
  3635. {
  3636. struct task_struct *g, *p;
  3637. #if BITS_PER_LONG == 32
  3638. printk(KERN_INFO
  3639. " task PC stack pid father\n");
  3640. #else
  3641. printk(KERN_INFO
  3642. " task PC stack pid father\n");
  3643. #endif
  3644. rcu_read_lock();
  3645. do_each_thread(g, p) {
  3646. /*
  3647. * reset the NMI-timeout, listing all files on a slow
  3648. * console might take a lot of time:
  3649. */
  3650. touch_nmi_watchdog();
  3651. if (!state_filter || (p->state & state_filter))
  3652. sched_show_task(p);
  3653. } while_each_thread(g, p);
  3654. touch_all_softlockup_watchdogs();
  3655. #ifdef CONFIG_SCHED_DEBUG
  3656. sysrq_sched_debug_show();
  3657. #endif
  3658. rcu_read_unlock();
  3659. /*
  3660. * Only show locks if all tasks are dumped:
  3661. */
  3662. if (!state_filter)
  3663. debug_show_all_locks();
  3664. }
  3665. void init_idle_bootup_task(struct task_struct *idle)
  3666. {
  3667. idle->sched_class = &idle_sched_class;
  3668. }
  3669. /**
  3670. * init_idle - set up an idle thread for a given CPU
  3671. * @idle: task in question
  3672. * @cpu: cpu the idle task belongs to
  3673. *
  3674. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3675. * flag, to make booting more robust.
  3676. */
  3677. void init_idle(struct task_struct *idle, int cpu)
  3678. {
  3679. struct rq *rq = cpu_rq(cpu);
  3680. unsigned long flags;
  3681. raw_spin_lock_irqsave(&rq->lock, flags);
  3682. __sched_fork(0, idle);
  3683. idle->state = TASK_RUNNING;
  3684. idle->se.exec_start = sched_clock();
  3685. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3686. /*
  3687. * We're having a chicken and egg problem, even though we are
  3688. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3689. * lockdep check in task_group() will fail.
  3690. *
  3691. * Similar case to sched_fork(). / Alternatively we could
  3692. * use task_rq_lock() here and obtain the other rq->lock.
  3693. *
  3694. * Silence PROVE_RCU
  3695. */
  3696. rcu_read_lock();
  3697. __set_task_cpu(idle, cpu);
  3698. rcu_read_unlock();
  3699. rq->curr = rq->idle = idle;
  3700. #if defined(CONFIG_SMP)
  3701. idle->on_cpu = 1;
  3702. #endif
  3703. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3704. /* Set the preempt count _outside_ the spinlocks! */
  3705. init_idle_preempt_count(idle, cpu);
  3706. /*
  3707. * The idle tasks have their own, simple scheduling class:
  3708. */
  3709. idle->sched_class = &idle_sched_class;
  3710. ftrace_graph_init_idle_task(idle, cpu);
  3711. vtime_init_idle(idle, cpu);
  3712. #if defined(CONFIG_SMP)
  3713. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3714. #endif
  3715. }
  3716. #ifdef CONFIG_SMP
  3717. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3718. {
  3719. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3720. p->sched_class->set_cpus_allowed(p, new_mask);
  3721. cpumask_copy(&p->cpus_allowed, new_mask);
  3722. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3723. }
  3724. /*
  3725. * This is how migration works:
  3726. *
  3727. * 1) we invoke migration_cpu_stop() on the target CPU using
  3728. * stop_one_cpu().
  3729. * 2) stopper starts to run (implicitly forcing the migrated thread
  3730. * off the CPU)
  3731. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3732. * 4) if it's in the wrong runqueue then the migration thread removes
  3733. * it and puts it into the right queue.
  3734. * 5) stopper completes and stop_one_cpu() returns and the migration
  3735. * is done.
  3736. */
  3737. /*
  3738. * Change a given task's CPU affinity. Migrate the thread to a
  3739. * proper CPU and schedule it away if the CPU it's executing on
  3740. * is removed from the allowed bitmask.
  3741. *
  3742. * NOTE: the caller must have a valid reference to the task, the
  3743. * task must not exit() & deallocate itself prematurely. The
  3744. * call is not atomic; no spinlocks may be held.
  3745. */
  3746. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3747. {
  3748. unsigned long flags;
  3749. struct rq *rq;
  3750. unsigned int dest_cpu;
  3751. int ret = 0;
  3752. rq = task_rq_lock(p, &flags);
  3753. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3754. goto out;
  3755. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3756. ret = -EINVAL;
  3757. goto out;
  3758. }
  3759. do_set_cpus_allowed(p, new_mask);
  3760. /* Can the task run on the task's current CPU? If so, we're done */
  3761. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3762. goto out;
  3763. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3764. if (p->on_rq) {
  3765. struct migration_arg arg = { p, dest_cpu };
  3766. /* Need help from migration thread: drop lock and wait. */
  3767. task_rq_unlock(rq, p, &flags);
  3768. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3769. tlb_migrate_finish(p->mm);
  3770. return 0;
  3771. }
  3772. out:
  3773. task_rq_unlock(rq, p, &flags);
  3774. return ret;
  3775. }
  3776. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3777. /*
  3778. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3779. * this because either it can't run here any more (set_cpus_allowed()
  3780. * away from this CPU, or CPU going down), or because we're
  3781. * attempting to rebalance this task on exec (sched_exec).
  3782. *
  3783. * So we race with normal scheduler movements, but that's OK, as long
  3784. * as the task is no longer on this CPU.
  3785. *
  3786. * Returns non-zero if task was successfully migrated.
  3787. */
  3788. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3789. {
  3790. struct rq *rq_dest, *rq_src;
  3791. int ret = 0;
  3792. if (unlikely(!cpu_active(dest_cpu)))
  3793. return ret;
  3794. rq_src = cpu_rq(src_cpu);
  3795. rq_dest = cpu_rq(dest_cpu);
  3796. raw_spin_lock(&p->pi_lock);
  3797. double_rq_lock(rq_src, rq_dest);
  3798. /* Already moved. */
  3799. if (task_cpu(p) != src_cpu)
  3800. goto done;
  3801. /* Affinity changed (again). */
  3802. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3803. goto fail;
  3804. /*
  3805. * If we're not on a rq, the next wake-up will ensure we're
  3806. * placed properly.
  3807. */
  3808. if (p->on_rq) {
  3809. dequeue_task(rq_src, p, 0);
  3810. set_task_cpu(p, dest_cpu);
  3811. enqueue_task(rq_dest, p, 0);
  3812. check_preempt_curr(rq_dest, p, 0);
  3813. }
  3814. done:
  3815. ret = 1;
  3816. fail:
  3817. double_rq_unlock(rq_src, rq_dest);
  3818. raw_spin_unlock(&p->pi_lock);
  3819. return ret;
  3820. }
  3821. #ifdef CONFIG_NUMA_BALANCING
  3822. /* Migrate current task p to target_cpu */
  3823. int migrate_task_to(struct task_struct *p, int target_cpu)
  3824. {
  3825. struct migration_arg arg = { p, target_cpu };
  3826. int curr_cpu = task_cpu(p);
  3827. if (curr_cpu == target_cpu)
  3828. return 0;
  3829. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  3830. return -EINVAL;
  3831. /* TODO: This is not properly updating schedstats */
  3832. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  3833. }
  3834. /*
  3835. * Requeue a task on a given node and accurately track the number of NUMA
  3836. * tasks on the runqueues
  3837. */
  3838. void sched_setnuma(struct task_struct *p, int nid)
  3839. {
  3840. struct rq *rq;
  3841. unsigned long flags;
  3842. bool on_rq, running;
  3843. rq = task_rq_lock(p, &flags);
  3844. on_rq = p->on_rq;
  3845. running = task_current(rq, p);
  3846. if (on_rq)
  3847. dequeue_task(rq, p, 0);
  3848. if (running)
  3849. p->sched_class->put_prev_task(rq, p);
  3850. p->numa_preferred_nid = nid;
  3851. if (running)
  3852. p->sched_class->set_curr_task(rq);
  3853. if (on_rq)
  3854. enqueue_task(rq, p, 0);
  3855. task_rq_unlock(rq, p, &flags);
  3856. }
  3857. #endif
  3858. /*
  3859. * migration_cpu_stop - this will be executed by a highprio stopper thread
  3860. * and performs thread migration by bumping thread off CPU then
  3861. * 'pushing' onto another runqueue.
  3862. */
  3863. static int migration_cpu_stop(void *data)
  3864. {
  3865. struct migration_arg *arg = data;
  3866. /*
  3867. * The original target cpu might have gone down and we might
  3868. * be on another cpu but it doesn't matter.
  3869. */
  3870. local_irq_disable();
  3871. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  3872. local_irq_enable();
  3873. return 0;
  3874. }
  3875. #ifdef CONFIG_HOTPLUG_CPU
  3876. /*
  3877. * Ensures that the idle task is using init_mm right before its cpu goes
  3878. * offline.
  3879. */
  3880. void idle_task_exit(void)
  3881. {
  3882. struct mm_struct *mm = current->active_mm;
  3883. BUG_ON(cpu_online(smp_processor_id()));
  3884. if (mm != &init_mm)
  3885. switch_mm(mm, &init_mm, current);
  3886. mmdrop(mm);
  3887. }
  3888. /*
  3889. * Since this CPU is going 'away' for a while, fold any nr_active delta
  3890. * we might have. Assumes we're called after migrate_tasks() so that the
  3891. * nr_active count is stable.
  3892. *
  3893. * Also see the comment "Global load-average calculations".
  3894. */
  3895. static void calc_load_migrate(struct rq *rq)
  3896. {
  3897. long delta = calc_load_fold_active(rq);
  3898. if (delta)
  3899. atomic_long_add(delta, &calc_load_tasks);
  3900. }
  3901. /*
  3902. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  3903. * try_to_wake_up()->select_task_rq().
  3904. *
  3905. * Called with rq->lock held even though we'er in stop_machine() and
  3906. * there's no concurrency possible, we hold the required locks anyway
  3907. * because of lock validation efforts.
  3908. */
  3909. static void migrate_tasks(unsigned int dead_cpu)
  3910. {
  3911. struct rq *rq = cpu_rq(dead_cpu);
  3912. struct task_struct *next, *stop = rq->stop;
  3913. int dest_cpu;
  3914. /*
  3915. * Fudge the rq selection such that the below task selection loop
  3916. * doesn't get stuck on the currently eligible stop task.
  3917. *
  3918. * We're currently inside stop_machine() and the rq is either stuck
  3919. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  3920. * either way we should never end up calling schedule() until we're
  3921. * done here.
  3922. */
  3923. rq->stop = NULL;
  3924. /*
  3925. * put_prev_task() and pick_next_task() sched
  3926. * class method both need to have an up-to-date
  3927. * value of rq->clock[_task]
  3928. */
  3929. update_rq_clock(rq);
  3930. for ( ; ; ) {
  3931. /*
  3932. * There's this thread running, bail when that's the only
  3933. * remaining thread.
  3934. */
  3935. if (rq->nr_running == 1)
  3936. break;
  3937. next = pick_next_task(rq);
  3938. BUG_ON(!next);
  3939. next->sched_class->put_prev_task(rq, next);
  3940. /* Find suitable destination for @next, with force if needed. */
  3941. dest_cpu = select_fallback_rq(dead_cpu, next);
  3942. raw_spin_unlock(&rq->lock);
  3943. __migrate_task(next, dead_cpu, dest_cpu);
  3944. raw_spin_lock(&rq->lock);
  3945. }
  3946. rq->stop = stop;
  3947. }
  3948. #endif /* CONFIG_HOTPLUG_CPU */
  3949. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  3950. static struct ctl_table sd_ctl_dir[] = {
  3951. {
  3952. .procname = "sched_domain",
  3953. .mode = 0555,
  3954. },
  3955. {}
  3956. };
  3957. static struct ctl_table sd_ctl_root[] = {
  3958. {
  3959. .procname = "kernel",
  3960. .mode = 0555,
  3961. .child = sd_ctl_dir,
  3962. },
  3963. {}
  3964. };
  3965. static struct ctl_table *sd_alloc_ctl_entry(int n)
  3966. {
  3967. struct ctl_table *entry =
  3968. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  3969. return entry;
  3970. }
  3971. static void sd_free_ctl_entry(struct ctl_table **tablep)
  3972. {
  3973. struct ctl_table *entry;
  3974. /*
  3975. * In the intermediate directories, both the child directory and
  3976. * procname are dynamically allocated and could fail but the mode
  3977. * will always be set. In the lowest directory the names are
  3978. * static strings and all have proc handlers.
