sched.c 223 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #ifdef CONFIG_PARAVIRT
  77. #include <asm/paravirt.h>
  78. #endif
  79. #include "sched_cpupri.h"
  80. #include "workqueue_sched.h"
  81. #include "sched_autogroup.h"
  82. #define CREATE_TRACE_POINTS
  83. #include <trace/events/sched.h>
  84. /*
  85. * Convert user-nice values [ -20 ... 0 ... 19 ]
  86. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  87. * and back.
  88. */
  89. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  90. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  91. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  92. /*
  93. * 'User priority' is the nice value converted to something we
  94. * can work with better when scaling various scheduler parameters,
  95. * it's a [ 0 ... 39 ] range.
  96. */
  97. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  98. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  99. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  100. /*
  101. * Helpers for converting nanosecond timing to jiffy resolution
  102. */
  103. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  104. #define NICE_0_LOAD SCHED_LOAD_SCALE
  105. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  106. /*
  107. * These are the 'tuning knobs' of the scheduler:
  108. *
  109. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  110. * Timeslices get refilled after they expire.
  111. */
  112. #define DEF_TIMESLICE (100 * HZ / 1000)
  113. /*
  114. * single value that denotes runtime == period, ie unlimited time.
  115. */
  116. #define RUNTIME_INF ((u64)~0ULL)
  117. static inline int rt_policy(int policy)
  118. {
  119. if (policy == SCHED_FIFO || policy == SCHED_RR)
  120. return 1;
  121. return 0;
  122. }
  123. static inline int task_has_rt_policy(struct task_struct *p)
  124. {
  125. return rt_policy(p->policy);
  126. }
  127. /*
  128. * This is the priority-queue data structure of the RT scheduling class:
  129. */
  130. struct rt_prio_array {
  131. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  132. struct list_head queue[MAX_RT_PRIO];
  133. };
  134. struct rt_bandwidth {
  135. /* nests inside the rq lock: */
  136. raw_spinlock_t rt_runtime_lock;
  137. ktime_t rt_period;
  138. u64 rt_runtime;
  139. struct hrtimer rt_period_timer;
  140. };
  141. static struct rt_bandwidth def_rt_bandwidth;
  142. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  143. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  144. {
  145. struct rt_bandwidth *rt_b =
  146. container_of(timer, struct rt_bandwidth, rt_period_timer);
  147. ktime_t now;
  148. int overrun;
  149. int idle = 0;
  150. for (;;) {
  151. now = hrtimer_cb_get_time(timer);
  152. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  153. if (!overrun)
  154. break;
  155. idle = do_sched_rt_period_timer(rt_b, overrun);
  156. }
  157. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  158. }
  159. static
  160. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  161. {
  162. rt_b->rt_period = ns_to_ktime(period);
  163. rt_b->rt_runtime = runtime;
  164. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  165. hrtimer_init(&rt_b->rt_period_timer,
  166. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  167. rt_b->rt_period_timer.function = sched_rt_period_timer;
  168. }
  169. static inline int rt_bandwidth_enabled(void)
  170. {
  171. return sysctl_sched_rt_runtime >= 0;
  172. }
  173. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  174. {
  175. ktime_t now;
  176. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  177. return;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. return;
  180. raw_spin_lock(&rt_b->rt_runtime_lock);
  181. for (;;) {
  182. unsigned long delta;
  183. ktime_t soft, hard;
  184. if (hrtimer_active(&rt_b->rt_period_timer))
  185. break;
  186. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  187. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  188. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  189. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  190. delta = ktime_to_ns(ktime_sub(hard, soft));
  191. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  192. HRTIMER_MODE_ABS_PINNED, 0);
  193. }
  194. raw_spin_unlock(&rt_b->rt_runtime_lock);
  195. }
  196. #ifdef CONFIG_RT_GROUP_SCHED
  197. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  198. {
  199. hrtimer_cancel(&rt_b->rt_period_timer);
  200. }
  201. #endif
  202. /*
  203. * sched_domains_mutex serializes calls to init_sched_domains,
  204. * detach_destroy_domains and partition_sched_domains.
  205. */
  206. static DEFINE_MUTEX(sched_domains_mutex);
  207. #ifdef CONFIG_CGROUP_SCHED
  208. #include <linux/cgroup.h>
  209. struct cfs_rq;
  210. static LIST_HEAD(task_groups);
  211. /* task group related information */
  212. struct task_group {
  213. struct cgroup_subsys_state css;
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. /* schedulable entities of this group on each cpu */
  216. struct sched_entity **se;
  217. /* runqueue "owned" by this group on each cpu */
  218. struct cfs_rq **cfs_rq;
  219. unsigned long shares;
  220. atomic_t load_weight;
  221. #endif
  222. #ifdef CONFIG_RT_GROUP_SCHED
  223. struct sched_rt_entity **rt_se;
  224. struct rt_rq **rt_rq;
  225. struct rt_bandwidth rt_bandwidth;
  226. #endif
  227. struct rcu_head rcu;
  228. struct list_head list;
  229. struct task_group *parent;
  230. struct list_head siblings;
  231. struct list_head children;
  232. #ifdef CONFIG_SCHED_AUTOGROUP
  233. struct autogroup *autogroup;
  234. #endif
  235. };
  236. /* task_group_lock serializes the addition/removal of task groups */
  237. static DEFINE_SPINLOCK(task_group_lock);
  238. #ifdef CONFIG_FAIR_GROUP_SCHED
  239. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  240. /*
  241. * A weight of 0 or 1 can cause arithmetics problems.
  242. * A weight of a cfs_rq is the sum of weights of which entities
  243. * are queued on this cfs_rq, so a weight of a entity should not be
  244. * too large, so as the shares value of a task group.
  245. * (The default weight is 1024 - so there's no practical
  246. * limitation from this.)
  247. */
  248. #define MIN_SHARES (1UL << 1)
  249. #define MAX_SHARES (1UL << 18)
  250. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  251. #endif
  252. /* Default task group.
  253. * Every task in system belong to this group at bootup.
  254. */
  255. struct task_group root_task_group;
  256. #endif /* CONFIG_CGROUP_SCHED */
  257. /* CFS-related fields in a runqueue */
  258. struct cfs_rq {
  259. struct load_weight load;
  260. unsigned long nr_running;
  261. u64 exec_clock;
  262. u64 min_vruntime;
  263. #ifndef CONFIG_64BIT
  264. u64 min_vruntime_copy;
  265. #endif
  266. struct rb_root tasks_timeline;
  267. struct rb_node *rb_leftmost;
  268. struct list_head tasks;
  269. struct list_head *balance_iterator;
  270. /*
  271. * 'curr' points to currently running entity on this cfs_rq.
  272. * It is set to NULL otherwise (i.e when none are currently running).
  273. */
  274. struct sched_entity *curr, *next, *last, *skip;
  275. #ifdef CONFIG_SCHED_DEBUG
  276. unsigned int nr_spread_over;
  277. #endif
  278. #ifdef CONFIG_FAIR_GROUP_SCHED
  279. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  280. /*
  281. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  282. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  283. * (like users, containers etc.)
  284. *
  285. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  286. * list is used during load balance.
  287. */
  288. int on_list;
  289. struct list_head leaf_cfs_rq_list;
  290. struct task_group *tg; /* group that "owns" this runqueue */
  291. #ifdef CONFIG_SMP
  292. /*
  293. * the part of load.weight contributed by tasks
  294. */
  295. unsigned long task_weight;
  296. /*
  297. * h_load = weight * f(tg)
  298. *
  299. * Where f(tg) is the recursive weight fraction assigned to
  300. * this group.
  301. */
  302. unsigned long h_load;
  303. /*
  304. * Maintaining per-cpu shares distribution for group scheduling
  305. *
  306. * load_stamp is the last time we updated the load average
  307. * load_last is the last time we updated the load average and saw load
  308. * load_unacc_exec_time is currently unaccounted execution time
  309. */
  310. u64 load_avg;
  311. u64 load_period;
  312. u64 load_stamp, load_last, load_unacc_exec_time;
  313. unsigned long load_contribution;
  314. #endif
  315. #endif
  316. };
  317. /* Real-Time classes' related field in a runqueue: */
  318. struct rt_rq {
  319. struct rt_prio_array active;
  320. unsigned long rt_nr_running;
  321. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  322. struct {
  323. int curr; /* highest queued rt task prio */
  324. #ifdef CONFIG_SMP
  325. int next; /* next highest */
  326. #endif
  327. } highest_prio;
  328. #endif
  329. #ifdef CONFIG_SMP
  330. unsigned long rt_nr_migratory;
  331. unsigned long rt_nr_total;
  332. int overloaded;
  333. struct plist_head pushable_tasks;
  334. #endif
  335. int rt_throttled;
  336. u64 rt_time;
  337. u64 rt_runtime;
  338. /* Nests inside the rq lock: */
  339. raw_spinlock_t rt_runtime_lock;
  340. #ifdef CONFIG_RT_GROUP_SCHED
  341. unsigned long rt_nr_boosted;
  342. struct rq *rq;
  343. struct list_head leaf_rt_rq_list;
  344. struct task_group *tg;
  345. #endif
  346. };
  347. #ifdef CONFIG_SMP
  348. /*
  349. * We add the notion of a root-domain which will be used to define per-domain
  350. * variables. Each exclusive cpuset essentially defines an island domain by
  351. * fully partitioning the member cpus from any other cpuset. Whenever a new
  352. * exclusive cpuset is created, we also create and attach a new root-domain
  353. * object.
  354. *
  355. */
  356. struct root_domain {
  357. atomic_t refcount;
  358. atomic_t rto_count;
  359. struct rcu_head rcu;
  360. cpumask_var_t span;
  361. cpumask_var_t online;
  362. /*
  363. * The "RT overload" flag: it gets set if a CPU has more than
  364. * one runnable RT task.
  365. */
  366. cpumask_var_t rto_mask;
  367. struct cpupri cpupri;
  368. };
  369. /*
  370. * By default the system creates a single root-domain with all cpus as
  371. * members (mimicking the global state we have today).
  372. */
  373. static struct root_domain def_root_domain;
  374. #endif /* CONFIG_SMP */
  375. /*
  376. * This is the main, per-CPU runqueue data structure.
  377. *
  378. * Locking rule: those places that want to lock multiple runqueues
  379. * (such as the load balancing or the thread migration code), lock
  380. * acquire operations must be ordered by ascending &runqueue.
  381. */
  382. struct rq {
  383. /* runqueue lock: */
  384. raw_spinlock_t lock;
  385. /*
  386. * nr_running and cpu_load should be in the same cacheline because
  387. * remote CPUs use both these fields when doing load calculation.
  388. */
  389. unsigned long nr_running;
  390. #define CPU_LOAD_IDX_MAX 5
  391. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  392. unsigned long last_load_update_tick;
  393. #ifdef CONFIG_NO_HZ
  394. u64 nohz_stamp;
  395. unsigned char nohz_balance_kick;
  396. #endif
  397. int skip_clock_update;
  398. /* capture load from *all* tasks on this cpu: */
  399. struct load_weight load;
  400. unsigned long nr_load_updates;
  401. u64 nr_switches;
  402. struct cfs_rq cfs;
  403. struct rt_rq rt;
  404. #ifdef CONFIG_FAIR_GROUP_SCHED
  405. /* list of leaf cfs_rq on this cpu: */
  406. struct list_head leaf_cfs_rq_list;
  407. #endif
  408. #ifdef CONFIG_RT_GROUP_SCHED
  409. struct list_head leaf_rt_rq_list;
  410. #endif
  411. /*
  412. * This is part of a global counter where only the total sum
  413. * over all CPUs matters. A task can increase this counter on
  414. * one CPU and if it got migrated afterwards it may decrease
  415. * it on another CPU. Always updated under the runqueue lock:
  416. */
  417. unsigned long nr_uninterruptible;
  418. struct task_struct *curr, *idle, *stop;
  419. unsigned long next_balance;
  420. struct mm_struct *prev_mm;
  421. u64 clock;
  422. u64 clock_task;
  423. atomic_t nr_iowait;
  424. #ifdef CONFIG_SMP
  425. struct root_domain *rd;
  426. struct sched_domain *sd;
  427. unsigned long cpu_power;
  428. unsigned char idle_at_tick;
  429. /* For active balancing */
  430. int post_schedule;
  431. int active_balance;
  432. int push_cpu;
  433. struct cpu_stop_work active_balance_work;
  434. /* cpu of this runqueue: */
  435. int cpu;
  436. int online;
  437. unsigned long avg_load_per_task;
  438. u64 rt_avg;
  439. u64 age_stamp;
  440. u64 idle_stamp;
  441. u64 avg_idle;
  442. #endif
  443. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  444. u64 prev_irq_time;
  445. #endif
  446. #ifdef CONFIG_PARAVIRT
  447. u64 prev_steal_time;
  448. #endif
  449. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  450. u64 prev_steal_time_rq;
  451. #endif
  452. /* calc_load related fields */
  453. unsigned long calc_load_update;
  454. long calc_load_active;
  455. #ifdef CONFIG_SCHED_HRTICK
  456. #ifdef CONFIG_SMP
  457. int hrtick_csd_pending;
  458. struct call_single_data hrtick_csd;
  459. #endif
  460. struct hrtimer hrtick_timer;
  461. #endif
  462. #ifdef CONFIG_SCHEDSTATS
  463. /* latency stats */
  464. struct sched_info rq_sched_info;
  465. unsigned long long rq_cpu_time;
  466. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  467. /* sys_sched_yield() stats */
  468. unsigned int yld_count;
  469. /* schedule() stats */
  470. unsigned int sched_switch;
  471. unsigned int sched_count;
  472. unsigned int sched_goidle;
  473. /* try_to_wake_up() stats */
  474. unsigned int ttwu_count;
  475. unsigned int ttwu_local;
  476. #endif
  477. #ifdef CONFIG_SMP
  478. struct task_struct *wake_list;
  479. #endif
  480. };
  481. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  482. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  483. static inline int cpu_of(struct rq *rq)
  484. {
  485. #ifdef CONFIG_SMP
  486. return rq->cpu;
  487. #else
  488. return 0;
  489. #endif
  490. }
  491. #define rcu_dereference_check_sched_domain(p) \
  492. rcu_dereference_check((p), \
  493. lockdep_is_held(&sched_domains_mutex))
  494. /*
  495. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  496. * See detach_destroy_domains: synchronize_sched for details.
  497. *
  498. * The domain tree of any CPU may only be accessed from within
  499. * preempt-disabled sections.
  500. */
  501. #define for_each_domain(cpu, __sd) \
  502. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  503. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  504. #define this_rq() (&__get_cpu_var(runqueues))
  505. #define task_rq(p) cpu_rq(task_cpu(p))
  506. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  507. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  508. #ifdef CONFIG_CGROUP_SCHED
  509. /*
  510. * Return the group to which this tasks belongs.
  511. *
  512. * We use task_subsys_state_check() and extend the RCU verification with
  513. * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
  514. * task it moves into the cgroup. Therefore by holding either of those locks,
  515. * we pin the task to the current cgroup.
  516. */
  517. static inline struct task_group *task_group(struct task_struct *p)
  518. {
  519. struct task_group *tg;
  520. struct cgroup_subsys_state *css;
  521. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  522. lockdep_is_held(&p->pi_lock) ||
  523. lockdep_is_held(&task_rq(p)->lock));
  524. tg = container_of(css, struct task_group, css);
  525. return autogroup_task_group(p, tg);
  526. }
  527. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  528. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  529. {
  530. #ifdef CONFIG_FAIR_GROUP_SCHED
  531. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  532. p->se.parent = task_group(p)->se[cpu];
  533. #endif
  534. #ifdef CONFIG_RT_GROUP_SCHED
  535. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  536. p->rt.parent = task_group(p)->rt_se[cpu];
  537. #endif
  538. }
  539. #else /* CONFIG_CGROUP_SCHED */
  540. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  541. static inline struct task_group *task_group(struct task_struct *p)
  542. {
  543. return NULL;
  544. }
  545. #endif /* CONFIG_CGROUP_SCHED */
  546. static void update_rq_clock_task(struct rq *rq, s64 delta);
  547. static void update_rq_clock(struct rq *rq)
  548. {
  549. s64 delta;
  550. if (rq->skip_clock_update > 0)
  551. return;
  552. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  553. rq->clock += delta;
  554. update_rq_clock_task(rq, delta);
  555. }
  556. /*
  557. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  558. */
  559. #ifdef CONFIG_SCHED_DEBUG
  560. # define const_debug __read_mostly
  561. #else
  562. # define const_debug static const
  563. #endif
  564. /**
  565. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  566. * @cpu: the processor in question.
  567. *
  568. * This interface allows printk to be called with the runqueue lock
  569. * held and know whether or not it is OK to wake up the klogd.
  570. */
  571. int runqueue_is_locked(int cpu)
  572. {
  573. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  574. }
  575. /*
  576. * Debugging: various feature bits
  577. */
  578. #define SCHED_FEAT(name, enabled) \
  579. __SCHED_FEAT_##name ,
  580. enum {
  581. #include "sched_features.h"
  582. };
  583. #undef SCHED_FEAT
  584. #define SCHED_FEAT(name, enabled) \
  585. (1UL << __SCHED_FEAT_##name) * enabled |
  586. const_debug unsigned int sysctl_sched_features =
  587. #include "sched_features.h"
  588. 0;
  589. #undef SCHED_FEAT
  590. #ifdef CONFIG_SCHED_DEBUG
  591. #define SCHED_FEAT(name, enabled) \
  592. #name ,
  593. static __read_mostly char *sched_feat_names[] = {
  594. #include "sched_features.h"
  595. NULL
  596. };
  597. #undef SCHED_FEAT
  598. static int sched_feat_show(struct seq_file *m, void *v)
  599. {
  600. int i;
  601. for (i = 0; sched_feat_names[i]; i++) {
  602. if (!(sysctl_sched_features & (1UL << i)))
  603. seq_puts(m, "NO_");
  604. seq_printf(m, "%s ", sched_feat_names[i]);
  605. }
  606. seq_puts(m, "\n");
  607. return 0;
  608. }
  609. static ssize_t
  610. sched_feat_write(struct file *filp, const char __user *ubuf,
  611. size_t cnt, loff_t *ppos)
  612. {
  613. char buf[64];
  614. char *cmp;
  615. int neg = 0;
  616. int i;
  617. if (cnt > 63)
  618. cnt = 63;
  619. if (copy_from_user(&buf, ubuf, cnt))
  620. return -EFAULT;
  621. buf[cnt] = 0;
  622. cmp = strstrip(buf);
  623. if (strncmp(cmp, "NO_", 3) == 0) {
  624. neg = 1;
  625. cmp += 3;
  626. }
  627. for (i = 0; sched_feat_names[i]; i++) {
  628. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  629. if (neg)
  630. sysctl_sched_features &= ~(1UL << i);
  631. else
  632. sysctl_sched_features |= (1UL << i);
  633. break;
  634. }
  635. }
  636. if (!sched_feat_names[i])
  637. return -EINVAL;
  638. *ppos += cnt;
  639. return cnt;
  640. }
  641. static int sched_feat_open(struct inode *inode, struct file *filp)
  642. {
  643. return single_open(filp, sched_feat_show, NULL);
  644. }
  645. static const struct file_operations sched_feat_fops = {
  646. .open = sched_feat_open,
  647. .write = sched_feat_write,
  648. .read = seq_read,
  649. .llseek = seq_lseek,
  650. .release = single_release,
  651. };
  652. static __init int sched_init_debug(void)
  653. {
  654. debugfs_create_file("sched_features", 0644, NULL, NULL,
  655. &sched_feat_fops);
  656. return 0;
  657. }
  658. late_initcall(sched_init_debug);
  659. #endif
  660. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  661. /*
  662. * Number of tasks to iterate in a single balance run.
  663. * Limited because this is done with IRQs disabled.
  664. */
  665. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  666. /*
  667. * period over which we average the RT time consumption, measured
  668. * in ms.
  669. *
  670. * default: 1s
  671. */
  672. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  673. /*
  674. * period over which we measure -rt task cpu usage in us.
  675. * default: 1s
  676. */
  677. unsigned int sysctl_sched_rt_period = 1000000;
  678. static __read_mostly int scheduler_running;
  679. /*
  680. * part of the period that we allow rt tasks to run in us.
  681. * default: 0.95s
  682. */
  683. int sysctl_sched_rt_runtime = 950000;
  684. static inline u64 global_rt_period(void)
  685. {
  686. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  687. }
  688. static inline u64 global_rt_runtime(void)
  689. {
  690. if (sysctl_sched_rt_runtime < 0)
  691. return RUNTIME_INF;
  692. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  693. }
  694. #ifndef prepare_arch_switch
  695. # define prepare_arch_switch(next) do { } while (0)
  696. #endif
  697. #ifndef finish_arch_switch
  698. # define finish_arch_switch(prev) do { } while (0)
  699. #endif
  700. static inline int task_current(struct rq *rq, struct task_struct *p)
  701. {
  702. return rq->curr == p;
  703. }
  704. static inline int task_running(struct rq *rq, struct task_struct *p)
  705. {
  706. #ifdef CONFIG_SMP
  707. return p->on_cpu;
  708. #else
  709. return task_current(rq, p);
  710. #endif
  711. }
  712. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  713. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  714. {
  715. #ifdef CONFIG_SMP
  716. /*
  717. * We can optimise this out completely for !SMP, because the
  718. * SMP rebalancing from interrupt is the only thing that cares
  719. * here.
  720. */
  721. next->on_cpu = 1;
  722. #endif
  723. }
  724. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  725. {
  726. #ifdef CONFIG_SMP
  727. /*
  728. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  729. * We must ensure this doesn't happen until the switch is completely
  730. * finished.
  731. */
  732. smp_wmb();
  733. prev->on_cpu = 0;
  734. #endif
  735. #ifdef CONFIG_DEBUG_SPINLOCK
  736. /* this is a valid case when another task releases the spinlock */
  737. rq->lock.owner = current;
  738. #endif
  739. /*
  740. * If we are tracking spinlock dependencies then we have to
  741. * fix up the runqueue lock - which gets 'carried over' from
  742. * prev into current:
  743. */
  744. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  745. raw_spin_unlock_irq(&rq->lock);
  746. }
  747. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  748. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  749. {
  750. #ifdef CONFIG_SMP
  751. /*
  752. * We can optimise this out completely for !SMP, because the
  753. * SMP rebalancing from interrupt is the only thing that cares
  754. * here.
  755. */
  756. next->on_cpu = 1;
  757. #endif
  758. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  759. raw_spin_unlock_irq(&rq->lock);
  760. #else
  761. raw_spin_unlock(&rq->lock);
  762. #endif
  763. }
  764. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  765. {
  766. #ifdef CONFIG_SMP
  767. /*
  768. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  769. * We must ensure this doesn't happen until the switch is completely
  770. * finished.
  771. */
  772. smp_wmb();
  773. prev->on_cpu = 0;
  774. #endif
  775. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  776. local_irq_enable();
  777. #endif
  778. }
  779. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  780. /*
  781. * __task_rq_lock - lock the rq @p resides on.
  782. */
  783. static inline struct rq *__task_rq_lock(struct task_struct *p)
  784. __acquires(rq->lock)
  785. {
  786. struct rq *rq;
  787. lockdep_assert_held(&p->pi_lock);
  788. for (;;) {
  789. rq = task_rq(p);
  790. raw_spin_lock(&rq->lock);
  791. if (likely(rq == task_rq(p)))
  792. return rq;
  793. raw_spin_unlock(&rq->lock);
  794. }
  795. }
  796. /*
  797. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  798. */
  799. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  800. __acquires(p->pi_lock)
  801. __acquires(rq->lock)
  802. {
  803. struct rq *rq;
  804. for (;;) {
  805. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  806. rq = task_rq(p);
  807. raw_spin_lock(&rq->lock);
  808. if (likely(rq == task_rq(p)))
  809. return rq;
  810. raw_spin_unlock(&rq->lock);
  811. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  812. }
  813. }
  814. static void __task_rq_unlock(struct rq *rq)
  815. __releases(rq->lock)
  816. {
  817. raw_spin_unlock(&rq->lock);
  818. }
  819. static inline void
  820. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  821. __releases(rq->lock)
  822. __releases(p->pi_lock)
  823. {
  824. raw_spin_unlock(&rq->lock);
  825. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  826. }
  827. /*
  828. * this_rq_lock - lock this runqueue and disable interrupts.
