db8500-prcmu.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/mfd/abx500/ab8500.h>
  32. #include <linux/regulator/db8500-prcmu.h>
  33. #include <linux/regulator/machine.h>
  34. #include <linux/cpufreq.h>
  35. #include <linux/platform_data/ux500_wdt.h>
  36. #include <mach/hardware.h>
  37. #include <mach/irqs.h>
  38. #include <mach/db8500-regs.h>
  39. #include "dbx500-prcmu-regs.h"
  40. /* Index of different voltages to be used when accessing AVSData */
  41. #define PRCM_AVS_BASE 0x2FC
  42. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  43. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  44. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  45. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  46. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  47. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  48. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  49. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  50. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  51. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  52. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  53. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  54. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  55. #define PRCM_AVS_VOLTAGE 0
  56. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  57. #define PRCM_AVS_ISSLOWSTARTUP 6
  58. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  59. #define PRCM_AVS_ISMODEENABLE 7
  60. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  61. #define PRCM_BOOT_STATUS 0xFFF
  62. #define PRCM_ROMCODE_A2P 0xFFE
  63. #define PRCM_ROMCODE_P2A 0xFFD
  64. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  65. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  66. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  67. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  68. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  69. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  70. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  71. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  72. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  73. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  74. /* Req Mailboxes */
  75. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  76. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  77. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  78. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  79. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  80. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  81. /* Ack Mailboxes */
  82. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  83. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  84. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  85. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  86. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  87. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  88. /* Mailbox 0 headers */
  89. #define MB0H_POWER_STATE_TRANS 0
  90. #define MB0H_CONFIG_WAKEUPS_EXE 1
  91. #define MB0H_READ_WAKEUP_ACK 3
  92. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  93. #define MB0H_WAKEUP_EXE 2
  94. #define MB0H_WAKEUP_SLEEP 5
  95. /* Mailbox 0 REQs */
  96. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  97. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  98. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  99. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  100. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  101. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  102. /* Mailbox 0 ACKs */
  103. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  104. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  105. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  106. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  107. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  108. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  109. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  110. /* Mailbox 1 headers */
  111. #define MB1H_ARM_APE_OPP 0x0
  112. #define MB1H_RESET_MODEM 0x2
  113. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  114. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  115. #define MB1H_RELEASE_USB_WAKEUP 0x5
  116. #define MB1H_PLL_ON_OFF 0x6
  117. /* Mailbox 1 Requests */
  118. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  119. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  120. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  121. #define PLL_SOC0_OFF 0x1
  122. #define PLL_SOC0_ON 0x2
  123. #define PLL_SOC1_OFF 0x4
  124. #define PLL_SOC1_ON 0x8
  125. /* Mailbox 1 ACKs */
  126. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  127. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  128. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  129. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  130. /* Mailbox 2 headers */
  131. #define MB2H_DPS 0x0
  132. #define MB2H_AUTO_PWR 0x1
  133. /* Mailbox 2 REQs */
  134. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  135. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  136. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  137. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  138. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  139. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  140. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  141. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  142. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  143. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  144. /* Mailbox 2 ACKs */
  145. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  146. #define HWACC_PWR_ST_OK 0xFE
  147. /* Mailbox 3 headers */
  148. #define MB3H_ANC 0x0
  149. #define MB3H_SIDETONE 0x1
  150. #define MB3H_SYSCLK 0xE
  151. /* Mailbox 3 Requests */
  152. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  153. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  154. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  155. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  156. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  157. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  158. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  159. /* Mailbox 4 headers */
  160. #define MB4H_DDR_INIT 0x0
  161. #define MB4H_MEM_ST 0x1
  162. #define MB4H_HOTDOG 0x12
  163. #define MB4H_HOTMON 0x13
  164. #define MB4H_HOT_PERIOD 0x14
  165. #define MB4H_A9WDOG_CONF 0x16
  166. #define MB4H_A9WDOG_EN 0x17
  167. #define MB4H_A9WDOG_DIS 0x18
  168. #define MB4H_A9WDOG_LOAD 0x19
  169. #define MB4H_A9WDOG_KICK 0x20
  170. /* Mailbox 4 Requests */
  171. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  172. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  173. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  174. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  175. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  176. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  177. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  178. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  179. #define HOTMON_CONFIG_LOW BIT(0)
  180. #define HOTMON_CONFIG_HIGH BIT(1)
  181. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  182. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  183. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  184. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  185. #define A9WDOG_AUTO_OFF_EN BIT(7)
  186. #define A9WDOG_AUTO_OFF_DIS 0
  187. #define A9WDOG_ID_MASK 0xf
  188. /* Mailbox 5 Requests */
  189. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  190. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  191. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  192. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  193. #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
  194. #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
  195. #define PRCMU_I2C_STOP_EN BIT(3)
  196. /* Mailbox 5 ACKs */
  197. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  198. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  199. #define I2C_WR_OK 0x1
  200. #define I2C_RD_OK 0x2
  201. #define NUM_MB 8
  202. #define MBOX_BIT BIT
  203. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  204. /*
  205. * Wakeups/IRQs
  206. */
  207. #define WAKEUP_BIT_RTC BIT(0)
  208. #define WAKEUP_BIT_RTT0 BIT(1)
  209. #define WAKEUP_BIT_RTT1 BIT(2)
  210. #define WAKEUP_BIT_HSI0 BIT(3)
  211. #define WAKEUP_BIT_HSI1 BIT(4)
  212. #define WAKEUP_BIT_CA_WAKE BIT(5)
  213. #define WAKEUP_BIT_USB BIT(6)
  214. #define WAKEUP_BIT_ABB BIT(7)
  215. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  216. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  217. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  218. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  219. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  220. #define WAKEUP_BIT_ANC_OK BIT(13)
  221. #define WAKEUP_BIT_SW_ERROR BIT(14)
  222. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  223. #define WAKEUP_BIT_ARM BIT(17)
  224. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  225. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  226. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  227. #define WAKEUP_BIT_GPIO0 BIT(23)
  228. #define WAKEUP_BIT_GPIO1 BIT(24)
  229. #define WAKEUP_BIT_GPIO2 BIT(25)
  230. #define WAKEUP_BIT_GPIO3 BIT(26)
  231. #define WAKEUP_BIT_GPIO4 BIT(27)
  232. #define WAKEUP_BIT_GPIO5 BIT(28)
  233. #define WAKEUP_BIT_GPIO6 BIT(29)
  234. #define WAKEUP_BIT_GPIO7 BIT(30)
  235. #define WAKEUP_BIT_GPIO8 BIT(31)
  236. static struct {
  237. bool valid;
  238. struct prcmu_fw_version version;
  239. } fw_info;
  240. static struct irq_domain *db8500_irq_domain;
  241. /*
  242. * This vector maps irq numbers to the bits in the bit field used in
  243. * communication with the PRCMU firmware.
  244. *
  245. * The reason for having this is to keep the irq numbers contiguous even though
  246. * the bits in the bit field are not. (The bits also have a tendency to move
  247. * around, to further complicate matters.)
  248. */
  249. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  250. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  251. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  252. IRQ_ENTRY(RTC),
  253. IRQ_ENTRY(RTT0),
  254. IRQ_ENTRY(RTT1),
  255. IRQ_ENTRY(HSI0),
  256. IRQ_ENTRY(HSI1),
  257. IRQ_ENTRY(CA_WAKE),
  258. IRQ_ENTRY(USB),
  259. IRQ_ENTRY(ABB),
  260. IRQ_ENTRY(ABB_FIFO),
  261. IRQ_ENTRY(CA_SLEEP),
  262. IRQ_ENTRY(ARM),
  263. IRQ_ENTRY(HOTMON_LOW),
  264. IRQ_ENTRY(HOTMON_HIGH),
  265. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  266. IRQ_ENTRY(GPIO0),
  267. IRQ_ENTRY(GPIO1),
  268. IRQ_ENTRY(GPIO2),
  269. IRQ_ENTRY(GPIO3),
  270. IRQ_ENTRY(GPIO4),
  271. IRQ_ENTRY(GPIO5),
  272. IRQ_ENTRY(GPIO6),
  273. IRQ_ENTRY(GPIO7),
  274. IRQ_ENTRY(GPIO8)
  275. };
  276. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  277. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  278. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  279. WAKEUP_ENTRY(RTC),
  280. WAKEUP_ENTRY(RTT0),
  281. WAKEUP_ENTRY(RTT1),
  282. WAKEUP_ENTRY(HSI0),
  283. WAKEUP_ENTRY(HSI1),
  284. WAKEUP_ENTRY(USB),
  285. WAKEUP_ENTRY(ABB),
  286. WAKEUP_ENTRY(ABB_FIFO),
  287. WAKEUP_ENTRY(ARM)
  288. };
  289. /*
  290. * mb0_transfer - state needed for mailbox 0 communication.
  291. * @lock: The transaction lock.
  292. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  293. * the request data.
  294. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  295. * @req: Request data that need to persist between requests.
  296. */
  297. static struct {
  298. spinlock_t lock;
  299. spinlock_t dbb_irqs_lock;
  300. struct work_struct mask_work;
  301. struct mutex ac_wake_lock;
  302. struct completion ac_wake_work;
  303. struct {
  304. u32 dbb_irqs;
  305. u32 dbb_wakeups;
  306. u32 abb_events;
  307. } req;
  308. } mb0_transfer;
  309. /*
  310. * mb1_transfer - state needed for mailbox 1 communication.
  311. * @lock: The transaction lock.
  312. * @work: The transaction completion structure.
  313. * @ape_opp: The current APE OPP.
  314. * @ack: Reply ("acknowledge") data.
  315. */
  316. static struct {
  317. struct mutex lock;
  318. struct completion work;
  319. u8 ape_opp;
  320. struct {
  321. u8 header;
  322. u8 arm_opp;
  323. u8 ape_opp;
  324. u8 ape_voltage_status;
  325. } ack;
  326. } mb1_transfer;
  327. /*
  328. * mb2_transfer - state needed for mailbox 2 communication.