  3979. */
  3980. for (entry = *tablep; entry->mode; entry++) {
  3981. if (entry->child)
  3982. sd_free_ctl_entry(&entry->child);
  3983. if (entry->proc_handler == NULL)
  3984. kfree(entry->procname);
  3985. }
  3986. kfree(*tablep);
  3987. *tablep = NULL;
  3988. }
  3989. static int min_load_idx = 0;
  3990. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  3991. static void
  3992. set_table_entry(struct ctl_table *entry,
  3993. const char *procname, void *data, int maxlen,
  3994. umode_t mode, proc_handler *proc_handler,
  3995. bool load_idx)
  3996. {
  3997. entry->procname = procname;
  3998. entry->data = data;
  3999. entry->maxlen = maxlen;
  4000. entry->mode = mode;
  4001. entry->proc_handler = proc_handler;
  4002. if (load_idx) {
  4003. entry->extra1 = &min_load_idx;
  4004. entry->extra2 = &max_load_idx;
  4005. }
  4006. }
  4007. static struct ctl_table *
  4008. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4009. {
  4010. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4011. if (table == NULL)
  4012. return NULL;
  4013. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4014. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4015. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4016. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4017. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4018. sizeof(int), 0644, proc_dointvec_minmax, true);
  4019. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4020. sizeof(int), 0644, proc_dointvec_minmax, true);
  4021. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4022. sizeof(int), 0644, proc_dointvec_minmax, true);
  4023. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4024. sizeof(int), 0644, proc_dointvec_minmax, true);
  4025. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4026. sizeof(int), 0644, proc_dointvec_minmax, true);
  4027. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4028. sizeof(int), 0644, proc_dointvec_minmax, false);
  4029. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4030. sizeof(int), 0644, proc_dointvec_minmax, false);
  4031. set_table_entry(&table[9], "cache_nice_tries",
  4032. &sd->cache_nice_tries,
  4033. sizeof(int), 0644, proc_dointvec_minmax, false);
  4034. set_table_entry(&table[10], "flags", &sd->flags,
  4035. sizeof(int), 0644, proc_dointvec_minmax, false);
  4036. set_table_entry(&table[11], "name", sd->name,
  4037. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4038. /* &table[12] is terminator */
  4039. return table;
  4040. }
  4041. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4042. {
  4043. struct ctl_table *entry, *table;
  4044. struct sched_domain *sd;
  4045. int domain_num = 0, i;
  4046. char buf[32];
  4047. for_each_domain(cpu, sd)
  4048. domain_num++;
  4049. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4050. if (table == NULL)
  4051. return NULL;
  4052. i = 0;
  4053. for_each_domain(cpu, sd) {
  4054. snprintf(buf, 32, "domain%d", i);
  4055. entry->procname = kstrdup(buf, GFP_KERNEL);
  4056. entry->mode = 0555;
  4057. entry->child = sd_alloc_ctl_domain_table(sd);
  4058. entry++;
  4059. i++;
  4060. }
  4061. return table;
  4062. }
  4063. static struct ctl_table_header *sd_sysctl_header;
  4064. static void register_sched_domain_sysctl(void)
  4065. {
  4066. int i, cpu_num = num_possible_cpus();
  4067. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4068. char buf[32];
  4069. WARN_ON(sd_ctl_dir[0].child);
  4070. sd_ctl_dir[0].child = entry;
  4071. if (entry == NULL)
  4072. return;
  4073. for_each_possible_cpu(i) {
  4074. snprintf(buf, 32, "cpu%d", i);
  4075. entry->procname = kstrdup(buf, GFP_KERNEL);
  4076. entry->mode = 0555;
  4077. entry->child = sd_alloc_ctl_cpu_table(i);
  4078. entry++;
  4079. }
  4080. WARN_ON(sd_sysctl_header);
  4081. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4082. }
  4083. /* may be called multiple times per register */
  4084. static void unregister_sched_domain_sysctl(void)
  4085. {
  4086. if (sd_sysctl_header)
  4087. unregister_sysctl_table(sd_sysctl_header);
  4088. sd_sysctl_header = NULL;
  4089. if (sd_ctl_dir[0].child)
  4090. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4091. }
  4092. #else
  4093. static void register_sched_domain_sysctl(void)
  4094. {
  4095. }
  4096. static void unregister_sched_domain_sysctl(void)
  4097. {
  4098. }
  4099. #endif
  4100. static void set_rq_online(struct rq *rq)
  4101. {
  4102. if (!rq->online) {
  4103. const struct sched_class *class;
  4104. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4105. rq->online = 1;
  4106. for_each_class(class) {
  4107. if (class->rq_online)
  4108. class->rq_online(rq);
  4109. }
  4110. }
  4111. }
  4112. static void set_rq_offline(struct rq *rq)
  4113. {
  4114. if (rq->online) {
  4115. const struct sched_class *class;
  4116. for_each_class(class) {
  4117. if (class->rq_offline)
  4118. class->rq_offline(rq);
  4119. }
  4120. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4121. rq->online = 0;
  4122. }
  4123. }
  4124. /*
  4125. * migration_call - callback that gets triggered when a CPU is added.
  4126. * Here we can start up the necessary migration thread for the new CPU.
  4127. */
  4128. static int
  4129. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4130. {
  4131. int cpu = (long)hcpu;
  4132. unsigned long flags;
  4133. struct rq *rq = cpu_rq(cpu);
  4134. switch (action & ~CPU_TASKS_FROZEN) {
  4135. case CPU_UP_PREPARE:
  4136. rq->calc_load_update = calc_load_update;
  4137. break;
  4138. case CPU_ONLINE:
  4139. /* Update our root-domain */
  4140. raw_spin_lock_irqsave(&rq->lock, flags);
  4141. if (rq->rd) {
  4142. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4143. set_rq_online(rq);
  4144. }
  4145. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4146. break;
  4147. #ifdef CONFIG_HOTPLUG_CPU
  4148. case CPU_DYING:
  4149. sched_ttwu_pending();
  4150. /* Update our root-domain */
  4151. raw_spin_lock_irqsave(&rq->lock, flags);
  4152. if (rq->rd) {
  4153. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4154. set_rq_offline(rq);
  4155. }
  4156. migrate_tasks(cpu);
  4157. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4158. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4159. break;
  4160. case CPU_DEAD:
  4161. calc_load_migrate(rq);
  4162. break;
  4163. #endif
  4164. }
  4165. update_max_interval();
  4166. return NOTIFY_OK;
  4167. }
  4168. /*
  4169. * Register at high priority so that task migration (migrate_all_tasks)
  4170. * happens before everything else. This has to be lower priority than
  4171. * the notifier in the perf_event subsystem, though.
  4172. */
  4173. static struct notifier_block migration_notifier = {
  4174. .notifier_call = migration_call,
  4175. .priority = CPU_PRI_MIGRATION,
  4176. };
  4177. static int sched_cpu_active(struct notifier_block *nfb,
  4178. unsigned long action, void *hcpu)
  4179. {
  4180. switch (action & ~CPU_TASKS_FROZEN) {
  4181. case CPU_STARTING:
  4182. case CPU_DOWN_FAILED:
  4183. set_cpu_active((long)hcpu, true);
  4184. return NOTIFY_OK;
  4185. default:
  4186. return NOTIFY_DONE;
  4187. }
  4188. }
  4189. static int sched_cpu_inactive(struct notifier_block *nfb,
  4190. unsigned long action, void *hcpu)
  4191. {
  4192. switch (action & ~CPU_TASKS_FROZEN) {
  4193. case CPU_DOWN_PREPARE:
  4194. set_cpu_active((long)hcpu, false);
  4195. return NOTIFY_OK;
  4196. default:
  4197. return NOTIFY_DONE;
  4198. }
  4199. }
  4200. static int __init migration_init(void)
  4201. {
  4202. void *cpu = (void *)(long)smp_processor_id();
  4203. int err;
  4204. /* Initialize migration for the boot CPU */
  4205. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4206. BUG_ON(err == NOTIFY_BAD);
  4207. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4208. register_cpu_notifier(&migration_notifier);
  4209. /* Register cpu active notifiers */
  4210. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4211. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4212. return 0;
  4213. }
  4214. early_initcall(migration_init);
  4215. #endif
  4216. #ifdef CONFIG_SMP
  4217. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4218. #ifdef CONFIG_SCHED_DEBUG
  4219. static __read_mostly int sched_debug_enabled;
  4220. static int __init sched_debug_setup(char *str)
  4221. {
  4222. sched_debug_enabled = 1;
  4223. return 0;
  4224. }
  4225. early_param("sched_debug", sched_debug_setup);
  4226. static inline bool sched_debug(void)
  4227. {
  4228. return sched_debug_enabled;
  4229. }
  4230. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4231. struct cpumask *groupmask)
  4232. {
  4233. struct sched_group *group = sd->groups;
  4234. char str[256];
  4235. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4236. cpumask_clear(groupmask);
  4237. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4238. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4239. printk("does not load-balance\n");
  4240. if (sd->parent)
  4241. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4242. " has parent");
  4243. return -1;
  4244. }
  4245. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4246. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4247. printk(KERN_ERR "ERROR: domain->span does not contain "
  4248. "CPU%d\n", cpu);
  4249. }
  4250. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4251. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4252. " CPU%d\n", cpu);
  4253. }
  4254. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4255. do {
  4256. if (!group) {
  4257. printk("\n");
  4258. printk(KERN_ERR "ERROR: group is NULL\n");
  4259. break;
  4260. }
  4261. /*
  4262. * Even though we initialize ->power to something semi-sane,
  4263. * we leave power_orig unset. This allows us to detect if
  4264. * domain iteration is still funny without causing /0 traps.
  4265. */
  4266. if (!group->sgp->power_orig) {
  4267. printk(KERN_CONT "\n");
  4268. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4269. "set\n");
  4270. break;
  4271. }
  4272. if (!cpumask_weight(sched_group_cpus(group))) {
  4273. printk(KERN_CONT "\n");
  4274. printk(KERN_ERR "ERROR: empty group\n");
  4275. break;
  4276. }
  4277. if (!(sd->flags & SD_OVERLAP) &&
  4278. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4279. printk(KERN_CONT "\n");
  4280. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4281. break;
  4282. }
  4283. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4284. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4285. printk(KERN_CONT " %s", str);
  4286. if (group->sgp->power != SCHED_POWER_SCALE) {
  4287. printk(KERN_CONT " (cpu_power = %d)",
  4288. group->sgp->power);
  4289. }
  4290. group = group->next;
  4291. } while (group != sd->groups);
  4292. printk(KERN_CONT "\n");
  4293. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4294. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4295. if (sd->parent &&
  4296. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4297. printk(KERN_ERR "ERROR: parent span is not a superset "
  4298. "of domain->span\n");
  4299. return 0;
  4300. }
  4301. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4302. {
  4303. int level = 0;
  4304. if (!sched_debug_enabled)
  4305. return;
  4306. if (!sd) {
  4307. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4308. return;
  4309. }
  4310. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4311. for (;;) {
  4312. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4313. break;
  4314. level++;
  4315. sd = sd->parent;
  4316. if (!sd)
  4317. break;
  4318. }
  4319. }
  4320. #else /* !CONFIG_SCHED_DEBUG */
  4321. # define sched_domain_debug(sd, cpu) do { } while (0)
  4322. static inline bool sched_debug(void)
  4323. {
  4324. return false;
  4325. }
  4326. #endif /* CONFIG_SCHED_DEBUG */
  4327. static int sd_degenerate(struct sched_domain *sd)
  4328. {
  4329. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4330. return 1;
  4331. /* Following flags need at least 2 groups */
  4332. if (sd->flags & (SD_LOAD_BALANCE |
  4333. SD_BALANCE_NEWIDLE |
  4334. SD_BALANCE_FORK |
  4335. SD_BALANCE_EXEC |
  4336. SD_SHARE_CPUPOWER |
  4337. SD_SHARE_PKG_RESOURCES)) {
  4338. if (sd->groups != sd->groups->next)
  4339. return 0;
  4340. }
  4341. /* Following flags don't use groups */
  4342. if (sd->flags & (SD_WAKE_AFFINE))
  4343. return 0;
  4344. return 1;
  4345. }
  4346. static int
  4347. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4348. {
  4349. unsigned long cflags = sd->flags, pflags = parent->flags;
  4350. if (sd_degenerate(parent))
  4351. return 1;
  4352. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4353. return 0;
  4354. /* Flags needing groups don't count if only 1 group in parent */
  4355. if (parent->groups == parent->groups->next) {
  4356. pflags &= ~(SD_LOAD_BALANCE |
  4357. SD_BALANCE_NEWIDLE |
  4358. SD_BALANCE_FORK |
  4359. SD_BALANCE_EXEC |
  4360. SD_SHARE_CPUPOWER |
  4361. SD_SHARE_PKG_RESOURCES |
  4362. SD_PREFER_SIBLING);
  4363. if (nr_node_ids == 1)
  4364. pflags &= ~SD_SERIALIZE;
  4365. }
  4366. if (~cflags & pflags)
  4367. return 0;
  4368. return 1;
  4369. }
  4370. static void free_rootdomain(struct rcu_head *rcu)
  4371. {
  4372. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4373. cpupri_cleanup(&rd->cpupri);
  4374. free_cpumask_var(rd->rto_mask);
  4375. free_cpumask_var(rd->online);
  4376. free_cpumask_var(rd->span);
  4377. kfree(rd);
  4378. }
  4379. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4380. {
  4381. struct root_domain *old_rd = NULL;
  4382. unsigned long flags;
  4383. raw_spin_lock_irqsave(&rq->lock, flags);
  4384. if (rq->rd) {
  4385. old_rd = rq->rd;
  4386. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4387. set_rq_offline(rq);
  4388. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4389. /*
  4390. * If we dont want to free the old_rt yet then
  4391. * set old_rd to NULL to skip the freeing later
  4392. * in this function:
  4393. */
  4394. if (!atomic_dec_and_test(&old_rd->refcount))
  4395. old_rd = NULL;
  4396. }
  4397. atomic_inc(&rd->refcount);
  4398. rq->rd = rd;
  4399. cpumask_set_cpu(rq->cpu, rd->span);
  4400. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4401. set_rq_online(rq);
  4402. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4403. if (old_rd)
  4404. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4405. }
  4406. static int init_rootdomain(struct root_domain *rd)
  4407. {
  4408. memset(rd, 0, sizeof(*rd));
  4409. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4410. goto out;
  4411. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4412. goto free_span;
  4413. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4414. goto free_online;
  4415. if (cpupri_init(&rd->cpupri) != 0)
  4416. goto free_rto_mask;
  4417. return 0;
  4418. free_rto_mask:
  4419. free_cpumask_var(rd->rto_mask);
  4420. free_online:
  4421. free_cpumask_var(rd->online);
  4422. free_span:
  4423. free_cpumask_var(rd->span);
  4424. out:
  4425. return -ENOMEM;
  4426. }
  4427. /*
  4428. * By default the system creates a single root-domain with all cpus as
  4429. * members (mimicking the global state we have today).