  829. */
  830. static struct rq *this_rq_lock(void)
  831. __acquires(rq->lock)
  832. {
  833. struct rq *rq;
  834. local_irq_disable();
  835. rq = this_rq();
  836. raw_spin_lock(&rq->lock);
  837. return rq;
  838. }
  839. #ifdef CONFIG_SCHED_HRTICK
  840. /*
  841. * Use HR-timers to deliver accurate preemption points.
  842. *
  843. * Its all a bit involved since we cannot program an hrt while holding the
  844. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  845. * reschedule event.
  846. *
  847. * When we get rescheduled we reprogram the hrtick_timer outside of the
  848. * rq->lock.
  849. */
  850. /*
  851. * Use hrtick when:
  852. * - enabled by features
  853. * - hrtimer is actually high res
  854. */
  855. static inline int hrtick_enabled(struct rq *rq)
  856. {
  857. if (!sched_feat(HRTICK))
  858. return 0;
  859. if (!cpu_active(cpu_of(rq)))
  860. return 0;
  861. return hrtimer_is_hres_active(&rq->hrtick_timer);
  862. }
  863. static void hrtick_clear(struct rq *rq)
  864. {
  865. if (hrtimer_active(&rq->hrtick_timer))
  866. hrtimer_cancel(&rq->hrtick_timer);
  867. }
  868. /*
  869. * High-resolution timer tick.
  870. * Runs from hardirq context with interrupts disabled.
  871. */
  872. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  873. {
  874. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  875. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  876. raw_spin_lock(&rq->lock);
  877. update_rq_clock(rq);
  878. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  879. raw_spin_unlock(&rq->lock);
  880. return HRTIMER_NORESTART;
  881. }
  882. #ifdef CONFIG_SMP
  883. /*
  884. * called from hardirq (IPI) context
  885. */
  886. static void __hrtick_start(void *arg)
  887. {
  888. struct rq *rq = arg;
  889. raw_spin_lock(&rq->lock);
  890. hrtimer_restart(&rq->hrtick_timer);
  891. rq->hrtick_csd_pending = 0;
  892. raw_spin_unlock(&rq->lock);
  893. }
  894. /*
  895. * Called to set the hrtick timer state.
  896. *
  897. * called with rq->lock held and irqs disabled
  898. */
  899. static void hrtick_start(struct rq *rq, u64 delay)
  900. {
  901. struct hrtimer *timer = &rq->hrtick_timer;
  902. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  903. hrtimer_set_expires(timer, time);
  904. if (rq == this_rq()) {
  905. hrtimer_restart(timer);
  906. } else if (!rq->hrtick_csd_pending) {
  907. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  908. rq->hrtick_csd_pending = 1;
  909. }
  910. }
  911. static int
  912. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  913. {
  914. int cpu = (int)(long)hcpu;
  915. switch (action) {
  916. case CPU_UP_CANCELED:
  917. case CPU_UP_CANCELED_FROZEN:
  918. case CPU_DOWN_PREPARE:
  919. case CPU_DOWN_PREPARE_FROZEN:
  920. case CPU_DEAD:
  921. case CPU_DEAD_FROZEN:
  922. hrtick_clear(cpu_rq(cpu));
  923. return NOTIFY_OK;
  924. }
  925. return NOTIFY_DONE;
  926. }
  927. static __init void init_hrtick(void)
  928. {
  929. hotcpu_notifier(hotplug_hrtick, 0);
  930. }
  931. #else
  932. /*
  933. * Called to set the hrtick timer state.
  934. *
  935. * called with rq->lock held and irqs disabled
  936. */
  937. static void hrtick_start(struct rq *rq, u64 delay)
  938. {
  939. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  940. HRTIMER_MODE_REL_PINNED, 0);
  941. }
  942. static inline void init_hrtick(void)
  943. {
  944. }
  945. #endif /* CONFIG_SMP */
  946. static void init_rq_hrtick(struct rq *rq)
  947. {
  948. #ifdef CONFIG_SMP
  949. rq->hrtick_csd_pending = 0;
  950. rq->hrtick_csd.flags = 0;
  951. rq->hrtick_csd.func = __hrtick_start;
  952. rq->hrtick_csd.info = rq;
  953. #endif
  954. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  955. rq->hrtick_timer.function = hrtick;
  956. }
  957. #else /* CONFIG_SCHED_HRTICK */
  958. static inline void hrtick_clear(struct rq *rq)
  959. {
  960. }
  961. static inline void init_rq_hrtick(struct rq *rq)
  962. {
  963. }
  964. static inline void init_hrtick(void)
  965. {
  966. }
  967. #endif /* CONFIG_SCHED_HRTICK */
  968. /*
  969. * resched_task - mark a task 'to be rescheduled now'.
  970. *
  971. * On UP this means the setting of the need_resched flag, on SMP it
  972. * might also involve a cross-CPU call to trigger the scheduler on
  973. * the target CPU.
  974. */
  975. #ifdef CONFIG_SMP
  976. #ifndef tsk_is_polling
  977. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  978. #endif
  979. static void resched_task(struct task_struct *p)
  980. {
  981. int cpu;
  982. assert_raw_spin_locked(&task_rq(p)->lock);
  983. if (test_tsk_need_resched(p))
  984. return;
  985. set_tsk_need_resched(p);
  986. cpu = task_cpu(p);
  987. if (cpu == smp_processor_id())
  988. return;
  989. /* NEED_RESCHED must be visible before we test polling */
  990. smp_mb();
  991. if (!tsk_is_polling(p))
  992. smp_send_reschedule(cpu);
  993. }
  994. static void resched_cpu(int cpu)
  995. {
  996. struct rq *rq = cpu_rq(cpu);
  997. unsigned long flags;
  998. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  999. return;
  1000. resched_task(cpu_curr(cpu));
  1001. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1002. }
  1003. #ifdef CONFIG_NO_HZ
  1004. /*
  1005. * In the semi idle case, use the nearest busy cpu for migrating timers
  1006. * from an idle cpu. This is good for power-savings.
  1007. *
  1008. * We don't do similar optimization for completely idle system, as
  1009. * selecting an idle cpu will add more delays to the timers than intended
  1010. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1011. */
  1012. int get_nohz_timer_target(void)
  1013. {
  1014. int cpu = smp_processor_id();
  1015. int i;
  1016. struct sched_domain *sd;
  1017. rcu_read_lock();
  1018. for_each_domain(cpu, sd) {
  1019. for_each_cpu(i, sched_domain_span(sd)) {
  1020. if (!idle_cpu(i)) {
  1021. cpu = i;
  1022. goto unlock;
  1023. }
  1024. }
  1025. }
  1026. unlock:
  1027. rcu_read_unlock();
  1028. return cpu;
  1029. }
  1030. /*
  1031. * When add_timer_on() enqueues a timer into the timer wheel of an
  1032. * idle CPU then this timer might expire before the next timer event
  1033. * which is scheduled to wake up that CPU. In case of a completely
  1034. * idle system the next event might even be infinite time into the
  1035. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1036. * leaves the inner idle loop so the newly added timer is taken into
  1037. * account when the CPU goes back to idle and evaluates the timer
  1038. * wheel for the next timer event.
  1039. */
  1040. void wake_up_idle_cpu(int cpu)
  1041. {
  1042. struct rq *rq = cpu_rq(cpu);
  1043. if (cpu == smp_processor_id())
  1044. return;
  1045. /*
  1046. * This is safe, as this function is called with the timer
  1047. * wheel base lock of (cpu) held. When the CPU is on the way
  1048. * to idle and has not yet set rq->curr to idle then it will
  1049. * be serialized on the timer wheel base lock and take the new
  1050. * timer into account automatically.
  1051. */
  1052. if (rq->curr != rq->idle)
  1053. return;
  1054. /*
  1055. * We can set TIF_RESCHED on the idle task of the other CPU
  1056. * lockless. The worst case is that the other CPU runs the
  1057. * idle task through an additional NOOP schedule()
  1058. */
  1059. set_tsk_need_resched(rq->idle);
  1060. /* NEED_RESCHED must be visible before we test polling */
  1061. smp_mb();
  1062. if (!tsk_is_polling(rq->idle))
  1063. smp_send_reschedule(cpu);
  1064. }
  1065. #endif /* CONFIG_NO_HZ */
  1066. static u64 sched_avg_period(void)
  1067. {
  1068. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1069. }
  1070. static void sched_avg_update(struct rq *rq)
  1071. {
  1072. s64 period = sched_avg_period();
  1073. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1074. /*
  1075. * Inline assembly required to prevent the compiler
  1076. * optimising this loop into a divmod call.
  1077. * See __iter_div_u64_rem() for another example of this.
  1078. */
  1079. asm("" : "+rm" (rq->age_stamp));
  1080. rq->age_stamp += period;
  1081. rq->rt_avg /= 2;
  1082. }
  1083. }
  1084. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1085. {
  1086. rq->rt_avg += rt_delta;
  1087. sched_avg_update(rq);
  1088. }
  1089. #else /* !CONFIG_SMP */
  1090. static void resched_task(struct task_struct *p)
  1091. {
  1092. assert_raw_spin_locked(&task_rq(p)->lock);
  1093. set_tsk_need_resched(p);
  1094. }
  1095. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1096. {
  1097. }
  1098. static void sched_avg_update(struct rq *rq)
  1099. {
  1100. }
  1101. #endif /* CONFIG_SMP */
  1102. #if BITS_PER_LONG == 32
  1103. # define WMULT_CONST (~0UL)
  1104. #else
  1105. # define WMULT_CONST (1UL << 32)
  1106. #endif
  1107. #define WMULT_SHIFT 32
  1108. /*
  1109. * Shift right and round:
  1110. */
  1111. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1112. /*
  1113. * delta *= weight / lw
  1114. */
  1115. static unsigned long
  1116. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1117. struct load_weight *lw)
  1118. {
  1119. u64 tmp;
  1120. /*
  1121. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  1122. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  1123. * 2^SCHED_LOAD_RESOLUTION.
  1124. */
  1125. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  1126. tmp = (u64)delta_exec * scale_load_down(weight);
  1127. else
  1128. tmp = (u64)delta_exec;
  1129. if (!lw->inv_weight) {
  1130. unsigned long w = scale_load_down(lw->weight);
  1131. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  1132. lw->inv_weight = 1;
  1133. else if (unlikely(!w))
  1134. lw->inv_weight = WMULT_CONST;
  1135. else
  1136. lw->inv_weight = WMULT_CONST / w;
  1137. }
  1138. /*
  1139. * Check whether we'd overflow the 64-bit multiplication:
  1140. */
  1141. if (unlikely(tmp > WMULT_CONST))
  1142. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1143. WMULT_SHIFT/2);
  1144. else
  1145. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1146. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1147. }
  1148. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1149. {
  1150. lw->weight += inc;
  1151. lw->inv_weight = 0;
  1152. }
  1153. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1154. {
  1155. lw->weight -= dec;
  1156. lw->inv_weight = 0;
  1157. }
  1158. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1159. {
  1160. lw->weight = w;
  1161. lw->inv_weight = 0;
  1162. }
  1163. /*
  1164. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1165. * of tasks with abnormal "nice" values across CPUs the contribution that
  1166. * each task makes to its run queue's load is weighted according to its
  1167. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1168. * scaled version of the new time slice allocation that they receive on time
  1169. * slice expiry etc.
  1170. */
  1171. #define WEIGHT_IDLEPRIO 3
  1172. #define WMULT_IDLEPRIO 1431655765
  1173. /*
  1174. * Nice levels are multiplicative, with a gentle 10% change for every
  1175. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1176. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1177. * that remained on nice 0.
  1178. *
  1179. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1180. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1181. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1182. * If a task goes up by ~10% and another task goes down by ~10% then
  1183. * the relative distance between them is ~25%.)
  1184. */
  1185. static const int prio_to_weight[40] = {
  1186. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1187. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1188. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1189. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1190. /* 0 */ 1024, 820, 655, 526, 423,
  1191. /* 5 */ 335, 272, 215, 172, 137,
  1192. /* 10 */ 110, 87, 70, 56, 45,
  1193. /* 15 */ 36, 29, 23, 18, 15,
  1194. };
  1195. /*
  1196. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1197. *
  1198. * In cases where the weight does not change often, we can use the
  1199. * precalculated inverse to speed up arithmetics by turning divisions
  1200. * into multiplications:
  1201. */
  1202. static const u32 prio_to_wmult[40] = {
  1203. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1204. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1205. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1206. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1207. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1208. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1209. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1210. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1211. };
  1212. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1213. enum cpuacct_stat_index {
  1214. CPUACCT_STAT_USER, /* ... user mode */
  1215. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1216. CPUACCT_STAT_NSTATS,
  1217. };
  1218. #ifdef CONFIG_CGROUP_CPUACCT
  1219. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1220. static void cpuacct_update_stats(struct task_struct *tsk,
  1221. enum cpuacct_stat_index idx, cputime_t val);
  1222. #else
  1223. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1224. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1225. enum cpuacct_stat_index idx, cputime_t val) {}
  1226. #endif
  1227. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1228. {
  1229. update_load_add(&rq->load, load);
  1230. }
  1231. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1232. {
  1233. update_load_sub(&rq->load, load);
  1234. }
  1235. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1236. typedef int (*tg_visitor)(struct task_group *, void *);
  1237. /*
  1238. * Iterate the full tree, calling @down when first entering a node and @up when
  1239. * leaving it for the final time.
  1240. */
  1241. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1242. {
  1243. struct task_group *parent, *child;
  1244. int ret;
  1245. rcu_read_lock();
  1246. parent = &root_task_group;
  1247. down:
  1248. ret = (*down)(parent, data);
  1249. if (ret)
  1250. goto out_unlock;
  1251. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1252. parent = child;
  1253. goto down;
  1254. up:
  1255. continue;
  1256. }
  1257. ret = (*up)(parent, data);
  1258. if (ret)
  1259. goto out_unlock;
  1260. child = parent;
  1261. parent = parent->parent;
  1262. if (parent)
  1263. goto up;
  1264. out_unlock:
  1265. rcu_read_unlock();
  1266. return ret;
  1267. }
  1268. static int tg_nop(struct task_group *tg, void *data)
  1269. {
  1270. return 0;
  1271. }
  1272. #endif
  1273. #ifdef CONFIG_SMP
  1274. /* Used instead of source_load when we know the type == 0 */
  1275. static unsigned long weighted_cpuload(const int cpu)
  1276. {
  1277. return cpu_rq(cpu)->load.weight;
  1278. }
  1279. /*
  1280. * Return a low guess at the load of a migration-source cpu weighted
  1281. * according to the scheduling class and "nice" value.
  1282. *
  1283. * We want to under-estimate the load of migration sources, to
  1284. * balance conservatively.
  1285. */
  1286. static unsigned long source_load(int cpu, int type)
  1287. {
  1288. struct rq *rq = cpu_rq(cpu);
  1289. unsigned long total = weighted_cpuload(cpu);
  1290. if (type == 0 || !sched_feat(LB_BIAS))
  1291. return total;
  1292. return min(rq->cpu_load[type-1], total);
  1293. }
  1294. /*
  1295. * Return a high guess at the load of a migration-target cpu weighted
  1296. * according to the scheduling class and "nice" value.
  1297. */
  1298. static unsigned long target_load(int cpu, int type)
  1299. {
  1300. struct rq *rq = cpu_rq(cpu);
  1301. unsigned long total = weighted_cpuload(cpu);
  1302. if (type == 0 || !sched_feat(LB_BIAS))
  1303. return total;
  1304. return max(rq->cpu_load[type-1], total);
  1305. }
  1306. static unsigned long power_of(int cpu)
  1307. {
  1308. return cpu_rq(cpu)->cpu_power;
  1309. }
  1310. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1311. static unsigned long cpu_avg_load_per_task(int cpu)
  1312. {
  1313. struct rq *rq = cpu_rq(cpu);
  1314. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1315. if (nr_running)
  1316. rq->avg_load_per_task = rq->load.weight / nr_running;
  1317. else
  1318. rq->avg_load_per_task = 0;
  1319. return rq->avg_load_per_task;
  1320. }
  1321. #ifdef CONFIG_PREEMPT
  1322. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1323. /*
  1324. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1325. * way at the expense of forcing extra atomic operations in all
  1326. * invocations. This assures that the double_lock is acquired using the
  1327. * same underlying policy as the spinlock_t on this architecture, which
  1328. * reduces latency compared to the unfair variant below. However, it
  1329. * also adds more overhead and therefore may reduce throughput.
  1330. */
  1331. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1332. __releases(this_rq->lock)
  1333. __acquires(busiest->lock)
  1334. __acquires(this_rq->lock)
  1335. {
  1336. raw_spin_unlock(&this_rq->lock);
  1337. double_rq_lock(this_rq, busiest);
  1338. return 1;
  1339. }
  1340. #else
  1341. /*
  1342. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1343. * latency by eliminating extra atomic operations when the locks are
  1344. * already in proper order on entry. This favors lower cpu-ids and will
  1345. * grant the double lock to lower cpus over higher ids under contention,
  1346. * regardless of entry order into the function.
  1347. */
  1348. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1349. __releases(this_rq->lock)
  1350. __acquires(busiest->lock)
  1351. __acquires(this_rq->lock)
  1352. {
  1353. int ret = 0;
  1354. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1355. if (busiest < this_rq) {
  1356. raw_spin_unlock(&this_rq->lock);
  1357. raw_spin_lock(&busiest->lock);
  1358. raw_spin_lock_nested(&this_rq->lock,
  1359. SINGLE_DEPTH_NESTING);
  1360. ret = 1;
  1361. } else
  1362. raw_spin_lock_nested(&busiest->lock,
  1363. SINGLE_DEPTH_NESTING);
  1364. }
  1365. return ret;
  1366. }
  1367. #endif /* CONFIG_PREEMPT */
  1368. /*
  1369. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1370. */
  1371. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1372. {
  1373. if (unlikely(!irqs_disabled())) {
  1374. /* printk() doesn't work good under rq->lock */
  1375. raw_spin_unlock(&this_rq->lock);
  1376. BUG_ON(1);
  1377. }
  1378. return _double_lock_balance(this_rq, busiest);
  1379. }
  1380. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1381. __releases(busiest->lock)
  1382. {
  1383. raw_spin_unlock(&busiest->lock);
  1384. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1385. }
  1386. /*
  1387. * double_rq_lock - safely lock two runqueues
  1388. *
  1389. * Note this does not disable interrupts like task_rq_lock,
  1390. * you need to do so manually before calling.
  1391. */
  1392. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1393. __acquires(rq1->lock)
  1394. __acquires(rq2->lock)
  1395. {
  1396. BUG_ON(!irqs_disabled());
  1397. if (rq1 == rq2) {
  1398. raw_spin_lock(&rq1->lock);
  1399. __acquire(rq2->lock); /* Fake it out ;) */
  1400. } else {
  1401. if (rq1 < rq2) {
  1402. raw_spin_lock(&rq1->lock);
  1403. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1404. } else {
  1405. raw_spin_lock(&rq2->lock);
  1406. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1407. }
  1408. }
  1409. }
  1410. /*
  1411. * double_rq_unlock - safely unlock two runqueues
  1412. *
  1413. * Note this does not restore interrupts like task_rq_unlock,
  1414. * you need to do so manually after calling.
  1415. */
  1416. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1417. __releases(rq1->lock)
  1418. __releases(rq2->lock)
  1419. {
  1420. raw_spin_unlock(&rq1->lock);
  1421. if (rq1 != rq2)
  1422. raw_spin_unlock(&rq2->lock);
  1423. else
  1424. __release(rq2->lock);
  1425. }
  1426. #else /* CONFIG_SMP */
  1427. /*
  1428. * double_rq_lock - safely lock two runqueues
  1429. *
  1430. * Note this does not disable interrupts like task_rq_lock,
  1431. * you need to do so manually before calling.
  1432. */
  1433. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1434. __acquires(rq1->lock)
  1435. __acquires(rq2->lock)
  1436. {
  1437. BUG_ON(!irqs_disabled());
  1438. BUG_ON(rq1 != rq2);
  1439. raw_spin_lock(&rq1->lock);
  1440. __acquire(rq2->lock); /* Fake it out ;) */
  1441. }
  1442. /*
  1443. * double_rq_unlock - safely unlock two runqueues
  1444. *
  1445. * Note this does not restore interrupts like task_rq_unlock,
  1446. * you need to do so manually after calling.
  1447. */
  1448. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1449. __releases(rq1->lock)
  1450. __releases(rq2->lock)
  1451. {
  1452. BUG_ON(rq1 != rq2);
  1453. raw_spin_unlock(&rq1->lock);
  1454. __release(rq2->lock);
  1455. }
  1456. #endif
  1457. static void calc_load_account_idle(struct rq *this_rq);
  1458. static void update_sysctl(void);
  1459. static int get_update_sysctl_factor(void);
  1460. static void update_cpu_load(struct rq *this_rq);
  1461. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1462. {
  1463. set_task_rq(p, cpu);
  1464. #ifdef CONFIG_SMP
  1465. /*
  1466. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1467. * successfuly executed on another CPU. We must ensure that updates of
  1468. * per-task data have been completed by this moment.
  1469. */
  1470. smp_wmb();
  1471. task_thread_info(p)->cpu = cpu;
  1472. #endif
  1473. }
  1474. static const struct sched_class rt_sched_class;
  1475. #define sched_class_highest (&stop_sched_class)
  1476. #define for_each_class(class) \
  1477. for (class = sched_class_highest; class; class = class->next)
  1478. #include "sched_stats.h"
  1479. static void inc_nr_running(struct rq *rq)
  1480. {
  1481. rq->nr_running++;
  1482. }
  1483. static void dec_nr_running(struct rq *rq)
  1484. {
  1485. rq->nr_running--;
  1486. }
  1487. static void set_load_weight(struct task_struct *p)
  1488. {
  1489. int prio = p->static_prio - MAX_RT_PRIO;
  1490. struct load_weight *load = &p->se.load;
  1491. /*
  1492. * SCHED_IDLE tasks get minimal weight:
  1493. */
  1494. if (p->policy == SCHED_IDLE) {
  1495. load->weight = scale_load(WEIGHT_IDLEPRIO);
  1496. load->inv_weight = WMULT_IDLEPRIO;
  1497. return;
  1498. }
  1499. load->weight = scale_load(prio_to_weight[prio]);
  1500. load->inv_weight = prio_to_wmult[prio];
  1501. }
  1502. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1503. {
  1504. update_rq_clock(rq);
  1505. sched_info_queued(p);
  1506. p->sched_class->enqueue_task(rq, p, flags);
  1507. }
  1508. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1509. {
  1510. update_rq_clock(rq);
  1511. sched_info_dequeued(p);
  1512. p->sched_class->dequeue_task(rq, p, flags);
  1513. }
  1514. /*
  1515. * activate_task - move a task to the runqueue.
  1516. */
  1517. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1518. {
  1519. if (task_contributes_to_load(p))
  1520. rq->nr_uninterruptible--;
  1521. enqueue_task(rq, p, flags);
  1522. inc_nr_running(rq);
  1523. }
  1524. /*
  1525. * deactivate_task - remove a task from the runqueue.
  1526. */
  1527. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1528. {
  1529. if (task_contributes_to_load(p))
  1530. rq->nr_uninterruptible++;
  1531. dequeue_task(rq, p, flags);
  1532. dec_nr_running(rq);
  1533. }
  1534. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1535. /*
  1536. * There are no locks covering percpu hardirq/softirq time.
  1537. * They are only modified in account_system_vtime, on corresponding CPU
  1538. * with interrupts disabled. So, writes are safe.
  1539. * They are read and saved off onto struct rq in update_rq_clock().