  329. * @lock: The transaction lock.
  330. * @work: The transaction completion structure.
  331. * @auto_pm_lock: The autonomous power management configuration lock.
  332. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  333. * @req: Request data that need to persist between requests.
  334. * @ack: Reply ("acknowledge") data.
  335. */
  336. static struct {
  337. struct mutex lock;
  338. struct completion work;
  339. spinlock_t auto_pm_lock;
  340. bool auto_pm_enabled;
  341. struct {
  342. u8 status;
  343. } ack;
  344. } mb2_transfer;
  345. /*
  346. * mb3_transfer - state needed for mailbox 3 communication.
  347. * @lock: The request lock.
  348. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  349. * @sysclk_work: Work structure used for sysclk requests.
  350. */
  351. static struct {
  352. spinlock_t lock;
  353. struct mutex sysclk_lock;
  354. struct completion sysclk_work;
  355. } mb3_transfer;
  356. /*
  357. * mb4_transfer - state needed for mailbox 4 communication.
  358. * @lock: The transaction lock.
  359. * @work: The transaction completion structure.
  360. */
  361. static struct {
  362. struct mutex lock;
  363. struct completion work;
  364. } mb4_transfer;
  365. /*
  366. * mb5_transfer - state needed for mailbox 5 communication.
  367. * @lock: The transaction lock.
  368. * @work: The transaction completion structure.
  369. * @ack: Reply ("acknowledge") data.
  370. */
  371. static struct {
  372. struct mutex lock;
  373. struct completion work;
  374. struct {
  375. u8 status;
  376. u8 value;
  377. } ack;
  378. } mb5_transfer;
  379. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  380. /* Spinlocks */
  381. static DEFINE_SPINLOCK(prcmu_lock);
  382. static DEFINE_SPINLOCK(clkout_lock);
  383. /* Global var to runtime determine TCDM base for v2 or v1 */
  384. static __iomem void *tcdm_base;
  385. static __iomem void *prcmu_base;
  386. struct clk_mgt {
  387. u32 offset;
  388. u32 pllsw;
  389. int branch;
  390. bool clk38div;
  391. };
  392. enum {
  393. PLL_RAW,
  394. PLL_FIX,
  395. PLL_DIV
  396. };
  397. static DEFINE_SPINLOCK(clk_mgt_lock);
  398. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  399. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  400. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  401. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  402. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  403. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  404. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  405. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  406. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  407. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  408. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  409. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  410. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  411. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  412. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  413. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  414. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  415. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  416. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  417. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  418. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  419. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  420. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  421. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  422. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  423. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  424. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  425. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  426. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  427. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  430. };
  431. struct dsiclk {
  432. u32 divsel_mask;
  433. u32 divsel_shift;
  434. u32 divsel;
  435. };
  436. static struct dsiclk dsiclk[2] = {
  437. {
  438. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  439. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  440. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  441. },
  442. {
  443. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  444. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  445. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  446. }
  447. };
  448. struct dsiescclk {
  449. u32 en;
  450. u32 div_mask;
  451. u32 div_shift;
  452. };
  453. static struct dsiescclk dsiescclk[3] = {
  454. {
  455. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  456. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  457. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  458. },
  459. {
  460. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  461. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  462. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  463. },
  464. {
  465. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  466. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  467. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  468. }
  469. };
  470. /*
  471. * Used by MCDE to setup all necessary PRCMU registers
  472. */
  473. #define PRCMU_RESET_DSIPLL 0x00004000
  474. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  475. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  476. #define PRCMU_CLK_PLL_SW_SHIFT 5
  477. #define PRCMU_CLK_38 (1 << 9)
  478. #define PRCMU_CLK_38_SRC (1 << 10)
  479. #define PRCMU_CLK_38_DIV (1 << 11)
  480. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  481. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  482. /* DPI 50000000 Hz */
  483. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  484. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  485. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  486. /* D=101, N=1, R=4, SELDIV2=0 */
  487. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  488. #define PRCMU_ENABLE_PLLDSI 0x00000001
  489. #define PRCMU_DISABLE_PLLDSI 0x00000000
  490. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  491. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  492. /* ESC clk, div0=1, div1=1, div2=3 */
  493. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  494. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  495. #define PRCMU_DSI_RESET_SW 0x00000007
  496. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  497. int db8500_prcmu_enable_dsipll(void)
  498. {
  499. int i;
  500. /* Clear DSIPLL_RESETN */
  501. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  502. /* Unclamp DSIPLL in/out */
  503. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  504. /* Set DSI PLL FREQ */
  505. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  506. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  507. /* Enable Escape clocks */
  508. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  509. /* Start DSI PLL */
  510. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  511. /* Reset DSI PLL */
  512. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  513. for (i = 0; i < 10; i++) {
  514. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  515. == PRCMU_PLLDSI_LOCKP_LOCKED)
  516. break;
  517. udelay(100);
  518. }
  519. /* Set DSIPLL_RESETN */
  520. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  521. return 0;
  522. }
  523. int db8500_prcmu_disable_dsipll(void)
  524. {
  525. /* Disable dsi pll */
  526. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  527. /* Disable escapeclock */
  528. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  529. return 0;
  530. }
  531. int db8500_prcmu_set_display_clocks(void)
  532. {
  533. unsigned long flags;
  534. spin_lock_irqsave(&clk_mgt_lock, flags);
  535. /* Grab the HW semaphore. */
  536. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  537. cpu_relax();
  538. writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
  539. writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
  540. writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
  541. /* Release the HW semaphore. */
  542. writel(0, PRCM_SEM);
  543. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  544. return 0;
  545. }
  546. u32 db8500_prcmu_read(unsigned int reg)
  547. {
  548. return readl(prcmu_base + reg);
  549. }
  550. void db8500_prcmu_write(unsigned int reg, u32 value)
  551. {
  552. unsigned long flags;
  553. spin_lock_irqsave(&prcmu_lock, flags);
  554. writel(value, (prcmu_base + reg));
  555. spin_unlock_irqrestore(&prcmu_lock, flags);
  556. }
  557. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  558. {
  559. u32 val;
  560. unsigned long flags;
  561. spin_lock_irqsave(&prcmu_lock, flags);
  562. val = readl(prcmu_base + reg);
  563. val = ((val & ~mask) | (value & mask));
  564. writel(val, (prcmu_base + reg));
  565. spin_unlock_irqrestore(&prcmu_lock, flags);
  566. }
  567. struct prcmu_fw_version *prcmu_get_fw_version(void)
  568. {
  569. return fw_info.valid ? &fw_info.version : NULL;
  570. }
  571. bool prcmu_has_arm_maxopp(void)
  572. {
  573. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  574. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  575. }
  576. /**
  577. * prcmu_get_boot_status - PRCMU boot status checking
  578. * Returns: the current PRCMU boot status
  579. */
  580. int prcmu_get_boot_status(void)
  581. {
  582. return readb(tcdm_base + PRCM_BOOT_STATUS);
  583. }
  584. /**
  585. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  586. * @val: Value to be set, i.e. transition requested
  587. * Returns: 0 on success, -EINVAL on invalid argument
  588. *
  589. * This function is used to run the following power state sequences -
  590. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  591. */
  592. int prcmu_set_rc_a2p(enum romcode_write val)
  593. {
  594. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  595. return -EINVAL;
  596. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  597. return 0;
  598. }
  599. /**
  600. * prcmu_get_rc_p2a - This function is used to get power state sequences
  601. * Returns: the power transition that has last happened
  602. *
  603. * This function can return the following transitions-
  604. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  605. */
  606. enum romcode_read prcmu_get_rc_p2a(void)
  607. {
  608. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  609. }
  610. /**
  611. * prcmu_get_current_mode - Return the current XP70 power mode
  612. * Returns: Returns the current AP(ARM) power mode: init,
  613. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  614. */
  615. enum ap_pwrst prcmu_get_xp70_current_state(void)
  616. {
  617. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  618. }
  619. /**
  620. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  621. * @clkout: The CLKOUT number (0 or 1).
  622. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  623. * @div: The divider to be applied.
  624. *
  625. * Configures one of the programmable clock outputs (CLKOUTs).
  626. * @div should be in the range [1,63] to request a configuration, or 0 to
  627. * inform that the configuration is no longer requested.