  4430. */
  4431. struct root_domain def_root_domain;
  4432. static void init_defrootdomain(void)
  4433. {
  4434. init_rootdomain(&def_root_domain);
  4435. atomic_set(&def_root_domain.refcount, 1);
  4436. }
  4437. static struct root_domain *alloc_rootdomain(void)
  4438. {
  4439. struct root_domain *rd;
  4440. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4441. if (!rd)
  4442. return NULL;
  4443. if (init_rootdomain(rd) != 0) {
  4444. kfree(rd);
  4445. return NULL;
  4446. }
  4447. return rd;
  4448. }
  4449. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4450. {
  4451. struct sched_group *tmp, *first;
  4452. if (!sg)
  4453. return;
  4454. first = sg;
  4455. do {
  4456. tmp = sg->next;
  4457. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4458. kfree(sg->sgp);
  4459. kfree(sg);
  4460. sg = tmp;
  4461. } while (sg != first);
  4462. }
  4463. static void free_sched_domain(struct rcu_head *rcu)
  4464. {
  4465. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4466. /*
  4467. * If its an overlapping domain it has private groups, iterate and
  4468. * nuke them all.
  4469. */
  4470. if (sd->flags & SD_OVERLAP) {
  4471. free_sched_groups(sd->groups, 1);
  4472. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4473. kfree(sd->groups->sgp);
  4474. kfree(sd->groups);
  4475. }
  4476. kfree(sd);
  4477. }
  4478. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4479. {
  4480. call_rcu(&sd->rcu, free_sched_domain);
  4481. }
  4482. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4483. {
  4484. for (; sd; sd = sd->parent)
  4485. destroy_sched_domain(sd, cpu);
  4486. }
  4487. /*
  4488. * Keep a special pointer to the highest sched_domain that has
  4489. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4490. * allows us to avoid some pointer chasing select_idle_sibling().
  4491. *
  4492. * Also keep a unique ID per domain (we use the first cpu number in
  4493. * the cpumask of the domain), this allows us to quickly tell if
  4494. * two cpus are in the same cache domain, see cpus_share_cache().
  4495. */
  4496. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4497. DEFINE_PER_CPU(int, sd_llc_size);
  4498. DEFINE_PER_CPU(int, sd_llc_id);
  4499. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4500. static void update_top_cache_domain(int cpu)
  4501. {
  4502. struct sched_domain *sd;
  4503. int id = cpu;
  4504. int size = 1;
  4505. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4506. if (sd) {
  4507. id = cpumask_first(sched_domain_span(sd));
  4508. size = cpumask_weight(sched_domain_span(sd));
  4509. }
  4510. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4511. per_cpu(sd_llc_size, cpu) = size;
  4512. per_cpu(sd_llc_id, cpu) = id;
  4513. sd = lowest_flag_domain(cpu, SD_NUMA);
  4514. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4515. }
  4516. /*
  4517. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4518. * hold the hotplug lock.
  4519. */
  4520. static void
  4521. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4522. {
  4523. struct rq *rq = cpu_rq(cpu);
  4524. struct sched_domain *tmp;
  4525. /* Remove the sched domains which do not contribute to scheduling. */
  4526. for (tmp = sd; tmp; ) {
  4527. struct sched_domain *parent = tmp->parent;
  4528. if (!parent)
  4529. break;
  4530. if (sd_parent_degenerate(tmp, parent)) {
  4531. tmp->parent = parent->parent;
  4532. if (parent->parent)
  4533. parent->parent->child = tmp;
  4534. /*
  4535. * Transfer SD_PREFER_SIBLING down in case of a
  4536. * degenerate parent; the spans match for this
  4537. * so the property transfers.
  4538. */
  4539. if (parent->flags & SD_PREFER_SIBLING)
  4540. tmp->flags |= SD_PREFER_SIBLING;
  4541. destroy_sched_domain(parent, cpu);
  4542. } else
  4543. tmp = tmp->parent;
  4544. }
  4545. if (sd && sd_degenerate(sd)) {
  4546. tmp = sd;
  4547. sd = sd->parent;
  4548. destroy_sched_domain(tmp, cpu);
  4549. if (sd)
  4550. sd->child = NULL;
  4551. }
  4552. sched_domain_debug(sd, cpu);
  4553. rq_attach_root(rq, rd);
  4554. tmp = rq->sd;
  4555. rcu_assign_pointer(rq->sd, sd);
  4556. destroy_sched_domains(tmp, cpu);
  4557. update_top_cache_domain(cpu);
  4558. }
  4559. /* cpus with isolated domains */
  4560. static cpumask_var_t cpu_isolated_map;
  4561. /* Setup the mask of cpus configured for isolated domains */
  4562. static int __init isolated_cpu_setup(char *str)
  4563. {
  4564. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4565. cpulist_parse(str, cpu_isolated_map);
  4566. return 1;
  4567. }
  4568. __setup("isolcpus=", isolated_cpu_setup);
  4569. static const struct cpumask *cpu_cpu_mask(int cpu)
  4570. {
  4571. return cpumask_of_node(cpu_to_node(cpu));
  4572. }
  4573. struct sd_data {
  4574. struct sched_domain **__percpu sd;
  4575. struct sched_group **__percpu sg;
  4576. struct sched_group_power **__percpu sgp;
  4577. };
  4578. struct s_data {
  4579. struct sched_domain ** __percpu sd;
  4580. struct root_domain *rd;
  4581. };
  4582. enum s_alloc {
  4583. sa_rootdomain,
  4584. sa_sd,
  4585. sa_sd_storage,
  4586. sa_none,
  4587. };
  4588. struct sched_domain_topology_level;
  4589. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4590. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4591. #define SDTL_OVERLAP 0x01
  4592. struct sched_domain_topology_level {
  4593. sched_domain_init_f init;
  4594. sched_domain_mask_f mask;
  4595. int flags;
  4596. int numa_level;
  4597. struct sd_data data;
  4598. };
  4599. /*
  4600. * Build an iteration mask that can exclude certain CPUs from the upwards
  4601. * domain traversal.
  4602. *
  4603. * Asymmetric node setups can result in situations where the domain tree is of
  4604. * unequal depth, make sure to skip domains that already cover the entire
  4605. * range.
  4606. *
  4607. * In that case build_sched_domains() will have terminated the iteration early
  4608. * and our sibling sd spans will be empty. Domains should always include the
  4609. * cpu they're built on, so check that.
  4610. *
  4611. */
  4612. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4613. {
  4614. const struct cpumask *span = sched_domain_span(sd);
  4615. struct sd_data *sdd = sd->private;
  4616. struct sched_domain *sibling;
  4617. int i;
  4618. for_each_cpu(i, span) {
  4619. sibling = *per_cpu_ptr(sdd->sd, i);
  4620. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4621. continue;
  4622. cpumask_set_cpu(i, sched_group_mask(sg));
  4623. }
  4624. }
  4625. /*
  4626. * Return the canonical balance cpu for this group, this is the first cpu
  4627. * of this group that's also in the iteration mask.
  4628. */
  4629. int group_balance_cpu(struct sched_group *sg)
  4630. {
  4631. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4632. }
  4633. static int
  4634. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4635. {
  4636. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4637. const struct cpumask *span = sched_domain_span(sd);
  4638. struct cpumask *covered = sched_domains_tmpmask;
  4639. struct sd_data *sdd = sd->private;
  4640. struct sched_domain *child;
  4641. int i;
  4642. cpumask_clear(covered);
  4643. for_each_cpu(i, span) {
  4644. struct cpumask *sg_span;
  4645. if (cpumask_test_cpu(i, covered))
  4646. continue;
  4647. child = *per_cpu_ptr(sdd->sd, i);
  4648. /* See the comment near build_group_mask(). */
  4649. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4650. continue;
  4651. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4652. GFP_KERNEL, cpu_to_node(cpu));
  4653. if (!sg)
  4654. goto fail;
  4655. sg_span = sched_group_cpus(sg);
  4656. if (child->child) {
  4657. child = child->child;
  4658. cpumask_copy(sg_span, sched_domain_span(child));
  4659. } else
  4660. cpumask_set_cpu(i, sg_span);
  4661. cpumask_or(covered, covered, sg_span);
  4662. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4663. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4664. build_group_mask(sd, sg);
  4665. /*
  4666. * Initialize sgp->power such that even if we mess up the
  4667. * domains and no possible iteration will get us here, we won't
  4668. * die on a /0 trap.
  4669. */
  4670. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4671. /*
  4672. * Make sure the first group of this domain contains the
  4673. * canonical balance cpu. Otherwise the sched_domain iteration
  4674. * breaks. See update_sg_lb_stats().
  4675. */
  4676. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4677. group_balance_cpu(sg) == cpu)
  4678. groups = sg;
  4679. if (!first)
  4680. first = sg;
  4681. if (last)
  4682. last->next = sg;
  4683. last = sg;
  4684. last->next = first;
  4685. }
  4686. sd->groups = groups;
  4687. return 0;
  4688. fail:
  4689. free_sched_groups(first, 0);
  4690. return -ENOMEM;
  4691. }
  4692. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4693. {
  4694. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4695. struct sched_domain *child = sd->child;
  4696. if (child)
  4697. cpu = cpumask_first(sched_domain_span(child));
  4698. if (sg) {
  4699. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4700. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4701. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4702. }
  4703. return cpu;
  4704. }
  4705. /*
  4706. * build_sched_groups will build a circular linked list of the groups
  4707. * covered by the given span, and will set each group's ->cpumask correctly,
  4708. * and ->cpu_power to 0.
  4709. *
  4710. * Assumes the sched_domain tree is fully constructed
  4711. */
  4712. static int
  4713. build_sched_groups(struct sched_domain *sd, int cpu)
  4714. {
  4715. struct sched_group *first = NULL, *last = NULL;
  4716. struct sd_data *sdd = sd->private;
  4717. const struct cpumask *span = sched_domain_span(sd);
  4718. struct cpumask *covered;
  4719. int i;
  4720. get_group(cpu, sdd, &sd->groups);
  4721. atomic_inc(&sd->groups->ref);
  4722. if (cpu != cpumask_first(span))
  4723. return 0;
  4724. lockdep_assert_held(&sched_domains_mutex);
  4725. covered = sched_domains_tmpmask;
  4726. cpumask_clear(covered);
  4727. for_each_cpu(i, span) {
  4728. struct sched_group *sg;
  4729. int group, j;
  4730. if (cpumask_test_cpu(i, covered))
  4731. continue;
  4732. group = get_group(i, sdd, &sg);
  4733. cpumask_clear(sched_group_cpus(sg));
  4734. sg->sgp->power = 0;
  4735. cpumask_setall(sched_group_mask(sg));
  4736. for_each_cpu(j, span) {
  4737. if (get_group(j, sdd, NULL) != group)
  4738. continue;
  4739. cpumask_set_cpu(j, covered);
  4740. cpumask_set_cpu(j, sched_group_cpus(sg));
  4741. }
  4742. if (!first)
  4743. first = sg;
  4744. if (last)
  4745. last->next = sg;
  4746. last = sg;
  4747. }
  4748. last->next = first;
  4749. return 0;
  4750. }
  4751. /*
  4752. * Initialize sched groups cpu_power.