  1540. * This may result in other CPU reading this CPU's irq time and can
  1541. * race with irq/account_system_vtime on this CPU. We would either get old
  1542. * or new value with a side effect of accounting a slice of irq time to wrong
  1543. * task when irq is in progress while we read rq->clock. That is a worthy
  1544. * compromise in place of having locks on each irq in account_system_time.
  1545. */
  1546. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1547. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1548. static DEFINE_PER_CPU(u64, irq_start_time);
  1549. static int sched_clock_irqtime;
  1550. void enable_sched_clock_irqtime(void)
  1551. {
  1552. sched_clock_irqtime = 1;
  1553. }
  1554. void disable_sched_clock_irqtime(void)
  1555. {
  1556. sched_clock_irqtime = 0;
  1557. }
  1558. #ifndef CONFIG_64BIT
  1559. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1560. static inline void irq_time_write_begin(void)
  1561. {
  1562. __this_cpu_inc(irq_time_seq.sequence);
  1563. smp_wmb();
  1564. }
  1565. static inline void irq_time_write_end(void)
  1566. {
  1567. smp_wmb();
  1568. __this_cpu_inc(irq_time_seq.sequence);
  1569. }
  1570. static inline u64 irq_time_read(int cpu)
  1571. {
  1572. u64 irq_time;
  1573. unsigned seq;
  1574. do {
  1575. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1576. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1577. per_cpu(cpu_hardirq_time, cpu);
  1578. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1579. return irq_time;
  1580. }
  1581. #else /* CONFIG_64BIT */
  1582. static inline void irq_time_write_begin(void)
  1583. {
  1584. }
  1585. static inline void irq_time_write_end(void)
  1586. {
  1587. }
  1588. static inline u64 irq_time_read(int cpu)
  1589. {
  1590. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1591. }
  1592. #endif /* CONFIG_64BIT */
  1593. /*
  1594. * Called before incrementing preempt_count on {soft,}irq_enter
  1595. * and before decrementing preempt_count on {soft,}irq_exit.
  1596. */
  1597. void account_system_vtime(struct task_struct *curr)
  1598. {
  1599. unsigned long flags;
  1600. s64 delta;
  1601. int cpu;
  1602. if (!sched_clock_irqtime)
  1603. return;
  1604. local_irq_save(flags);
  1605. cpu = smp_processor_id();
  1606. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1607. __this_cpu_add(irq_start_time, delta);
  1608. irq_time_write_begin();
  1609. /*
  1610. * We do not account for softirq time from ksoftirqd here.
  1611. * We want to continue accounting softirq time to ksoftirqd thread
  1612. * in that case, so as not to confuse scheduler with a special task
  1613. * that do not consume any time, but still wants to run.
  1614. */
  1615. if (hardirq_count())
  1616. __this_cpu_add(cpu_hardirq_time, delta);
  1617. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1618. __this_cpu_add(cpu_softirq_time, delta);
  1619. irq_time_write_end();
  1620. local_irq_restore(flags);
  1621. }
  1622. EXPORT_SYMBOL_GPL(account_system_vtime);
  1623. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1624. #ifdef CONFIG_PARAVIRT
  1625. static inline u64 steal_ticks(u64 steal)
  1626. {
  1627. if (unlikely(steal > NSEC_PER_SEC))
  1628. return div_u64(steal, TICK_NSEC);
  1629. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  1630. }
  1631. #endif
  1632. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1633. {
  1634. /*
  1635. * In theory, the compile should just see 0 here, and optimize out the call
  1636. * to sched_rt_avg_update. But I don't trust it...
  1637. */
  1638. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  1639. s64 steal = 0, irq_delta = 0;
  1640. #endif
  1641. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1642. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1643. /*
  1644. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1645. * this case when a previous update_rq_clock() happened inside a
  1646. * {soft,}irq region.
  1647. *
  1648. * When this happens, we stop ->clock_task and only update the
  1649. * prev_irq_time stamp to account for the part that fit, so that a next
  1650. * update will consume the rest. This ensures ->clock_task is
  1651. * monotonic.
  1652. *
  1653. * It does however cause some slight miss-attribution of {soft,}irq
  1654. * time, a more accurate solution would be to update the irq_time using
  1655. * the current rq->clock timestamp, except that would require using
  1656. * atomic ops.
  1657. */
  1658. if (irq_delta > delta)
  1659. irq_delta = delta;
  1660. rq->prev_irq_time += irq_delta;
  1661. delta -= irq_delta;
  1662. #endif
  1663. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  1664. if (static_branch((&paravirt_steal_rq_enabled))) {
  1665. u64 st;
  1666. steal = paravirt_steal_clock(cpu_of(rq));
  1667. steal -= rq->prev_steal_time_rq;
  1668. if (unlikely(steal > delta))
  1669. steal = delta;
  1670. st = steal_ticks(steal);
  1671. steal = st * TICK_NSEC;
  1672. rq->prev_steal_time_rq += steal;
  1673. delta -= steal;
  1674. }
  1675. #endif
  1676. rq->clock_task += delta;
  1677. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  1678. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  1679. sched_rt_avg_update(rq, irq_delta + steal);
  1680. #endif
  1681. }
  1682. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1683. static int irqtime_account_hi_update(void)
  1684. {
  1685. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1686. unsigned long flags;
  1687. u64 latest_ns;
  1688. int ret = 0;
  1689. local_irq_save(flags);
  1690. latest_ns = this_cpu_read(cpu_hardirq_time);
  1691. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1692. ret = 1;
  1693. local_irq_restore(flags);
  1694. return ret;
  1695. }
  1696. static int irqtime_account_si_update(void)
  1697. {
  1698. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1699. unsigned long flags;
  1700. u64 latest_ns;
  1701. int ret = 0;
  1702. local_irq_save(flags);
  1703. latest_ns = this_cpu_read(cpu_softirq_time);
  1704. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1705. ret = 1;
  1706. local_irq_restore(flags);
  1707. return ret;
  1708. }
  1709. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1710. #define sched_clock_irqtime (0)
  1711. #endif
  1712. #include "sched_idletask.c"
  1713. #include "sched_fair.c"
  1714. #include "sched_rt.c"
  1715. #include "sched_autogroup.c"
  1716. #include "sched_stoptask.c"
  1717. #ifdef CONFIG_SCHED_DEBUG
  1718. # include "sched_debug.c"
  1719. #endif
  1720. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1721. {
  1722. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1723. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1724. if (stop) {
  1725. /*
  1726. * Make it appear like a SCHED_FIFO task, its something
  1727. * userspace knows about and won't get confused about.
  1728. *
  1729. * Also, it will make PI more or less work without too
  1730. * much confusion -- but then, stop work should not
  1731. * rely on PI working anyway.
  1732. */
  1733. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1734. stop->sched_class = &stop_sched_class;
  1735. }
  1736. cpu_rq(cpu)->stop = stop;
  1737. if (old_stop) {
  1738. /*
  1739. * Reset it back to a normal scheduling class so that
  1740. * it can die in pieces.
  1741. */
  1742. old_stop->sched_class = &rt_sched_class;
  1743. }
  1744. }
  1745. /*
  1746. * __normal_prio - return the priority that is based on the static prio
  1747. */
  1748. static inline int __normal_prio(struct task_struct *p)
  1749. {
  1750. return p->static_prio;
  1751. }
  1752. /*
  1753. * Calculate the expected normal priority: i.e. priority
  1754. * without taking RT-inheritance into account. Might be
  1755. * boosted by interactivity modifiers. Changes upon fork,
  1756. * setprio syscalls, and whenever the interactivity
  1757. * estimator recalculates.
  1758. */
  1759. static inline int normal_prio(struct task_struct *p)
  1760. {
  1761. int prio;
  1762. if (task_has_rt_policy(p))
  1763. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1764. else
  1765. prio = __normal_prio(p);
  1766. return prio;
  1767. }
  1768. /*
  1769. * Calculate the current priority, i.e. the priority
  1770. * taken into account by the scheduler. This value might
  1771. * be boosted by RT tasks, or might be boosted by
  1772. * interactivity modifiers. Will be RT if the task got
  1773. * RT-boosted. If not then it returns p->normal_prio.
  1774. */
  1775. static int effective_prio(struct task_struct *p)
  1776. {
  1777. p->normal_prio = normal_prio(p);
  1778. /*
  1779. * If we are RT tasks or we were boosted to RT priority,
  1780. * keep the priority unchanged. Otherwise, update priority
  1781. * to the normal priority:
  1782. */
  1783. if (!rt_prio(p->prio))
  1784. return p->normal_prio;
  1785. return p->prio;
  1786. }
  1787. /**
  1788. * task_curr - is this task currently executing on a CPU?
  1789. * @p: the task in question.
  1790. */
  1791. inline int task_curr(const struct task_struct *p)
  1792. {
  1793. return cpu_curr(task_cpu(p)) == p;
  1794. }
  1795. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1796. const struct sched_class *prev_class,
  1797. int oldprio)
  1798. {
  1799. if (prev_class != p->sched_class) {
  1800. if (prev_class->switched_from)
  1801. prev_class->switched_from(rq, p);
  1802. p->sched_class->switched_to(rq, p);
  1803. } else if (oldprio != p->prio)
  1804. p->sched_class->prio_changed(rq, p, oldprio);
  1805. }
  1806. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1807. {
  1808. const struct sched_class *class;
  1809. if (p->sched_class == rq->curr->sched_class) {
  1810. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1811. } else {
  1812. for_each_class(class) {
  1813. if (class == rq->curr->sched_class)
  1814. break;
  1815. if (class == p->sched_class) {
  1816. resched_task(rq->curr);
  1817. break;
  1818. }
  1819. }
  1820. }
  1821. /*
  1822. * A queue event has occurred, and we're going to schedule. In
  1823. * this case, we can save a useless back to back clock update.
  1824. */
  1825. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1826. rq->skip_clock_update = 1;
  1827. }
  1828. #ifdef CONFIG_SMP
  1829. /*
  1830. * Is this task likely cache-hot:
  1831. */
  1832. static int
  1833. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1834. {
  1835. s64 delta;
  1836. if (p->sched_class != &fair_sched_class)
  1837. return 0;
  1838. if (unlikely(p->policy == SCHED_IDLE))
  1839. return 0;
  1840. /*
  1841. * Buddy candidates are cache hot:
  1842. */
  1843. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1844. (&p->se == cfs_rq_of(&p->se)->next ||
  1845. &p->se == cfs_rq_of(&p->se)->last))
  1846. return 1;
  1847. if (sysctl_sched_migration_cost == -1)
  1848. return 1;
  1849. if (sysctl_sched_migration_cost == 0)
  1850. return 0;
  1851. delta = now - p->se.exec_start;
  1852. return delta < (s64)sysctl_sched_migration_cost;
  1853. }
  1854. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1855. {
  1856. #ifdef CONFIG_SCHED_DEBUG
  1857. /*
  1858. * We should never call set_task_cpu() on a blocked task,
  1859. * ttwu() will sort out the placement.
  1860. */
  1861. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1862. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1863. #ifdef CONFIG_LOCKDEP
  1864. /*
  1865. * The caller should hold either p->pi_lock or rq->lock, when changing
  1866. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1867. *
  1868. * sched_move_task() holds both and thus holding either pins the cgroup,
  1869. * see set_task_rq().
  1870. *
  1871. * Furthermore, all task_rq users should acquire both locks, see
  1872. * task_rq_lock().
  1873. */
  1874. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1875. lockdep_is_held(&task_rq(p)->lock)));
  1876. #endif
  1877. #endif
  1878. trace_sched_migrate_task(p, new_cpu);
  1879. if (task_cpu(p) != new_cpu) {
  1880. p->se.nr_migrations++;
  1881. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  1882. }
  1883. __set_task_cpu(p, new_cpu);
  1884. }
  1885. struct migration_arg {
  1886. struct task_struct *task;
  1887. int dest_cpu;
  1888. };
  1889. static int migration_cpu_stop(void *data);
  1890. /*
  1891. * wait_task_inactive - wait for a thread to unschedule.
  1892. *
  1893. * If @match_state is nonzero, it's the @p->state value just checked and
  1894. * not expected to change. If it changes, i.e. @p might have woken up,
  1895. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1896. * we return a positive number (its total switch count). If a second call
  1897. * a short while later returns the same number, the caller can be sure that
  1898. * @p has remained unscheduled the whole time.
  1899. *
  1900. * The caller must ensure that the task *will* unschedule sometime soon,
  1901. * else this function might spin for a *long* time. This function can't
  1902. * be called with interrupts off, or it may introduce deadlock with
  1903. * smp_call_function() if an IPI is sent by the same process we are
  1904. * waiting to become inactive.
  1905. */
  1906. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1907. {
  1908. unsigned long flags;
  1909. int running, on_rq;
  1910. unsigned long ncsw;
  1911. struct rq *rq;
  1912. for (;;) {
  1913. /*
  1914. * We do the initial early heuristics without holding
  1915. * any task-queue locks at all. We'll only try to get
  1916. * the runqueue lock when things look like they will
  1917. * work out!
  1918. */
  1919. rq = task_rq(p);
  1920. /*
  1921. * If the task is actively running on another CPU
  1922. * still, just relax and busy-wait without holding
  1923. * any locks.
  1924. *
  1925. * NOTE! Since we don't hold any locks, it's not
  1926. * even sure that "rq" stays as the right runqueue!
  1927. * But we don't care, since "task_running()" will
  1928. * return false if the runqueue has changed and p
  1929. * is actually now running somewhere else!
  1930. */
  1931. while (task_running(rq, p)) {
  1932. if (match_state && unlikely(p->state != match_state))
  1933. return 0;
  1934. cpu_relax();
  1935. }
  1936. /*
  1937. * Ok, time to look more closely! We need the rq
  1938. * lock now, to be *sure*. If we're wrong, we'll
  1939. * just go back and repeat.
  1940. */
  1941. rq = task_rq_lock(p, &flags);
  1942. trace_sched_wait_task(p);
  1943. running = task_running(rq, p);
  1944. on_rq = p->on_rq;
  1945. ncsw = 0;
  1946. if (!match_state || p->state == match_state)
  1947. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1948. task_rq_unlock(rq, p, &flags);
  1949. /*
  1950. * If it changed from the expected state, bail out now.
  1951. */
  1952. if (unlikely(!ncsw))
  1953. break;
  1954. /*
  1955. * Was it really running after all now that we
  1956. * checked with the proper locks actually held?
  1957. *
  1958. * Oops. Go back and try again..
  1959. */
  1960. if (unlikely(running)) {
  1961. cpu_relax();
  1962. continue;
  1963. }
  1964. /*
  1965. * It's not enough that it's not actively running,
  1966. * it must be off the runqueue _entirely_, and not
  1967. * preempted!
  1968. *
  1969. * So if it was still runnable (but just not actively
  1970. * running right now), it's preempted, and we should
  1971. * yield - it could be a while.
  1972. */
  1973. if (unlikely(on_rq)) {
  1974. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1975. set_current_state(TASK_UNINTERRUPTIBLE);
  1976. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1977. continue;
  1978. }
  1979. /*
  1980. * Ahh, all good. It wasn't running, and it wasn't
  1981. * runnable, which means that it will never become
  1982. * running in the future either. We're all done!
  1983. */
  1984. break;
  1985. }
  1986. return ncsw;
  1987. }
  1988. /***
  1989. * kick_process - kick a running thread to enter/exit the kernel
  1990. * @p: the to-be-kicked thread
  1991. *
  1992. * Cause a process which is running on another CPU to enter
  1993. * kernel-mode, without any delay. (to get signals handled.)
  1994. *
  1995. * NOTE: this function doesn't have to take the runqueue lock,
  1996. * because all it wants to ensure is that the remote task enters
  1997. * the kernel. If the IPI races and the task has been migrated
  1998. * to another CPU then no harm is done and the purpose has been
  1999. * achieved as well.
  2000. */
  2001. void kick_process(struct task_struct *p)
  2002. {
  2003. int cpu;
  2004. preempt_disable();
  2005. cpu = task_cpu(p);
  2006. if ((cpu != smp_processor_id()) && task_curr(p))
  2007. smp_send_reschedule(cpu);
  2008. preempt_enable();
  2009. }
  2010. EXPORT_SYMBOL_GPL(kick_process);
  2011. #endif /* CONFIG_SMP */
  2012. #ifdef CONFIG_SMP
  2013. /*
  2014. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  2015. */
  2016. static int select_fallback_rq(int cpu, struct task_struct *p)
  2017. {
  2018. int dest_cpu;
  2019. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  2020. /* Look for allowed, online CPU in same node. */
  2021. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  2022. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  2023. return dest_cpu;
  2024. /* Any allowed, online CPU? */
  2025. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  2026. if (dest_cpu < nr_cpu_ids)
  2027. return dest_cpu;
  2028. /* No more Mr. Nice Guy. */
  2029. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2030. /*
  2031. * Don't tell them about moving exiting tasks or
  2032. * kernel threads (both mm NULL), since they never
  2033. * leave kernel.
  2034. */
  2035. if (p->mm && printk_ratelimit()) {
  2036. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2037. task_pid_nr(p), p->comm, cpu);
  2038. }
  2039. return dest_cpu;
  2040. }
  2041. /*
  2042. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2043. */
  2044. static inline
  2045. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2046. {
  2047. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2048. /*
  2049. * In order not to call set_task_cpu() on a blocking task we need
  2050. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2051. * cpu.
  2052. *
  2053. * Since this is common to all placement strategies, this lives here.
  2054. *
  2055. * [ this allows ->select_task() to simply return task_cpu(p) and
  2056. * not worry about this generic constraint ]
  2057. */
  2058. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2059. !cpu_online(cpu)))
  2060. cpu = select_fallback_rq(task_cpu(p), p);
  2061. return cpu;
  2062. }
  2063. static void update_avg(u64 *avg, u64 sample)
  2064. {
  2065. s64 diff = sample - *avg;
  2066. *avg += diff >> 3;
  2067. }
  2068. #endif
  2069. static void
  2070. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2071. {
  2072. #ifdef CONFIG_SCHEDSTATS
  2073. struct rq *rq = this_rq();
  2074. #ifdef CONFIG_SMP
  2075. int this_cpu = smp_processor_id();
  2076. if (cpu == this_cpu) {
  2077. schedstat_inc(rq, ttwu_local);
  2078. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2079. } else {
  2080. struct sched_domain *sd;
  2081. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2082. rcu_read_lock();
  2083. for_each_domain(this_cpu, sd) {
  2084. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2085. schedstat_inc(sd, ttwu_wake_remote);
  2086. break;
  2087. }
  2088. }
  2089. rcu_read_unlock();
  2090. }
  2091. if (wake_flags & WF_MIGRATED)
  2092. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2093. #endif /* CONFIG_SMP */
  2094. schedstat_inc(rq, ttwu_count);
  2095. schedstat_inc(p, se.statistics.nr_wakeups);
  2096. if (wake_flags & WF_SYNC)
  2097. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2098. #endif /* CONFIG_SCHEDSTATS */
  2099. }
  2100. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2101. {
  2102. activate_task(rq, p, en_flags);
  2103. p->on_rq = 1;
  2104. /* if a worker is waking up, notify workqueue */
  2105. if (p->flags & PF_WQ_WORKER)
  2106. wq_worker_waking_up(p, cpu_of(rq));
  2107. }
  2108. /*
  2109. * Mark the task runnable and perform wakeup-preemption.
  2110. */
  2111. static void
  2112. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2113. {
  2114. trace_sched_wakeup(p, true);
  2115. check_preempt_curr(rq, p, wake_flags);
  2116. p->state = TASK_RUNNING;
  2117. #ifdef CONFIG_SMP
  2118. if (p->sched_class->task_woken)
  2119. p->sched_class->task_woken(rq, p);
  2120. if (rq->idle_stamp) {
  2121. u64 delta = rq->clock - rq->idle_stamp;
  2122. u64 max = 2*sysctl_sched_migration_cost;
  2123. if (delta > max)
  2124. rq->avg_idle = max;
  2125. else
  2126. update_avg(&rq->avg_idle, delta);
  2127. rq->idle_stamp = 0;
  2128. }
  2129. #endif
  2130. }
  2131. static void
  2132. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2133. {
  2134. #ifdef CONFIG_SMP
  2135. if (p->sched_contributes_to_load)
  2136. rq->nr_uninterruptible--;
  2137. #endif
  2138. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2139. ttwu_do_wakeup(rq, p, wake_flags);
  2140. }
  2141. /*
  2142. * Called in case the task @p isn't fully descheduled from its runqueue,
  2143. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2144. * since all we need to do is flip p->state to TASK_RUNNING, since
  2145. * the task is still ->on_rq.
  2146. */
  2147. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2148. {
  2149. struct rq *rq;
  2150. int ret = 0;
  2151. rq = __task_rq_lock(p);
  2152. if (p->on_rq) {
  2153. ttwu_do_wakeup(rq, p, wake_flags);
  2154. ret = 1;
  2155. }
  2156. __task_rq_unlock(rq);
  2157. return ret;
  2158. }
  2159. #ifdef CONFIG_SMP
  2160. static void sched_ttwu_do_pending(struct task_struct *list)
  2161. {
  2162. struct rq *rq = this_rq();
  2163. raw_spin_lock(&rq->lock);
  2164. while (list) {
  2165. struct task_struct *p = list;
  2166. list = list->wake_entry;
  2167. ttwu_do_activate(rq, p, 0);
  2168. }
  2169. raw_spin_unlock(&rq->lock);
  2170. }
  2171. #ifdef CONFIG_HOTPLUG_CPU
  2172. static void sched_ttwu_pending(void)
  2173. {
  2174. struct rq *rq = this_rq();
  2175. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2176. if (!list)
  2177. return;
  2178. sched_ttwu_do_pending(list);
  2179. }
  2180. #endif /* CONFIG_HOTPLUG_CPU */
  2181. void scheduler_ipi(void)
  2182. {
  2183. struct rq *rq = this_rq();
  2184. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2185. if (!list)
  2186. return;
  2187. /*
  2188. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  2189. * traditionally all their work was done from the interrupt return
  2190. * path. Now that we actually do some work, we need to make sure
  2191. * we do call them.
  2192. *
  2193. * Some archs already do call them, luckily irq_enter/exit nest
  2194. * properly.
  2195. *
  2196. * Arguably we should visit all archs and update all handlers,
  2197. * however a fair share of IPIs are still resched only so this would
  2198. * somewhat pessimize the simple resched case.
  2199. */
  2200. irq_enter();
  2201. sched_ttwu_do_pending(list);
  2202. irq_exit();
  2203. }
  2204. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2205. {
  2206. struct rq *rq = cpu_rq(cpu);
  2207. struct task_struct *next = rq->wake_list;
  2208. for (;;) {
  2209. struct task_struct *old = next;
  2210. p->wake_entry = next;
  2211. next = cmpxchg(&rq->wake_list, old, p);
  2212. if (next == old)
  2213. break;
  2214. }
  2215. if (!next)
  2216. smp_send_reschedule(cpu);
  2217. }
  2218. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2219. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  2220. {
  2221. struct rq *rq;
  2222. int ret = 0;
  2223. rq = __task_rq_lock(p);
  2224. if (p->on_cpu) {
  2225. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2226. ttwu_do_wakeup(rq, p, wake_flags);
  2227. ret = 1;
  2228. }
  2229. __task_rq_unlock(rq);
  2230. return ret;
  2231. }
  2232. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2233. #endif /* CONFIG_SMP */
  2234. static void ttwu_queue(struct task_struct *p, int cpu)
  2235. {
  2236. struct rq *rq = cpu_rq(cpu);
  2237. #if defined(CONFIG_SMP)
  2238. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2239. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  2240. ttwu_queue_remote(p, cpu);
  2241. return;
  2242. }
  2243. #endif
  2244. raw_spin_lock(&rq->lock);
  2245. ttwu_do_activate(rq, p, 0);
  2246. raw_spin_unlock(&rq->lock);
  2247. }
  2248. /**
  2249. * try_to_wake_up - wake up a thread
  2250. * @p: the thread to be awakened
  2251. * @state: the mask of task states that can be woken
  2252. * @wake_flags: wake modifier flags (WF_*)
  2253. *
  2254. * Put it on the run-queue if it's not already there. The "current"
  2255. * thread is always on the run-queue (except when the actual
  2256. * re-schedule is in progress), and as such you're allowed to do
  2257. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2258. * runnable without the overhead of this.