  628. */
  629. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  630. {
  631. static int requests[2];
  632. int r = 0;
  633. unsigned long flags;
  634. u32 val;
  635. u32 bits;
  636. u32 mask;
  637. u32 div_mask;
  638. BUG_ON(clkout > 1);
  639. BUG_ON(div > 63);
  640. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  641. if (!div && !requests[clkout])
  642. return -EINVAL;
  643. switch (clkout) {
  644. case 0:
  645. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  646. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  647. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  648. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  649. break;
  650. case 1:
  651. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  652. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  653. PRCM_CLKOCR_CLK1TYPE);
  654. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  655. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  656. break;
  657. }
  658. bits &= mask;
  659. spin_lock_irqsave(&clkout_lock, flags);
  660. val = readl(PRCM_CLKOCR);
  661. if (val & div_mask) {
  662. if (div) {
  663. if ((val & mask) != bits) {
  664. r = -EBUSY;
  665. goto unlock_and_return;
  666. }
  667. } else {
  668. if ((val & mask & ~div_mask) != bits) {
  669. r = -EINVAL;
  670. goto unlock_and_return;
  671. }
  672. }
  673. }
  674. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  675. requests[clkout] += (div ? 1 : -1);
  676. unlock_and_return:
  677. spin_unlock_irqrestore(&clkout_lock, flags);
  678. return r;
  679. }
  680. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  681. {
  682. unsigned long flags;
  683. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  684. spin_lock_irqsave(&mb0_transfer.lock, flags);
  685. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  686. cpu_relax();
  687. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  688. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  689. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  690. writeb((keep_ulp_clk ? 1 : 0),
  691. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  692. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  693. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  694. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  695. return 0;
  696. }
  697. u8 db8500_prcmu_get_power_state_result(void)
  698. {
  699. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  700. }
  701. /* This function should only be called while mb0_transfer.lock is held. */
  702. static void config_wakeups(void)
  703. {
  704. const u8 header[2] = {
  705. MB0H_CONFIG_WAKEUPS_EXE,
  706. MB0H_CONFIG_WAKEUPS_SLEEP
  707. };
  708. static u32 last_dbb_events;
  709. static u32 last_abb_events;
  710. u32 dbb_events;
  711. u32 abb_events;
  712. unsigned int i;
  713. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  714. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  715. abb_events = mb0_transfer.req.abb_events;
  716. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  717. return;
  718. for (i = 0; i < 2; i++) {
  719. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  720. cpu_relax();
  721. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  722. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  723. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  724. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  725. }
  726. last_dbb_events = dbb_events;
  727. last_abb_events = abb_events;
  728. }
  729. void db8500_prcmu_enable_wakeups(u32 wakeups)
  730. {
  731. unsigned long flags;
  732. u32 bits;
  733. int i;
  734. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  735. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  736. if (wakeups & BIT(i))
  737. bits |= prcmu_wakeup_bit[i];
  738. }
  739. spin_lock_irqsave(&mb0_transfer.lock, flags);
  740. mb0_transfer.req.dbb_wakeups = bits;
  741. config_wakeups();
  742. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  743. }
  744. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  745. {
  746. unsigned long flags;
  747. spin_lock_irqsave(&mb0_transfer.lock, flags);
  748. mb0_transfer.req.abb_events = abb_events;
  749. config_wakeups();
  750. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  751. }
  752. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  753. {
  754. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  755. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  756. else
  757. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  758. }
  759. /**
  760. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  761. * @opp: The new ARM operating point to which transition is to be made
  762. * Returns: 0 on success, non-zero on failure
  763. *
  764. * This function sets the the operating point of the ARM.
  765. */
  766. int db8500_prcmu_set_arm_opp(u8 opp)
  767. {
  768. int r;
  769. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  770. return -EINVAL;
  771. r = 0;
  772. mutex_lock(&mb1_transfer.lock);
  773. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  774. cpu_relax();
  775. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  776. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  777. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  778. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  779. wait_for_completion(&mb1_transfer.work);
  780. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  781. (mb1_transfer.ack.arm_opp != opp))
  782. r = -EIO;
  783. mutex_unlock(&mb1_transfer.lock);
  784. return r;
  785. }
  786. /**
  787. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  788. *
  789. * Returns: the current ARM OPP
  790. */
  791. int db8500_prcmu_get_arm_opp(void)
  792. {
  793. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  794. }
  795. /**
  796. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  797. *
  798. * Returns: the current DDR OPP
  799. */
  800. int db8500_prcmu_get_ddr_opp(void)
  801. {
  802. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  803. }
  804. /**
  805. * db8500_set_ddr_opp - set the appropriate DDR OPP
  806. * @opp: The new DDR operating point to which transition is to be made
  807. * Returns: 0 on success, non-zero on failure
  808. *
  809. * This function sets the operating point of the DDR.
  810. */
  811. static bool enable_set_ddr_opp;
  812. int db8500_prcmu_set_ddr_opp(u8 opp)
  813. {
  814. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  815. return -EINVAL;
  816. /* Changing the DDR OPP can hang the hardware pre-v21 */
  817. if (enable_set_ddr_opp)
  818. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  819. return 0;
  820. }
  821. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  822. static void request_even_slower_clocks(bool enable)
  823. {
  824. u32 clock_reg[] = {
  825. PRCM_ACLK_MGT,
  826. PRCM_DMACLK_MGT
  827. };
  828. unsigned long flags;
  829. unsigned int i;
  830. spin_lock_irqsave(&clk_mgt_lock, flags);
  831. /* Grab the HW semaphore. */
  832. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  833. cpu_relax();
  834. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  835. u32 val;
  836. u32 div;
  837. val = readl(prcmu_base + clock_reg[i]);
  838. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  839. if (enable) {
  840. if ((div <= 1) || (div > 15)) {
  841. pr_err("prcmu: Bad clock divider %d in %s\n",
  842. div, __func__);
  843. goto unlock_and_return;
  844. }
  845. div <<= 1;
  846. } else {
  847. if (div <= 2)
  848. goto unlock_and_return;
  849. div >>= 1;
  850. }
  851. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  852. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  853. writel(val, prcmu_base + clock_reg[i]);
  854. }
  855. unlock_and_return:
  856. /* Release the HW semaphore. */
  857. writel(0, PRCM_SEM);
  858. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  859. }
  860. /**
  861. * db8500_set_ape_opp - set the appropriate APE OPP
  862. * @opp: The new APE operating point to which transition is to be made
  863. * Returns: 0 on success, non-zero on failure
  864. *
  865. * This function sets the operating point of the APE.
  866. */
  867. int db8500_prcmu_set_ape_opp(u8 opp)
  868. {
  869. int r = 0;
  870. if (opp == mb1_transfer.ape_opp)
  871. return 0;
  872. mutex_lock(&mb1_transfer.lock);
  873. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  874. request_even_slower_clocks(false);
  875. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  876. goto skip_message;
  877. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  878. cpu_relax();
  879. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  880. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  881. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  882. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  883. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  884. wait_for_completion(&mb1_transfer.work);
  885. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  886. (mb1_transfer.ack.ape_opp != opp))
  887. r = -EIO;
  888. skip_message:
  889. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  890. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  891. request_even_slower_clocks(true);
  892. if (!r)
  893. mb1_transfer.ape_opp = opp;
  894. mutex_unlock(&mb1_transfer.lock);
  895. return r;
  896. }
  897. /**
  898. * db8500_prcmu_get_ape_opp - get the current APE OPP
  899. *
  900. * Returns: the current APE OPP
  901. */
  902. int db8500_prcmu_get_ape_opp(void)
  903. {
  904. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  905. }
  906. /**
  907. * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  908. * @enable: true to request the higher voltage, false to drop a request.
  909. *
  910. * Calls to this function to enable and disable requests must be balanced.
  911. */
  912. int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
  913. {
  914. int r = 0;
  915. u8 header;
  916. static unsigned int requests;
  917. mutex_lock(&mb1_transfer.lock);
  918. if (enable) {
  919. if (0 != requests++)
  920. goto unlock_and_return;
  921. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  922. } else {
  923. if (requests == 0) {
  924. r = -EIO;
  925. goto unlock_and_return;
  926. } else if (1 != requests--) {
  927. goto unlock_and_return;
  928. }
  929. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  930. }
  931. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  932. cpu_relax();
  933. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  934. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  935. wait_for_completion(&mb1_transfer.work);
  936. if ((mb1_transfer.ack.header != header) ||
  937. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  938. r = -EIO;
  939. unlock_and_return:
  940. mutex_unlock(&mb1_transfer.lock);
  941. return r;
  942. }
  943. /**
  944. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  945. *
  946. * This function releases the power state requirements of a USB wakeup.
  947. */
  948. int prcmu_release_usb_wakeup_state(void)
  949. {
  950. int r = 0;
  951. mutex_lock(&mb1_transfer.lock);
  952. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  953. cpu_relax();
  954. writeb(MB1H_RELEASE_USB_WAKEUP,
  955. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  956. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  957. wait_for_completion(&mb1_transfer.work);
  958. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  959. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  960. r = -EIO;
  961. mutex_unlock(&mb1_transfer.lock);
  962. return r;
  963. }
  964. static int request_pll(u8 clock, bool enable)
  965. {
  966. int r = 0;
  967. if (clock == PRCMU_PLLSOC0)
  968. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  969. else if (clock == PRCMU_PLLSOC1)
  970. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  971. else
  972. return -EINVAL;
  973. mutex_lock(&mb1_transfer.lock);
  974. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  975. cpu_relax();
  976. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  977. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  978. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  979. wait_for_completion(&mb1_transfer.work);
  980. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  981. r = -EIO;
  982. mutex_unlock(&mb1_transfer.lock);
  983. return r;
  984. }
  985. /**
  986. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  987. * @epod_id: The EPOD to set
  988. * @epod_state: The new EPOD state
  989. *
  990. * This function sets the state of a EPOD (power domain). It may not be called
  991. * from interrupt context.
  992. */
  993. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  994. {
  995. int r = 0;
  996. bool ram_retention = false;
  997. int i;
  998. /* check argument */
  999. BUG_ON(epod_id >= NUM_EPOD_ID);
  1000. /* set flag if retention is possible */
  1001. switch (epod_id) {
  1002. case EPOD_ID_SVAMMDSP:
  1003. case EPOD_ID_SIAMMDSP:
  1004. case EPOD_ID_ESRAM12:
  1005. case EPOD_ID_ESRAM34:
  1006. ram_retention = true;
  1007. break;
  1008. }
  1009. /* check argument */
  1010. BUG_ON(epod_state > EPOD_STATE_ON);
  1011. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1012. /* get lock */
  1013. mutex_lock(&mb2_transfer.lock);
  1014. /* wait for mailbox */
  1015. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1016. cpu_relax();
  1017. /* fill in mailbox */
  1018. for (i = 0; i < NUM_EPOD_ID; i++)
  1019. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1020. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1021. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1022. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1023. /*
  1024. * The current firmware version does not handle errors correctly,
  1025. * and we cannot recover if there is an error.
  1026. * This is expected to change when the firmware is updated.
  1027. */
  1028. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1029. msecs_to_jiffies(20000))) {
  1030. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1031. __func__);
  1032. r = -EIO;
  1033. goto unlock_and_return;
  1034. }
  1035. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1036. r = -EIO;
  1037. unlock_and_return:
  1038. mutex_unlock(&mb2_transfer.lock);
  1039. return r;
  1040. }
  1041. /**
  1042. * prcmu_configure_auto_pm - Configure autonomous power management.
  1043. * @sleep: Configuration for ApSleep.
  1044. * @idle: Configuration for ApIdle.