  4753. *
  4754. * cpu_power indicates the capacity of sched group, which is used while
  4755. * distributing the load between different sched groups in a sched domain.
  4756. * Typically cpu_power for all the groups in a sched domain will be same unless
  4757. * there are asymmetries in the topology. If there are asymmetries, group
  4758. * having more cpu_power will pickup more load compared to the group having
  4759. * less cpu_power.
  4760. */
  4761. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4762. {
  4763. struct sched_group *sg = sd->groups;
  4764. WARN_ON(!sg);
  4765. do {
  4766. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4767. sg = sg->next;
  4768. } while (sg != sd->groups);
  4769. if (cpu != group_balance_cpu(sg))
  4770. return;
  4771. update_group_power(sd, cpu);
  4772. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4773. }
  4774. int __weak arch_sd_sibling_asym_packing(void)
  4775. {
  4776. return 0*SD_ASYM_PACKING;
  4777. }
  4778. /*
  4779. * Initializers for schedule domains
  4780. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4781. */
  4782. #ifdef CONFIG_SCHED_DEBUG
  4783. # define SD_INIT_NAME(sd, type) sd->name = #type
  4784. #else
  4785. # define SD_INIT_NAME(sd, type) do { } while (0)
  4786. #endif
  4787. #define SD_INIT_FUNC(type) \
  4788. static noinline struct sched_domain * \
  4789. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4790. { \
  4791. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4792. *sd = SD_##type##_INIT; \
  4793. SD_INIT_NAME(sd, type); \
  4794. sd->private = &tl->data; \
  4795. return sd; \
  4796. }
  4797. SD_INIT_FUNC(CPU)
  4798. #ifdef CONFIG_SCHED_SMT
  4799. SD_INIT_FUNC(SIBLING)
  4800. #endif
  4801. #ifdef CONFIG_SCHED_MC
  4802. SD_INIT_FUNC(MC)
  4803. #endif
  4804. #ifdef CONFIG_SCHED_BOOK
  4805. SD_INIT_FUNC(BOOK)
  4806. #endif
  4807. static int default_relax_domain_level = -1;
  4808. int sched_domain_level_max;
  4809. static int __init setup_relax_domain_level(char *str)
  4810. {
  4811. if (kstrtoint(str, 0, &default_relax_domain_level))
  4812. pr_warn("Unable to set relax_domain_level\n");
  4813. return 1;
  4814. }
  4815. __setup("relax_domain_level=", setup_relax_domain_level);
  4816. static void set_domain_attribute(struct sched_domain *sd,
  4817. struct sched_domain_attr *attr)
  4818. {
  4819. int request;
  4820. if (!attr || attr->relax_domain_level < 0) {
  4821. if (default_relax_domain_level < 0)
  4822. return;
  4823. else
  4824. request = default_relax_domain_level;
  4825. } else
  4826. request = attr->relax_domain_level;
  4827. if (request < sd->level) {
  4828. /* turn off idle balance on this domain */
  4829. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4830. } else {
  4831. /* turn on idle balance on this domain */
  4832. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4833. }
  4834. }
  4835. static void __sdt_free(const struct cpumask *cpu_map);
  4836. static int __sdt_alloc(const struct cpumask *cpu_map);
  4837. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  4838. const struct cpumask *cpu_map)
  4839. {
  4840. switch (what) {
  4841. case sa_rootdomain:
  4842. if (!atomic_read(&d->rd->refcount))
  4843. free_rootdomain(&d->rd->rcu); /* fall through */
  4844. case sa_sd:
  4845. free_percpu(d->sd); /* fall through */
  4846. case sa_sd_storage:
  4847. __sdt_free(cpu_map); /* fall through */
  4848. case sa_none:
  4849. break;
  4850. }
  4851. }
  4852. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  4853. const struct cpumask *cpu_map)
  4854. {
  4855. memset(d, 0, sizeof(*d));
  4856. if (__sdt_alloc(cpu_map))
  4857. return sa_sd_storage;
  4858. d->sd = alloc_percpu(struct sched_domain *);
  4859. if (!d->sd)
  4860. return sa_sd_storage;
  4861. d->rd = alloc_rootdomain();
  4862. if (!d->rd)
  4863. return sa_sd;
  4864. return sa_rootdomain;
  4865. }
  4866. /*
  4867. * NULL the sd_data elements we've used to build the sched_domain and
  4868. * sched_group structure so that the subsequent __free_domain_allocs()
  4869. * will not free the data we're using.
  4870. */
  4871. static void claim_allocations(int cpu, struct sched_domain *sd)
  4872. {
  4873. struct sd_data *sdd = sd->private;
  4874. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  4875. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  4876. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  4877. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  4878. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  4879. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  4880. }
  4881. #ifdef CONFIG_SCHED_SMT
  4882. static const struct cpumask *cpu_smt_mask(int cpu)
  4883. {
  4884. return topology_thread_cpumask(cpu);
  4885. }
  4886. #endif
  4887. /*
  4888. * Topology list, bottom-up.
  4889. */
  4890. static struct sched_domain_topology_level default_topology[] = {
  4891. #ifdef CONFIG_SCHED_SMT
  4892. { sd_init_SIBLING, cpu_smt_mask, },
  4893. #endif
  4894. #ifdef CONFIG_SCHED_MC
  4895. { sd_init_MC, cpu_coregroup_mask, },
  4896. #endif
  4897. #ifdef CONFIG_SCHED_BOOK
  4898. { sd_init_BOOK, cpu_book_mask, },
  4899. #endif
  4900. { sd_init_CPU, cpu_cpu_mask, },
  4901. { NULL, },
  4902. };
  4903. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  4904. #define for_each_sd_topology(tl) \
  4905. for (tl = sched_domain_topology; tl->init; tl++)
  4906. #ifdef CONFIG_NUMA
  4907. static int sched_domains_numa_levels;
  4908. static int *sched_domains_numa_distance;
  4909. static struct cpumask ***sched_domains_numa_masks;
  4910. static int sched_domains_curr_level;
  4911. static inline int sd_local_flags(int level)
  4912. {
  4913. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  4914. return 0;
  4915. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  4916. }
  4917. static struct sched_domain *
  4918. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  4919. {
  4920. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  4921. int level = tl->numa_level;
  4922. int sd_weight = cpumask_weight(
  4923. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  4924. *sd = (struct sched_domain){
  4925. .min_interval = sd_weight,
  4926. .max_interval = 2*sd_weight,
  4927. .busy_factor = 32,
  4928. .imbalance_pct = 125,
  4929. .cache_nice_tries = 2,
  4930. .busy_idx = 3,
  4931. .idle_idx = 2,
  4932. .newidle_idx = 0,
  4933. .wake_idx = 0,
  4934. .forkexec_idx = 0,
  4935. .flags = 1*SD_LOAD_BALANCE
  4936. | 1*SD_BALANCE_NEWIDLE
  4937. | 0*SD_BALANCE_EXEC
  4938. | 0*SD_BALANCE_FORK
  4939. | 0*SD_BALANCE_WAKE
  4940. | 0*SD_WAKE_AFFINE
  4941. | 0*SD_SHARE_CPUPOWER
  4942. | 0*SD_SHARE_PKG_RESOURCES
  4943. | 1*SD_SERIALIZE
  4944. | 0*SD_PREFER_SIBLING
  4945. | 1*SD_NUMA
  4946. | sd_local_flags(level)
  4947. ,
  4948. .last_balance = jiffies,
  4949. .balance_interval = sd_weight,
  4950. };
  4951. SD_INIT_NAME(sd, NUMA);
  4952. sd->private = &tl->data;
  4953. /*
  4954. * Ugly hack to pass state to sd_numa_mask()...
  4955. */
  4956. sched_domains_curr_level = tl->numa_level;
  4957. return sd;
  4958. }
  4959. static const struct cpumask *sd_numa_mask(int cpu)
  4960. {
  4961. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  4962. }
  4963. static void sched_numa_warn(const char *str)
  4964. {
  4965. static int done = false;
  4966. int i,j;
  4967. if (done)
  4968. return;
  4969. done = true;
  4970. printk(KERN_WARNING "ERROR: %s\n\n", str);
  4971. for (i = 0; i < nr_node_ids; i++) {
  4972. printk(KERN_WARNING " ");
  4973. for (j = 0; j < nr_node_ids; j++)
  4974. printk(KERN_CONT "%02d ", node_distance(i,j));
  4975. printk(KERN_CONT "\n");
  4976. }
  4977. printk(KERN_WARNING "\n");
  4978. }
  4979. static bool find_numa_distance(int distance)
  4980. {
  4981. int i;
  4982. if (distance == node_distance(0, 0))
  4983. return true;
  4984. for (i = 0; i < sched_domains_numa_levels; i++) {
  4985. if (sched_domains_numa_distance[i] == distance)
  4986. return true;
  4987. }
  4988. return false;
  4989. }
  4990. static void sched_init_numa(void)
  4991. {
  4992. int next_distance, curr_distance = node_distance(0, 0);
  4993. struct sched_domain_topology_level *tl;
  4994. int level = 0;
  4995. int i, j, k;
  4996. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  4997. if (!sched_domains_numa_distance)
  4998. return;
  4999. /*
  5000. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5001. * unique distances in the node_distance() table.
  5002. *
  5003. * Assumes node_distance(0,j) includes all distances in
  5004. * node_distance(i,j) in order to avoid cubic time.
  5005. */
  5006. next_distance = curr_distance;
  5007. for (i = 0; i < nr_node_ids; i++) {
  5008. for (j = 0; j < nr_node_ids; j++) {
  5009. for (k = 0; k < nr_node_ids; k++) {
  5010. int distance = node_distance(i, k);
  5011. if (distance > curr_distance &&
  5012. (distance < next_distance ||
  5013. next_distance == curr_distance))
  5014. next_distance = distance;
  5015. /*
  5016. * While not a strong assumption it would be nice to know
  5017. * about cases where if node A is connected to B, B is not
  5018. * equally connected to A.
  5019. */
  5020. if (sched_debug() && node_distance(k, i) != distance)
  5021. sched_numa_warn("Node-distance not symmetric");
  5022. if (sched_debug() && i && !find_numa_distance(distance))
  5023. sched_numa_warn("Node-0 not representative");
  5024. }
  5025. if (next_distance != curr_distance) {
  5026. sched_domains_numa_distance[level++] = next_distance;
  5027. sched_domains_numa_levels = level;
  5028. curr_distance = next_distance;
  5029. } else break;
  5030. }
  5031. /*
  5032. * In case of sched_debug() we verify the above assumption.
  5033. */
  5034. if (!sched_debug())
  5035. break;
  5036. }
  5037. /*
  5038. * 'level' contains the number of unique distances, excluding the
  5039. * identity distance node_distance(i,i).
  5040. *
  5041. * The sched_domains_numa_distance[] array includes the actual distance
  5042. * numbers.
  5043. */
  5044. /*
  5045. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5046. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5047. * the array will contain less then 'level' members. This could be
  5048. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5049. * in other functions.
  5050. *
  5051. * We reset it to 'level' at the end of this function.
  5052. */
  5053. sched_domains_numa_levels = 0;
  5054. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5055. if (!sched_domains_numa_masks)
  5056. return;
  5057. /*
  5058. * Now for each level, construct a mask per node which contains all
  5059. * cpus of nodes that are that many hops away from us.
  5060. */
  5061. for (i = 0; i < level; i++) {
  5062. sched_domains_numa_masks[i] =
  5063. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5064. if (!sched_domains_numa_masks[i])
  5065. return;
  5066. for (j = 0; j < nr_node_ids; j++) {
  5067. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5068. if (!mask)
  5069. return;
  5070. sched_domains_numa_masks[i][j] = mask;
  5071. for (k = 0; k < nr_node_ids; k++) {
  5072. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5073. continue;
  5074. cpumask_or(mask, mask, cpumask_of_node(k));
  5075. }
  5076. }
  5077. }
  5078. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5079. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5080. if (!tl)
  5081. return;
  5082. /*
  5083. * Copy the default topology bits..
  5084. */
  5085. for (i = 0; default_topology[i].init; i++)
  5086. tl[i] = default_topology[i];
  5087. /*
  5088. * .. and append 'j' levels of NUMA goodness.