  2259. *
  2260. * Returns %true if @p was woken up, %false if it was already running
  2261. * or @state didn't match @p's state.
  2262. */
  2263. static int
  2264. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2265. {
  2266. unsigned long flags;
  2267. int cpu, success = 0;
  2268. smp_wmb();
  2269. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2270. if (!(p->state & state))
  2271. goto out;
  2272. success = 1; /* we're going to change ->state */
  2273. cpu = task_cpu(p);
  2274. if (p->on_rq && ttwu_remote(p, wake_flags))
  2275. goto stat;
  2276. #ifdef CONFIG_SMP
  2277. /*
  2278. * If the owning (remote) cpu is still in the middle of schedule() with
  2279. * this task as prev, wait until its done referencing the task.
  2280. */
  2281. while (p->on_cpu) {
  2282. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2283. /*
  2284. * In case the architecture enables interrupts in
  2285. * context_switch(), we cannot busy wait, since that
  2286. * would lead to deadlocks when an interrupt hits and
  2287. * tries to wake up @prev. So bail and do a complete
  2288. * remote wakeup.
  2289. */
  2290. if (ttwu_activate_remote(p, wake_flags))
  2291. goto stat;
  2292. #else
  2293. cpu_relax();
  2294. #endif
  2295. }
  2296. /*
  2297. * Pairs with the smp_wmb() in finish_lock_switch().
  2298. */
  2299. smp_rmb();
  2300. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2301. p->state = TASK_WAKING;
  2302. if (p->sched_class->task_waking)
  2303. p->sched_class->task_waking(p);
  2304. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2305. if (task_cpu(p) != cpu) {
  2306. wake_flags |= WF_MIGRATED;
  2307. set_task_cpu(p, cpu);
  2308. }
  2309. #endif /* CONFIG_SMP */
  2310. ttwu_queue(p, cpu);
  2311. stat:
  2312. ttwu_stat(p, cpu, wake_flags);
  2313. out:
  2314. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2315. return success;
  2316. }
  2317. /**
  2318. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2319. * @p: the thread to be awakened
  2320. *
  2321. * Put @p on the run-queue if it's not already there. The caller must
  2322. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2323. * the current task.
  2324. */
  2325. static void try_to_wake_up_local(struct task_struct *p)
  2326. {
  2327. struct rq *rq = task_rq(p);
  2328. BUG_ON(rq != this_rq());
  2329. BUG_ON(p == current);
  2330. lockdep_assert_held(&rq->lock);
  2331. if (!raw_spin_trylock(&p->pi_lock)) {
  2332. raw_spin_unlock(&rq->lock);
  2333. raw_spin_lock(&p->pi_lock);
  2334. raw_spin_lock(&rq->lock);
  2335. }
  2336. if (!(p->state & TASK_NORMAL))
  2337. goto out;
  2338. if (!p->on_rq)
  2339. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2340. ttwu_do_wakeup(rq, p, 0);
  2341. ttwu_stat(p, smp_processor_id(), 0);
  2342. out:
  2343. raw_spin_unlock(&p->pi_lock);
  2344. }
  2345. /**
  2346. * wake_up_process - Wake up a specific process
  2347. * @p: The process to be woken up.
  2348. *
  2349. * Attempt to wake up the nominated process and move it to the set of runnable
  2350. * processes. Returns 1 if the process was woken up, 0 if it was already
  2351. * running.
  2352. *
  2353. * It may be assumed that this function implies a write memory barrier before
  2354. * changing the task state if and only if any tasks are woken up.
  2355. */
  2356. int wake_up_process(struct task_struct *p)
  2357. {
  2358. return try_to_wake_up(p, TASK_ALL, 0);
  2359. }
  2360. EXPORT_SYMBOL(wake_up_process);
  2361. int wake_up_state(struct task_struct *p, unsigned int state)
  2362. {
  2363. return try_to_wake_up(p, state, 0);
  2364. }
  2365. /*
  2366. * Perform scheduler related setup for a newly forked process p.
  2367. * p is forked by current.
  2368. *
  2369. * __sched_fork() is basic setup used by init_idle() too:
  2370. */
  2371. static void __sched_fork(struct task_struct *p)
  2372. {
  2373. p->on_rq = 0;
  2374. p->se.on_rq = 0;
  2375. p->se.exec_start = 0;
  2376. p->se.sum_exec_runtime = 0;
  2377. p->se.prev_sum_exec_runtime = 0;
  2378. p->se.nr_migrations = 0;
  2379. p->se.vruntime = 0;
  2380. INIT_LIST_HEAD(&p->se.group_node);
  2381. #ifdef CONFIG_SCHEDSTATS
  2382. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2383. #endif
  2384. INIT_LIST_HEAD(&p->rt.run_list);
  2385. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2386. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2387. #endif
  2388. }
  2389. /*
  2390. * fork()/clone()-time setup:
  2391. */
  2392. void sched_fork(struct task_struct *p)
  2393. {
  2394. unsigned long flags;
  2395. int cpu = get_cpu();
  2396. __sched_fork(p);
  2397. /*
  2398. * We mark the process as running here. This guarantees that
  2399. * nobody will actually run it, and a signal or other external
  2400. * event cannot wake it up and insert it on the runqueue either.
  2401. */
  2402. p->state = TASK_RUNNING;
  2403. /*
  2404. * Revert to default priority/policy on fork if requested.
  2405. */
  2406. if (unlikely(p->sched_reset_on_fork)) {
  2407. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2408. p->policy = SCHED_NORMAL;
  2409. p->normal_prio = p->static_prio;
  2410. }
  2411. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2412. p->static_prio = NICE_TO_PRIO(0);
  2413. p->normal_prio = p->static_prio;
  2414. set_load_weight(p);
  2415. }
  2416. /*
  2417. * We don't need the reset flag anymore after the fork. It has
  2418. * fulfilled its duty:
  2419. */
  2420. p->sched_reset_on_fork = 0;
  2421. }
  2422. /*
  2423. * Make sure we do not leak PI boosting priority to the child.
  2424. */
  2425. p->prio = current->normal_prio;
  2426. if (!rt_prio(p->prio))
  2427. p->sched_class = &fair_sched_class;
  2428. if (p->sched_class->task_fork)
  2429. p->sched_class->task_fork(p);
  2430. /*
  2431. * The child is not yet in the pid-hash so no cgroup attach races,
  2432. * and the cgroup is pinned to this child due to cgroup_fork()
  2433. * is ran before sched_fork().
  2434. *
  2435. * Silence PROVE_RCU.
  2436. */
  2437. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2438. set_task_cpu(p, cpu);
  2439. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2440. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2441. if (likely(sched_info_on()))
  2442. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2443. #endif
  2444. #if defined(CONFIG_SMP)
  2445. p->on_cpu = 0;
  2446. #endif
  2447. #ifdef CONFIG_PREEMPT_COUNT
  2448. /* Want to start with kernel preemption disabled. */
  2449. task_thread_info(p)->preempt_count = 1;
  2450. #endif
  2451. #ifdef CONFIG_SMP
  2452. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2453. #endif
  2454. put_cpu();
  2455. }
  2456. /*
  2457. * wake_up_new_task - wake up a newly created task for the first time.
  2458. *
  2459. * This function will do some initial scheduler statistics housekeeping
  2460. * that must be done for every newly created context, then puts the task
  2461. * on the runqueue and wakes it.
  2462. */
  2463. void wake_up_new_task(struct task_struct *p)
  2464. {
  2465. unsigned long flags;
  2466. struct rq *rq;
  2467. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2468. #ifdef CONFIG_SMP
  2469. /*
  2470. * Fork balancing, do it here and not earlier because:
  2471. * - cpus_allowed can change in the fork path
  2472. * - any previously selected cpu might disappear through hotplug
  2473. */
  2474. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2475. #endif
  2476. rq = __task_rq_lock(p);
  2477. activate_task(rq, p, 0);
  2478. p->on_rq = 1;
  2479. trace_sched_wakeup_new(p, true);
  2480. check_preempt_curr(rq, p, WF_FORK);
  2481. #ifdef CONFIG_SMP
  2482. if (p->sched_class->task_woken)
  2483. p->sched_class->task_woken(rq, p);
  2484. #endif
  2485. task_rq_unlock(rq, p, &flags);
  2486. }
  2487. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2488. /**
  2489. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2490. * @notifier: notifier struct to register
  2491. */
  2492. void preempt_notifier_register(struct preempt_notifier *notifier)
  2493. {
  2494. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2495. }
  2496. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2497. /**
  2498. * preempt_notifier_unregister - no longer interested in preemption notifications
  2499. * @notifier: notifier struct to unregister
  2500. *
  2501. * This is safe to call from within a preemption notifier.
  2502. */
  2503. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2504. {
  2505. hlist_del(&notifier->link);
  2506. }
  2507. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2508. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2509. {
  2510. struct preempt_notifier *notifier;
  2511. struct hlist_node *node;
  2512. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2513. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2514. }
  2515. static void
  2516. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2517. struct task_struct *next)
  2518. {
  2519. struct preempt_notifier *notifier;
  2520. struct hlist_node *node;
  2521. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2522. notifier->ops->sched_out(notifier, next);
  2523. }
  2524. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2525. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2526. {
  2527. }
  2528. static void
  2529. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2530. struct task_struct *next)
  2531. {
  2532. }
  2533. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2534. /**
  2535. * prepare_task_switch - prepare to switch tasks
  2536. * @rq: the runqueue preparing to switch
  2537. * @prev: the current task that is being switched out
  2538. * @next: the task we are going to switch to.
  2539. *
  2540. * This is called with the rq lock held and interrupts off. It must
  2541. * be paired with a subsequent finish_task_switch after the context
  2542. * switch.
  2543. *
  2544. * prepare_task_switch sets up locking and calls architecture specific
  2545. * hooks.
  2546. */
  2547. static inline void
  2548. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2549. struct task_struct *next)
  2550. {
  2551. sched_info_switch(prev, next);
  2552. perf_event_task_sched_out(prev, next);
  2553. fire_sched_out_preempt_notifiers(prev, next);
  2554. prepare_lock_switch(rq, next);
  2555. prepare_arch_switch(next);
  2556. trace_sched_switch(prev, next);
  2557. }
  2558. /**
  2559. * finish_task_switch - clean up after a task-switch
  2560. * @rq: runqueue associated with task-switch
  2561. * @prev: the thread we just switched away from.
  2562. *
  2563. * finish_task_switch must be called after the context switch, paired
  2564. * with a prepare_task_switch call before the context switch.
  2565. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2566. * and do any other architecture-specific cleanup actions.
  2567. *
  2568. * Note that we may have delayed dropping an mm in context_switch(). If
  2569. * so, we finish that here outside of the runqueue lock. (Doing it
  2570. * with the lock held can cause deadlocks; see schedule() for
  2571. * details.)
  2572. */
  2573. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2574. __releases(rq->lock)
  2575. {
  2576. struct mm_struct *mm = rq->prev_mm;
  2577. long prev_state;
  2578. rq->prev_mm = NULL;
  2579. /*
  2580. * A task struct has one reference for the use as "current".
  2581. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2582. * schedule one last time. The schedule call will never return, and
  2583. * the scheduled task must drop that reference.
  2584. * The test for TASK_DEAD must occur while the runqueue locks are
  2585. * still held, otherwise prev could be scheduled on another cpu, die
  2586. * there before we look at prev->state, and then the reference would
  2587. * be dropped twice.
  2588. * Manfred Spraul <manfred@colorfullife.com>
  2589. */
  2590. prev_state = prev->state;
  2591. finish_arch_switch(prev);
  2592. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2593. local_irq_disable();
  2594. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2595. perf_event_task_sched_in(prev, current);
  2596. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2597. local_irq_enable();
  2598. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2599. finish_lock_switch(rq, prev);
  2600. fire_sched_in_preempt_notifiers(current);
  2601. if (mm)
  2602. mmdrop(mm);
  2603. if (unlikely(prev_state == TASK_DEAD)) {
  2604. /*
  2605. * Remove function-return probe instances associated with this
  2606. * task and put them back on the free list.
  2607. */
  2608. kprobe_flush_task(prev);
  2609. put_task_struct(prev);
  2610. }
  2611. }
  2612. #ifdef CONFIG_SMP
  2613. /* assumes rq->lock is held */
  2614. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2615. {
  2616. if (prev->sched_class->pre_schedule)
  2617. prev->sched_class->pre_schedule(rq, prev);
  2618. }
  2619. /* rq->lock is NOT held, but preemption is disabled */
  2620. static inline void post_schedule(struct rq *rq)
  2621. {
  2622. if (rq->post_schedule) {
  2623. unsigned long flags;
  2624. raw_spin_lock_irqsave(&rq->lock, flags);
  2625. if (rq->curr->sched_class->post_schedule)
  2626. rq->curr->sched_class->post_schedule(rq);
  2627. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2628. rq->post_schedule = 0;
  2629. }
  2630. }
  2631. #else
  2632. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2633. {
  2634. }
  2635. static inline void post_schedule(struct rq *rq)
  2636. {
  2637. }
  2638. #endif
  2639. /**
  2640. * schedule_tail - first thing a freshly forked thread must call.
  2641. * @prev: the thread we just switched away from.
  2642. */
  2643. asmlinkage void schedule_tail(struct task_struct *prev)
  2644. __releases(rq->lock)
  2645. {
  2646. struct rq *rq = this_rq();
  2647. finish_task_switch(rq, prev);
  2648. /*
  2649. * FIXME: do we need to worry about rq being invalidated by the
  2650. * task_switch?
  2651. */
  2652. post_schedule(rq);
  2653. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2654. /* In this case, finish_task_switch does not reenable preemption */
  2655. preempt_enable();
  2656. #endif
  2657. if (current->set_child_tid)
  2658. put_user(task_pid_vnr(current), current->set_child_tid);
  2659. }
  2660. /*
  2661. * context_switch - switch to the new MM and the new
  2662. * thread's register state.
  2663. */
  2664. static inline void
  2665. context_switch(struct rq *rq, struct task_struct *prev,
  2666. struct task_struct *next)
  2667. {
  2668. struct mm_struct *mm, *oldmm;
  2669. prepare_task_switch(rq, prev, next);
  2670. mm = next->mm;
  2671. oldmm = prev->active_mm;
  2672. /*
  2673. * For paravirt, this is coupled with an exit in switch_to to
  2674. * combine the page table reload and the switch backend into
  2675. * one hypercall.
  2676. */
  2677. arch_start_context_switch(prev);
  2678. if (!mm) {
  2679. next->active_mm = oldmm;
  2680. atomic_inc(&oldmm->mm_count);
  2681. enter_lazy_tlb(oldmm, next);
  2682. } else
  2683. switch_mm(oldmm, mm, next);
  2684. if (!prev->mm) {
  2685. prev->active_mm = NULL;
  2686. rq->prev_mm = oldmm;
  2687. }
  2688. /*
  2689. * Since the runqueue lock will be released by the next
  2690. * task (which is an invalid locking op but in the case
  2691. * of the scheduler it's an obvious special-case), so we
  2692. * do an early lockdep release here:
  2693. */
  2694. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2695. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2696. #endif
  2697. /* Here we just switch the register state and the stack. */
  2698. switch_to(prev, next, prev);
  2699. barrier();
  2700. /*
  2701. * this_rq must be evaluated again because prev may have moved
  2702. * CPUs since it called schedule(), thus the 'rq' on its stack
  2703. * frame will be invalid.
  2704. */
  2705. finish_task_switch(this_rq(), prev);
  2706. }
  2707. /*
  2708. * nr_running, nr_uninterruptible and nr_context_switches:
  2709. *
  2710. * externally visible scheduler statistics: current number of runnable
  2711. * threads, current number of uninterruptible-sleeping threads, total
  2712. * number of context switches performed since bootup.
  2713. */
  2714. unsigned long nr_running(void)
  2715. {
  2716. unsigned long i, sum = 0;
  2717. for_each_online_cpu(i)
  2718. sum += cpu_rq(i)->nr_running;
  2719. return sum;
  2720. }
  2721. unsigned long nr_uninterruptible(void)
  2722. {
  2723. unsigned long i, sum = 0;
  2724. for_each_possible_cpu(i)
  2725. sum += cpu_rq(i)->nr_uninterruptible;
  2726. /*
  2727. * Since we read the counters lockless, it might be slightly
  2728. * inaccurate. Do not allow it to go below zero though:
  2729. */
  2730. if (unlikely((long)sum < 0))
  2731. sum = 0;
  2732. return sum;
  2733. }
  2734. unsigned long long nr_context_switches(void)
  2735. {
  2736. int i;
  2737. unsigned long long sum = 0;
  2738. for_each_possible_cpu(i)
  2739. sum += cpu_rq(i)->nr_switches;
  2740. return sum;
  2741. }
  2742. unsigned long nr_iowait(void)
  2743. {
  2744. unsigned long i, sum = 0;
  2745. for_each_possible_cpu(i)
  2746. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2747. return sum;
  2748. }
  2749. unsigned long nr_iowait_cpu(int cpu)
  2750. {
  2751. struct rq *this = cpu_rq(cpu);
  2752. return atomic_read(&this->nr_iowait);
  2753. }
  2754. unsigned long this_cpu_load(void)
  2755. {
  2756. struct rq *this = this_rq();
  2757. return this->cpu_load[0];
  2758. }
  2759. /* Variables and functions for calc_load */
  2760. static atomic_long_t calc_load_tasks;
  2761. static unsigned long calc_load_update;
  2762. unsigned long avenrun[3];
  2763. EXPORT_SYMBOL(avenrun);
  2764. static long calc_load_fold_active(struct rq *this_rq)
  2765. {
  2766. long nr_active, delta = 0;
  2767. nr_active = this_rq->nr_running;
  2768. nr_active += (long) this_rq->nr_uninterruptible;
  2769. if (nr_active != this_rq->calc_load_active) {
  2770. delta = nr_active - this_rq->calc_load_active;
  2771. this_rq->calc_load_active = nr_active;
  2772. }
  2773. return delta;
  2774. }
  2775. static unsigned long
  2776. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2777. {
  2778. load *= exp;
  2779. load += active * (FIXED_1 - exp);
  2780. load += 1UL << (FSHIFT - 1);
  2781. return load >> FSHIFT;
  2782. }
  2783. #ifdef CONFIG_NO_HZ
  2784. /*
  2785. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2786. *
  2787. * When making the ILB scale, we should try to pull this in as well.
  2788. */
  2789. static atomic_long_t calc_load_tasks_idle;
  2790. static void calc_load_account_idle(struct rq *this_rq)
  2791. {
  2792. long delta;
  2793. delta = calc_load_fold_active(this_rq);
  2794. if (delta)
  2795. atomic_long_add(delta, &calc_load_tasks_idle);
  2796. }
  2797. static long calc_load_fold_idle(void)
  2798. {
  2799. long delta = 0;
  2800. /*
  2801. * Its got a race, we don't care...
  2802. */
  2803. if (atomic_long_read(&calc_load_tasks_idle))
  2804. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2805. return delta;
  2806. }
  2807. /**
  2808. * fixed_power_int - compute: x^n, in O(log n) time
  2809. *
  2810. * @x: base of the power
  2811. * @frac_bits: fractional bits of @x
  2812. * @n: power to raise @x to.
  2813. *
  2814. * By exploiting the relation between the definition of the natural power
  2815. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2816. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2817. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2818. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2819. * of course trivially computable in O(log_2 n), the length of our binary
  2820. * vector.
  2821. */
  2822. static unsigned long
  2823. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2824. {
  2825. unsigned long result = 1UL << frac_bits;
  2826. if (n) for (;;) {
  2827. if (n & 1) {
  2828. result *= x;
  2829. result += 1UL << (frac_bits - 1);
  2830. result >>= frac_bits;
  2831. }
  2832. n >>= 1;
  2833. if (!n)
  2834. break;
  2835. x *= x;
  2836. x += 1UL << (frac_bits - 1);
  2837. x >>= frac_bits;
  2838. }
  2839. return result;
  2840. }
  2841. /*
  2842. * a1 = a0 * e + a * (1 - e)
  2843. *
  2844. * a2 = a1 * e + a * (1 - e)
  2845. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2846. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2847. *
  2848. * a3 = a2 * e + a * (1 - e)
  2849. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2850. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2851. *
  2852. * ...
  2853. *
  2854. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2855. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2856. * = a0 * e^n + a * (1 - e^n)
  2857. *
  2858. * [1] application of the geometric series:
  2859. *
  2860. * n 1 - x^(n+1)
  2861. * S_n := \Sum x^i = -------------
  2862. * i=0 1 - x
  2863. */
  2864. static unsigned long
  2865. calc_load_n(unsigned long load, unsigned long exp,
  2866. unsigned long active, unsigned int n)
  2867. {
  2868. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2869. }
  2870. /*
  2871. * NO_HZ can leave us missing all per-cpu ticks calling
  2872. * calc_load_account_active(), but since an idle CPU folds its delta into
  2873. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2874. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2875. *
  2876. * Once we've updated the global active value, we need to apply the exponential
  2877. * weights adjusted to the number of cycles missed.
  2878. */
  2879. static void calc_global_nohz(unsigned long ticks)
  2880. {
  2881. long delta, active, n;
  2882. if (time_before(jiffies, calc_load_update))
  2883. return;
  2884. /*
  2885. * If we crossed a calc_load_update boundary, make sure to fold
  2886. * any pending idle changes, the respective CPUs might have
  2887. * missed the tick driven calc_load_account_active() update
  2888. * due to NO_HZ.
  2889. */
  2890. delta = calc_load_fold_idle();
  2891. if (delta)
  2892. atomic_long_add(delta, &calc_load_tasks);
  2893. /*
  2894. * If we were idle for multiple load cycles, apply them.
  2895. */
  2896. if (ticks >= LOAD_FREQ) {
  2897. n = ticks / LOAD_FREQ;
  2898. active = atomic_long_read(&calc_load_tasks);
  2899. active = active > 0 ? active * FIXED_1 : 0;
  2900. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2901. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2902. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2903. calc_load_update += n * LOAD_FREQ;
  2904. }
  2905. /*
  2906. * Its possible the remainder of the above division also crosses
  2907. * a LOAD_FREQ period, the regular check in calc_global_load()
  2908. * which comes after this will take care of that.
  2909. *
  2910. * Consider us being 11 ticks before a cycle completion, and us
  2911. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2912. * age us 4 cycles, and the test in calc_global_load() will
  2913. * pick up the final one.
  2914. */
  2915. }
  2916. #else
  2917. static void calc_load_account_idle(struct rq *this_rq)
  2918. {
  2919. }
  2920. static inline long calc_load_fold_idle(void)
  2921. {
  2922. return 0;
  2923. }
  2924. static void calc_global_nohz(unsigned long ticks)
  2925. {
  2926. }
  2927. #endif
  2928. /**
  2929. * get_avenrun - get the load average array
  2930. * @loads: pointer to dest load array
  2931. * @offset: offset to add
  2932. * @shift: shift count to shift the result left
  2933. *
  2934. * These values are estimates at best, so no need for locking.
  2935. */
  2936. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2937. {
  2938. loads[0] = (avenrun[0] + offset) << shift;
  2939. loads[1] = (avenrun[1] + offset) << shift;
  2940. loads[2] = (avenrun[2] + offset) << shift;
  2941. }
  2942. /*
  2943. * calc_load - update the avenrun load estimates 10 ticks after the
  2944. * CPUs have updated calc_load_tasks.