  1045. */
  1046. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1047. struct prcmu_auto_pm_config *idle)
  1048. {
  1049. u32 sleep_cfg;
  1050. u32 idle_cfg;
  1051. unsigned long flags;
  1052. BUG_ON((sleep == NULL) || (idle == NULL));
  1053. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1054. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1055. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1056. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1057. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1058. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1059. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1060. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1061. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1062. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1063. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1064. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1065. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1066. /*
  1067. * The autonomous power management configuration is done through
  1068. * fields in mailbox 2, but these fields are only used as shared
  1069. * variables - i.e. there is no need to send a message.
  1070. */
  1071. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1072. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1073. mb2_transfer.auto_pm_enabled =
  1074. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1075. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1076. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1077. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1078. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1079. }
  1080. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1081. bool prcmu_is_auto_pm_enabled(void)
  1082. {
  1083. return mb2_transfer.auto_pm_enabled;
  1084. }
  1085. static int request_sysclk(bool enable)
  1086. {
  1087. int r;
  1088. unsigned long flags;
  1089. r = 0;
  1090. mutex_lock(&mb3_transfer.sysclk_lock);
  1091. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1092. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1093. cpu_relax();
  1094. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1095. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1096. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1097. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1098. /*
  1099. * The firmware only sends an ACK if we want to enable the
  1100. * SysClk, and it succeeds.
  1101. */
  1102. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1103. msecs_to_jiffies(20000))) {
  1104. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1105. __func__);
  1106. r = -EIO;
  1107. }
  1108. mutex_unlock(&mb3_transfer.sysclk_lock);
  1109. return r;
  1110. }
  1111. static int request_timclk(bool enable)
  1112. {
  1113. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1114. if (!enable)
  1115. val |= PRCM_TCR_STOP_TIMERS;
  1116. writel(val, PRCM_TCR);
  1117. return 0;
  1118. }
  1119. static int request_clock(u8 clock, bool enable)
  1120. {
  1121. u32 val;
  1122. unsigned long flags;
  1123. spin_lock_irqsave(&clk_mgt_lock, flags);
  1124. /* Grab the HW semaphore. */
  1125. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1126. cpu_relax();
  1127. val = readl(prcmu_base + clk_mgt[clock].offset);
  1128. if (enable) {
  1129. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1130. } else {
  1131. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1132. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1133. }
  1134. writel(val, prcmu_base + clk_mgt[clock].offset);
  1135. /* Release the HW semaphore. */
  1136. writel(0, PRCM_SEM);
  1137. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1138. return 0;
  1139. }
  1140. static int request_sga_clock(u8 clock, bool enable)
  1141. {
  1142. u32 val;
  1143. int ret;
  1144. if (enable) {
  1145. val = readl(PRCM_CGATING_BYPASS);
  1146. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1147. }
  1148. ret = request_clock(clock, enable);
  1149. if (!ret && !enable) {
  1150. val = readl(PRCM_CGATING_BYPASS);
  1151. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1152. }
  1153. return ret;
  1154. }
  1155. static inline bool plldsi_locked(void)
  1156. {
  1157. return (readl(PRCM_PLLDSI_LOCKP) &
  1158. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1159. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1160. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1161. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1162. }
  1163. static int request_plldsi(bool enable)
  1164. {
  1165. int r = 0;
  1166. u32 val;
  1167. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1168. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1169. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1170. val = readl(PRCM_PLLDSI_ENABLE);
  1171. if (enable)
  1172. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1173. else
  1174. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1175. writel(val, PRCM_PLLDSI_ENABLE);
  1176. if (enable) {
  1177. unsigned int i;
  1178. bool locked = plldsi_locked();
  1179. for (i = 10; !locked && (i > 0); --i) {
  1180. udelay(100);
  1181. locked = plldsi_locked();
  1182. }
  1183. if (locked) {
  1184. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1185. PRCM_APE_RESETN_SET);
  1186. } else {
  1187. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1188. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1189. PRCM_MMIP_LS_CLAMP_SET);
  1190. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1191. writel(val, PRCM_PLLDSI_ENABLE);
  1192. r = -EAGAIN;
  1193. }
  1194. } else {
  1195. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1196. }
  1197. return r;
  1198. }
  1199. static int request_dsiclk(u8 n, bool enable)
  1200. {
  1201. u32 val;
  1202. val = readl(PRCM_DSI_PLLOUT_SEL);
  1203. val &= ~dsiclk[n].divsel_mask;
  1204. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1205. dsiclk[n].divsel_shift);
  1206. writel(val, PRCM_DSI_PLLOUT_SEL);
  1207. return 0;
  1208. }
  1209. static int request_dsiescclk(u8 n, bool enable)
  1210. {
  1211. u32 val;
  1212. val = readl(PRCM_DSITVCLK_DIV);
  1213. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1214. writel(val, PRCM_DSITVCLK_DIV);
  1215. return 0;
  1216. }
  1217. /**
  1218. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1219. * @clock: The clock for which the request is made.
  1220. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1221. *
  1222. * This function should only be used by the clock implementation.
  1223. * Do not use it from any other place!
  1224. */
  1225. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1226. {
  1227. if (clock == PRCMU_SGACLK)
  1228. return request_sga_clock(clock, enable);
  1229. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1230. return request_clock(clock, enable);
  1231. else if (clock == PRCMU_TIMCLK)
  1232. return request_timclk(enable);
  1233. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1234. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1235. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1236. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1237. else if (clock == PRCMU_PLLDSI)
  1238. return request_plldsi(enable);
  1239. else if (clock == PRCMU_SYSCLK)
  1240. return request_sysclk(enable);
  1241. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1242. return request_pll(clock, enable);
  1243. else
  1244. return -EINVAL;
  1245. }
  1246. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1247. int branch)
  1248. {
  1249. u64 rate;
  1250. u32 val;
  1251. u32 d;
  1252. u32 div = 1;
  1253. val = readl(reg);
  1254. rate = src_rate;
  1255. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1256. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1257. if (d > 1)
  1258. div *= d;
  1259. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1260. if (d > 1)
  1261. div *= d;
  1262. if (val & PRCM_PLL_FREQ_SELDIV2)
  1263. div *= 2;
  1264. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1265. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1266. ((reg == PRCM_PLLSOC0_FREQ) ||
  1267. (reg == PRCM_PLLARM_FREQ) ||
  1268. (reg == PRCM_PLLDDR_FREQ))))
  1269. div *= 2;
  1270. (void)do_div(rate, div);
  1271. return (unsigned long)rate;
  1272. }
  1273. #define ROOT_CLOCK_RATE 38400000
  1274. static unsigned long clock_rate(u8 clock)
  1275. {
  1276. u32 val;
  1277. u32 pllsw;
  1278. unsigned long rate = ROOT_CLOCK_RATE;
  1279. val = readl(prcmu_base + clk_mgt[clock].offset);
  1280. if (val & PRCM_CLK_MGT_CLK38) {
  1281. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1282. rate /= 2;
  1283. return rate;
  1284. }
  1285. val |= clk_mgt[clock].pllsw;
  1286. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1287. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1288. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1289. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1290. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1291. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1292. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1293. else
  1294. return 0;
  1295. if ((clock == PRCMU_SGACLK) &&
  1296. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1297. u64 r = (rate * 10);
  1298. (void)do_div(r, 25);
  1299. return (unsigned long)r;
  1300. }
  1301. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1302. if (val)
  1303. return rate / val;
  1304. else
  1305. return 0;
  1306. }
  1307. static unsigned long armss_rate(void)
  1308. {
  1309. u32 r;
  1310. unsigned long rate;
  1311. r = readl(PRCM_ARM_CHGCLKREQ);
  1312. if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
  1313. /* External ARMCLKFIX clock */
  1314. rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
  1315. /* Check PRCM_ARM_CHGCLKREQ divider */
  1316. if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
  1317. rate /= 2;
  1318. /* Check PRCM_ARMCLKFIX_MGT divider */
  1319. r = readl(PRCM_ARMCLKFIX_MGT);
  1320. r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1321. rate /= r;
  1322. } else {/* ARM PLL */
  1323. rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
  1324. }
  1325. return rate;
  1326. }
  1327. static unsigned long dsiclk_rate(u8 n)
  1328. {
  1329. u32 divsel;
  1330. u32 div = 1;
  1331. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1332. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1333. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1334. divsel = dsiclk[n].divsel;
  1335. switch (divsel) {
  1336. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1337. div *= 2;
  1338. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1339. div *= 2;
  1340. case PRCM_DSI_PLLOUT_SEL_PHI:
  1341. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1342. PLL_RAW) / div;
  1343. default:
  1344. return 0;
  1345. }
  1346. }
  1347. static unsigned long dsiescclk_rate(u8 n)
  1348. {
  1349. u32 div;
  1350. div = readl(PRCM_DSITVCLK_DIV);
  1351. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1352. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1353. }
  1354. unsigned long prcmu_clock_rate(u8 clock)
  1355. {
  1356. if (clock < PRCMU_NUM_REG_CLOCKS)
  1357. return clock_rate(clock);
  1358. else if (clock == PRCMU_TIMCLK)
  1359. return ROOT_CLOCK_RATE / 16;
  1360. else if (clock == PRCMU_SYSCLK)
  1361. return ROOT_CLOCK_RATE;
  1362. else if (clock == PRCMU_PLLSOC0)
  1363. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1364. else if (clock == PRCMU_PLLSOC1)
  1365. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1366. else if (clock == PRCMU_ARMSS)
  1367. return armss_rate();
  1368. else if (clock == PRCMU_PLLDDR)
  1369. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1370. else if (clock == PRCMU_PLLDSI)
  1371. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1372. PLL_RAW);
  1373. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1374. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1375. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1376. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1377. else
  1378. return 0;
  1379. }
  1380. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1381. {
  1382. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1383. return ROOT_CLOCK_RATE;
  1384. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1385. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1386. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1387. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1388. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1389. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1390. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1391. else
  1392. return 0;
  1393. }
  1394. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1395. {
  1396. u32 div;
  1397. div = (src_rate / rate);
  1398. if (div == 0)
  1399. return 1;
  1400. if (rate < (src_rate / div))
  1401. div++;