  5089. */
  5090. for (j = 0; j < level; i++, j++) {
  5091. tl[i] = (struct sched_domain_topology_level){
  5092. .init = sd_numa_init,
  5093. .mask = sd_numa_mask,
  5094. .flags = SDTL_OVERLAP,
  5095. .numa_level = j,
  5096. };
  5097. }
  5098. sched_domain_topology = tl;
  5099. sched_domains_numa_levels = level;
  5100. }
  5101. static void sched_domains_numa_masks_set(int cpu)
  5102. {
  5103. int i, j;
  5104. int node = cpu_to_node(cpu);
  5105. for (i = 0; i < sched_domains_numa_levels; i++) {
  5106. for (j = 0; j < nr_node_ids; j++) {
  5107. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5108. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5109. }
  5110. }
  5111. }
  5112. static void sched_domains_numa_masks_clear(int cpu)
  5113. {
  5114. int i, j;
  5115. for (i = 0; i < sched_domains_numa_levels; i++) {
  5116. for (j = 0; j < nr_node_ids; j++)
  5117. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5118. }
  5119. }
  5120. /*
  5121. * Update sched_domains_numa_masks[level][node] array when new cpus
  5122. * are onlined.
  5123. */
  5124. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5125. unsigned long action,
  5126. void *hcpu)
  5127. {
  5128. int cpu = (long)hcpu;
  5129. switch (action & ~CPU_TASKS_FROZEN) {
  5130. case CPU_ONLINE:
  5131. sched_domains_numa_masks_set(cpu);
  5132. break;
  5133. case CPU_DEAD:
  5134. sched_domains_numa_masks_clear(cpu);
  5135. break;
  5136. default:
  5137. return NOTIFY_DONE;
  5138. }
  5139. return NOTIFY_OK;
  5140. }
  5141. #else
  5142. static inline void sched_init_numa(void)
  5143. {
  5144. }
  5145. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5146. unsigned long action,
  5147. void *hcpu)
  5148. {
  5149. return 0;
  5150. }
  5151. #endif /* CONFIG_NUMA */
  5152. static int __sdt_alloc(const struct cpumask *cpu_map)
  5153. {
  5154. struct sched_domain_topology_level *tl;
  5155. int j;
  5156. for_each_sd_topology(tl) {
  5157. struct sd_data *sdd = &tl->data;
  5158. sdd->sd = alloc_percpu(struct sched_domain *);
  5159. if (!sdd->sd)
  5160. return -ENOMEM;
  5161. sdd->sg = alloc_percpu(struct sched_group *);
  5162. if (!sdd->sg)
  5163. return -ENOMEM;
  5164. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5165. if (!sdd->sgp)
  5166. return -ENOMEM;
  5167. for_each_cpu(j, cpu_map) {
  5168. struct sched_domain *sd;
  5169. struct sched_group *sg;
  5170. struct sched_group_power *sgp;
  5171. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5172. GFP_KERNEL, cpu_to_node(j));
  5173. if (!sd)
  5174. return -ENOMEM;
  5175. *per_cpu_ptr(sdd->sd, j) = sd;
  5176. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5177. GFP_KERNEL, cpu_to_node(j));
  5178. if (!sg)
  5179. return -ENOMEM;
  5180. sg->next = sg;
  5181. *per_cpu_ptr(sdd->sg, j) = sg;
  5182. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5183. GFP_KERNEL, cpu_to_node(j));
  5184. if (!sgp)
  5185. return -ENOMEM;
  5186. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5187. }
  5188. }
  5189. return 0;
  5190. }
  5191. static void __sdt_free(const struct cpumask *cpu_map)
  5192. {
  5193. struct sched_domain_topology_level *tl;
  5194. int j;
  5195. for_each_sd_topology(tl) {
  5196. struct sd_data *sdd = &tl->data;
  5197. for_each_cpu(j, cpu_map) {
  5198. struct sched_domain *sd;
  5199. if (sdd->sd) {
  5200. sd = *per_cpu_ptr(sdd->sd, j);
  5201. if (sd && (sd->flags & SD_OVERLAP))
  5202. free_sched_groups(sd->groups, 0);
  5203. kfree(*per_cpu_ptr(sdd->sd, j));
  5204. }
  5205. if (sdd->sg)
  5206. kfree(*per_cpu_ptr(sdd->sg, j));
  5207. if (sdd->sgp)
  5208. kfree(*per_cpu_ptr(sdd->sgp, j));
  5209. }
  5210. free_percpu(sdd->sd);
  5211. sdd->sd = NULL;
  5212. free_percpu(sdd->sg);
  5213. sdd->sg = NULL;
  5214. free_percpu(sdd->sgp);
  5215. sdd->sgp = NULL;
  5216. }
  5217. }
  5218. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5219. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5220. struct sched_domain *child, int cpu)
  5221. {
  5222. struct sched_domain *sd = tl->init(tl, cpu);
  5223. if (!sd)
  5224. return child;
  5225. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5226. if (child) {
  5227. sd->level = child->level + 1;
  5228. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5229. child->parent = sd;
  5230. sd->child = child;
  5231. }
  5232. set_domain_attribute(sd, attr);
  5233. return sd;
  5234. }
  5235. /*
  5236. * Build sched domains for a given set of cpus and attach the sched domains
  5237. * to the individual cpus
  5238. */
  5239. static int build_sched_domains(const struct cpumask *cpu_map,
  5240. struct sched_domain_attr *attr)
  5241. {
  5242. enum s_alloc alloc_state;
  5243. struct sched_domain *sd;
  5244. struct s_data d;
  5245. int i, ret = -ENOMEM;
  5246. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5247. if (alloc_state != sa_rootdomain)
  5248. goto error;
  5249. /* Set up domains for cpus specified by the cpu_map. */
  5250. for_each_cpu(i, cpu_map) {
  5251. struct sched_domain_topology_level *tl;
  5252. sd = NULL;
  5253. for_each_sd_topology(tl) {
  5254. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5255. if (tl == sched_domain_topology)
  5256. *per_cpu_ptr(d.sd, i) = sd;
  5257. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5258. sd->flags |= SD_OVERLAP;
  5259. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5260. break;
  5261. }
  5262. }
  5263. /* Build the groups for the domains */
  5264. for_each_cpu(i, cpu_map) {
  5265. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5266. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5267. if (sd->flags & SD_OVERLAP) {
  5268. if (build_overlap_sched_groups(sd, i))
  5269. goto error;
  5270. } else {
  5271. if (build_sched_groups(sd, i))
  5272. goto error;
  5273. }
  5274. }
  5275. }
  5276. /* Calculate CPU power for physical packages and nodes */
  5277. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5278. if (!cpumask_test_cpu(i, cpu_map))
  5279. continue;
  5280. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5281. claim_allocations(i, sd);
  5282. init_sched_groups_power(i, sd);
  5283. }
  5284. }
  5285. /* Attach the domains */
  5286. rcu_read_lock();
  5287. for_each_cpu(i, cpu_map) {
  5288. sd = *per_cpu_ptr(d.sd, i);
  5289. cpu_attach_domain(sd, d.rd, i);
  5290. }
  5291. rcu_read_unlock();
  5292. ret = 0;
  5293. error:
  5294. __free_domain_allocs(&d, alloc_state, cpu_map);
  5295. return ret;
  5296. }
  5297. static cpumask_var_t *doms_cur; /* current sched domains */
  5298. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5299. static struct sched_domain_attr *dattr_cur;
  5300. /* attribues of custom domains in 'doms_cur' */
  5301. /*
  5302. * Special case: If a kmalloc of a doms_cur partition (array of
  5303. * cpumask) fails, then fallback to a single sched domain,
  5304. * as determined by the single cpumask fallback_doms.
  5305. */
  5306. static cpumask_var_t fallback_doms;
  5307. /*
  5308. * arch_update_cpu_topology lets virtualized architectures update the
  5309. * cpu core maps. It is supposed to return 1 if the topology changed
  5310. * or 0 if it stayed the same.
  5311. */
  5312. int __attribute__((weak)) arch_update_cpu_topology(void)
  5313. {
  5314. return 0;
  5315. }
  5316. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5317. {
  5318. int i;
  5319. cpumask_var_t *doms;
  5320. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5321. if (!doms)
  5322. return NULL;
  5323. for (i = 0; i < ndoms; i++) {
  5324. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5325. free_sched_domains(doms, i);
  5326. return NULL;
  5327. }
  5328. }
  5329. return doms;
  5330. }
  5331. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5332. {
  5333. unsigned int i;
  5334. for (i = 0; i < ndoms; i++)
  5335. free_cpumask_var(doms[i]);
  5336. kfree(doms);
  5337. }
  5338. /*
  5339. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5340. * For now this just excludes isolated cpus, but could be used to
  5341. * exclude other special cases in the future.
  5342. */
  5343. static int init_sched_domains(const struct cpumask *cpu_map)
  5344. {
  5345. int err;
  5346. arch_update_cpu_topology();
  5347. ndoms_cur = 1;
  5348. doms_cur = alloc_sched_domains(ndoms_cur);
  5349. if (!doms_cur)
  5350. doms_cur = &fallback_doms;
  5351. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5352. err = build_sched_domains(doms_cur[0], NULL);
  5353. register_sched_domain_sysctl();
  5354. return err;
  5355. }
  5356. /*
  5357. * Detach sched domains from a group of cpus specified in cpu_map
  5358. * These cpus will now be attached to the NULL domain
  5359. */
  5360. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5361. {
  5362. int i;
  5363. rcu_read_lock();
  5364. for_each_cpu(i, cpu_map)
  5365. cpu_attach_domain(NULL, &def_root_domain, i);
  5366. rcu_read_unlock();
  5367. }
  5368. /* handle null as "default" */
  5369. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5370. struct sched_domain_attr *new, int idx_new)
  5371. {
  5372. struct sched_domain_attr tmp;
  5373. /* fast path */
  5374. if (!new && !cur)
  5375. return 1;
  5376. tmp = SD_ATTR_INIT;
  5377. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5378. new ? (new + idx_new) : &tmp,
  5379. sizeof(struct sched_domain_attr));
  5380. }
  5381. /*
  5382. * Partition sched domains as specified by the 'ndoms_new'
  5383. * cpumasks in the array doms_new[] of cpumasks. This compares
  5384. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5385. * It destroys each deleted domain and builds each new domain.
  5386. *
  5387. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5388. * The masks don't intersect (don't overlap.) We should setup one
  5389. * sched domain for each mask. CPUs not in any of the cpumasks will
  5390. * not be load balanced. If the same cpumask appears both in the
  5391. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5392. * it as it is.
  5393. *
  5394. * The passed in 'doms_new' should be allocated using
  5395. * alloc_sched_domains. This routine takes ownership of it and will
  5396. * free_sched_domains it when done with it. If the caller failed the
  5397. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5398. * and partition_sched_domains() will fallback to the single partition
  5399. * 'fallback_doms', it also forces the domains to be rebuilt.
  5400. *
  5401. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5402. * ndoms_new == 0 is a special case for destroying existing domains,
  5403. * and it will not create the default domain.
  5404. *
  5405. * Call with hotplug lock held
  5406. */
  5407. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5408. struct sched_domain_attr *dattr_new)
  5409. {
  5410. int i, j, n;
  5411. int new_topology;
  5412. mutex_lock(&sched_domains_mutex);
  5413. /* always unregister in case we don't destroy any domains */
  5414. unregister_sched_domain_sysctl();
  5415. /* Let architecture update cpu core mappings. */
  5416. new_topology = arch_update_cpu_topology();
  5417. n = doms_new ? ndoms_new : 0;
  5418. /* Destroy deleted domains */
  5419. for (i = 0; i < ndoms_cur; i++) {
  5420. for (j = 0; j < n && !new_topology; j++) {
  5421. if (cpumask_equal(doms_cur[i], doms_new[j])
  5422. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5423. goto match1;
  5424. }
  5425. /* no match - a current sched domain not in new doms_new[] */
  5426. detach_destroy_domains(doms_cur[i]);
  5427. match1:
  5428. ;
  5429. }
  5430. n = ndoms_cur;
  5431. if (doms_new == NULL) {
  5432. n = 0;
  5433. doms_new = &fallback_doms;
  5434. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5435. WARN_ON_ONCE(dattr_new);
  5436. }
  5437. /* Build new domains */
  5438. for (i = 0; i < ndoms_new; i++) {
  5439. for (j = 0; j < n && !new_topology; j++) {
  5440. if (cpumask_equal(doms_new[i], doms_cur[j])
  5441. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5442. goto match2;
  5443. }
  5444. /* no match - add a new doms_new */
  5445. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5446. match2:
  5447. ;
  5448. }
  5449. /* Remember the new sched domains */
  5450. if (doms_cur != &fallback_doms)
  5451. free_sched_domains(doms_cur, ndoms_cur);
  5452. kfree(dattr_cur); /* kfree(NULL) is safe */
  5453. doms_cur = doms_new;
  5454. dattr_cur = dattr_new;
  5455. ndoms_cur = ndoms_new;
  5456. register_sched_domain_sysctl();
  5457. mutex_unlock(&sched_domains_mutex);
  5458. }
  5459. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5460. /*
  5461. * Update cpusets according to cpu_active mask. If cpusets are
  5462. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5463. * around partition_sched_domains().