  2945. */
  2946. void calc_global_load(unsigned long ticks)
  2947. {
  2948. long active;
  2949. calc_global_nohz(ticks);
  2950. if (time_before(jiffies, calc_load_update + 10))
  2951. return;
  2952. active = atomic_long_read(&calc_load_tasks);
  2953. active = active > 0 ? active * FIXED_1 : 0;
  2954. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2955. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2956. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2957. calc_load_update += LOAD_FREQ;
  2958. }
  2959. /*
  2960. * Called from update_cpu_load() to periodically update this CPU's
  2961. * active count.
  2962. */
  2963. static void calc_load_account_active(struct rq *this_rq)
  2964. {
  2965. long delta;
  2966. if (time_before(jiffies, this_rq->calc_load_update))
  2967. return;
  2968. delta = calc_load_fold_active(this_rq);
  2969. delta += calc_load_fold_idle();
  2970. if (delta)
  2971. atomic_long_add(delta, &calc_load_tasks);
  2972. this_rq->calc_load_update += LOAD_FREQ;
  2973. }
  2974. /*
  2975. * The exact cpuload at various idx values, calculated at every tick would be
  2976. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2977. *
  2978. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2979. * on nth tick when cpu may be busy, then we have:
  2980. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2981. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2982. *
  2983. * decay_load_missed() below does efficient calculation of
  2984. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2985. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2986. *
  2987. * The calculation is approximated on a 128 point scale.
  2988. * degrade_zero_ticks is the number of ticks after which load at any
  2989. * particular idx is approximated to be zero.
  2990. * degrade_factor is a precomputed table, a row for each load idx.
  2991. * Each column corresponds to degradation factor for a power of two ticks,
  2992. * based on 128 point scale.
  2993. * Example:
  2994. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2995. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2996. *
  2997. * With this power of 2 load factors, we can degrade the load n times
  2998. * by looking at 1 bits in n and doing as many mult/shift instead of
  2999. * n mult/shifts needed by the exact degradation.
  3000. */
  3001. #define DEGRADE_SHIFT 7
  3002. static const unsigned char
  3003. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  3004. static const unsigned char
  3005. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  3006. {0, 0, 0, 0, 0, 0, 0, 0},
  3007. {64, 32, 8, 0, 0, 0, 0, 0},
  3008. {96, 72, 40, 12, 1, 0, 0},
  3009. {112, 98, 75, 43, 15, 1, 0},
  3010. {120, 112, 98, 76, 45, 16, 2} };
  3011. /*
  3012. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  3013. * would be when CPU is idle and so we just decay the old load without
  3014. * adding any new load.
  3015. */
  3016. static unsigned long
  3017. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  3018. {
  3019. int j = 0;
  3020. if (!missed_updates)
  3021. return load;
  3022. if (missed_updates >= degrade_zero_ticks[idx])
  3023. return 0;
  3024. if (idx == 1)
  3025. return load >> missed_updates;
  3026. while (missed_updates) {
  3027. if (missed_updates % 2)
  3028. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  3029. missed_updates >>= 1;
  3030. j++;
  3031. }
  3032. return load;
  3033. }
  3034. /*
  3035. * Update rq->cpu_load[] statistics. This function is usually called every
  3036. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  3037. * every tick. We fix it up based on jiffies.
  3038. */
  3039. static void update_cpu_load(struct rq *this_rq)
  3040. {
  3041. unsigned long this_load = this_rq->load.weight;
  3042. unsigned long curr_jiffies = jiffies;
  3043. unsigned long pending_updates;
  3044. int i, scale;
  3045. this_rq->nr_load_updates++;
  3046. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  3047. if (curr_jiffies == this_rq->last_load_update_tick)
  3048. return;
  3049. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3050. this_rq->last_load_update_tick = curr_jiffies;
  3051. /* Update our load: */
  3052. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3053. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3054. unsigned long old_load, new_load;
  3055. /* scale is effectively 1 << i now, and >> i divides by scale */
  3056. old_load = this_rq->cpu_load[i];
  3057. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3058. new_load = this_load;
  3059. /*
  3060. * Round up the averaging division if load is increasing. This
  3061. * prevents us from getting stuck on 9 if the load is 10, for
  3062. * example.
  3063. */
  3064. if (new_load > old_load)
  3065. new_load += scale - 1;
  3066. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  3067. }
  3068. sched_avg_update(this_rq);
  3069. }
  3070. static void update_cpu_load_active(struct rq *this_rq)
  3071. {
  3072. update_cpu_load(this_rq);
  3073. calc_load_account_active(this_rq);
  3074. }
  3075. #ifdef CONFIG_SMP
  3076. /*
  3077. * sched_exec - execve() is a valuable balancing opportunity, because at
  3078. * this point the task has the smallest effective memory and cache footprint.
  3079. */
  3080. void sched_exec(void)
  3081. {
  3082. struct task_struct *p = current;
  3083. unsigned long flags;
  3084. int dest_cpu;
  3085. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3086. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  3087. if (dest_cpu == smp_processor_id())
  3088. goto unlock;
  3089. if (likely(cpu_active(dest_cpu))) {
  3090. struct migration_arg arg = { p, dest_cpu };
  3091. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3092. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3093. return;
  3094. }
  3095. unlock:
  3096. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3097. }
  3098. #endif
  3099. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3100. EXPORT_PER_CPU_SYMBOL(kstat);
  3101. /*
  3102. * Return any ns on the sched_clock that have not yet been accounted in
  3103. * @p in case that task is currently running.
  3104. *
  3105. * Called with task_rq_lock() held on @rq.
  3106. */
  3107. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3108. {
  3109. u64 ns = 0;
  3110. if (task_current(rq, p)) {
  3111. update_rq_clock(rq);
  3112. ns = rq->clock_task - p->se.exec_start;
  3113. if ((s64)ns < 0)
  3114. ns = 0;
  3115. }
  3116. return ns;
  3117. }
  3118. unsigned long long task_delta_exec(struct task_struct *p)
  3119. {
  3120. unsigned long flags;
  3121. struct rq *rq;
  3122. u64 ns = 0;
  3123. rq = task_rq_lock(p, &flags);
  3124. ns = do_task_delta_exec(p, rq);
  3125. task_rq_unlock(rq, p, &flags);
  3126. return ns;
  3127. }
  3128. /*
  3129. * Return accounted runtime for the task.
  3130. * In case the task is currently running, return the runtime plus current's
  3131. * pending runtime that have not been accounted yet.
  3132. */
  3133. unsigned long long task_sched_runtime(struct task_struct *p)
  3134. {
  3135. unsigned long flags;
  3136. struct rq *rq;
  3137. u64 ns = 0;
  3138. rq = task_rq_lock(p, &flags);
  3139. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3140. task_rq_unlock(rq, p, &flags);
  3141. return ns;
  3142. }
  3143. /*
  3144. * Return sum_exec_runtime for the thread group.
  3145. * In case the task is currently running, return the sum plus current's
  3146. * pending runtime that have not been accounted yet.
  3147. *
  3148. * Note that the thread group might have other running tasks as well,
  3149. * so the return value not includes other pending runtime that other
  3150. * running tasks might have.
  3151. */
  3152. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3153. {
  3154. struct task_cputime totals;
  3155. unsigned long flags;
  3156. struct rq *rq;
  3157. u64 ns;
  3158. rq = task_rq_lock(p, &flags);
  3159. thread_group_cputime(p, &totals);
  3160. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3161. task_rq_unlock(rq, p, &flags);
  3162. return ns;
  3163. }
  3164. /*
  3165. * Account user cpu time to a process.
  3166. * @p: the process that the cpu time gets accounted to
  3167. * @cputime: the cpu time spent in user space since the last update
  3168. * @cputime_scaled: cputime scaled by cpu frequency
  3169. */
  3170. void account_user_time(struct task_struct *p, cputime_t cputime,
  3171. cputime_t cputime_scaled)
  3172. {
  3173. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3174. cputime64_t tmp;
  3175. /* Add user time to process. */
  3176. p->utime = cputime_add(p->utime, cputime);
  3177. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3178. account_group_user_time(p, cputime);
  3179. /* Add user time to cpustat. */
  3180. tmp = cputime_to_cputime64(cputime);
  3181. if (TASK_NICE(p) > 0)
  3182. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3183. else
  3184. cpustat->user = cputime64_add(cpustat->user, tmp);
  3185. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3186. /* Account for user time used */
  3187. acct_update_integrals(p);
  3188. }
  3189. /*
  3190. * Account guest cpu time to a process.
  3191. * @p: the process that the cpu time gets accounted to
  3192. * @cputime: the cpu time spent in virtual machine since the last update
  3193. * @cputime_scaled: cputime scaled by cpu frequency
  3194. */
  3195. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3196. cputime_t cputime_scaled)
  3197. {
  3198. cputime64_t tmp;
  3199. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3200. tmp = cputime_to_cputime64(cputime);
  3201. /* Add guest time to process. */
  3202. p->utime = cputime_add(p->utime, cputime);
  3203. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3204. account_group_user_time(p, cputime);
  3205. p->gtime = cputime_add(p->gtime, cputime);
  3206. /* Add guest time to cpustat. */
  3207. if (TASK_NICE(p) > 0) {
  3208. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3209. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3210. } else {
  3211. cpustat->user = cputime64_add(cpustat->user, tmp);
  3212. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3213. }
  3214. }
  3215. /*
  3216. * Account system cpu time to a process and desired cpustat field
  3217. * @p: the process that the cpu time gets accounted to
  3218. * @cputime: the cpu time spent in kernel space since the last update
  3219. * @cputime_scaled: cputime scaled by cpu frequency
  3220. * @target_cputime64: pointer to cpustat field that has to be updated
  3221. */
  3222. static inline
  3223. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3224. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3225. {
  3226. cputime64_t tmp = cputime_to_cputime64(cputime);
  3227. /* Add system time to process. */
  3228. p->stime = cputime_add(p->stime, cputime);
  3229. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3230. account_group_system_time(p, cputime);
  3231. /* Add system time to cpustat. */
  3232. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3233. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3234. /* Account for system time used */
  3235. acct_update_integrals(p);
  3236. }
  3237. /*
  3238. * Account system cpu time to a process.
  3239. * @p: the process that the cpu time gets accounted to
  3240. * @hardirq_offset: the offset to subtract from hardirq_count()
  3241. * @cputime: the cpu time spent in kernel space since the last update
  3242. * @cputime_scaled: cputime scaled by cpu frequency
  3243. */
  3244. void account_system_time(struct task_struct *p, int hardirq_offset,
  3245. cputime_t cputime, cputime_t cputime_scaled)
  3246. {
  3247. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3248. cputime64_t *target_cputime64;
  3249. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3250. account_guest_time(p, cputime, cputime_scaled);
  3251. return;
  3252. }
  3253. if (hardirq_count() - hardirq_offset)
  3254. target_cputime64 = &cpustat->irq;
  3255. else if (in_serving_softirq())
  3256. target_cputime64 = &cpustat->softirq;
  3257. else
  3258. target_cputime64 = &cpustat->system;
  3259. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3260. }
  3261. /*
  3262. * Account for involuntary wait time.
  3263. * @cputime: the cpu time spent in involuntary wait
  3264. */
  3265. void account_steal_time(cputime_t cputime)
  3266. {
  3267. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3268. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3269. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3270. }
  3271. /*
  3272. * Account for idle time.
  3273. * @cputime: the cpu time spent in idle wait
  3274. */
  3275. void account_idle_time(cputime_t cputime)
  3276. {
  3277. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3278. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3279. struct rq *rq = this_rq();
  3280. if (atomic_read(&rq->nr_iowait) > 0)
  3281. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3282. else
  3283. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3284. }
  3285. static __always_inline bool steal_account_process_tick(void)
  3286. {
  3287. #ifdef CONFIG_PARAVIRT
  3288. if (static_branch(&paravirt_steal_enabled)) {
  3289. u64 steal, st = 0;
  3290. steal = paravirt_steal_clock(smp_processor_id());
  3291. steal -= this_rq()->prev_steal_time;
  3292. st = steal_ticks(steal);
  3293. this_rq()->prev_steal_time += st * TICK_NSEC;
  3294. account_steal_time(st);
  3295. return st;
  3296. }
  3297. #endif
  3298. return false;
  3299. }
  3300. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3301. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3302. /*
  3303. * Account a tick to a process and cpustat
  3304. * @p: the process that the cpu time gets accounted to
  3305. * @user_tick: is the tick from userspace
  3306. * @rq: the pointer to rq
  3307. *
  3308. * Tick demultiplexing follows the order
  3309. * - pending hardirq update
  3310. * - pending softirq update
  3311. * - user_time
  3312. * - idle_time
  3313. * - system time
  3314. * - check for guest_time
  3315. * - else account as system_time
  3316. *
  3317. * Check for hardirq is done both for system and user time as there is
  3318. * no timer going off while we are on hardirq and hence we may never get an
  3319. * opportunity to update it solely in system time.
  3320. * p->stime and friends are only updated on system time and not on irq
  3321. * softirq as those do not count in task exec_runtime any more.
  3322. */
  3323. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3324. struct rq *rq)
  3325. {
  3326. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3327. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3328. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3329. if (steal_account_process_tick())
  3330. return;
  3331. if (irqtime_account_hi_update()) {
  3332. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3333. } else if (irqtime_account_si_update()) {
  3334. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3335. } else if (this_cpu_ksoftirqd() == p) {
  3336. /*
  3337. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3338. * So, we have to handle it separately here.
  3339. * Also, p->stime needs to be updated for ksoftirqd.
  3340. */
  3341. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3342. &cpustat->softirq);
  3343. } else if (user_tick) {
  3344. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3345. } else if (p == rq->idle) {
  3346. account_idle_time(cputime_one_jiffy);
  3347. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3348. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3349. } else {
  3350. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3351. &cpustat->system);
  3352. }
  3353. }
  3354. static void irqtime_account_idle_ticks(int ticks)
  3355. {
  3356. int i;
  3357. struct rq *rq = this_rq();
  3358. for (i = 0; i < ticks; i++)
  3359. irqtime_account_process_tick(current, 0, rq);
  3360. }
  3361. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3362. static void irqtime_account_idle_ticks(int ticks) {}
  3363. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3364. struct rq *rq) {}
  3365. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3366. /*
  3367. * Account a single tick of cpu time.
  3368. * @p: the process that the cpu time gets accounted to
  3369. * @user_tick: indicates if the tick is a user or a system tick
  3370. */
  3371. void account_process_tick(struct task_struct *p, int user_tick)
  3372. {
  3373. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3374. struct rq *rq = this_rq();
  3375. if (sched_clock_irqtime) {
  3376. irqtime_account_process_tick(p, user_tick, rq);
  3377. return;
  3378. }
  3379. if (steal_account_process_tick())
  3380. return;
  3381. if (user_tick)
  3382. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3383. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3384. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3385. one_jiffy_scaled);
  3386. else
  3387. account_idle_time(cputime_one_jiffy);
  3388. }
  3389. /*
  3390. * Account multiple ticks of steal time.
  3391. * @p: the process from which the cpu time has been stolen
  3392. * @ticks: number of stolen ticks
  3393. */
  3394. void account_steal_ticks(unsigned long ticks)
  3395. {
  3396. account_steal_time(jiffies_to_cputime(ticks));
  3397. }
  3398. /*
  3399. * Account multiple ticks of idle time.
  3400. * @ticks: number of stolen ticks
  3401. */
  3402. void account_idle_ticks(unsigned long ticks)
  3403. {
  3404. if (sched_clock_irqtime) {
  3405. irqtime_account_idle_ticks(ticks);
  3406. return;
  3407. }
  3408. account_idle_time(jiffies_to_cputime(ticks));
  3409. }
  3410. #endif
  3411. /*
  3412. * Use precise platform statistics if available:
  3413. */
  3414. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3415. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3416. {
  3417. *ut = p->utime;
  3418. *st = p->stime;
  3419. }
  3420. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3421. {
  3422. struct task_cputime cputime;
  3423. thread_group_cputime(p, &cputime);
  3424. *ut = cputime.utime;
  3425. *st = cputime.stime;
  3426. }
  3427. #else
  3428. #ifndef nsecs_to_cputime
  3429. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3430. #endif
  3431. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3432. {
  3433. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3434. /*
  3435. * Use CFS's precise accounting:
  3436. */
  3437. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3438. if (total) {
  3439. u64 temp = rtime;
  3440. temp *= utime;
  3441. do_div(temp, total);
  3442. utime = (cputime_t)temp;
  3443. } else
  3444. utime = rtime;
  3445. /*
  3446. * Compare with previous values, to keep monotonicity:
  3447. */
  3448. p->prev_utime = max(p->prev_utime, utime);
  3449. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3450. *ut = p->prev_utime;
  3451. *st = p->prev_stime;
  3452. }
  3453. /*
  3454. * Must be called with siglock held.
  3455. */
  3456. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3457. {
  3458. struct signal_struct *sig = p->signal;
  3459. struct task_cputime cputime;
  3460. cputime_t rtime, utime, total;
  3461. thread_group_cputime(p, &cputime);
  3462. total = cputime_add(cputime.utime, cputime.stime);
  3463. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3464. if (total) {
  3465. u64 temp = rtime;
  3466. temp *= cputime.utime;
  3467. do_div(temp, total);
  3468. utime = (cputime_t)temp;
  3469. } else
  3470. utime = rtime;
  3471. sig->prev_utime = max(sig->prev_utime, utime);
  3472. sig->prev_stime = max(sig->prev_stime,
  3473. cputime_sub(rtime, sig->prev_utime));
  3474. *ut = sig->prev_utime;
  3475. *st = sig->prev_stime;
  3476. }
  3477. #endif
  3478. /*
  3479. * This function gets called by the timer code, with HZ frequency.
  3480. * We call it with interrupts disabled.
  3481. */
  3482. void scheduler_tick(void)
  3483. {
  3484. int cpu = smp_processor_id();
  3485. struct rq *rq = cpu_rq(cpu);
  3486. struct task_struct *curr = rq->curr;
  3487. sched_clock_tick();
  3488. raw_spin_lock(&rq->lock);
  3489. update_rq_clock(rq);
  3490. update_cpu_load_active(rq);
  3491. curr->sched_class->task_tick(rq, curr, 0);
  3492. raw_spin_unlock(&rq->lock);
  3493. perf_event_task_tick();
  3494. #ifdef CONFIG_SMP
  3495. rq->idle_at_tick = idle_cpu(cpu);
  3496. trigger_load_balance(rq, cpu);
  3497. #endif
  3498. }
  3499. notrace unsigned long get_parent_ip(unsigned long addr)
  3500. {
  3501. if (in_lock_functions(addr)) {
  3502. addr = CALLER_ADDR2;
  3503. if (in_lock_functions(addr))
  3504. addr = CALLER_ADDR3;
  3505. }
  3506. return addr;
  3507. }
  3508. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3509. defined(CONFIG_PREEMPT_TRACER))
  3510. void __kprobes add_preempt_count(int val)
  3511. {
  3512. #ifdef CONFIG_DEBUG_PREEMPT
  3513. /*
  3514. * Underflow?
  3515. */
  3516. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3517. return;
  3518. #endif
  3519. preempt_count() += val;
  3520. #ifdef CONFIG_DEBUG_PREEMPT
  3521. /*
  3522. * Spinlock count overflowing soon?
  3523. */
  3524. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3525. PREEMPT_MASK - 10);
  3526. #endif
  3527. if (preempt_count() == val)
  3528. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3529. }
  3530. EXPORT_SYMBOL(add_preempt_count);
  3531. void __kprobes sub_preempt_count(int val)
  3532. {
  3533. #ifdef CONFIG_DEBUG_PREEMPT
  3534. /*
  3535. * Underflow?
  3536. */
  3537. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3538. return;
  3539. /*
  3540. * Is the spinlock portion underflowing?
  3541. */
  3542. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3543. !(preempt_count() & PREEMPT_MASK)))
  3544. return;
  3545. #endif
  3546. if (preempt_count() == val)
  3547. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3548. preempt_count() -= val;
  3549. }
  3550. EXPORT_SYMBOL(sub_preempt_count);
  3551. #endif
  3552. /*
  3553. * Print scheduling while atomic bug:
  3554. */
  3555. static noinline void __schedule_bug(struct task_struct *prev)
  3556. {
  3557. struct pt_regs *regs = get_irq_regs();
  3558. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3559. prev->comm, prev->pid, preempt_count());
  3560. debug_show_held_locks(prev);
  3561. print_modules();
  3562. if (irqs_disabled())
  3563. print_irqtrace_events(prev);
  3564. if (regs)
  3565. show_regs(regs);
  3566. else
  3567. dump_stack();
  3568. }
  3569. /*
  3570. * Various schedule()-time debugging checks and statistics:
  3571. */
  3572. static inline void schedule_debug(struct task_struct *prev)
  3573. {
  3574. /*
  3575. * Test if we are atomic. Since do_exit() needs to call into
  3576. * schedule() atomically, we ignore that path for now.
  3577. * Otherwise, whine if we are scheduling when we should not be.
  3578. */
  3579. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3580. __schedule_bug(prev);
  3581. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3582. schedstat_inc(this_rq(), sched_count);
  3583. }
  3584. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3585. {
  3586. if (prev->on_rq || rq->skip_clock_update < 0)
  3587. update_rq_clock(rq);
  3588. prev->sched_class->put_prev_task(rq, prev);
  3589. }
  3590. /*
  3591. * Pick up the highest-prio task:
  3592. */
  3593. static inline struct task_struct *
  3594. pick_next_task(struct rq *rq)
  3595. {
  3596. const struct sched_class *class;
  3597. struct task_struct *p;
  3598. /*
  3599. * Optimization: we know that if all tasks are in
  3600. * the fair class we can call that function directly:
  3601. */
  3602. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3603. p = fair_sched_class.pick_next_task(rq);
  3604. if (likely(p))
  3605. return p;
  3606. }
  3607. for_each_class(class) {
  3608. p = class->pick_next_task(rq);
  3609. if (p)
  3610. return p;
  3611. }
  3612. BUG(); /* the idle class will always have a runnable task */
  3613. }
  3614. /*
  3615. * __schedule() is the main scheduler function.
  3616. */
  3617. static void __sched __schedule(void)
  3618. {
  3619. struct task_struct *prev, *next;
  3620. unsigned long *switch_count;
  3621. struct rq *rq;
  3622. int cpu;
  3623. need_resched:
  3624. preempt_disable();
  3625. cpu = smp_processor_id();
  3626. rq = cpu_rq(cpu);
  3627. rcu_note_context_switch(cpu);
  3628. prev = rq->curr;
  3629. schedule_debug(prev);
  3630. if (sched_feat(HRTICK))
  3631. hrtick_clear(rq);
  3632. raw_spin_lock_irq(&rq->lock);
  3633. switch_count = &prev->nivcsw;
  3634. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3635. if (unlikely(signal_pending_state(prev->state, prev))) {
  3636. prev->state = TASK_RUNNING;
  3637. } else {
  3638. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3639. prev->on_rq = 0;
  3640. /*
  3641. * If a worker went to sleep, notify and ask workqueue
  3642. * whether it wants to wake up a task to maintain
  3643. * concurrency.
  3644. */
  3645. if (prev->flags & PF_WQ_WORKER) {
  3646. struct task_struct *to_wakeup;
  3647. to_wakeup = wq_worker_sleeping(prev, cpu);
  3648. if (to_wakeup)
  3649. try_to_wake_up_local(to_wakeup);
  3650. }
  3651. }
  3652. switch_count = &prev->nvcsw;
  3653. }
  3654. pre_schedule(rq, prev);
  3655. if (unlikely(!rq->nr_running))
  3656. idle_balance(cpu, rq);
  3657. put_prev_task(rq, prev);
  3658. next = pick_next_task(rq);
  3659. clear_tsk_need_resched(prev);
  3660. rq->skip_clock_update = 0;
  3661. if (likely(prev != next)) {
  3662. rq->nr_switches++;
  3663. rq->curr = next;
  3664. ++*switch_count;
  3665. context_switch(rq, prev, next); /* unlocks the rq */
  3666. /*
  3667. * The context switch have flipped the stack from under us
  3668. * and restored the local variables which were saved when
  3669. * this task called schedule() in the past. prev == current
  3670. * is still correct, but it can be moved to another cpu/rq.