  1402. return div;
  1403. }
  1404. static long round_clock_rate(u8 clock, unsigned long rate)
  1405. {
  1406. u32 val;
  1407. u32 div;
  1408. unsigned long src_rate;
  1409. long rounded_rate;
  1410. val = readl(prcmu_base + clk_mgt[clock].offset);
  1411. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1412. clk_mgt[clock].branch);
  1413. div = clock_divider(src_rate, rate);
  1414. if (val & PRCM_CLK_MGT_CLK38) {
  1415. if (clk_mgt[clock].clk38div) {
  1416. if (div > 2)
  1417. div = 2;
  1418. } else {
  1419. div = 1;
  1420. }
  1421. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1422. u64 r = (src_rate * 10);
  1423. (void)do_div(r, 25);
  1424. if (r <= rate)
  1425. return (unsigned long)r;
  1426. }
  1427. rounded_rate = (src_rate / min(div, (u32)31));
  1428. return rounded_rate;
  1429. }
  1430. /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
  1431. static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
  1432. { .frequency = 200000, .index = ARM_EXTCLK,},
  1433. { .frequency = 400000, .index = ARM_50_OPP,},
  1434. { .frequency = 800000, .index = ARM_100_OPP,},
  1435. { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
  1436. { .frequency = CPUFREQ_TABLE_END,},
  1437. };
  1438. static long round_armss_rate(unsigned long rate)
  1439. {
  1440. long freq = 0;
  1441. int i = 0;
  1442. /* cpufreq table frequencies is in KHz. */
  1443. rate = rate / 1000;
  1444. /* Find the corresponding arm opp from the cpufreq table. */
  1445. while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
  1446. freq = db8500_cpufreq_table[i].frequency;
  1447. if (freq == rate)
  1448. break;
  1449. i++;
  1450. }
  1451. /* Return the last valid value, even if a match was not found. */
  1452. return freq * 1000;
  1453. }
  1454. #define MIN_PLL_VCO_RATE 600000000ULL
  1455. #define MAX_PLL_VCO_RATE 1680640000ULL
  1456. static long round_plldsi_rate(unsigned long rate)
  1457. {
  1458. long rounded_rate = 0;
  1459. unsigned long src_rate;
  1460. unsigned long rem;
  1461. u32 r;
  1462. src_rate = clock_rate(PRCMU_HDMICLK);
  1463. rem = rate;
  1464. for (r = 7; (rem > 0) && (r > 0); r--) {
  1465. u64 d;
  1466. d = (r * rate);
  1467. (void)do_div(d, src_rate);
  1468. if (d < 6)
  1469. d = 6;
  1470. else if (d > 255)
  1471. d = 255;
  1472. d *= src_rate;
  1473. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1474. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1475. continue;
  1476. (void)do_div(d, r);
  1477. if (rate < d) {
  1478. if (rounded_rate == 0)
  1479. rounded_rate = (long)d;
  1480. break;
  1481. }
  1482. if ((rate - d) < rem) {
  1483. rem = (rate - d);
  1484. rounded_rate = (long)d;
  1485. }
  1486. }
  1487. return rounded_rate;
  1488. }
  1489. static long round_dsiclk_rate(unsigned long rate)
  1490. {
  1491. u32 div;
  1492. unsigned long src_rate;
  1493. long rounded_rate;
  1494. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1495. PLL_RAW);
  1496. div = clock_divider(src_rate, rate);
  1497. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1498. return rounded_rate;
  1499. }
  1500. static long round_dsiescclk_rate(unsigned long rate)
  1501. {
  1502. u32 div;
  1503. unsigned long src_rate;
  1504. long rounded_rate;
  1505. src_rate = clock_rate(PRCMU_TVCLK);
  1506. div = clock_divider(src_rate, rate);
  1507. rounded_rate = (src_rate / min(div, (u32)255));
  1508. return rounded_rate;
  1509. }
  1510. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1511. {
  1512. if (clock < PRCMU_NUM_REG_CLOCKS)
  1513. return round_clock_rate(clock, rate);
  1514. else if (clock == PRCMU_ARMSS)
  1515. return round_armss_rate(rate);
  1516. else if (clock == PRCMU_PLLDSI)
  1517. return round_plldsi_rate(rate);
  1518. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1519. return round_dsiclk_rate(rate);
  1520. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1521. return round_dsiescclk_rate(rate);
  1522. else
  1523. return (long)prcmu_clock_rate(clock);
  1524. }
  1525. static void set_clock_rate(u8 clock, unsigned long rate)
  1526. {
  1527. u32 val;
  1528. u32 div;
  1529. unsigned long src_rate;
  1530. unsigned long flags;
  1531. spin_lock_irqsave(&clk_mgt_lock, flags);
  1532. /* Grab the HW semaphore. */
  1533. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1534. cpu_relax();
  1535. val = readl(prcmu_base + clk_mgt[clock].offset);
  1536. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1537. clk_mgt[clock].branch);
  1538. div = clock_divider(src_rate, rate);
  1539. if (val & PRCM_CLK_MGT_CLK38) {
  1540. if (clk_mgt[clock].clk38div) {
  1541. if (div > 1)
  1542. val |= PRCM_CLK_MGT_CLK38DIV;
  1543. else
  1544. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1545. }
  1546. } else if (clock == PRCMU_SGACLK) {
  1547. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1548. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1549. if (div == 3) {
  1550. u64 r = (src_rate * 10);
  1551. (void)do_div(r, 25);
  1552. if (r <= rate) {
  1553. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1554. div = 0;
  1555. }
  1556. }
  1557. val |= min(div, (u32)31);
  1558. } else {
  1559. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1560. val |= min(div, (u32)31);
  1561. }
  1562. writel(val, prcmu_base + clk_mgt[clock].offset);
  1563. /* Release the HW semaphore. */
  1564. writel(0, PRCM_SEM);
  1565. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1566. }
  1567. static int set_armss_rate(unsigned long rate)
  1568. {
  1569. int i = 0;
  1570. /* cpufreq table frequencies is in KHz. */
  1571. rate = rate / 1000;
  1572. /* Find the corresponding arm opp from the cpufreq table. */
  1573. while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
  1574. if (db8500_cpufreq_table[i].frequency == rate)
  1575. break;
  1576. i++;
  1577. }
  1578. if (db8500_cpufreq_table[i].frequency != rate)
  1579. return -EINVAL;
  1580. /* Set the new arm opp. */
  1581. return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
  1582. }
  1583. static int set_plldsi_rate(unsigned long rate)
  1584. {
  1585. unsigned long src_rate;
  1586. unsigned long rem;
  1587. u32 pll_freq = 0;
  1588. u32 r;
  1589. src_rate = clock_rate(PRCMU_HDMICLK);
  1590. rem = rate;
  1591. for (r = 7; (rem > 0) && (r > 0); r--) {
  1592. u64 d;
  1593. u64 hwrate;
  1594. d = (r * rate);
  1595. (void)do_div(d, src_rate);
  1596. if (d < 6)
  1597. d = 6;
  1598. else if (d > 255)
  1599. d = 255;
  1600. hwrate = (d * src_rate);
  1601. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1602. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1603. continue;
  1604. (void)do_div(hwrate, r);
  1605. if (rate < hwrate) {
  1606. if (pll_freq == 0)
  1607. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1608. (r << PRCM_PLL_FREQ_R_SHIFT));
  1609. break;
  1610. }
  1611. if ((rate - hwrate) < rem) {
  1612. rem = (rate - hwrate);
  1613. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1614. (r << PRCM_PLL_FREQ_R_SHIFT));
  1615. }
  1616. }
  1617. if (pll_freq == 0)
  1618. return -EINVAL;
  1619. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1620. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1621. return 0;
  1622. }
  1623. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1624. {
  1625. u32 val;
  1626. u32 div;
  1627. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1628. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1629. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1630. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1631. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1632. val = readl(PRCM_DSI_PLLOUT_SEL);
  1633. val &= ~dsiclk[n].divsel_mask;
  1634. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1635. writel(val, PRCM_DSI_PLLOUT_SEL);
  1636. }
  1637. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1638. {
  1639. u32 val;
  1640. u32 div;
  1641. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1642. val = readl(PRCM_DSITVCLK_DIV);
  1643. val &= ~dsiescclk[n].div_mask;
  1644. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1645. writel(val, PRCM_DSITVCLK_DIV);
  1646. }
  1647. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1648. {
  1649. if (clock < PRCMU_NUM_REG_CLOCKS)
  1650. set_clock_rate(clock, rate);
  1651. else if (clock == PRCMU_ARMSS)
  1652. return set_armss_rate(rate);
  1653. else if (clock == PRCMU_PLLDSI)
  1654. return set_plldsi_rate(rate);
  1655. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1656. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1657. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1658. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1659. return 0;
  1660. }
  1661. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1662. {
  1663. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1664. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1665. return -EINVAL;
  1666. mutex_lock(&mb4_transfer.lock);
  1667. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1668. cpu_relax();
  1669. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1670. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1671. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1672. writeb(DDR_PWR_STATE_ON,
  1673. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1674. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1675. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1676. wait_for_completion(&mb4_transfer.work);
  1677. mutex_unlock(&mb4_transfer.lock);
  1678. return 0;
  1679. }
  1680. int db8500_prcmu_config_hotdog(u8 threshold)
  1681. {
  1682. mutex_lock(&mb4_transfer.lock);
  1683. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1684. cpu_relax();
  1685. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1686. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1687. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1688. wait_for_completion(&mb4_transfer.work);
  1689. mutex_unlock(&mb4_transfer.lock);
  1690. return 0;
  1691. }
  1692. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1693. {
  1694. mutex_lock(&mb4_transfer.lock);
  1695. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1696. cpu_relax();
  1697. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1698. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1699. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1700. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1701. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1702. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1703. wait_for_completion(&mb4_transfer.work);
  1704. mutex_unlock(&mb4_transfer.lock);
  1705. return 0;
  1706. }
  1707. static int config_hot_period(u16 val)
  1708. {
  1709. mutex_lock(&mb4_transfer.lock);
  1710. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1711. cpu_relax();
  1712. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1713. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1714. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1715. wait_for_completion(&mb4_transfer.work);
  1716. mutex_unlock(&mb4_transfer.lock);
  1717. return 0;
  1718. }
  1719. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1720. {
  1721. if (cycles32k == 0xFFFF)
  1722. return -EINVAL;
  1723. return config_hot_period(cycles32k);
  1724. }
  1725. int db8500_prcmu_stop_temp_sense(void)
  1726. {
  1727. return config_hot_period(0xFFFF);
  1728. }
  1729. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1730. {
  1731. mutex_lock(&mb4_transfer.lock);
  1732. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1733. cpu_relax();
  1734. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1735. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1736. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1737. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1738. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1739. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1740. wait_for_completion(&mb4_transfer.work);
  1741. mutex_unlock(&mb4_transfer.lock);
  1742. return 0;
  1743. }
  1744. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1745. {
  1746. BUG_ON(num == 0 || num > 0xf);
  1747. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1748. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1749. A9WDOG_AUTO_OFF_DIS);
  1750. }
  1751. EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
  1752. int db8500_prcmu_enable_a9wdog(u8 id)
  1753. {
  1754. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1755. }
  1756. EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
  1757. int db8500_prcmu_disable_a9wdog(u8 id)
  1758. {
  1759. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1760. }
  1761. EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
  1762. int db8500_prcmu_kick_a9wdog(u8 id)
  1763. {
  1764. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1765. }
  1766. EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
  1767. /*
  1768. * timeout is 28 bit, in ms.