  5464. *
  5465. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5466. * want to restore it back to its original state upon resume anyway.
  5467. */
  5468. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5469. void *hcpu)
  5470. {
  5471. switch (action) {
  5472. case CPU_ONLINE_FROZEN:
  5473. case CPU_DOWN_FAILED_FROZEN:
  5474. /*
  5475. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5476. * resume sequence. As long as this is not the last online
  5477. * operation in the resume sequence, just build a single sched
  5478. * domain, ignoring cpusets.
  5479. */
  5480. num_cpus_frozen--;
  5481. if (likely(num_cpus_frozen)) {
  5482. partition_sched_domains(1, NULL, NULL);
  5483. break;
  5484. }
  5485. /*
  5486. * This is the last CPU online operation. So fall through and
  5487. * restore the original sched domains by considering the
  5488. * cpuset configurations.
  5489. */
  5490. case CPU_ONLINE:
  5491. case CPU_DOWN_FAILED:
  5492. cpuset_update_active_cpus(true);
  5493. break;
  5494. default:
  5495. return NOTIFY_DONE;
  5496. }
  5497. return NOTIFY_OK;
  5498. }
  5499. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5500. void *hcpu)
  5501. {
  5502. switch (action) {
  5503. case CPU_DOWN_PREPARE:
  5504. cpuset_update_active_cpus(false);
  5505. break;
  5506. case CPU_DOWN_PREPARE_FROZEN:
  5507. num_cpus_frozen++;
  5508. partition_sched_domains(1, NULL, NULL);
  5509. break;
  5510. default:
  5511. return NOTIFY_DONE;
  5512. }
  5513. return NOTIFY_OK;
  5514. }
  5515. void __init sched_init_smp(void)
  5516. {
  5517. cpumask_var_t non_isolated_cpus;
  5518. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5519. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5520. sched_init_numa();
  5521. get_online_cpus();
  5522. mutex_lock(&sched_domains_mutex);
  5523. init_sched_domains(cpu_active_mask);
  5524. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5525. if (cpumask_empty(non_isolated_cpus))
  5526. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5527. mutex_unlock(&sched_domains_mutex);
  5528. put_online_cpus();
  5529. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5530. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5531. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5532. init_hrtick();
  5533. /* Move init over to a non-isolated CPU */
  5534. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5535. BUG();
  5536. sched_init_granularity();
  5537. free_cpumask_var(non_isolated_cpus);
  5538. init_sched_rt_class();
  5539. }
  5540. #else
  5541. void __init sched_init_smp(void)
  5542. {
  5543. sched_init_granularity();
  5544. }
  5545. #endif /* CONFIG_SMP */
  5546. const_debug unsigned int sysctl_timer_migration = 1;
  5547. int in_sched_functions(unsigned long addr)
  5548. {
  5549. return in_lock_functions(addr) ||
  5550. (addr >= (unsigned long)__sched_text_start
  5551. && addr < (unsigned long)__sched_text_end);
  5552. }
  5553. #ifdef CONFIG_CGROUP_SCHED
  5554. /*
  5555. * Default task group.
  5556. * Every task in system belongs to this group at bootup.
  5557. */
  5558. struct task_group root_task_group;
  5559. LIST_HEAD(task_groups);
  5560. #endif
  5561. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5562. void __init sched_init(void)
  5563. {
  5564. int i, j;
  5565. unsigned long alloc_size = 0, ptr;
  5566. #ifdef CONFIG_FAIR_GROUP_SCHED
  5567. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5568. #endif
  5569. #ifdef CONFIG_RT_GROUP_SCHED
  5570. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5571. #endif
  5572. #ifdef CONFIG_CPUMASK_OFFSTACK
  5573. alloc_size += num_possible_cpus() * cpumask_size();
  5574. #endif
  5575. if (alloc_size) {
  5576. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5577. #ifdef CONFIG_FAIR_GROUP_SCHED
  5578. root_task_group.se = (struct sched_entity **)ptr;
  5579. ptr += nr_cpu_ids * sizeof(void **);
  5580. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5581. ptr += nr_cpu_ids * sizeof(void **);
  5582. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5583. #ifdef CONFIG_RT_GROUP_SCHED
  5584. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5585. ptr += nr_cpu_ids * sizeof(void **);
  5586. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5587. ptr += nr_cpu_ids * sizeof(void **);
  5588. #endif /* CONFIG_RT_GROUP_SCHED */
  5589. #ifdef CONFIG_CPUMASK_OFFSTACK
  5590. for_each_possible_cpu(i) {
  5591. per_cpu(load_balance_mask, i) = (void *)ptr;
  5592. ptr += cpumask_size();
  5593. }
  5594. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5595. }
  5596. #ifdef CONFIG_SMP
  5597. init_defrootdomain();
  5598. #endif
  5599. init_rt_bandwidth(&def_rt_bandwidth,
  5600. global_rt_period(), global_rt_runtime());
  5601. #ifdef CONFIG_RT_GROUP_SCHED
  5602. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5603. global_rt_period(), global_rt_runtime());
  5604. #endif /* CONFIG_RT_GROUP_SCHED */
  5605. #ifdef CONFIG_CGROUP_SCHED
  5606. list_add(&root_task_group.list, &task_groups);
  5607. INIT_LIST_HEAD(&root_task_group.children);
  5608. INIT_LIST_HEAD(&root_task_group.siblings);
  5609. autogroup_init(&init_task);
  5610. #endif /* CONFIG_CGROUP_SCHED */
  5611. for_each_possible_cpu(i) {
  5612. struct rq *rq;
  5613. rq = cpu_rq(i);
  5614. raw_spin_lock_init(&rq->lock);
  5615. rq->nr_running = 0;
  5616. rq->calc_load_active = 0;
  5617. rq->calc_load_update = jiffies + LOAD_FREQ;
  5618. init_cfs_rq(&rq->cfs);
  5619. init_rt_rq(&rq->rt, rq);
  5620. #ifdef CONFIG_FAIR_GROUP_SCHED
  5621. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5622. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5623. /*
  5624. * How much cpu bandwidth does root_task_group get?
  5625. *
  5626. * In case of task-groups formed thr' the cgroup filesystem, it
  5627. * gets 100% of the cpu resources in the system. This overall
  5628. * system cpu resource is divided among the tasks of
  5629. * root_task_group and its child task-groups in a fair manner,
  5630. * based on each entity's (task or task-group's) weight
  5631. * (se->load.weight).
  5632. *
  5633. * In other words, if root_task_group has 10 tasks of weight
  5634. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5635. * then A0's share of the cpu resource is:
  5636. *
  5637. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5638. *
  5639. * We achieve this by letting root_task_group's tasks sit
  5640. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5641. */
  5642. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5643. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5644. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5645. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5646. #ifdef CONFIG_RT_GROUP_SCHED
  5647. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5648. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5649. #endif
  5650. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5651. rq->cpu_load[j] = 0;
  5652. rq->last_load_update_tick = jiffies;
  5653. #ifdef CONFIG_SMP
  5654. rq->sd = NULL;
  5655. rq->rd = NULL;
  5656. rq->cpu_power = SCHED_POWER_SCALE;
  5657. rq->post_schedule = 0;
  5658. rq->active_balance = 0;
  5659. rq->next_balance = jiffies;
  5660. rq->push_cpu = 0;
  5661. rq->cpu = i;
  5662. rq->online = 0;
  5663. rq->idle_stamp = 0;
  5664. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5665. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5666. INIT_LIST_HEAD(&rq->cfs_tasks);
  5667. rq_attach_root(rq, &def_root_domain);
  5668. #ifdef CONFIG_NO_HZ_COMMON
  5669. rq->nohz_flags = 0;
  5670. #endif
  5671. #ifdef CONFIG_NO_HZ_FULL
  5672. rq->last_sched_tick = 0;
  5673. #endif
  5674. #endif
  5675. init_rq_hrtick(rq);
  5676. atomic_set(&rq->nr_iowait, 0);
  5677. }
  5678. set_load_weight(&init_task);
  5679. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5680. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5681. #endif
  5682. #ifdef CONFIG_RT_MUTEXES
  5683. plist_head_init(&init_task.pi_waiters);
  5684. #endif
  5685. /*
  5686. * The boot idle thread does lazy MMU switching as well:
  5687. */
  5688. atomic_inc(&init_mm.mm_count);
  5689. enter_lazy_tlb(&init_mm, current);
  5690. /*
  5691. * Make us the idle thread. Technically, schedule() should not be
  5692. * called from this thread, however somewhere below it might be,
  5693. * but because we are the idle thread, we just pick up running again
  5694. * when this runqueue becomes "idle".
  5695. */
  5696. init_idle(current, smp_processor_id());
  5697. calc_load_update = jiffies + LOAD_FREQ;
  5698. /*
  5699. * During early bootup we pretend to be a normal task:
  5700. */
  5701. current->sched_class = &fair_sched_class;
  5702. #ifdef CONFIG_SMP
  5703. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5704. /* May be allocated at isolcpus cmdline parse time */
  5705. if (cpu_isolated_map == NULL)
  5706. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5707. idle_thread_set_boot_cpu();
  5708. #endif
  5709. init_sched_fair_class();
  5710. scheduler_running = 1;
  5711. }
  5712. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5713. static inline int preempt_count_equals(int preempt_offset)
  5714. {
  5715. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5716. return (nested == preempt_offset);
  5717. }
  5718. void __might_sleep(const char *file, int line, int preempt_offset)
  5719. {
  5720. static unsigned long prev_jiffy; /* ratelimiting */
  5721. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5722. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5723. system_state != SYSTEM_RUNNING || oops_in_progress)
  5724. return;
  5725. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5726. return;
  5727. prev_jiffy = jiffies;
  5728. printk(KERN_ERR
  5729. "BUG: sleeping function called from invalid context at %s:%d\n",
  5730. file, line);
  5731. printk(KERN_ERR
  5732. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5733. in_atomic(), irqs_disabled(),
  5734. current->pid, current->comm);
  5735. debug_show_held_locks(current);
  5736. if (irqs_disabled())
  5737. print_irqtrace_events(current);
  5738. dump_stack();
  5739. }
  5740. EXPORT_SYMBOL(__might_sleep);
  5741. #endif
  5742. #ifdef CONFIG_MAGIC_SYSRQ
  5743. static void normalize_task(struct rq *rq, struct task_struct *p)
  5744. {
  5745. const struct sched_class *prev_class = p->sched_class;
  5746. int old_prio = p->prio;
  5747. int on_rq;
  5748. on_rq = p->on_rq;
  5749. if (on_rq)
  5750. dequeue_task(rq, p, 0);
  5751. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5752. if (on_rq) {
  5753. enqueue_task(rq, p, 0);
  5754. resched_task(rq->curr);
  5755. }
  5756. check_class_changed(rq, p, prev_class, old_prio);
  5757. }
  5758. void normalize_rt_tasks(void)
  5759. {
  5760. struct task_struct *g, *p;
  5761. unsigned long flags;
  5762. struct rq *rq;
  5763. read_lock_irqsave(&tasklist_lock, flags);
  5764. do_each_thread(g, p) {
  5765. /*
  5766. * Only normalize user tasks:
  5767. */
  5768. if (!p->mm)
  5769. continue;
  5770. p->se.exec_start = 0;
  5771. #ifdef CONFIG_SCHEDSTATS
  5772. p->se.statistics.wait_start = 0;
  5773. p->se.statistics.sleep_start = 0;
  5774. p->se.statistics.block_start = 0;
  5775. #endif
  5776. if (!rt_task(p)) {
  5777. /*
  5778. * Renice negative nice level userspace
  5779. * tasks back to 0:
  5780. */
  5781. if (TASK_NICE(p) < 0 && p->mm)
  5782. set_user_nice(p, 0);
  5783. continue;
  5784. }
  5785. raw_spin_lock(&p->pi_lock);
  5786. rq = __task_rq_lock(p);
  5787. normalize_task(rq, p);
  5788. __task_rq_unlock(rq);
  5789. raw_spin_unlock(&p->pi_lock);
  5790. } while_each_thread(g, p);
  5791. read_unlock_irqrestore(&tasklist_lock, flags);
  5792. }
  5793. #endif /* CONFIG_MAGIC_SYSRQ */
  5794. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5795. /*
  5796. * These functions are only useful for the IA64 MCA handling, or kdb.