  3671. */
  3672. cpu = smp_processor_id();
  3673. rq = cpu_rq(cpu);
  3674. } else
  3675. raw_spin_unlock_irq(&rq->lock);
  3676. post_schedule(rq);
  3677. preempt_enable_no_resched();
  3678. if (need_resched())
  3679. goto need_resched;
  3680. }
  3681. static inline void sched_submit_work(struct task_struct *tsk)
  3682. {
  3683. if (!tsk->state)
  3684. return;
  3685. /*
  3686. * If we are going to sleep and we have plugged IO queued,
  3687. * make sure to submit it to avoid deadlocks.
  3688. */
  3689. if (blk_needs_flush_plug(tsk))
  3690. blk_schedule_flush_plug(tsk);
  3691. }
  3692. asmlinkage void schedule(void)
  3693. {
  3694. struct task_struct *tsk = current;
  3695. sched_submit_work(tsk);
  3696. __schedule();
  3697. }
  3698. EXPORT_SYMBOL(schedule);
  3699. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3700. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3701. {
  3702. if (lock->owner != owner)
  3703. return false;
  3704. /*
  3705. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3706. * lock->owner still matches owner, if that fails, owner might
  3707. * point to free()d memory, if it still matches, the rcu_read_lock()
  3708. * ensures the memory stays valid.
  3709. */
  3710. barrier();
  3711. return owner->on_cpu;
  3712. }
  3713. /*
  3714. * Look out! "owner" is an entirely speculative pointer
  3715. * access and not reliable.
  3716. */
  3717. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3718. {
  3719. if (!sched_feat(OWNER_SPIN))
  3720. return 0;
  3721. rcu_read_lock();
  3722. while (owner_running(lock, owner)) {
  3723. if (need_resched())
  3724. break;
  3725. arch_mutex_cpu_relax();
  3726. }
  3727. rcu_read_unlock();
  3728. /*
  3729. * We break out the loop above on need_resched() and when the
  3730. * owner changed, which is a sign for heavy contention. Return
  3731. * success only when lock->owner is NULL.
  3732. */
  3733. return lock->owner == NULL;
  3734. }
  3735. #endif
  3736. #ifdef CONFIG_PREEMPT
  3737. /*
  3738. * this is the entry point to schedule() from in-kernel preemption
  3739. * off of preempt_enable. Kernel preemptions off return from interrupt
  3740. * occur there and call schedule directly.
  3741. */
  3742. asmlinkage void __sched notrace preempt_schedule(void)
  3743. {
  3744. struct thread_info *ti = current_thread_info();
  3745. /*
  3746. * If there is a non-zero preempt_count or interrupts are disabled,
  3747. * we do not want to preempt the current task. Just return..
  3748. */
  3749. if (likely(ti->preempt_count || irqs_disabled()))
  3750. return;
  3751. do {
  3752. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3753. __schedule();
  3754. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3755. /*
  3756. * Check again in case we missed a preemption opportunity
  3757. * between schedule and now.
  3758. */
  3759. barrier();
  3760. } while (need_resched());
  3761. }
  3762. EXPORT_SYMBOL(preempt_schedule);
  3763. /*
  3764. * this is the entry point to schedule() from kernel preemption
  3765. * off of irq context.
  3766. * Note, that this is called and return with irqs disabled. This will
  3767. * protect us against recursive calling from irq.
  3768. */
  3769. asmlinkage void __sched preempt_schedule_irq(void)
  3770. {
  3771. struct thread_info *ti = current_thread_info();
  3772. /* Catch callers which need to be fixed */
  3773. BUG_ON(ti->preempt_count || !irqs_disabled());
  3774. do {
  3775. add_preempt_count(PREEMPT_ACTIVE);
  3776. local_irq_enable();
  3777. __schedule();
  3778. local_irq_disable();
  3779. sub_preempt_count(PREEMPT_ACTIVE);
  3780. /*
  3781. * Check again in case we missed a preemption opportunity
  3782. * between schedule and now.
  3783. */
  3784. barrier();
  3785. } while (need_resched());
  3786. }
  3787. #endif /* CONFIG_PREEMPT */
  3788. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3789. void *key)
  3790. {
  3791. return try_to_wake_up(curr->private, mode, wake_flags);
  3792. }
  3793. EXPORT_SYMBOL(default_wake_function);
  3794. /*
  3795. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3796. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3797. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3798. *
  3799. * There are circumstances in which we can try to wake a task which has already
  3800. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3801. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3802. */
  3803. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3804. int nr_exclusive, int wake_flags, void *key)
  3805. {
  3806. wait_queue_t *curr, *next;
  3807. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3808. unsigned flags = curr->flags;
  3809. if (curr->func(curr, mode, wake_flags, key) &&
  3810. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3811. break;
  3812. }
  3813. }
  3814. /**
  3815. * __wake_up - wake up threads blocked on a waitqueue.
  3816. * @q: the waitqueue
  3817. * @mode: which threads
  3818. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3819. * @key: is directly passed to the wakeup function
  3820. *
  3821. * It may be assumed that this function implies a write memory barrier before
  3822. * changing the task state if and only if any tasks are woken up.
  3823. */
  3824. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3825. int nr_exclusive, void *key)
  3826. {
  3827. unsigned long flags;
  3828. spin_lock_irqsave(&q->lock, flags);
  3829. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3830. spin_unlock_irqrestore(&q->lock, flags);
  3831. }
  3832. EXPORT_SYMBOL(__wake_up);
  3833. /*
  3834. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3835. */
  3836. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3837. {
  3838. __wake_up_common(q, mode, 1, 0, NULL);
  3839. }
  3840. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3841. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3842. {
  3843. __wake_up_common(q, mode, 1, 0, key);
  3844. }
  3845. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3846. /**
  3847. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3848. * @q: the waitqueue
  3849. * @mode: which threads
  3850. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3851. * @key: opaque value to be passed to wakeup targets
  3852. *
  3853. * The sync wakeup differs that the waker knows that it will schedule
  3854. * away soon, so while the target thread will be woken up, it will not
  3855. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3856. * with each other. This can prevent needless bouncing between CPUs.
  3857. *
  3858. * On UP it can prevent extra preemption.
  3859. *
  3860. * It may be assumed that this function implies a write memory barrier before
  3861. * changing the task state if and only if any tasks are woken up.
  3862. */
  3863. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3864. int nr_exclusive, void *key)
  3865. {
  3866. unsigned long flags;
  3867. int wake_flags = WF_SYNC;
  3868. if (unlikely(!q))
  3869. return;
  3870. if (unlikely(!nr_exclusive))
  3871. wake_flags = 0;
  3872. spin_lock_irqsave(&q->lock, flags);
  3873. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3874. spin_unlock_irqrestore(&q->lock, flags);
  3875. }
  3876. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3877. /*
  3878. * __wake_up_sync - see __wake_up_sync_key()
  3879. */
  3880. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3881. {
  3882. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3883. }
  3884. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3885. /**
  3886. * complete: - signals a single thread waiting on this completion
  3887. * @x: holds the state of this particular completion
  3888. *
  3889. * This will wake up a single thread waiting on this completion. Threads will be
  3890. * awakened in the same order in which they were queued.
  3891. *
  3892. * See also complete_all(), wait_for_completion() and related routines.
  3893. *
  3894. * It may be assumed that this function implies a write memory barrier before
  3895. * changing the task state if and only if any tasks are woken up.
  3896. */
  3897. void complete(struct completion *x)
  3898. {
  3899. unsigned long flags;
  3900. spin_lock_irqsave(&x->wait.lock, flags);
  3901. x->done++;
  3902. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3903. spin_unlock_irqrestore(&x->wait.lock, flags);
  3904. }
  3905. EXPORT_SYMBOL(complete);
  3906. /**
  3907. * complete_all: - signals all threads waiting on this completion
  3908. * @x: holds the state of this particular completion
  3909. *
  3910. * This will wake up all threads waiting on this particular completion event.
  3911. *
  3912. * It may be assumed that this function implies a write memory barrier before
  3913. * changing the task state if and only if any tasks are woken up.
  3914. */
  3915. void complete_all(struct completion *x)
  3916. {
  3917. unsigned long flags;
  3918. spin_lock_irqsave(&x->wait.lock, flags);
  3919. x->done += UINT_MAX/2;
  3920. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3921. spin_unlock_irqrestore(&x->wait.lock, flags);
  3922. }
  3923. EXPORT_SYMBOL(complete_all);
  3924. static inline long __sched
  3925. do_wait_for_common(struct completion *x, long timeout, int state)
  3926. {
  3927. if (!x->done) {
  3928. DECLARE_WAITQUEUE(wait, current);
  3929. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3930. do {
  3931. if (signal_pending_state(state, current)) {
  3932. timeout = -ERESTARTSYS;
  3933. break;
  3934. }
  3935. __set_current_state(state);
  3936. spin_unlock_irq(&x->wait.lock);
  3937. timeout = schedule_timeout(timeout);
  3938. spin_lock_irq(&x->wait.lock);
  3939. } while (!x->done && timeout);
  3940. __remove_wait_queue(&x->wait, &wait);
  3941. if (!x->done)
  3942. return timeout;
  3943. }
  3944. x->done--;
  3945. return timeout ?: 1;
  3946. }
  3947. static long __sched
  3948. wait_for_common(struct completion *x, long timeout, int state)
  3949. {
  3950. might_sleep();
  3951. spin_lock_irq(&x->wait.lock);
  3952. timeout = do_wait_for_common(x, timeout, state);
  3953. spin_unlock_irq(&x->wait.lock);
  3954. return timeout;
  3955. }
  3956. /**
  3957. * wait_for_completion: - waits for completion of a task
  3958. * @x: holds the state of this particular completion
  3959. *
  3960. * This waits to be signaled for completion of a specific task. It is NOT
  3961. * interruptible and there is no timeout.
  3962. *
  3963. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3964. * and interrupt capability. Also see complete().
  3965. */
  3966. void __sched wait_for_completion(struct completion *x)
  3967. {
  3968. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3969. }
  3970. EXPORT_SYMBOL(wait_for_completion);
  3971. /**
  3972. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3973. * @x: holds the state of this particular completion
  3974. * @timeout: timeout value in jiffies
  3975. *
  3976. * This waits for either a completion of a specific task to be signaled or for a
  3977. * specified timeout to expire. The timeout is in jiffies. It is not
  3978. * interruptible.
  3979. */
  3980. unsigned long __sched
  3981. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3982. {
  3983. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3984. }
  3985. EXPORT_SYMBOL(wait_for_completion_timeout);
  3986. /**
  3987. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3988. * @x: holds the state of this particular completion
  3989. *
  3990. * This waits for completion of a specific task to be signaled. It is
  3991. * interruptible.
  3992. */
  3993. int __sched wait_for_completion_interruptible(struct completion *x)
  3994. {
  3995. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3996. if (t == -ERESTARTSYS)
  3997. return t;
  3998. return 0;
  3999. }
  4000. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4001. /**
  4002. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4003. * @x: holds the state of this particular completion
  4004. * @timeout: timeout value in jiffies
  4005. *
  4006. * This waits for either a completion of a specific task to be signaled or for a
  4007. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4008. */
  4009. long __sched
  4010. wait_for_completion_interruptible_timeout(struct completion *x,
  4011. unsigned long timeout)
  4012. {
  4013. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4014. }
  4015. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4016. /**
  4017. * wait_for_completion_killable: - waits for completion of a task (killable)
  4018. * @x: holds the state of this particular completion
  4019. *
  4020. * This waits to be signaled for completion of a specific task. It can be
  4021. * interrupted by a kill signal.
  4022. */
  4023. int __sched wait_for_completion_killable(struct completion *x)
  4024. {
  4025. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4026. if (t == -ERESTARTSYS)
  4027. return t;
  4028. return 0;
  4029. }
  4030. EXPORT_SYMBOL(wait_for_completion_killable);
  4031. /**
  4032. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  4033. * @x: holds the state of this particular completion
  4034. * @timeout: timeout value in jiffies
  4035. *
  4036. * This waits for either a completion of a specific task to be
  4037. * signaled or for a specified timeout to expire. It can be
  4038. * interrupted by a kill signal. The timeout is in jiffies.
  4039. */
  4040. long __sched
  4041. wait_for_completion_killable_timeout(struct completion *x,
  4042. unsigned long timeout)
  4043. {
  4044. return wait_for_common(x, timeout, TASK_KILLABLE);
  4045. }
  4046. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  4047. /**
  4048. * try_wait_for_completion - try to decrement a completion without blocking
  4049. * @x: completion structure
  4050. *
  4051. * Returns: 0 if a decrement cannot be done without blocking
  4052. * 1 if a decrement succeeded.
  4053. *
  4054. * If a completion is being used as a counting completion,
  4055. * attempt to decrement the counter without blocking. This
  4056. * enables us to avoid waiting if the resource the completion
  4057. * is protecting is not available.
  4058. */
  4059. bool try_wait_for_completion(struct completion *x)
  4060. {
  4061. unsigned long flags;
  4062. int ret = 1;
  4063. spin_lock_irqsave(&x->wait.lock, flags);
  4064. if (!x->done)
  4065. ret = 0;
  4066. else
  4067. x->done--;
  4068. spin_unlock_irqrestore(&x->wait.lock, flags);
  4069. return ret;
  4070. }
  4071. EXPORT_SYMBOL(try_wait_for_completion);
  4072. /**
  4073. * completion_done - Test to see if a completion has any waiters
  4074. * @x: completion structure
  4075. *
  4076. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4077. * 1 if there are no waiters.
  4078. *
  4079. */
  4080. bool completion_done(struct completion *x)
  4081. {
  4082. unsigned long flags;
  4083. int ret = 1;
  4084. spin_lock_irqsave(&x->wait.lock, flags);
  4085. if (!x->done)
  4086. ret = 0;
  4087. spin_unlock_irqrestore(&x->wait.lock, flags);
  4088. return ret;
  4089. }
  4090. EXPORT_SYMBOL(completion_done);
  4091. static long __sched
  4092. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4093. {
  4094. unsigned long flags;
  4095. wait_queue_t wait;
  4096. init_waitqueue_entry(&wait, current);
  4097. __set_current_state(state);
  4098. spin_lock_irqsave(&q->lock, flags);
  4099. __add_wait_queue(q, &wait);
  4100. spin_unlock(&q->lock);
  4101. timeout = schedule_timeout(timeout);
  4102. spin_lock_irq(&q->lock);
  4103. __remove_wait_queue(q, &wait);
  4104. spin_unlock_irqrestore(&q->lock, flags);
  4105. return timeout;
  4106. }
  4107. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4108. {
  4109. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4110. }
  4111. EXPORT_SYMBOL(interruptible_sleep_on);
  4112. long __sched
  4113. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4114. {
  4115. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4116. }
  4117. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4118. void __sched sleep_on(wait_queue_head_t *q)
  4119. {
  4120. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4121. }
  4122. EXPORT_SYMBOL(sleep_on);
  4123. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4124. {
  4125. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4126. }
  4127. EXPORT_SYMBOL(sleep_on_timeout);
  4128. #ifdef CONFIG_RT_MUTEXES
  4129. /*
  4130. * rt_mutex_setprio - set the current priority of a task
  4131. * @p: task
  4132. * @prio: prio value (kernel-internal form)
  4133. *
  4134. * This function changes the 'effective' priority of a task. It does
  4135. * not touch ->normal_prio like __setscheduler().
  4136. *
  4137. * Used by the rt_mutex code to implement priority inheritance logic.
  4138. */
  4139. void rt_mutex_setprio(struct task_struct *p, int prio)
  4140. {
  4141. int oldprio, on_rq, running;
  4142. struct rq *rq;
  4143. const struct sched_class *prev_class;
  4144. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4145. rq = __task_rq_lock(p);
  4146. trace_sched_pi_setprio(p, prio);
  4147. oldprio = p->prio;
  4148. prev_class = p->sched_class;
  4149. on_rq = p->on_rq;
  4150. running = task_current(rq, p);
  4151. if (on_rq)
  4152. dequeue_task(rq, p, 0);
  4153. if (running)
  4154. p->sched_class->put_prev_task(rq, p);
  4155. if (rt_prio(prio))
  4156. p->sched_class = &rt_sched_class;
  4157. else
  4158. p->sched_class = &fair_sched_class;
  4159. p->prio = prio;
  4160. if (running)
  4161. p->sched_class->set_curr_task(rq);
  4162. if (on_rq)
  4163. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4164. check_class_changed(rq, p, prev_class, oldprio);
  4165. __task_rq_unlock(rq);
  4166. }
  4167. #endif
  4168. void set_user_nice(struct task_struct *p, long nice)
  4169. {
  4170. int old_prio, delta, on_rq;
  4171. unsigned long flags;
  4172. struct rq *rq;
  4173. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4174. return;
  4175. /*
  4176. * We have to be careful, if called from sys_setpriority(),
  4177. * the task might be in the middle of scheduling on another CPU.
  4178. */
  4179. rq = task_rq_lock(p, &flags);
  4180. /*
  4181. * The RT priorities are set via sched_setscheduler(), but we still
  4182. * allow the 'normal' nice value to be set - but as expected
  4183. * it wont have any effect on scheduling until the task is
  4184. * SCHED_FIFO/SCHED_RR:
  4185. */
  4186. if (task_has_rt_policy(p)) {
  4187. p->static_prio = NICE_TO_PRIO(nice);
  4188. goto out_unlock;
  4189. }
  4190. on_rq = p->on_rq;
  4191. if (on_rq)
  4192. dequeue_task(rq, p, 0);
  4193. p->static_prio = NICE_TO_PRIO(nice);
  4194. set_load_weight(p);
  4195. old_prio = p->prio;
  4196. p->prio = effective_prio(p);
  4197. delta = p->prio - old_prio;
  4198. if (on_rq) {
  4199. enqueue_task(rq, p, 0);
  4200. /*
  4201. * If the task increased its priority or is running and
  4202. * lowered its priority, then reschedule its CPU:
  4203. */
  4204. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4205. resched_task(rq->curr);
  4206. }
  4207. out_unlock:
  4208. task_rq_unlock(rq, p, &flags);
  4209. }
  4210. EXPORT_SYMBOL(set_user_nice);
  4211. /*
  4212. * can_nice - check if a task can reduce its nice value
  4213. * @p: task
  4214. * @nice: nice value
  4215. */
  4216. int can_nice(const struct task_struct *p, const int nice)
  4217. {
  4218. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4219. int nice_rlim = 20 - nice;
  4220. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4221. capable(CAP_SYS_NICE));
  4222. }
  4223. #ifdef __ARCH_WANT_SYS_NICE
  4224. /*
  4225. * sys_nice - change the priority of the current process.
  4226. * @increment: priority increment
  4227. *
  4228. * sys_setpriority is a more generic, but much slower function that
  4229. * does similar things.
  4230. */
  4231. SYSCALL_DEFINE1(nice, int, increment)
  4232. {
  4233. long nice, retval;
  4234. /*
  4235. * Setpriority might change our priority at the same moment.
  4236. * We don't have to worry. Conceptually one call occurs first
  4237. * and we have a single winner.
  4238. */
  4239. if (increment < -40)
  4240. increment = -40;
  4241. if (increment > 40)
  4242. increment = 40;
  4243. nice = TASK_NICE(current) + increment;
  4244. if (nice < -20)
  4245. nice = -20;
  4246. if (nice > 19)
  4247. nice = 19;
  4248. if (increment < 0 && !can_nice(current, nice))
  4249. return -EPERM;
  4250. retval = security_task_setnice(current, nice);
  4251. if (retval)
  4252. return retval;
  4253. set_user_nice(current, nice);
  4254. return 0;
  4255. }
  4256. #endif
  4257. /**
  4258. * task_prio - return the priority value of a given task.
  4259. * @p: the task in question.
  4260. *
  4261. * This is the priority value as seen by users in /proc.
  4262. * RT tasks are offset by -200. Normal tasks are centered
  4263. * around 0, value goes from -16 to +15.
  4264. */
  4265. int task_prio(const struct task_struct *p)
  4266. {
  4267. return p->prio - MAX_RT_PRIO;
  4268. }
  4269. /**
  4270. * task_nice - return the nice value of a given task.
  4271. * @p: the task in question.
  4272. */
  4273. int task_nice(const struct task_struct *p)
  4274. {
  4275. return TASK_NICE(p);
  4276. }
  4277. EXPORT_SYMBOL(task_nice);
  4278. /**
  4279. * idle_cpu - is a given cpu idle currently?
  4280. * @cpu: the processor in question.
  4281. */
  4282. int idle_cpu(int cpu)
  4283. {
  4284. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4285. }
  4286. /**
  4287. * idle_task - return the idle task for a given cpu.
  4288. * @cpu: the processor in question.
  4289. */
  4290. struct task_struct *idle_task(int cpu)
  4291. {
  4292. return cpu_rq(cpu)->idle;
  4293. }
  4294. /**
  4295. * find_process_by_pid - find a process with a matching PID value.
  4296. * @pid: the pid in question.
  4297. */
  4298. static struct task_struct *find_process_by_pid(pid_t pid)
  4299. {
  4300. return pid ? find_task_by_vpid(pid) : current;
  4301. }
  4302. /* Actually do priority change: must hold rq lock. */
  4303. static void
  4304. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4305. {
  4306. p->policy = policy;
  4307. p->rt_priority = prio;
  4308. p->normal_prio = normal_prio(p);
  4309. /* we are holding p->pi_lock already */
  4310. p->prio = rt_mutex_getprio(p);
  4311. if (rt_prio(p->prio))
  4312. p->sched_class = &rt_sched_class;
  4313. else
  4314. p->sched_class = &fair_sched_class;
  4315. set_load_weight(p);
  4316. }
  4317. /*
  4318. * check the target process has a UID that matches the current process's
  4319. */
  4320. static bool check_same_owner(struct task_struct *p)
  4321. {
  4322. const struct cred *cred = current_cred(), *pcred;
  4323. bool match;
  4324. rcu_read_lock();
  4325. pcred = __task_cred(p);
  4326. if (cred->user->user_ns == pcred->user->user_ns)
  4327. match = (cred->euid == pcred->euid ||
  4328. cred->euid == pcred->uid);
  4329. else
  4330. match = false;
  4331. rcu_read_unlock();
  4332. return match;
  4333. }
  4334. static int __sched_setscheduler(struct task_struct *p, int policy,
  4335. const struct sched_param *param, bool user)
  4336. {
  4337. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4338. unsigned long flags;
  4339. const struct sched_class *prev_class;
  4340. struct rq *rq;
  4341. int reset_on_fork;
  4342. /* may grab non-irq protected spin_locks */
  4343. BUG_ON(in_interrupt());
  4344. recheck:
  4345. /* double check policy once rq lock held */
  4346. if (policy < 0) {
  4347. reset_on_fork = p->sched_reset_on_fork;
  4348. policy = oldpolicy = p->policy;
  4349. } else {
  4350. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4351. policy &= ~SCHED_RESET_ON_FORK;
  4352. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4353. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4354. policy != SCHED_IDLE)
  4355. return -EINVAL;
  4356. }
  4357. /*
  4358. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4359. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4360. * SCHED_BATCH and SCHED_IDLE is 0.
  4361. */
  4362. if (param->sched_priority < 0 ||
  4363. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4364. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4365. return -EINVAL;
  4366. if (rt_policy(policy) != (param->sched_priority != 0))
  4367. return -EINVAL;
  4368. /*
  4369. * Allow unprivileged RT tasks to decrease priority:
  4370. */
  4371. if (user && !capable(CAP_SYS_NICE)) {
  4372. if (rt_policy(policy)) {
  4373. unsigned long rlim_rtprio =
  4374. task_rlimit(p, RLIMIT_RTPRIO);
  4375. /* can't set/change the rt policy */
  4376. if (policy != p->policy && !rlim_rtprio)
  4377. return -EPERM;
  4378. /* can't increase priority */
  4379. if (param->sched_priority > p->rt_priority &&
  4380. param->sched_priority > rlim_rtprio)
  4381. return -EPERM;
  4382. }
  4383. /*
  4384. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4385. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4386. */
  4387. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4388. if (!can_nice(p, TASK_NICE(p)))
  4389. return -EPERM;
  4390. }
  4391. /* can't change other user's priorities */
  4392. if (!check_same_owner(p))
  4393. return -EPERM;
  4394. /* Normal users shall not reset the sched_reset_on_fork flag */
  4395. if (p->sched_reset_on_fork && !reset_on_fork)
  4396. return -EPERM;
  4397. }
  4398. if (user) {
  4399. retval = security_task_setscheduler(p);
  4400. if (retval)
  4401. return retval;
  4402. }
  4403. /*
  4404. * make sure no PI-waiters arrive (or leave) while we are
  4405. * changing the priority of the task:
  4406. *
  4407. * To be able to change p->policy safely, the appropriate
  4408. * runqueue lock must be held.