  1769. */
  1770. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1771. {
  1772. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1773. (id & A9WDOG_ID_MASK) |
  1774. /*
  1775. * Put the lowest 28 bits of timeout at
  1776. * offset 4. Four first bits are used for id.
  1777. */
  1778. (u8)((timeout << 4) & 0xf0),
  1779. (u8)((timeout >> 4) & 0xff),
  1780. (u8)((timeout >> 12) & 0xff),
  1781. (u8)((timeout >> 20) & 0xff));
  1782. }
  1783. EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
  1784. /**
  1785. * prcmu_abb_read() - Read register value(s) from the ABB.
  1786. * @slave: The I2C slave address.
  1787. * @reg: The (start) register address.
  1788. * @value: The read out value(s).
  1789. * @size: The number of registers to read.
  1790. *
  1791. * Reads register value(s) from the ABB.
  1792. * @size has to be 1 for the current firmware version.
  1793. */
  1794. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1795. {
  1796. int r;
  1797. if (size != 1)
  1798. return -EINVAL;
  1799. mutex_lock(&mb5_transfer.lock);
  1800. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1801. cpu_relax();
  1802. writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1803. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1804. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1805. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1806. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1807. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1808. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1809. msecs_to_jiffies(20000))) {
  1810. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1811. __func__);
  1812. r = -EIO;
  1813. } else {
  1814. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1815. }
  1816. if (!r)
  1817. *value = mb5_transfer.ack.value;
  1818. mutex_unlock(&mb5_transfer.lock);
  1819. return r;
  1820. }
  1821. /**
  1822. * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
  1823. * @slave: The I2C slave address.
  1824. * @reg: The (start) register address.
  1825. * @value: The value(s) to write.
  1826. * @mask: The mask(s) to use.
  1827. * @size: The number of registers to write.
  1828. *
  1829. * Writes masked register value(s) to the ABB.
  1830. * For each @value, only the bits set to 1 in the corresponding @mask
  1831. * will be written. The other bits are not changed.
  1832. * @size has to be 1 for the current firmware version.
  1833. */
  1834. int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
  1835. {
  1836. int r;
  1837. if (size != 1)
  1838. return -EINVAL;
  1839. mutex_lock(&mb5_transfer.lock);
  1840. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1841. cpu_relax();
  1842. writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1843. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1844. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1845. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1846. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1847. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1848. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1849. msecs_to_jiffies(20000))) {
  1850. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1851. __func__);
  1852. r = -EIO;
  1853. } else {
  1854. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1855. }
  1856. mutex_unlock(&mb5_transfer.lock);
  1857. return r;
  1858. }
  1859. /**
  1860. * prcmu_abb_write() - Write register value(s) to the ABB.
  1861. * @slave: The I2C slave address.
  1862. * @reg: The (start) register address.
  1863. * @value: The value(s) to write.
  1864. * @size: The number of registers to write.
  1865. *
  1866. * Writes register value(s) to the ABB.
  1867. * @size has to be 1 for the current firmware version.
  1868. */
  1869. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1870. {
  1871. u8 mask = ~0;
  1872. return prcmu_abb_write_masked(slave, reg, value, &mask, size);
  1873. }
  1874. /**
  1875. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1876. */
  1877. int prcmu_ac_wake_req(void)
  1878. {
  1879. u32 val;
  1880. int ret = 0;
  1881. mutex_lock(&mb0_transfer.ac_wake_lock);
  1882. val = readl(PRCM_HOSTACCESS_REQ);
  1883. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1884. goto unlock_and_return;
  1885. atomic_set(&ac_wake_req_state, 1);
  1886. /*
  1887. * Force Modem Wake-up before hostaccess_req ping-pong.
  1888. * It prevents Modem to enter in Sleep while acking the hostaccess
  1889. * request. The 31us delay has been calculated by HWI.
  1890. */
  1891. val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
  1892. writel(val, PRCM_HOSTACCESS_REQ);
  1893. udelay(31);
  1894. val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
  1895. writel(val, PRCM_HOSTACCESS_REQ);
  1896. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1897. msecs_to_jiffies(5000))) {
  1898. #if defined(CONFIG_DBX500_PRCMU_DEBUG)
  1899. db8500_prcmu_debug_dump(__func__, true, true);
  1900. #endif
  1901. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1902. __func__);
  1903. ret = -EFAULT;
  1904. }
  1905. unlock_and_return:
  1906. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1907. return ret;
  1908. }
  1909. /**
  1910. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1911. */
  1912. void prcmu_ac_sleep_req()
  1913. {
  1914. u32 val;
  1915. mutex_lock(&mb0_transfer.ac_wake_lock);
  1916. val = readl(PRCM_HOSTACCESS_REQ);
  1917. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1918. goto unlock_and_return;
  1919. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1920. PRCM_HOSTACCESS_REQ);
  1921. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1922. msecs_to_jiffies(5000))) {
  1923. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1924. __func__);
  1925. }
  1926. atomic_set(&ac_wake_req_state, 0);
  1927. unlock_and_return:
  1928. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1929. }
  1930. bool db8500_prcmu_is_ac_wake_requested(void)
  1931. {
  1932. return (atomic_read(&ac_wake_req_state) != 0);
  1933. }
  1934. /**
  1935. * db8500_prcmu_system_reset - System reset
  1936. *
  1937. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1938. * fires interrupt to fw
  1939. */
  1940. void db8500_prcmu_system_reset(u16 reset_code)
  1941. {
  1942. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1943. writel(1, PRCM_APE_SOFTRST);
  1944. }
  1945. /**
  1946. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  1947. *
  1948. * Retrieves the reset reason code stored by prcmu_system_reset() before
  1949. * last restart.