  5797. *
  5798. * They can only be called when the whole system has been
  5799. * stopped - every CPU needs to be quiescent, and no scheduling
  5800. * activity can take place. Using them for anything else would
  5801. * be a serious bug, and as a result, they aren't even visible
  5802. * under any other configuration.
  5803. */
  5804. /**
  5805. * curr_task - return the current task for a given cpu.
  5806. * @cpu: the processor in question.
  5807. *
  5808. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5809. *
  5810. * Return: The current task for @cpu.
  5811. */
  5812. struct task_struct *curr_task(int cpu)
  5813. {
  5814. return cpu_curr(cpu);
  5815. }
  5816. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5817. #ifdef CONFIG_IA64
  5818. /**
  5819. * set_curr_task - set the current task for a given cpu.
  5820. * @cpu: the processor in question.
  5821. * @p: the task pointer to set.
  5822. *
  5823. * Description: This function must only be used when non-maskable interrupts
  5824. * are serviced on a separate stack. It allows the architecture to switch the
  5825. * notion of the current task on a cpu in a non-blocking manner. This function
  5826. * must be called with all CPU's synchronized, and interrupts disabled, the
  5827. * and caller must save the original value of the current task (see
  5828. * curr_task() above) and restore that value before reenabling interrupts and
  5829. * re-starting the system.
  5830. *
  5831. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5832. */
  5833. void set_curr_task(int cpu, struct task_struct *p)
  5834. {
  5835. cpu_curr(cpu) = p;
  5836. }
  5837. #endif
  5838. #ifdef CONFIG_CGROUP_SCHED
  5839. /* task_group_lock serializes the addition/removal of task groups */
  5840. static DEFINE_SPINLOCK(task_group_lock);
  5841. static void free_sched_group(struct task_group *tg)
  5842. {
  5843. free_fair_sched_group(tg);
  5844. free_rt_sched_group(tg);
  5845. autogroup_free(tg);
  5846. kfree(tg);
  5847. }
  5848. /* allocate runqueue etc for a new task group */
  5849. struct task_group *sched_create_group(struct task_group *parent)
  5850. {
  5851. struct task_group *tg;
  5852. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5853. if (!tg)
  5854. return ERR_PTR(-ENOMEM);
  5855. if (!alloc_fair_sched_group(tg, parent))
  5856. goto err;
  5857. if (!alloc_rt_sched_group(tg, parent))
  5858. goto err;
  5859. return tg;
  5860. err:
  5861. free_sched_group(tg);
  5862. return ERR_PTR(-ENOMEM);
  5863. }
  5864. void sched_online_group(struct task_group *tg, struct task_group *parent)
  5865. {
  5866. unsigned long flags;
  5867. spin_lock_irqsave(&task_group_lock, flags);
  5868. list_add_rcu(&tg->list, &task_groups);
  5869. WARN_ON(!parent); /* root should already exist */
  5870. tg->parent = parent;
  5871. INIT_LIST_HEAD(&tg->children);
  5872. list_add_rcu(&tg->siblings, &parent->children);
  5873. spin_unlock_irqrestore(&task_group_lock, flags);
  5874. }
  5875. /* rcu callback to free various structures associated with a task group */
  5876. static void free_sched_group_rcu(struct rcu_head *rhp)
  5877. {
  5878. /* now it should be safe to free those cfs_rqs */
  5879. free_sched_group(container_of(rhp, struct task_group, rcu));
  5880. }
  5881. /* Destroy runqueue etc associated with a task group */
  5882. void sched_destroy_group(struct task_group *tg)
  5883. {
  5884. /* wait for possible concurrent references to cfs_rqs complete */
  5885. call_rcu(&tg->rcu, free_sched_group_rcu);
  5886. }
  5887. void sched_offline_group(struct task_group *tg)
  5888. {
  5889. unsigned long flags;
  5890. int i;
  5891. /* end participation in shares distribution */
  5892. for_each_possible_cpu(i)
  5893. unregister_fair_sched_group(tg, i);
  5894. spin_lock_irqsave(&task_group_lock, flags);
  5895. list_del_rcu(&tg->list);
  5896. list_del_rcu(&tg->siblings);
  5897. spin_unlock_irqrestore(&task_group_lock, flags);
  5898. }
  5899. /* change task's runqueue when it moves between groups.
  5900. * The caller of this function should have put the task in its new group
  5901. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  5902. * reflect its new group.
  5903. */
  5904. void sched_move_task(struct task_struct *tsk)
  5905. {
  5906. struct task_group *tg;
  5907. int on_rq, running;
  5908. unsigned long flags;
  5909. struct rq *rq;
  5910. rq = task_rq_lock(tsk, &flags);
  5911. running = task_current(rq, tsk);
  5912. on_rq = tsk->on_rq;
  5913. if (on_rq)
  5914. dequeue_task(rq, tsk, 0);
  5915. if (unlikely(running))
  5916. tsk->sched_class->put_prev_task(rq, tsk);
  5917. tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
  5918. lockdep_is_held(&tsk->sighand->siglock)),
  5919. struct task_group, css);
  5920. tg = autogroup_task_group(tsk, tg);
  5921. tsk->sched_task_group = tg;
  5922. #ifdef CONFIG_FAIR_GROUP_SCHED
  5923. if (tsk->sched_class->task_move_group)
  5924. tsk->sched_class->task_move_group(tsk, on_rq);
  5925. else
  5926. #endif
  5927. set_task_rq(tsk, task_cpu(tsk));
  5928. if (unlikely(running))
  5929. tsk->sched_class->set_curr_task(rq);
  5930. if (on_rq)
  5931. enqueue_task(rq, tsk, 0);
  5932. task_rq_unlock(rq, tsk, &flags);
  5933. }
  5934. #endif /* CONFIG_CGROUP_SCHED */
  5935. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  5936. static unsigned long to_ratio(u64 period, u64 runtime)
  5937. {
  5938. if (runtime == RUNTIME_INF)
  5939. return 1ULL << 20;
  5940. return div64_u64(runtime << 20, period);
  5941. }
  5942. #endif
  5943. #ifdef CONFIG_RT_GROUP_SCHED
  5944. /*
  5945. * Ensure that the real time constraints are schedulable.
  5946. */
  5947. static DEFINE_MUTEX(rt_constraints_mutex);
  5948. /* Must be called with tasklist_lock held */
  5949. static inline int tg_has_rt_tasks(struct task_group *tg)
  5950. {
  5951. struct task_struct *g, *p;
  5952. do_each_thread(g, p) {
  5953. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  5954. return 1;
  5955. } while_each_thread(g, p);
  5956. return 0;
  5957. }
  5958. struct rt_schedulable_data {
  5959. struct task_group *tg;
  5960. u64 rt_period;
  5961. u64 rt_runtime;
  5962. };
  5963. static int tg_rt_schedulable(struct task_group *tg, void *data)
  5964. {
  5965. struct rt_schedulable_data *d = data;
  5966. struct task_group *child;
  5967. unsigned long total, sum = 0;
  5968. u64 period, runtime;
  5969. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5970. runtime = tg->rt_bandwidth.rt_runtime;
  5971. if (tg == d->tg) {
  5972. period = d->rt_period;
  5973. runtime = d->rt_runtime;
  5974. }
  5975. /*
  5976. * Cannot have more runtime than the period.
  5977. */
  5978. if (runtime > period && runtime != RUNTIME_INF)
  5979. return -EINVAL;
  5980. /*
  5981. * Ensure we don't starve existing RT tasks.
  5982. */
  5983. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  5984. return -EBUSY;
  5985. total = to_ratio(period, runtime);
  5986. /*
  5987. * Nobody can have more than the global setting allows.
  5988. */
  5989. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  5990. return -EINVAL;
  5991. /*
  5992. * The sum of our children's runtime should not exceed our own.
  5993. */
  5994. list_for_each_entry_rcu(child, &tg->children, siblings) {
  5995. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  5996. runtime = child->rt_bandwidth.rt_runtime;
  5997. if (child == d->tg) {
  5998. period = d->rt_period;
  5999. runtime = d->rt_runtime;
  6000. }
  6001. sum += to_ratio(period, runtime);
  6002. }
  6003. if (sum > total)
  6004. return -EINVAL;
  6005. return 0;
  6006. }
  6007. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6008. {
  6009. int ret;
  6010. struct rt_schedulable_data data = {
  6011. .tg = tg,
  6012. .rt_period = period,
  6013. .rt_runtime = runtime,
  6014. };
  6015. rcu_read_lock();
  6016. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6017. rcu_read_unlock();
  6018. return ret;
  6019. }
  6020. static int tg_set_rt_bandwidth(struct task_group *tg,
  6021. u64 rt_period, u64 rt_runtime)
  6022. {
  6023. int i, err = 0;
  6024. mutex_lock(&rt_constraints_mutex);
  6025. read_lock(&tasklist_lock);
  6026. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6027. if (err)
  6028. goto unlock;
  6029. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6030. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6031. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6032. for_each_possible_cpu(i) {
  6033. struct rt_rq *rt_rq = tg->rt_rq[i];
  6034. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6035. rt_rq->rt_runtime = rt_runtime;
  6036. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6037. }
  6038. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6039. unlock:
  6040. read_unlock(&tasklist_lock);
  6041. mutex_unlock(&rt_constraints_mutex);
  6042. return err;
  6043. }
  6044. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6045. {
  6046. u64 rt_runtime, rt_period;
  6047. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6048. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6049. if (rt_runtime_us < 0)
  6050. rt_runtime = RUNTIME_INF;
  6051. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6052. }
  6053. static long sched_group_rt_runtime(struct task_group *tg)
  6054. {
  6055. u64 rt_runtime_us;
  6056. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6057. return -1;
  6058. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6059. do_div(rt_runtime_us, NSEC_PER_USEC);
  6060. return rt_runtime_us;
  6061. }
  6062. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6063. {
  6064. u64 rt_runtime, rt_period;
  6065. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6066. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6067. if (rt_period == 0)
  6068. return -EINVAL;
  6069. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6070. }
  6071. static long sched_group_rt_period(struct task_group *tg)
  6072. {
  6073. u64 rt_period_us;
  6074. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6075. do_div(rt_period_us, NSEC_PER_USEC);
  6076. return rt_period_us;
  6077. }
  6078. static int sched_rt_global_constraints(void)
  6079. {
  6080. u64 runtime, period;
  6081. int ret = 0;
  6082. if (sysctl_sched_rt_period <= 0)
  6083. return -EINVAL;
  6084. runtime = global_rt_runtime();
  6085. period = global_rt_period();
  6086. /*
  6087. * Sanity check on the sysctl variables.
  6088. */
  6089. if (runtime > period && runtime != RUNTIME_INF)
  6090. return -EINVAL;
  6091. mutex_lock(&rt_constraints_mutex);
  6092. read_lock(&tasklist_lock);
  6093. ret = __rt_schedulable(NULL, 0, 0);
  6094. read_unlock(&tasklist_lock);
  6095. mutex_unlock(&rt_constraints_mutex);
  6096. return ret;
  6097. }
  6098. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6099. {
  6100. /* Don't accept realtime tasks when there is no way for them to run */
  6101. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6102. return 0;
  6103. return 1;
  6104. }
  6105. #else /* !CONFIG_RT_GROUP_SCHED */
  6106. static int sched_rt_global_constraints(void)
  6107. {
  6108. unsigned long flags;
  6109. int i;
  6110. if (sysctl_sched_rt_period <= 0)
  6111. return -EINVAL;
  6112. /*
  6113. * There's always some RT tasks in the root group
  6114. * -- migration, kstopmachine etc..