  4409. */
  4410. rq = task_rq_lock(p, &flags);
  4411. /*
  4412. * Changing the policy of the stop threads its a very bad idea
  4413. */
  4414. if (p == rq->stop) {
  4415. task_rq_unlock(rq, p, &flags);
  4416. return -EINVAL;
  4417. }
  4418. /*
  4419. * If not changing anything there's no need to proceed further:
  4420. */
  4421. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4422. param->sched_priority == p->rt_priority))) {
  4423. __task_rq_unlock(rq);
  4424. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4425. return 0;
  4426. }
  4427. #ifdef CONFIG_RT_GROUP_SCHED
  4428. if (user) {
  4429. /*
  4430. * Do not allow realtime tasks into groups that have no runtime
  4431. * assigned.
  4432. */
  4433. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4434. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4435. !task_group_is_autogroup(task_group(p))) {
  4436. task_rq_unlock(rq, p, &flags);
  4437. return -EPERM;
  4438. }
  4439. }
  4440. #endif
  4441. /* recheck policy now with rq lock held */
  4442. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4443. policy = oldpolicy = -1;
  4444. task_rq_unlock(rq, p, &flags);
  4445. goto recheck;
  4446. }
  4447. on_rq = p->on_rq;
  4448. running = task_current(rq, p);
  4449. if (on_rq)
  4450. deactivate_task(rq, p, 0);
  4451. if (running)
  4452. p->sched_class->put_prev_task(rq, p);
  4453. p->sched_reset_on_fork = reset_on_fork;
  4454. oldprio = p->prio;
  4455. prev_class = p->sched_class;
  4456. __setscheduler(rq, p, policy, param->sched_priority);
  4457. if (running)
  4458. p->sched_class->set_curr_task(rq);
  4459. if (on_rq)
  4460. activate_task(rq, p, 0);
  4461. check_class_changed(rq, p, prev_class, oldprio);
  4462. task_rq_unlock(rq, p, &flags);
  4463. rt_mutex_adjust_pi(p);
  4464. return 0;
  4465. }
  4466. /**
  4467. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4468. * @p: the task in question.
  4469. * @policy: new policy.
  4470. * @param: structure containing the new RT priority.
  4471. *
  4472. * NOTE that the task may be already dead.
  4473. */
  4474. int sched_setscheduler(struct task_struct *p, int policy,
  4475. const struct sched_param *param)
  4476. {
  4477. return __sched_setscheduler(p, policy, param, true);
  4478. }
  4479. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4480. /**
  4481. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4482. * @p: the task in question.
  4483. * @policy: new policy.
  4484. * @param: structure containing the new RT priority.
  4485. *
  4486. * Just like sched_setscheduler, only don't bother checking if the
  4487. * current context has permission. For example, this is needed in
  4488. * stop_machine(): we create temporary high priority worker threads,
  4489. * but our caller might not have that capability.
  4490. */
  4491. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4492. const struct sched_param *param)
  4493. {
  4494. return __sched_setscheduler(p, policy, param, false);
  4495. }
  4496. static int
  4497. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4498. {
  4499. struct sched_param lparam;
  4500. struct task_struct *p;
  4501. int retval;
  4502. if (!param || pid < 0)
  4503. return -EINVAL;
  4504. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4505. return -EFAULT;
  4506. rcu_read_lock();
  4507. retval = -ESRCH;
  4508. p = find_process_by_pid(pid);
  4509. if (p != NULL)
  4510. retval = sched_setscheduler(p, policy, &lparam);
  4511. rcu_read_unlock();
  4512. return retval;
  4513. }
  4514. /**
  4515. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4516. * @pid: the pid in question.
  4517. * @policy: new policy.
  4518. * @param: structure containing the new RT priority.
  4519. */
  4520. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4521. struct sched_param __user *, param)
  4522. {
  4523. /* negative values for policy are not valid */
  4524. if (policy < 0)
  4525. return -EINVAL;
  4526. return do_sched_setscheduler(pid, policy, param);
  4527. }
  4528. /**
  4529. * sys_sched_setparam - set/change the RT priority of a thread
  4530. * @pid: the pid in question.
  4531. * @param: structure containing the new RT priority.
  4532. */
  4533. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4534. {
  4535. return do_sched_setscheduler(pid, -1, param);
  4536. }
  4537. /**
  4538. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4539. * @pid: the pid in question.
  4540. */
  4541. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4542. {
  4543. struct task_struct *p;
  4544. int retval;
  4545. if (pid < 0)
  4546. return -EINVAL;
  4547. retval = -ESRCH;
  4548. rcu_read_lock();
  4549. p = find_process_by_pid(pid);
  4550. if (p) {
  4551. retval = security_task_getscheduler(p);
  4552. if (!retval)
  4553. retval = p->policy
  4554. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4555. }
  4556. rcu_read_unlock();
  4557. return retval;
  4558. }
  4559. /**
  4560. * sys_sched_getparam - get the RT priority of a thread
  4561. * @pid: the pid in question.
  4562. * @param: structure containing the RT priority.
  4563. */
  4564. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4565. {
  4566. struct sched_param lp;
  4567. struct task_struct *p;
  4568. int retval;
  4569. if (!param || pid < 0)
  4570. return -EINVAL;
  4571. rcu_read_lock();
  4572. p = find_process_by_pid(pid);
  4573. retval = -ESRCH;
  4574. if (!p)
  4575. goto out_unlock;
  4576. retval = security_task_getscheduler(p);
  4577. if (retval)
  4578. goto out_unlock;
  4579. lp.sched_priority = p->rt_priority;
  4580. rcu_read_unlock();
  4581. /*
  4582. * This one might sleep, we cannot do it with a spinlock held ...
  4583. */
  4584. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4585. return retval;
  4586. out_unlock:
  4587. rcu_read_unlock();
  4588. return retval;
  4589. }
  4590. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4591. {
  4592. cpumask_var_t cpus_allowed, new_mask;
  4593. struct task_struct *p;
  4594. int retval;
  4595. get_online_cpus();
  4596. rcu_read_lock();
  4597. p = find_process_by_pid(pid);
  4598. if (!p) {
  4599. rcu_read_unlock();
  4600. put_online_cpus();
  4601. return -ESRCH;
  4602. }
  4603. /* Prevent p going away */
  4604. get_task_struct(p);
  4605. rcu_read_unlock();
  4606. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4607. retval = -ENOMEM;
  4608. goto out_put_task;
  4609. }
  4610. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4611. retval = -ENOMEM;
  4612. goto out_free_cpus_allowed;
  4613. }
  4614. retval = -EPERM;
  4615. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4616. goto out_unlock;
  4617. retval = security_task_setscheduler(p);
  4618. if (retval)
  4619. goto out_unlock;
  4620. cpuset_cpus_allowed(p, cpus_allowed);
  4621. cpumask_and(new_mask, in_mask, cpus_allowed);
  4622. again:
  4623. retval = set_cpus_allowed_ptr(p, new_mask);
  4624. if (!retval) {
  4625. cpuset_cpus_allowed(p, cpus_allowed);
  4626. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4627. /*
  4628. * We must have raced with a concurrent cpuset
  4629. * update. Just reset the cpus_allowed to the
  4630. * cpuset's cpus_allowed
  4631. */
  4632. cpumask_copy(new_mask, cpus_allowed);
  4633. goto again;
  4634. }
  4635. }
  4636. out_unlock:
  4637. free_cpumask_var(new_mask);
  4638. out_free_cpus_allowed:
  4639. free_cpumask_var(cpus_allowed);
  4640. out_put_task:
  4641. put_task_struct(p);
  4642. put_online_cpus();
  4643. return retval;
  4644. }
  4645. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4646. struct cpumask *new_mask)
  4647. {
  4648. if (len < cpumask_size())
  4649. cpumask_clear(new_mask);
  4650. else if (len > cpumask_size())
  4651. len = cpumask_size();
  4652. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4653. }
  4654. /**
  4655. * sys_sched_setaffinity - set the cpu affinity of a process
  4656. * @pid: pid of the process
  4657. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4658. * @user_mask_ptr: user-space pointer to the new cpu mask
  4659. */
  4660. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4661. unsigned long __user *, user_mask_ptr)
  4662. {
  4663. cpumask_var_t new_mask;
  4664. int retval;
  4665. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4666. return -ENOMEM;
  4667. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4668. if (retval == 0)
  4669. retval = sched_setaffinity(pid, new_mask);
  4670. free_cpumask_var(new_mask);
  4671. return retval;
  4672. }
  4673. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4674. {
  4675. struct task_struct *p;
  4676. unsigned long flags;
  4677. int retval;
  4678. get_online_cpus();
  4679. rcu_read_lock();
  4680. retval = -ESRCH;
  4681. p = find_process_by_pid(pid);
  4682. if (!p)
  4683. goto out_unlock;
  4684. retval = security_task_getscheduler(p);
  4685. if (retval)
  4686. goto out_unlock;
  4687. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4688. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4689. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4690. out_unlock:
  4691. rcu_read_unlock();
  4692. put_online_cpus();
  4693. return retval;
  4694. }
  4695. /**
  4696. * sys_sched_getaffinity - get the cpu affinity of a process
  4697. * @pid: pid of the process
  4698. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4699. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4700. */
  4701. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4702. unsigned long __user *, user_mask_ptr)
  4703. {
  4704. int ret;
  4705. cpumask_var_t mask;
  4706. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4707. return -EINVAL;
  4708. if (len & (sizeof(unsigned long)-1))
  4709. return -EINVAL;
  4710. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4711. return -ENOMEM;
  4712. ret = sched_getaffinity(pid, mask);
  4713. if (ret == 0) {
  4714. size_t retlen = min_t(size_t, len, cpumask_size());
  4715. if (copy_to_user(user_mask_ptr, mask, retlen))
  4716. ret = -EFAULT;
  4717. else
  4718. ret = retlen;
  4719. }
  4720. free_cpumask_var(mask);
  4721. return ret;
  4722. }
  4723. /**
  4724. * sys_sched_yield - yield the current processor to other threads.
  4725. *
  4726. * This function yields the current CPU to other tasks. If there are no
  4727. * other threads running on this CPU then this function will return.
  4728. */
  4729. SYSCALL_DEFINE0(sched_yield)
  4730. {
  4731. struct rq *rq = this_rq_lock();
  4732. schedstat_inc(rq, yld_count);
  4733. current->sched_class->yield_task(rq);
  4734. /*
  4735. * Since we are going to call schedule() anyway, there's
  4736. * no need to preempt or enable interrupts:
  4737. */
  4738. __release(rq->lock);
  4739. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4740. do_raw_spin_unlock(&rq->lock);
  4741. preempt_enable_no_resched();
  4742. schedule();
  4743. return 0;
  4744. }
  4745. static inline int should_resched(void)
  4746. {
  4747. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4748. }
  4749. static void __cond_resched(void)
  4750. {
  4751. add_preempt_count(PREEMPT_ACTIVE);
  4752. __schedule();
  4753. sub_preempt_count(PREEMPT_ACTIVE);
  4754. }
  4755. int __sched _cond_resched(void)
  4756. {
  4757. if (should_resched()) {
  4758. __cond_resched();
  4759. return 1;
  4760. }
  4761. return 0;
  4762. }
  4763. EXPORT_SYMBOL(_cond_resched);
  4764. /*
  4765. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4766. * call schedule, and on return reacquire the lock.
  4767. *
  4768. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4769. * operations here to prevent schedule() from being called twice (once via
  4770. * spin_unlock(), once by hand).
  4771. */
  4772. int __cond_resched_lock(spinlock_t *lock)
  4773. {
  4774. int resched = should_resched();
  4775. int ret = 0;
  4776. lockdep_assert_held(lock);
  4777. if (spin_needbreak(lock) || resched) {
  4778. spin_unlock(lock);
  4779. if (resched)
  4780. __cond_resched();
  4781. else
  4782. cpu_relax();
  4783. ret = 1;
  4784. spin_lock(lock);
  4785. }
  4786. return ret;
  4787. }
  4788. EXPORT_SYMBOL(__cond_resched_lock);
  4789. int __sched __cond_resched_softirq(void)
  4790. {
  4791. BUG_ON(!in_softirq());
  4792. if (should_resched()) {
  4793. local_bh_enable();
  4794. __cond_resched();
  4795. local_bh_disable();
  4796. return 1;
  4797. }
  4798. return 0;
  4799. }
  4800. EXPORT_SYMBOL(__cond_resched_softirq);
  4801. /**
  4802. * yield - yield the current processor to other threads.
  4803. *
  4804. * This is a shortcut for kernel-space yielding - it marks the
  4805. * thread runnable and calls sys_sched_yield().
  4806. */
  4807. void __sched yield(void)
  4808. {
  4809. set_current_state(TASK_RUNNING);
  4810. sys_sched_yield();
  4811. }
  4812. EXPORT_SYMBOL(yield);
  4813. /**
  4814. * yield_to - yield the current processor to another thread in
  4815. * your thread group, or accelerate that thread toward the
  4816. * processor it's on.
  4817. * @p: target task
  4818. * @preempt: whether task preemption is allowed or not
  4819. *
  4820. * It's the caller's job to ensure that the target task struct
  4821. * can't go away on us before we can do any checks.
  4822. *
  4823. * Returns true if we indeed boosted the target task.
  4824. */
  4825. bool __sched yield_to(struct task_struct *p, bool preempt)
  4826. {
  4827. struct task_struct *curr = current;
  4828. struct rq *rq, *p_rq;
  4829. unsigned long flags;
  4830. bool yielded = 0;
  4831. local_irq_save(flags);
  4832. rq = this_rq();
  4833. again:
  4834. p_rq = task_rq(p);
  4835. double_rq_lock(rq, p_rq);
  4836. while (task_rq(p) != p_rq) {
  4837. double_rq_unlock(rq, p_rq);
  4838. goto again;
  4839. }
  4840. if (!curr->sched_class->yield_to_task)
  4841. goto out;
  4842. if (curr->sched_class != p->sched_class)
  4843. goto out;
  4844. if (task_running(p_rq, p) || p->state)
  4845. goto out;
  4846. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4847. if (yielded) {
  4848. schedstat_inc(rq, yld_count);
  4849. /*
  4850. * Make p's CPU reschedule; pick_next_entity takes care of
  4851. * fairness.
  4852. */
  4853. if (preempt && rq != p_rq)
  4854. resched_task(p_rq->curr);
  4855. }
  4856. out:
  4857. double_rq_unlock(rq, p_rq);
  4858. local_irq_restore(flags);
  4859. if (yielded)
  4860. schedule();
  4861. return yielded;
  4862. }
  4863. EXPORT_SYMBOL_GPL(yield_to);
  4864. /*
  4865. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4866. * that process accounting knows that this is a task in IO wait state.
  4867. */
  4868. void __sched io_schedule(void)
  4869. {
  4870. struct rq *rq = raw_rq();
  4871. delayacct_blkio_start();
  4872. atomic_inc(&rq->nr_iowait);
  4873. blk_flush_plug(current);
  4874. current->in_iowait = 1;
  4875. schedule();
  4876. current->in_iowait = 0;
  4877. atomic_dec(&rq->nr_iowait);
  4878. delayacct_blkio_end();
  4879. }
  4880. EXPORT_SYMBOL(io_schedule);
  4881. long __sched io_schedule_timeout(long timeout)
  4882. {
  4883. struct rq *rq = raw_rq();
  4884. long ret;
  4885. delayacct_blkio_start();
  4886. atomic_inc(&rq->nr_iowait);
  4887. blk_flush_plug(current);
  4888. current->in_iowait = 1;
  4889. ret = schedule_timeout(timeout);
  4890. current->in_iowait = 0;
  4891. atomic_dec(&rq->nr_iowait);
  4892. delayacct_blkio_end();
  4893. return ret;
  4894. }
  4895. /**
  4896. * sys_sched_get_priority_max - return maximum RT priority.
  4897. * @policy: scheduling class.
  4898. *
  4899. * this syscall returns the maximum rt_priority that can be used
  4900. * by a given scheduling class.
  4901. */
  4902. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4903. {
  4904. int ret = -EINVAL;
  4905. switch (policy) {
  4906. case SCHED_FIFO:
  4907. case SCHED_RR:
  4908. ret = MAX_USER_RT_PRIO-1;
  4909. break;
  4910. case SCHED_NORMAL:
  4911. case SCHED_BATCH:
  4912. case SCHED_IDLE:
  4913. ret = 0;
  4914. break;
  4915. }
  4916. return ret;
  4917. }
  4918. /**
  4919. * sys_sched_get_priority_min - return minimum RT priority.
  4920. * @policy: scheduling class.
  4921. *
  4922. * this syscall returns the minimum rt_priority that can be used
  4923. * by a given scheduling class.
  4924. */
  4925. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4926. {
  4927. int ret = -EINVAL;
  4928. switch (policy) {
  4929. case SCHED_FIFO:
  4930. case SCHED_RR:
  4931. ret = 1;
  4932. break;
  4933. case SCHED_NORMAL:
  4934. case SCHED_BATCH:
  4935. case SCHED_IDLE:
  4936. ret = 0;
  4937. }
  4938. return ret;
  4939. }
  4940. /**
  4941. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4942. * @pid: pid of the process.
  4943. * @interval: userspace pointer to the timeslice value.
  4944. *
  4945. * this syscall writes the default timeslice value of a given process
  4946. * into the user-space timespec buffer. A value of '0' means infinity.
  4947. */
  4948. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4949. struct timespec __user *, interval)
  4950. {
  4951. struct task_struct *p;
  4952. unsigned int time_slice;
  4953. unsigned long flags;
  4954. struct rq *rq;
  4955. int retval;
  4956. struct timespec t;
  4957. if (pid < 0)
  4958. return -EINVAL;
  4959. retval = -ESRCH;
  4960. rcu_read_lock();
  4961. p = find_process_by_pid(pid);
  4962. if (!p)
  4963. goto out_unlock;
  4964. retval = security_task_getscheduler(p);
  4965. if (retval)
  4966. goto out_unlock;
  4967. rq = task_rq_lock(p, &flags);
  4968. time_slice = p->sched_class->get_rr_interval(rq, p);
  4969. task_rq_unlock(rq, p, &flags);
  4970. rcu_read_unlock();
  4971. jiffies_to_timespec(time_slice, &t);
  4972. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4973. return retval;
  4974. out_unlock:
  4975. rcu_read_unlock();
  4976. return retval;
  4977. }
  4978. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4979. void sched_show_task(struct task_struct *p)
  4980. {
  4981. unsigned long free = 0;
  4982. unsigned state;
  4983. state = p->state ? __ffs(p->state) + 1 : 0;
  4984. printk(KERN_INFO "%-15.15s %c", p->comm,
  4985. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4986. #if BITS_PER_LONG == 32
  4987. if (state == TASK_RUNNING)
  4988. printk(KERN_CONT " running ");
  4989. else
  4990. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4991. #else
  4992. if (state == TASK_RUNNING)
  4993. printk(KERN_CONT " running task ");
  4994. else
  4995. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4996. #endif
  4997. #ifdef CONFIG_DEBUG_STACK_USAGE
  4998. free = stack_not_used(p);
  4999. #endif
  5000. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5001. task_pid_nr(p), task_pid_nr(p->real_parent),
  5002. (unsigned long)task_thread_info(p)->flags);
  5003. show_stack(p, NULL);
  5004. }
  5005. void show_state_filter(unsigned long state_filter)
  5006. {
  5007. struct task_struct *g, *p;
  5008. #if BITS_PER_LONG == 32
  5009. printk(KERN_INFO
  5010. " task PC stack pid father\n");
  5011. #else
  5012. printk(KERN_INFO
  5013. " task PC stack pid father\n");
  5014. #endif
  5015. read_lock(&tasklist_lock);
  5016. do_each_thread(g, p) {
  5017. /*
  5018. * reset the NMI-timeout, listing all files on a slow
  5019. * console might take a lot of time:
  5020. */
  5021. touch_nmi_watchdog();
  5022. if (!state_filter || (p->state & state_filter))
  5023. sched_show_task(p);
  5024. } while_each_thread(g, p);
  5025. touch_all_softlockup_watchdogs();
  5026. #ifdef CONFIG_SCHED_DEBUG
  5027. sysrq_sched_debug_show();
  5028. #endif
  5029. read_unlock(&tasklist_lock);
  5030. /*
  5031. * Only show locks if all tasks are dumped:
  5032. */
  5033. if (!state_filter)
  5034. debug_show_all_locks();
  5035. }
  5036. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5037. {
  5038. idle->sched_class = &idle_sched_class;
  5039. }
  5040. /**
  5041. * init_idle - set up an idle thread for a given CPU
  5042. * @idle: task in question
  5043. * @cpu: cpu the idle task belongs to
  5044. *
  5045. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5046. * flag, to make booting more robust.
  5047. */
  5048. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5049. {
  5050. struct rq *rq = cpu_rq(cpu);
  5051. unsigned long flags;
  5052. raw_spin_lock_irqsave(&rq->lock, flags);
  5053. __sched_fork(idle);
  5054. idle->state = TASK_RUNNING;
  5055. idle->se.exec_start = sched_clock();
  5056. do_set_cpus_allowed(idle, cpumask_of(cpu));
  5057. /*
  5058. * We're having a chicken and egg problem, even though we are
  5059. * holding rq->lock, the cpu isn't yet set to this cpu so the
  5060. * lockdep check in task_group() will fail.
  5061. *
  5062. * Similar case to sched_fork(). / Alternatively we could
  5063. * use task_rq_lock() here and obtain the other rq->lock.
  5064. *
  5065. * Silence PROVE_RCU
  5066. */
  5067. rcu_read_lock();
  5068. __set_task_cpu(idle, cpu);
  5069. rcu_read_unlock();
  5070. rq->curr = rq->idle = idle;
  5071. #if defined(CONFIG_SMP)
  5072. idle->on_cpu = 1;
  5073. #endif
  5074. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5075. /* Set the preempt count _outside_ the spinlocks! */
  5076. task_thread_info(idle)->preempt_count = 0;
  5077. /*
  5078. * The idle tasks have their own, simple scheduling class:
  5079. */
  5080. idle->sched_class = &idle_sched_class;
  5081. ftrace_graph_init_idle_task(idle, cpu);
  5082. }
  5083. /*
  5084. * In a system that switches off the HZ timer nohz_cpu_mask
  5085. * indicates which cpus entered this state. This is used
  5086. * in the rcu update to wait only for active cpus. For system
  5087. * which do not switch off the HZ timer nohz_cpu_mask should
  5088. * always be CPU_BITS_NONE.
  5089. */
  5090. cpumask_var_t nohz_cpu_mask;
  5091. /*
  5092. * Increase the granularity value when there are more CPUs,
  5093. * because with more CPUs the 'effective latency' as visible
  5094. * to users decreases. But the relationship is not linear,
  5095. * so pick a second-best guess by going with the log2 of the
  5096. * number of CPUs.