  1950. */
  1951. u16 db8500_prcmu_get_reset_code(void)
  1952. {
  1953. return readw(tcdm_base + PRCM_SW_RST_REASON);
  1954. }
  1955. /**
  1956. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  1957. */
  1958. void db8500_prcmu_modem_reset(void)
  1959. {
  1960. mutex_lock(&mb1_transfer.lock);
  1961. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1962. cpu_relax();
  1963. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1964. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1965. wait_for_completion(&mb1_transfer.work);
  1966. /*
  1967. * No need to check return from PRCMU as modem should go in reset state
  1968. * This state is already managed by upper layer
  1969. */
  1970. mutex_unlock(&mb1_transfer.lock);
  1971. }
  1972. static void ack_dbb_wakeup(void)
  1973. {
  1974. unsigned long flags;
  1975. spin_lock_irqsave(&mb0_transfer.lock, flags);
  1976. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  1977. cpu_relax();
  1978. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  1979. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  1980. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  1981. }
  1982. static inline void print_unknown_header_warning(u8 n, u8 header)
  1983. {
  1984. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  1985. header, n);
  1986. }
  1987. static bool read_mailbox_0(void)
  1988. {
  1989. bool r;
  1990. u32 ev;
  1991. unsigned int n;
  1992. u8 header;
  1993. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  1994. switch (header) {
  1995. case MB0H_WAKEUP_EXE:
  1996. case MB0H_WAKEUP_SLEEP:
  1997. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  1998. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  1999. else
  2000. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2001. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2002. complete(&mb0_transfer.ac_wake_work);
  2003. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2004. complete(&mb3_transfer.sysclk_work);
  2005. ev &= mb0_transfer.req.dbb_irqs;
  2006. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2007. if (ev & prcmu_irq_bit[n])
  2008. generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
  2009. }
  2010. r = true;
  2011. break;
  2012. default:
  2013. print_unknown_header_warning(0, header);
  2014. r = false;
  2015. break;
  2016. }
  2017. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2018. return r;
  2019. }
  2020. static bool read_mailbox_1(void)
  2021. {
  2022. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2023. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2024. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2025. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2026. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2027. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2028. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2029. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2030. complete(&mb1_transfer.work);
  2031. return false;
  2032. }
  2033. static bool read_mailbox_2(void)
  2034. {
  2035. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2036. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2037. complete(&mb2_transfer.work);
  2038. return false;
  2039. }
  2040. static bool read_mailbox_3(void)
  2041. {
  2042. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2043. return false;
  2044. }
  2045. static bool read_mailbox_4(void)
  2046. {
  2047. u8 header;
  2048. bool do_complete = true;
  2049. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2050. switch (header) {
  2051. case MB4H_MEM_ST:
  2052. case MB4H_HOTDOG:
  2053. case MB4H_HOTMON:
  2054. case MB4H_HOT_PERIOD:
  2055. case MB4H_A9WDOG_CONF:
  2056. case MB4H_A9WDOG_EN:
  2057. case MB4H_A9WDOG_DIS:
  2058. case MB4H_A9WDOG_LOAD:
  2059. case MB4H_A9WDOG_KICK:
  2060. break;
  2061. default:
  2062. print_unknown_header_warning(4, header);
  2063. do_complete = false;
  2064. break;
  2065. }
  2066. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2067. if (do_complete)
  2068. complete(&mb4_transfer.work);
  2069. return false;
  2070. }
  2071. static bool read_mailbox_5(void)
  2072. {
  2073. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2074. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2075. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2076. complete(&mb5_transfer.work);
  2077. return false;
  2078. }
  2079. static bool read_mailbox_6(void)
  2080. {
  2081. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2082. return false;
  2083. }
  2084. static bool read_mailbox_7(void)
  2085. {
  2086. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2087. return false;
  2088. }
  2089. static bool (* const read_mailbox[NUM_MB])(void) = {
  2090. read_mailbox_0,
  2091. read_mailbox_1,
  2092. read_mailbox_2,
  2093. read_mailbox_3,
  2094. read_mailbox_4,
  2095. read_mailbox_5,
  2096. read_mailbox_6,
  2097. read_mailbox_7
  2098. };
  2099. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2100. {
  2101. u32 bits;
  2102. u8 n;
  2103. irqreturn_t r;
  2104. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2105. if (unlikely(!bits))
  2106. return IRQ_NONE;
  2107. r = IRQ_HANDLED;
  2108. for (n = 0; bits; n++) {
  2109. if (bits & MBOX_BIT(n)) {
  2110. bits -= MBOX_BIT(n);
  2111. if (read_mailbox[n]())
  2112. r = IRQ_WAKE_THREAD;
  2113. }
  2114. }
  2115. return r;
  2116. }
  2117. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2118. {
  2119. ack_dbb_wakeup();
  2120. return IRQ_HANDLED;
  2121. }
  2122. static void prcmu_mask_work(struct work_struct *work)
  2123. {
  2124. unsigned long flags;
  2125. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2126. config_wakeups();
  2127. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2128. }
  2129. static void prcmu_irq_mask(struct irq_data *d)
  2130. {
  2131. unsigned long flags;
  2132. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2133. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
  2134. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2135. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2136. schedule_work(&mb0_transfer.mask_work);
  2137. }
  2138. static void prcmu_irq_unmask(struct irq_data *d)
  2139. {
  2140. unsigned long flags;
  2141. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2142. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
  2143. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2144. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2145. schedule_work(&mb0_transfer.mask_work);
  2146. }
  2147. static void noop(struct irq_data *d)
  2148. {
  2149. }
  2150. static struct irq_chip prcmu_irq_chip = {
  2151. .name = "prcmu",
  2152. .irq_disable = prcmu_irq_mask,
  2153. .irq_ack = noop,
  2154. .irq_mask = prcmu_irq_mask,
  2155. .irq_unmask = prcmu_irq_unmask,
  2156. };
  2157. static __init char *fw_project_name(u32 project)
  2158. {
  2159. switch (project) {
  2160. case PRCMU_FW_PROJECT_U8500:
  2161. return "U8500";
  2162. case PRCMU_FW_PROJECT_U8400:
  2163. return "U8400";
  2164. case PRCMU_FW_PROJECT_U9500:
  2165. return "U9500";
  2166. case PRCMU_FW_PROJECT_U8500_MBB:
  2167. return "U8500 MBB";
  2168. case PRCMU_FW_PROJECT_U8500_C1:
  2169. return "U8500 C1";
  2170. case PRCMU_FW_PROJECT_U8500_C2:
  2171. return "U8500 C2";
  2172. case PRCMU_FW_PROJECT_U8500_C3:
  2173. return "U8500 C3";
  2174. case PRCMU_FW_PROJECT_U8500_C4:
  2175. return "U8500 C4";
  2176. case PRCMU_FW_PROJECT_U9500_MBL:
  2177. return "U9500 MBL";
  2178. case PRCMU_FW_PROJECT_U8500_MBL:
  2179. return "U8500 MBL";
  2180. case PRCMU_FW_PROJECT_U8500_MBL2:
  2181. return "U8500 MBL2";
  2182. case PRCMU_FW_PROJECT_U8520:
  2183. return "U8520 MBL";
  2184. case PRCMU_FW_PROJECT_U8420:
  2185. return "U8420";
  2186. case PRCMU_FW_PROJECT_U9540:
  2187. return "U9540";
  2188. case PRCMU_FW_PROJECT_A9420:
  2189. return "A9420";
  2190. case PRCMU_FW_PROJECT_L8540:
  2191. return "L8540";
  2192. case PRCMU_FW_PROJECT_L8580:
  2193. return "L8580";
  2194. default:
  2195. return "Unknown";
  2196. }
  2197. }
  2198. static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
  2199. irq_hw_number_t hwirq)
  2200. {
  2201. irq_set_chip_and_handler(virq, &prcmu_irq_chip,
  2202. handle_simple_irq);
  2203. set_irq_flags(virq, IRQF_VALID);
  2204. return 0;
  2205. }
  2206. static struct irq_domain_ops db8500_irq_ops = {
  2207. .map = db8500_irq_map,
  2208. .xlate = irq_domain_xlate_twocell,
  2209. };
  2210. static int db8500_irq_init(struct device_node *np)
  2211. {
  2212. int irq_base = 0;
  2213. int i;
  2214. /* In the device tree case, just take some IRQs */
  2215. if (!np)
  2216. irq_base = IRQ_PRCMU_BASE;
  2217. db8500_irq_domain = irq_domain_add_simple(
  2218. np, NUM_PRCMU_WAKEUPS, irq_base,
  2219. &db8500_irq_ops, NULL);
  2220. if (!db8500_irq_domain) {
  2221. pr_err("Failed to create irqdomain\n");
  2222. return -ENOSYS;
  2223. }
  2224. /* All wakeups will be used, so create mappings for all */
  2225. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
  2226. irq_create_mapping(db8500_irq_domain, i);
  2227. return 0;
  2228. }
  2229. static void dbx500_fw_version_init(struct platform_device *pdev,
  2230. u32 version_offset)
  2231. {
  2232. struct resource *res;
  2233. void __iomem *tcpm_base;
  2234. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2235. "prcmu-tcpm");
  2236. if (!res) {
  2237. dev_err(&pdev->dev,
  2238. "Error: no prcmu tcpm memory region provided\n");
  2239. return;
  2240. }
  2241. tcpm_base = ioremap(res->start, resource_size(res));
  2242. if (tcpm_base != NULL) {
  2243. u32 version;
  2244. version = readl(tcpm_base + version_offset);
  2245. fw_info.version.project = (version & 0xFF);
  2246. fw_info.version.api_version = (version >> 8) & 0xFF;
  2247. fw_info.version.func_version = (version >> 16) & 0xFF;
  2248. fw_info.version.errata = (version >> 24) & 0xFF;
  2249. strncpy(fw_info.version.project_name,
  2250. fw_project_name(fw_info.version.project),
  2251. PRCMU_FW_PROJECT_NAME_LEN);
  2252. fw_info.valid = true;
  2253. pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
  2254. fw_info.version.project_name,
  2255. fw_info.version.project,
  2256. fw_info.version.api_version,
  2257. fw_info.version.func_version,
  2258. fw_info.version.errata);
  2259. iounmap(tcpm_base);
  2260. }
  2261. }
  2262. void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
  2263. {
  2264. /*
  2265. * This is a temporary remap to bring up the clocks. It is
  2266. * subsequently replaces with a real remap. After the merge of
  2267. * the mailbox subsystem all of this early code goes away, and the
  2268. * clock driver can probe independently. An early initcall will
  2269. * still be needed, but it can be diverted into drivers/clk/ux500.