  6115. */
  6116. if (sysctl_sched_rt_runtime == 0)
  6117. return -EBUSY;
  6118. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6119. for_each_possible_cpu(i) {
  6120. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6121. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6122. rt_rq->rt_runtime = global_rt_runtime();
  6123. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6124. }
  6125. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6126. return 0;
  6127. }
  6128. #endif /* CONFIG_RT_GROUP_SCHED */
  6129. int sched_rr_handler(struct ctl_table *table, int write,
  6130. void __user *buffer, size_t *lenp,
  6131. loff_t *ppos)
  6132. {
  6133. int ret;
  6134. static DEFINE_MUTEX(mutex);
  6135. mutex_lock(&mutex);
  6136. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6137. /* make sure that internally we keep jiffies */
  6138. /* also, writing zero resets timeslice to default */
  6139. if (!ret && write) {
  6140. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6141. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6142. }
  6143. mutex_unlock(&mutex);
  6144. return ret;
  6145. }
  6146. int sched_rt_handler(struct ctl_table *table, int write,
  6147. void __user *buffer, size_t *lenp,
  6148. loff_t *ppos)
  6149. {
  6150. int ret;
  6151. int old_period, old_runtime;
  6152. static DEFINE_MUTEX(mutex);
  6153. mutex_lock(&mutex);
  6154. old_period = sysctl_sched_rt_period;
  6155. old_runtime = sysctl_sched_rt_runtime;
  6156. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6157. if (!ret && write) {
  6158. ret = sched_rt_global_constraints();
  6159. if (ret) {
  6160. sysctl_sched_rt_period = old_period;
  6161. sysctl_sched_rt_runtime = old_runtime;
  6162. } else {
  6163. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6164. def_rt_bandwidth.rt_period =
  6165. ns_to_ktime(global_rt_period());
  6166. }
  6167. }
  6168. mutex_unlock(&mutex);
  6169. return ret;
  6170. }
  6171. #ifdef CONFIG_CGROUP_SCHED
  6172. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6173. {
  6174. return css ? container_of(css, struct task_group, css) : NULL;
  6175. }
  6176. static struct cgroup_subsys_state *
  6177. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6178. {
  6179. struct task_group *parent = css_tg(parent_css);
  6180. struct task_group *tg;
  6181. if (!parent) {
  6182. /* This is early initialization for the top cgroup */
  6183. return &root_task_group.css;
  6184. }
  6185. tg = sched_create_group(parent);
  6186. if (IS_ERR(tg))
  6187. return ERR_PTR(-ENOMEM);
  6188. return &tg->css;
  6189. }
  6190. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6191. {
  6192. struct task_group *tg = css_tg(css);
  6193. struct task_group *parent = css_tg(css_parent(css));
  6194. if (parent)
  6195. sched_online_group(tg, parent);
  6196. return 0;
  6197. }
  6198. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6199. {
  6200. struct task_group *tg = css_tg(css);
  6201. sched_destroy_group(tg);
  6202. }
  6203. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6204. {
  6205. struct task_group *tg = css_tg(css);
  6206. sched_offline_group(tg);
  6207. }
  6208. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6209. struct cgroup_taskset *tset)
  6210. {
  6211. struct task_struct *task;
  6212. cgroup_taskset_for_each(task, css, tset) {
  6213. #ifdef CONFIG_RT_GROUP_SCHED
  6214. if (!sched_rt_can_attach(css_tg(css), task))
  6215. return -EINVAL;
  6216. #else
  6217. /* We don't support RT-tasks being in separate groups */
  6218. if (task->sched_class != &fair_sched_class)
  6219. return -EINVAL;
  6220. #endif
  6221. }
  6222. return 0;
  6223. }
  6224. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6225. struct cgroup_taskset *tset)
  6226. {
  6227. struct task_struct *task;
  6228. cgroup_taskset_for_each(task, css, tset)
  6229. sched_move_task(task);
  6230. }
  6231. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6232. struct cgroup_subsys_state *old_css,
  6233. struct task_struct *task)
  6234. {
  6235. /*
  6236. * cgroup_exit() is called in the copy_process() failure path.
  6237. * Ignore this case since the task hasn't ran yet, this avoids
  6238. * trying to poke a half freed task state from generic code.
  6239. */
  6240. if (!(task->flags & PF_EXITING))
  6241. return;
  6242. sched_move_task(task);
  6243. }
  6244. #ifdef CONFIG_FAIR_GROUP_SCHED
  6245. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6246. struct cftype *cftype, u64 shareval)
  6247. {
  6248. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6249. }
  6250. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6251. struct cftype *cft)
  6252. {
  6253. struct task_group *tg = css_tg(css);
  6254. return (u64) scale_load_down(tg->shares);
  6255. }
  6256. #ifdef CONFIG_CFS_BANDWIDTH
  6257. static DEFINE_MUTEX(cfs_constraints_mutex);
  6258. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6259. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6260. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6261. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6262. {
  6263. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6264. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6265. if (tg == &root_task_group)
  6266. return -EINVAL;
  6267. /*
  6268. * Ensure we have at some amount of bandwidth every period. This is
  6269. * to prevent reaching a state of large arrears when throttled via
  6270. * entity_tick() resulting in prolonged exit starvation.
  6271. */
  6272. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6273. return -EINVAL;
  6274. /*
  6275. * Likewise, bound things on the otherside by preventing insane quota
  6276. * periods. This also allows us to normalize in computing quota
  6277. * feasibility.
  6278. */
  6279. if (period > max_cfs_quota_period)
  6280. return -EINVAL;
  6281. mutex_lock(&cfs_constraints_mutex);
  6282. ret = __cfs_schedulable(tg, period, quota);
  6283. if (ret)
  6284. goto out_unlock;
  6285. runtime_enabled = quota != RUNTIME_INF;
  6286. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6287. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6288. raw_spin_lock_irq(&cfs_b->lock);
  6289. cfs_b->period = ns_to_ktime(period);
  6290. cfs_b->quota = quota;
  6291. __refill_cfs_bandwidth_runtime(cfs_b);
  6292. /* restart the period timer (if active) to handle new period expiry */
  6293. if (runtime_enabled && cfs_b->timer_active) {
  6294. /* force a reprogram */
  6295. cfs_b->timer_active = 0;
  6296. __start_cfs_bandwidth(cfs_b);
  6297. }
  6298. raw_spin_unlock_irq(&cfs_b->lock);
  6299. for_each_possible_cpu(i) {
  6300. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6301. struct rq *rq = cfs_rq->rq;
  6302. raw_spin_lock_irq(&rq->lock);
  6303. cfs_rq->runtime_enabled = runtime_enabled;
  6304. cfs_rq->runtime_remaining = 0;
  6305. if (cfs_rq->throttled)
  6306. unthrottle_cfs_rq(cfs_rq);
  6307. raw_spin_unlock_irq(&rq->lock);
  6308. }
  6309. out_unlock:
  6310. mutex_unlock(&cfs_constraints_mutex);
  6311. return ret;
  6312. }
  6313. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6314. {
  6315. u64 quota, period;
  6316. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6317. if (cfs_quota_us < 0)
  6318. quota = RUNTIME_INF;
  6319. else
  6320. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6321. return tg_set_cfs_bandwidth(tg, period, quota);
  6322. }
  6323. long tg_get_cfs_quota(struct task_group *tg)
  6324. {
  6325. u64 quota_us;
  6326. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6327. return -1;
  6328. quota_us = tg->cfs_bandwidth.quota;
  6329. do_div(quota_us, NSEC_PER_USEC);
  6330. return quota_us;
  6331. }
  6332. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6333. {
  6334. u64 quota, period;
  6335. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6336. quota = tg->cfs_bandwidth.quota;
  6337. return tg_set_cfs_bandwidth(tg, period, quota);
  6338. }
  6339. long tg_get_cfs_period(struct task_group *tg)
  6340. {
  6341. u64 cfs_period_us;
  6342. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6343. do_div(cfs_period_us, NSEC_PER_USEC);
  6344. return cfs_period_us;
  6345. }
  6346. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6347. struct cftype *cft)
  6348. {
  6349. return tg_get_cfs_quota(css_tg(css));
  6350. }
  6351. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6352. struct cftype *cftype, s64 cfs_quota_us)
  6353. {
  6354. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6355. }
  6356. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6357. struct cftype *cft)
  6358. {
  6359. return tg_get_cfs_period(css_tg(css));
  6360. }
  6361. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6362. struct cftype *cftype, u64 cfs_period_us)
  6363. {
  6364. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6365. }
  6366. struct cfs_schedulable_data {
  6367. struct task_group *tg;
  6368. u64 period, quota;
  6369. };
  6370. /*
  6371. * normalize group quota/period to be quota/max_period
  6372. * note: units are usecs
  6373. */
  6374. static u64 normalize_cfs_quota(struct task_group *tg,
  6375. struct cfs_schedulable_data *d)
  6376. {
  6377. u64 quota, period;
  6378. if (tg == d->tg) {
  6379. period = d->period;
  6380. quota = d->quota;
  6381. } else {
  6382. period = tg_get_cfs_period(tg);
  6383. quota = tg_get_cfs_quota(tg);
  6384. }
  6385. /* note: these should typically be equivalent */
  6386. if (quota == RUNTIME_INF || quota == -1)
  6387. return RUNTIME_INF;
  6388. return to_ratio(period, quota);
  6389. }
  6390. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6391. {
  6392. struct cfs_schedulable_data *d = data;
  6393. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6394. s64 quota = 0, parent_quota = -1;
  6395. if (!tg->parent) {
  6396. quota = RUNTIME_INF;
  6397. } else {
  6398. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6399. quota = normalize_cfs_quota(tg, d);
  6400. parent_quota = parent_b->hierarchal_quota;
  6401. /*
  6402. * ensure max(child_quota) <= parent_quota, inherit when no
  6403. * limit is set
  6404. */
  6405. if (quota == RUNTIME_INF)
  6406. quota = parent_quota;
  6407. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6408. return -EINVAL;
  6409. }
  6410. cfs_b->hierarchal_quota = quota;
  6411. return 0;
  6412. }
  6413. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6414. {
  6415. int ret;
  6416. struct cfs_schedulable_data data = {
  6417. .tg = tg,
  6418. .period = period,
  6419. .quota = quota,
  6420. };
  6421. if (quota != RUNTIME_INF) {
  6422. do_div(data.period, NSEC_PER_USEC);
  6423. do_div(data.quota, NSEC_PER_USEC);
  6424. }
  6425. rcu_read_lock();
  6426. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6427. rcu_read_unlock();
  6428. return ret;
  6429. }
  6430. static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
  6431. struct cgroup_map_cb *cb)
  6432. {
  6433. struct task_group *tg = css_tg(css);
  6434. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6435. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6436. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6437. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6438. return 0;
  6439. }
  6440. #endif /* CONFIG_CFS_BANDWIDTH */
  6441. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6442. #ifdef CONFIG_RT_GROUP_SCHED
  6443. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6444. struct cftype *cft, s64 val)
  6445. {
  6446. return sched_group_set_rt_runtime(css_tg(css), val);
  6447. }
  6448. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6449. struct cftype *cft)
  6450. {
  6451. return sched_group_rt_runtime(css_tg(css));
  6452. }
  6453. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6454. struct cftype *cftype, u64 rt_period_us)
  6455. {
  6456. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6457. }
  6458. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6459. struct cftype *cft)
  6460. {
  6461. return sched_group_rt_period(css_tg(css));
  6462. }
  6463. #endif /* CONFIG_RT_GROUP_SCHED */
  6464. static struct cftype cpu_files[] = {
  6465. #ifdef CONFIG_FAIR_GROUP_SCHED
  6466. {
  6467. .name = "shares",
  6468. .read_u64 = cpu_shares_read_u64,
  6469. .write_u64 = cpu_shares_write_u64,
  6470. },
  6471. #endif
  6472. #ifdef CONFIG_CFS_BANDWIDTH
  6473. {
  6474. .name = "cfs_quota_us",
  6475. .read_s64 = cpu_cfs_quota_read_s64,
  6476. .write_s64 = cpu_cfs_quota_write_s64,
  6477. },
  6478. {
  6479. .name = "cfs_period_us",
  6480. .read_u64 = cpu_cfs_period_read_u64,
  6481. .write_u64 = cpu_cfs_period_write_u64,
  6482. },
  6483. {
  6484. .name = "stat",
  6485. .read_map = cpu_stats_show,
  6486. },
  6487. #endif
  6488. #ifdef CONFIG_RT_GROUP_SCHED
  6489. {
  6490. .name = "rt_runtime_us",
  6491. .read_s64 = cpu_rt_runtime_read,
  6492. .write_s64 = cpu_rt_runtime_write,
  6493. },
  6494. {
  6495. .name = "rt_period_us",
  6496. .read_u64 = cpu_rt_period_read_uint,
  6497. .write_u64 = cpu_rt_period_write_uint,
  6498. },
  6499. #endif
  6500. { } /* terminate */
  6501. };
  6502. struct cgroup_subsys cpu_cgroup_subsys = {
  6503. .name = "cpu",
  6504. .css_alloc = cpu_cgroup_css_alloc,
  6505. .css_free = cpu_cgroup_css_free,
  6506. .css_online = cpu_cgroup_css_online,
  6507. .css_offline = cpu_cgroup_css_offline,
  6508. .can_attach = cpu_cgroup_can_attach,
  6509. .attach = cpu_cgroup_attach,
  6510. .exit = cpu_cgroup_exit,
  6511. .subsys_id = cpu_cgroup_subsys_id,
  6512. .base_cftypes = cpu_files,
  6513. .early_init = 1,
  6514. };
  6515. #endif /* CONFIG_CGROUP_SCHED */
  6516. void dump_cpu_task(int cpu)
  6517. {
  6518. pr_info("Task dump for CPU %d:\n", cpu);
  6519. sched_show_task(cpu_curr(cpu));
  6520. }