  2270. */
  2271. prcmu_base = ioremap(phy_base, size);
  2272. if (!prcmu_base)
  2273. pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
  2274. spin_lock_init(&mb0_transfer.lock);
  2275. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2276. mutex_init(&mb0_transfer.ac_wake_lock);
  2277. init_completion(&mb0_transfer.ac_wake_work);
  2278. mutex_init(&mb1_transfer.lock);
  2279. init_completion(&mb1_transfer.work);
  2280. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2281. mutex_init(&mb2_transfer.lock);
  2282. init_completion(&mb2_transfer.work);
  2283. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2284. spin_lock_init(&mb3_transfer.lock);
  2285. mutex_init(&mb3_transfer.sysclk_lock);
  2286. init_completion(&mb3_transfer.sysclk_work);
  2287. mutex_init(&mb4_transfer.lock);
  2288. init_completion(&mb4_transfer.work);
  2289. mutex_init(&mb5_transfer.lock);
  2290. init_completion(&mb5_transfer.work);
  2291. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2292. }
  2293. static void __init init_prcm_registers(void)
  2294. {
  2295. u32 val;
  2296. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2297. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2298. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2299. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2300. }
  2301. /*
  2302. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2303. */
  2304. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2305. REGULATOR_SUPPLY("v-ape", NULL),
  2306. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2307. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2308. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2309. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2310. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
  2311. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2312. REGULATOR_SUPPLY("vcore", "sdi0"),
  2313. REGULATOR_SUPPLY("vcore", "sdi1"),
  2314. REGULATOR_SUPPLY("vcore", "sdi2"),
  2315. REGULATOR_SUPPLY("vcore", "sdi3"),
  2316. REGULATOR_SUPPLY("vcore", "sdi4"),
  2317. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2318. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2319. /* "v-uart" changed to "vcore" in the mainline kernel */
  2320. REGULATOR_SUPPLY("vcore", "uart0"),
  2321. REGULATOR_SUPPLY("vcore", "uart1"),
  2322. REGULATOR_SUPPLY("vcore", "uart2"),
  2323. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2324. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2325. REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
  2326. };
  2327. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2328. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2329. /* AV8100 regulator */
  2330. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2331. };
  2332. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2333. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2334. REGULATOR_SUPPLY("vsupply", "mcde"),
  2335. };
  2336. /* SVA MMDSP regulator switch */
  2337. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2338. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2339. };
  2340. /* SVA pipe regulator switch */
  2341. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2342. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2343. };
  2344. /* SIA MMDSP regulator switch */
  2345. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2346. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2347. };
  2348. /* SIA pipe regulator switch */
  2349. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2350. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2351. };
  2352. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2353. REGULATOR_SUPPLY("v-mali", NULL),
  2354. };
  2355. /* ESRAM1 and 2 regulator switch */
  2356. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2357. REGULATOR_SUPPLY("esram12", "cm_control"),
  2358. };
  2359. /* ESRAM3 and 4 regulator switch */
  2360. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2361. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2362. REGULATOR_SUPPLY("esram34", "cm_control"),
  2363. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2364. };
  2365. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2366. [DB8500_REGULATOR_VAPE] = {
  2367. .constraints = {
  2368. .name = "db8500-vape",
  2369. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2370. .always_on = true,
  2371. },
  2372. .consumer_supplies = db8500_vape_consumers,
  2373. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2374. },
  2375. [DB8500_REGULATOR_VARM] = {
  2376. .constraints = {
  2377. .name = "db8500-varm",
  2378. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2379. },
  2380. },
  2381. [DB8500_REGULATOR_VMODEM] = {
  2382. .constraints = {
  2383. .name = "db8500-vmodem",
  2384. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2385. },
  2386. },
  2387. [DB8500_REGULATOR_VPLL] = {
  2388. .constraints = {
  2389. .name = "db8500-vpll",
  2390. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2391. },
  2392. },
  2393. [DB8500_REGULATOR_VSMPS1] = {
  2394. .constraints = {
  2395. .name = "db8500-vsmps1",
  2396. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2397. },
  2398. },
  2399. [DB8500_REGULATOR_VSMPS2] = {
  2400. .constraints = {
  2401. .name = "db8500-vsmps2",
  2402. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2403. },
  2404. .consumer_supplies = db8500_vsmps2_consumers,
  2405. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2406. },
  2407. [DB8500_REGULATOR_VSMPS3] = {
  2408. .constraints = {
  2409. .name = "db8500-vsmps3",
  2410. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2411. },
  2412. },
  2413. [DB8500_REGULATOR_VRF1] = {
  2414. .constraints = {
  2415. .name = "db8500-vrf1",
  2416. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2417. },
  2418. },
  2419. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2420. /* dependency to u8500-vape is handled outside regulator framework */
  2421. .constraints = {
  2422. .name = "db8500-sva-mmdsp",
  2423. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2424. },
  2425. .consumer_supplies = db8500_svammdsp_consumers,
  2426. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2427. },
  2428. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2429. .constraints = {
  2430. /* "ret" means "retention" */
  2431. .name = "db8500-sva-mmdsp-ret",
  2432. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2433. },
  2434. },
  2435. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2436. /* dependency to u8500-vape is handled outside regulator framework */
  2437. .constraints = {
  2438. .name = "db8500-sva-pipe",
  2439. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2440. },
  2441. .consumer_supplies = db8500_svapipe_consumers,
  2442. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2443. },
  2444. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2445. /* dependency to u8500-vape is handled outside regulator framework */
  2446. .constraints = {
  2447. .name = "db8500-sia-mmdsp",
  2448. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2449. },
  2450. .consumer_supplies = db8500_siammdsp_consumers,
  2451. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2452. },
  2453. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2454. .constraints = {
  2455. .name = "db8500-sia-mmdsp-ret",
  2456. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2457. },
  2458. },
  2459. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2460. /* dependency to u8500-vape is handled outside regulator framework */
  2461. .constraints = {
  2462. .name = "db8500-sia-pipe",
  2463. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2464. },
  2465. .consumer_supplies = db8500_siapipe_consumers,
  2466. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2467. },
  2468. [DB8500_REGULATOR_SWITCH_SGA] = {
  2469. .supply_regulator = "db8500-vape",
  2470. .constraints = {
  2471. .name = "db8500-sga",
  2472. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2473. },
  2474. .consumer_supplies = db8500_sga_consumers,
  2475. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2476. },
  2477. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2478. .supply_regulator = "db8500-vape",
  2479. .constraints = {
  2480. .name = "db8500-b2r2-mcde",
  2481. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2482. },
  2483. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2484. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2485. },
  2486. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2487. /*
  2488. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2489. * no need to hold Vape
  2490. */
  2491. .constraints = {
  2492. .name = "db8500-esram12",
  2493. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2494. },
  2495. .consumer_supplies = db8500_esram12_consumers,
  2496. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2497. },
  2498. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2499. .constraints = {
  2500. .name = "db8500-esram12-ret",
  2501. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2502. },
  2503. },
  2504. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2505. /*
  2506. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2507. * no need to hold Vape
  2508. */
  2509. .constraints = {
  2510. .name = "db8500-esram34",
  2511. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2512. },
  2513. .consumer_supplies = db8500_esram34_consumers,
  2514. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2515. },
  2516. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2517. .constraints = {
  2518. .name = "db8500-esram34-ret",
  2519. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2520. },
  2521. },
  2522. };
  2523. static struct resource ab8500_resources[] = {
  2524. [0] = {
  2525. .start = IRQ_DB8500_AB8500,
  2526. .end = IRQ_DB8500_AB8500,
  2527. .flags = IORESOURCE_IRQ
  2528. }
  2529. };
  2530. static struct ux500_wdt_data db8500_wdt_pdata = {
  2531. .timeout = 600, /* 10 minutes */
  2532. .has_28_bits_resolution = true,
  2533. };
  2534. static struct mfd_cell db8500_prcmu_devs[] = {
  2535. {
  2536. .name = "db8500-prcmu-regulators",
  2537. .of_compatible = "stericsson,db8500-prcmu-regulator",
  2538. .platform_data = &db8500_regulators,
  2539. .pdata_size = sizeof(db8500_regulators),
  2540. },
  2541. {
  2542. .name = "cpufreq-ux500",
  2543. .of_compatible = "stericsson,cpufreq-ux500",
  2544. .platform_data = &db8500_cpufreq_table,
  2545. .pdata_size = sizeof(db8500_cpufreq_table),
  2546. },
  2547. {
  2548. .name = "ux500_wdt",
  2549. .platform_data = &db8500_wdt_pdata,
  2550. .pdata_size = sizeof(db8500_wdt_pdata),
  2551. .id = -1,
  2552. },
  2553. {
  2554. .name = "ab8500-core",
  2555. .of_compatible = "stericsson,ab8500",
  2556. .num_resources = ARRAY_SIZE(ab8500_resources),
  2557. .resources = ab8500_resources,
  2558. .id = AB8500_VERSION_AB8500,
  2559. },
  2560. };
  2561. static void db8500_prcmu_update_cpufreq(void)
  2562. {
  2563. if (prcmu_has_arm_maxopp()) {
  2564. db8500_cpufreq_table[3].frequency = 1000000;
  2565. db8500_cpufreq_table[3].index = ARM_MAX_OPP;
  2566. }
  2567. }
  2568. /**
  2569. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2570. *
  2571. */
  2572. static int db8500_prcmu_probe(struct platform_device *pdev)
  2573. {
  2574. struct device_node *np = pdev->dev.of_node;
  2575. struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
  2576. int irq = 0, err = 0, i;
  2577. struct resource *res;
  2578. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
  2579. if (!res) {
  2580. dev_err(&pdev->dev, "no prcmu memory region provided\n");
  2581. return -ENOENT;
  2582. }
  2583. prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  2584. if (!prcmu_base) {
  2585. dev_err(&pdev->dev,
  2586. "failed to ioremap prcmu register memory\n");
  2587. return -ENOENT;
  2588. }
  2589. init_prcm_registers();
  2590. dbx500_fw_version_init(pdev, pdata->version_offset);
  2591. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
  2592. if (!res) {
  2593. dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
  2594. return -ENOENT;
  2595. }
  2596. tcdm_base = devm_ioremap(&pdev->dev, res->start,
  2597. resource_size(res));
  2598. /* Clean up the mailbox interrupts after pre-kernel code. */
  2599. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2600. irq = platform_get_irq(pdev, 0);
  2601. if (irq <= 0) {
  2602. dev_err(&pdev->dev, "no prcmu irq provided\n");
  2603. return -ENOENT;
  2604. }
  2605. err = request_threaded_irq(irq, prcmu_irq_handler,
  2606. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2607. if (err < 0) {
  2608. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2609. err = -EBUSY;
  2610. goto no_irq_return;
  2611. }
  2612. db8500_irq_init(np);
  2613. for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
  2614. if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
  2615. db8500_prcmu_devs[i].platform_data = pdata->ab_platdata;
  2616. db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
  2617. }
  2618. }
  2619. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2620. db8500_prcmu_update_cpufreq();
  2621. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2622. ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
  2623. if (err) {
  2624. pr_err("prcmu: Failed to add subdevices\n");
  2625. return err;
  2626. }
  2627. pr_info("DB8500 PRCMU initialized\n");
  2628. no_irq_return:
  2629. return err;
  2630. }
  2631. static const struct of_device_id db8500_prcmu_match[] = {
  2632. { .compatible = "stericsson,db8500-prcmu"},
  2633. { },
  2634. };
  2635. static struct platform_driver db8500_prcmu_driver = {
  2636. .driver = {
  2637. .name = "db8500-prcmu",
  2638. .owner = THIS_MODULE,
  2639. .of_match_table = db8500_prcmu_match,
  2640. },
  2641. .probe = db8500_prcmu_probe,
  2642. };
  2643. static int __init db8500_prcmu_init(void)
  2644. {
  2645. return platform_driver_register(&db8500_prcmu_driver);
  2646. }
  2647. core_initcall(db8500_prcmu_init);
  2648. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2649. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2650. MODULE_LICENSE("GPL v2");