  5097. *
  5098. * This idea comes from the SD scheduler of Con Kolivas:
  5099. */
  5100. static int get_update_sysctl_factor(void)
  5101. {
  5102. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5103. unsigned int factor;
  5104. switch (sysctl_sched_tunable_scaling) {
  5105. case SCHED_TUNABLESCALING_NONE:
  5106. factor = 1;
  5107. break;
  5108. case SCHED_TUNABLESCALING_LINEAR:
  5109. factor = cpus;
  5110. break;
  5111. case SCHED_TUNABLESCALING_LOG:
  5112. default:
  5113. factor = 1 + ilog2(cpus);
  5114. break;
  5115. }
  5116. return factor;
  5117. }
  5118. static void update_sysctl(void)
  5119. {
  5120. unsigned int factor = get_update_sysctl_factor();
  5121. #define SET_SYSCTL(name) \
  5122. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5123. SET_SYSCTL(sched_min_granularity);
  5124. SET_SYSCTL(sched_latency);
  5125. SET_SYSCTL(sched_wakeup_granularity);
  5126. #undef SET_SYSCTL
  5127. }
  5128. static inline void sched_init_granularity(void)
  5129. {
  5130. update_sysctl();
  5131. }
  5132. #ifdef CONFIG_SMP
  5133. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  5134. {
  5135. if (p->sched_class && p->sched_class->set_cpus_allowed)
  5136. p->sched_class->set_cpus_allowed(p, new_mask);
  5137. else {
  5138. cpumask_copy(&p->cpus_allowed, new_mask);
  5139. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5140. }
  5141. }
  5142. /*
  5143. * This is how migration works:
  5144. *
  5145. * 1) we invoke migration_cpu_stop() on the target CPU using
  5146. * stop_one_cpu().
  5147. * 2) stopper starts to run (implicitly forcing the migrated thread
  5148. * off the CPU)
  5149. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5150. * 4) if it's in the wrong runqueue then the migration thread removes
  5151. * it and puts it into the right queue.
  5152. * 5) stopper completes and stop_one_cpu() returns and the migration
  5153. * is done.
  5154. */
  5155. /*
  5156. * Change a given task's CPU affinity. Migrate the thread to a
  5157. * proper CPU and schedule it away if the CPU it's executing on
  5158. * is removed from the allowed bitmask.
  5159. *
  5160. * NOTE: the caller must have a valid reference to the task, the
  5161. * task must not exit() & deallocate itself prematurely. The
  5162. * call is not atomic; no spinlocks may be held.
  5163. */
  5164. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5165. {
  5166. unsigned long flags;
  5167. struct rq *rq;
  5168. unsigned int dest_cpu;
  5169. int ret = 0;
  5170. rq = task_rq_lock(p, &flags);
  5171. if (cpumask_equal(&p->cpus_allowed, new_mask))
  5172. goto out;
  5173. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5174. ret = -EINVAL;
  5175. goto out;
  5176. }
  5177. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  5178. ret = -EINVAL;
  5179. goto out;
  5180. }
  5181. do_set_cpus_allowed(p, new_mask);
  5182. /* Can the task run on the task's current CPU? If so, we're done */
  5183. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5184. goto out;
  5185. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5186. if (p->on_rq) {
  5187. struct migration_arg arg = { p, dest_cpu };
  5188. /* Need help from migration thread: drop lock and wait. */
  5189. task_rq_unlock(rq, p, &flags);
  5190. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5191. tlb_migrate_finish(p->mm);
  5192. return 0;
  5193. }
  5194. out:
  5195. task_rq_unlock(rq, p, &flags);
  5196. return ret;
  5197. }
  5198. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5199. /*
  5200. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5201. * this because either it can't run here any more (set_cpus_allowed()
  5202. * away from this CPU, or CPU going down), or because we're
  5203. * attempting to rebalance this task on exec (sched_exec).
  5204. *
  5205. * So we race with normal scheduler movements, but that's OK, as long
  5206. * as the task is no longer on this CPU.
  5207. *
  5208. * Returns non-zero if task was successfully migrated.
  5209. */
  5210. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5211. {
  5212. struct rq *rq_dest, *rq_src;
  5213. int ret = 0;
  5214. if (unlikely(!cpu_active(dest_cpu)))
  5215. return ret;
  5216. rq_src = cpu_rq(src_cpu);
  5217. rq_dest = cpu_rq(dest_cpu);
  5218. raw_spin_lock(&p->pi_lock);
  5219. double_rq_lock(rq_src, rq_dest);
  5220. /* Already moved. */
  5221. if (task_cpu(p) != src_cpu)
  5222. goto done;
  5223. /* Affinity changed (again). */
  5224. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5225. goto fail;
  5226. /*
  5227. * If we're not on a rq, the next wake-up will ensure we're
  5228. * placed properly.
  5229. */
  5230. if (p->on_rq) {
  5231. deactivate_task(rq_src, p, 0);
  5232. set_task_cpu(p, dest_cpu);
  5233. activate_task(rq_dest, p, 0);
  5234. check_preempt_curr(rq_dest, p, 0);
  5235. }
  5236. done:
  5237. ret = 1;
  5238. fail:
  5239. double_rq_unlock(rq_src, rq_dest);
  5240. raw_spin_unlock(&p->pi_lock);
  5241. return ret;
  5242. }
  5243. /*
  5244. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5245. * and performs thread migration by bumping thread off CPU then
  5246. * 'pushing' onto another runqueue.
  5247. */
  5248. static int migration_cpu_stop(void *data)
  5249. {
  5250. struct migration_arg *arg = data;
  5251. /*
  5252. * The original target cpu might have gone down and we might
  5253. * be on another cpu but it doesn't matter.
  5254. */
  5255. local_irq_disable();
  5256. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5257. local_irq_enable();
  5258. return 0;
  5259. }
  5260. #ifdef CONFIG_HOTPLUG_CPU
  5261. /*
  5262. * Ensures that the idle task is using init_mm right before its cpu goes
  5263. * offline.
  5264. */
  5265. void idle_task_exit(void)
  5266. {
  5267. struct mm_struct *mm = current->active_mm;
  5268. BUG_ON(cpu_online(smp_processor_id()));
  5269. if (mm != &init_mm)
  5270. switch_mm(mm, &init_mm, current);
  5271. mmdrop(mm);
  5272. }
  5273. /*
  5274. * While a dead CPU has no uninterruptible tasks queued at this point,
  5275. * it might still have a nonzero ->nr_uninterruptible counter, because
  5276. * for performance reasons the counter is not stricly tracking tasks to
  5277. * their home CPUs. So we just add the counter to another CPU's counter,
  5278. * to keep the global sum constant after CPU-down:
  5279. */
  5280. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5281. {
  5282. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5283. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5284. rq_src->nr_uninterruptible = 0;
  5285. }
  5286. /*
  5287. * remove the tasks which were accounted by rq from calc_load_tasks.
  5288. */
  5289. static void calc_global_load_remove(struct rq *rq)
  5290. {
  5291. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5292. rq->calc_load_active = 0;
  5293. }
  5294. /*
  5295. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5296. * try_to_wake_up()->select_task_rq().
  5297. *
  5298. * Called with rq->lock held even though we'er in stop_machine() and
  5299. * there's no concurrency possible, we hold the required locks anyway
  5300. * because of lock validation efforts.
  5301. */
  5302. static void migrate_tasks(unsigned int dead_cpu)
  5303. {
  5304. struct rq *rq = cpu_rq(dead_cpu);
  5305. struct task_struct *next, *stop = rq->stop;
  5306. int dest_cpu;
  5307. /*
  5308. * Fudge the rq selection such that the below task selection loop
  5309. * doesn't get stuck on the currently eligible stop task.
  5310. *
  5311. * We're currently inside stop_machine() and the rq is either stuck
  5312. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5313. * either way we should never end up calling schedule() until we're
  5314. * done here.
  5315. */
  5316. rq->stop = NULL;
  5317. for ( ; ; ) {
  5318. /*
  5319. * There's this thread running, bail when that's the only
  5320. * remaining thread.
  5321. */
  5322. if (rq->nr_running == 1)
  5323. break;
  5324. next = pick_next_task(rq);
  5325. BUG_ON(!next);
  5326. next->sched_class->put_prev_task(rq, next);
  5327. /* Find suitable destination for @next, with force if needed. */
  5328. dest_cpu = select_fallback_rq(dead_cpu, next);
  5329. raw_spin_unlock(&rq->lock);
  5330. __migrate_task(next, dead_cpu, dest_cpu);
  5331. raw_spin_lock(&rq->lock);
  5332. }
  5333. rq->stop = stop;
  5334. }
  5335. #endif /* CONFIG_HOTPLUG_CPU */
  5336. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5337. static struct ctl_table sd_ctl_dir[] = {
  5338. {
  5339. .procname = "sched_domain",
  5340. .mode = 0555,
  5341. },
  5342. {}
  5343. };
  5344. static struct ctl_table sd_ctl_root[] = {
  5345. {
  5346. .procname = "kernel",
  5347. .mode = 0555,
  5348. .child = sd_ctl_dir,
  5349. },
  5350. {}
  5351. };
  5352. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5353. {
  5354. struct ctl_table *entry =
  5355. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5356. return entry;
  5357. }
  5358. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5359. {
  5360. struct ctl_table *entry;
  5361. /*
  5362. * In the intermediate directories, both the child directory and
  5363. * procname are dynamically allocated and could fail but the mode
  5364. * will always be set. In the lowest directory the names are
  5365. * static strings and all have proc handlers.
  5366. */
  5367. for (entry = *tablep; entry->mode; entry++) {
  5368. if (entry->child)
  5369. sd_free_ctl_entry(&entry->child);
  5370. if (entry->proc_handler == NULL)
  5371. kfree(entry->procname);
  5372. }
  5373. kfree(*tablep);
  5374. *tablep = NULL;
  5375. }
  5376. static void
  5377. set_table_entry(struct ctl_table *entry,
  5378. const char *procname, void *data, int maxlen,
  5379. mode_t mode, proc_handler *proc_handler)
  5380. {
  5381. entry->procname = procname;
  5382. entry->data = data;
  5383. entry->maxlen = maxlen;
  5384. entry->mode = mode;
  5385. entry->proc_handler = proc_handler;
  5386. }
  5387. static struct ctl_table *
  5388. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5389. {
  5390. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5391. if (table == NULL)
  5392. return NULL;
  5393. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5394. sizeof(long), 0644, proc_doulongvec_minmax);
  5395. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5396. sizeof(long), 0644, proc_doulongvec_minmax);
  5397. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5398. sizeof(int), 0644, proc_dointvec_minmax);
  5399. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5400. sizeof(int), 0644, proc_dointvec_minmax);
  5401. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5402. sizeof(int), 0644, proc_dointvec_minmax);
  5403. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5404. sizeof(int), 0644, proc_dointvec_minmax);
  5405. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5406. sizeof(int), 0644, proc_dointvec_minmax);
  5407. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5408. sizeof(int), 0644, proc_dointvec_minmax);
  5409. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5410. sizeof(int), 0644, proc_dointvec_minmax);
  5411. set_table_entry(&table[9], "cache_nice_tries",
  5412. &sd->cache_nice_tries,
  5413. sizeof(int), 0644, proc_dointvec_minmax);
  5414. set_table_entry(&table[10], "flags", &sd->flags,
  5415. sizeof(int), 0644, proc_dointvec_minmax);
  5416. set_table_entry(&table[11], "name", sd->name,
  5417. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5418. /* &table[12] is terminator */
  5419. return table;
  5420. }
  5421. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5422. {
  5423. struct ctl_table *entry, *table;
  5424. struct sched_domain *sd;
  5425. int domain_num = 0, i;
  5426. char buf[32];
  5427. for_each_domain(cpu, sd)
  5428. domain_num++;
  5429. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5430. if (table == NULL)
  5431. return NULL;
  5432. i = 0;
  5433. for_each_domain(cpu, sd) {
  5434. snprintf(buf, 32, "domain%d", i);
  5435. entry->procname = kstrdup(buf, GFP_KERNEL);
  5436. entry->mode = 0555;
  5437. entry->child = sd_alloc_ctl_domain_table(sd);
  5438. entry++;
  5439. i++;
  5440. }
  5441. return table;
  5442. }
  5443. static struct ctl_table_header *sd_sysctl_header;
  5444. static void register_sched_domain_sysctl(void)
  5445. {
  5446. int i, cpu_num = num_possible_cpus();
  5447. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5448. char buf[32];
  5449. WARN_ON(sd_ctl_dir[0].child);
  5450. sd_ctl_dir[0].child = entry;
  5451. if (entry == NULL)
  5452. return;
  5453. for_each_possible_cpu(i) {
  5454. snprintf(buf, 32, "cpu%d", i);
  5455. entry->procname = kstrdup(buf, GFP_KERNEL);
  5456. entry->mode = 0555;
  5457. entry->child = sd_alloc_ctl_cpu_table(i);
  5458. entry++;
  5459. }
  5460. WARN_ON(sd_sysctl_header);
  5461. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5462. }
  5463. /* may be called multiple times per register */
  5464. static void unregister_sched_domain_sysctl(void)
  5465. {
  5466. if (sd_sysctl_header)
  5467. unregister_sysctl_table(sd_sysctl_header);
  5468. sd_sysctl_header = NULL;
  5469. if (sd_ctl_dir[0].child)
  5470. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5471. }
  5472. #else
  5473. static void register_sched_domain_sysctl(void)
  5474. {
  5475. }
  5476. static void unregister_sched_domain_sysctl(void)
  5477. {
  5478. }
  5479. #endif
  5480. static void set_rq_online(struct rq *rq)
  5481. {
  5482. if (!rq->online) {
  5483. const struct sched_class *class;
  5484. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5485. rq->online = 1;
  5486. for_each_class(class) {
  5487. if (class->rq_online)
  5488. class->rq_online(rq);
  5489. }
  5490. }
  5491. }
  5492. static void set_rq_offline(struct rq *rq)
  5493. {
  5494. if (rq->online) {
  5495. const struct sched_class *class;
  5496. for_each_class(class) {
  5497. if (class->rq_offline)
  5498. class->rq_offline(rq);
  5499. }
  5500. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5501. rq->online = 0;
  5502. }
  5503. }
  5504. /*
  5505. * migration_call - callback that gets triggered when a CPU is added.
  5506. * Here we can start up the necessary migration thread for the new CPU.
  5507. */
  5508. static int __cpuinit
  5509. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5510. {
  5511. int cpu = (long)hcpu;
  5512. unsigned long flags;
  5513. struct rq *rq = cpu_rq(cpu);
  5514. switch (action & ~CPU_TASKS_FROZEN) {
  5515. case CPU_UP_PREPARE:
  5516. rq->calc_load_update = calc_load_update;
  5517. break;
  5518. case CPU_ONLINE:
  5519. /* Update our root-domain */
  5520. raw_spin_lock_irqsave(&rq->lock, flags);
  5521. if (rq->rd) {
  5522. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5523. set_rq_online(rq);
  5524. }
  5525. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5526. break;
  5527. #ifdef CONFIG_HOTPLUG_CPU
  5528. case CPU_DYING:
  5529. sched_ttwu_pending();
  5530. /* Update our root-domain */
  5531. raw_spin_lock_irqsave(&rq->lock, flags);
  5532. if (rq->rd) {
  5533. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5534. set_rq_offline(rq);
  5535. }
  5536. migrate_tasks(cpu);
  5537. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5538. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5539. migrate_nr_uninterruptible(rq);
  5540. calc_global_load_remove(rq);
  5541. break;
  5542. #endif
  5543. }
  5544. update_max_interval();
  5545. return NOTIFY_OK;
  5546. }
  5547. /*
  5548. * Register at high priority so that task migration (migrate_all_tasks)
  5549. * happens before everything else. This has to be lower priority than
  5550. * the notifier in the perf_event subsystem, though.
  5551. */
  5552. static struct notifier_block __cpuinitdata migration_notifier = {
  5553. .notifier_call = migration_call,
  5554. .priority = CPU_PRI_MIGRATION,
  5555. };
  5556. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5557. unsigned long action, void *hcpu)
  5558. {
  5559. switch (action & ~CPU_TASKS_FROZEN) {
  5560. case CPU_ONLINE:
  5561. case CPU_DOWN_FAILED:
  5562. set_cpu_active((long)hcpu, true);
  5563. return NOTIFY_OK;
  5564. default:
  5565. return NOTIFY_DONE;
  5566. }
  5567. }
  5568. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5569. unsigned long action, void *hcpu)
  5570. {
  5571. switch (action & ~CPU_TASKS_FROZEN) {
  5572. case CPU_DOWN_PREPARE:
  5573. set_cpu_active((long)hcpu, false);
  5574. return NOTIFY_OK;
  5575. default:
  5576. return NOTIFY_DONE;
  5577. }
  5578. }
  5579. static int __init migration_init(void)
  5580. {
  5581. void *cpu = (void *)(long)smp_processor_id();
  5582. int err;
  5583. /* Initialize migration for the boot CPU */
  5584. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5585. BUG_ON(err == NOTIFY_BAD);
  5586. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5587. register_cpu_notifier(&migration_notifier);
  5588. /* Register cpu active notifiers */
  5589. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5590. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5591. return 0;
  5592. }
  5593. early_initcall(migration_init);
  5594. #endif
  5595. #ifdef CONFIG_SMP
  5596. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  5597. #ifdef CONFIG_SCHED_DEBUG
  5598. static __read_mostly int sched_domain_debug_enabled;
  5599. static int __init sched_domain_debug_setup(char *str)
  5600. {
  5601. sched_domain_debug_enabled = 1;
  5602. return 0;
  5603. }
  5604. early_param("sched_debug", sched_domain_debug_setup);
  5605. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5606. struct cpumask *groupmask)
  5607. {
  5608. struct sched_group *group = sd->groups;
  5609. char str[256];
  5610. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5611. cpumask_clear(groupmask);
  5612. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5613. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5614. printk("does not load-balance\n");
  5615. if (sd->parent)
  5616. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5617. " has parent");
  5618. return -1;
  5619. }
  5620. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5621. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5622. printk(KERN_ERR "ERROR: domain->span does not contain "
  5623. "CPU%d\n", cpu);
  5624. }
  5625. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5626. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5627. " CPU%d\n", cpu);
  5628. }
  5629. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5630. do {
  5631. if (!group) {
  5632. printk("\n");
  5633. printk(KERN_ERR "ERROR: group is NULL\n");
  5634. break;
  5635. }
  5636. if (!group->sgp->power) {
  5637. printk(KERN_CONT "\n");
  5638. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5639. "set\n");
  5640. break;
  5641. }
  5642. if (!cpumask_weight(sched_group_cpus(group))) {
  5643. printk(KERN_CONT "\n");
  5644. printk(KERN_ERR "ERROR: empty group\n");
  5645. break;
  5646. }
  5647. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5648. printk(KERN_CONT "\n");
  5649. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5650. break;
  5651. }
  5652. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5653. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5654. printk(KERN_CONT " %s", str);
  5655. if (group->sgp->power != SCHED_POWER_SCALE) {
  5656. printk(KERN_CONT " (cpu_power = %d)",
  5657. group->sgp->power);
  5658. }
  5659. group = group->next;
  5660. } while (group != sd->groups);
  5661. printk(KERN_CONT "\n");
  5662. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5663. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5664. if (sd->parent &&
  5665. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5666. printk(KERN_ERR "ERROR: parent span is not a superset "
  5667. "of domain->span\n");
  5668. return 0;
  5669. }
  5670. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5671. {
  5672. int level = 0;
  5673. if (!sched_domain_debug_enabled)
  5674. return;
  5675. if (!sd) {
  5676. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5677. return;
  5678. }
  5679. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5680. for (;;) {
  5681. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5682. break;
  5683. level++;
  5684. sd = sd->parent;
  5685. if (!sd)
  5686. break;
  5687. }
  5688. }
  5689. #else /* !CONFIG_SCHED_DEBUG */
  5690. # define sched_domain_debug(sd, cpu) do { } while (0)
  5691. #endif /* CONFIG_SCHED_DEBUG */
  5692. static int sd_degenerate(struct sched_domain *sd)
  5693. {
  5694. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5695. return 1;
  5696. /* Following flags need at least 2 groups */
  5697. if (sd->flags & (SD_LOAD_BALANCE |
  5698. SD_BALANCE_NEWIDLE |
  5699. SD_BALANCE_FORK |
  5700. SD_BALANCE_EXEC |
  5701. SD_SHARE_CPUPOWER |
  5702. SD_SHARE_PKG_RESOURCES)) {
  5703. if (sd->groups != sd->groups->next)
  5704. return 0;
  5705. }
  5706. /* Following flags don't use groups */
  5707. if (sd->flags & (SD_WAKE_AFFINE))
  5708. return 0;
  5709. return 1;
  5710. }
  5711. static int
  5712. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5713. {
  5714. unsigned long cflags = sd->flags, pflags = parent->flags;
  5715. if (sd_degenerate(parent))
  5716. return 1;
  5717. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5718. return 0;
  5719. /* Flags needing groups don't count if only 1 group in parent */
  5720. if (parent->groups == parent->groups->next) {
  5721. pflags &= ~(SD_LOAD_BALANCE |
  5722. SD_BALANCE_NEWIDLE |
  5723. SD_BALANCE_FORK |
  5724. SD_BALANCE_EXEC |
  5725. SD_SHARE_CPUPOWER |
  5726. SD_SHARE_PKG_RESOURCES);
  5727. if (nr_node_ids == 1)
  5728. pflags &= ~SD_SERIALIZE;
  5729. }
  5730. if (~cflags & pflags)
  5731. return 0;
  5732. return 1;
  5733. }
  5734. static void free_rootdomain(struct rcu_head *rcu)
  5735. {
  5736. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5737. cpupri_cleanup(&rd->cpupri);
  5738. free_cpumask_var(rd->rto_mask);
  5739. free_cpumask_var(rd->online);
  5740. free_cpumask_var(rd->span);
  5741. kfree(rd);
  5742. }
  5743. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5744. {
  5745. struct root_domain *old_rd = NULL;
  5746. unsigned long flags;
  5747. raw_spin_lock_irqsave(&rq->lock, flags);
  5748. if (rq->rd) {
  5749. old_rd = rq->rd;
  5750. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5751. set_rq_offline(rq);
  5752. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5753. /*
  5754. * If we dont want to free the old_rt yet then
  5755. * set old_rd to NULL to skip the freeing later
  5756. * in this function:
  5757. */
  5758. if (!atomic_dec_and_test(&old_rd->refcount))
  5759. old_rd = NULL;
  5760. }
  5761. atomic_inc(&rd->refcount);
  5762. rq->rd = rd;
  5763. cpumask_set_cpu(rq->cpu, rd->span);
  5764. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5765. set_rq_online(rq);
  5766. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5767. if (old_rd)
  5768. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5769. }
  5770. static int init_rootdomain(struct root_domain *rd)
  5771. {
  5772. memset(rd, 0, sizeof(*rd));
  5773. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5774. goto out;
  5775. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5776. goto free_span;
  5777. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5778. goto free_online;
  5779. if (cpupri_init(&rd->cpupri) != 0)
  5780. goto free_rto_mask;
  5781. return 0;
  5782. free_rto_mask:
  5783. free_cpumask_var(rd->rto_mask);
  5784. free_online:
  5785. free_cpumask_var(rd->online);
  5786. free_span:
  5787. free_cpumask_var(rd->span);
  5788. out:
  5789. return -ENOMEM;
  5790. }
  5791. static void init_defrootdomain(void)
  5792. {
  5793. init_rootdomain(&def_root_domain);
  5794. atomic_set(&def_root_domain.refcount, 1);
  5795. }
  5796. static struct root_domain *alloc_rootdomain(void)
  5797. {
  5798. struct root_domain *rd;
  5799. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5800. if (!rd)
  5801. return NULL;
  5802. if (init_rootdomain(rd) != 0) {
  5803. kfree(rd);
  5804. return NULL;
  5805. }
  5806. return rd;
  5807. }
  5808. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  5809. {
  5810. struct sched_group *tmp, *first;
  5811. if (!sg)
  5812. return;
  5813. first = sg;
  5814. do {
  5815. tmp = sg->next;
  5816. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  5817. kfree(sg->sgp);
  5818. kfree(sg);
  5819. sg = tmp;
  5820. } while (sg != first);
  5821. }
  5822. static void free_sched_domain(struct rcu_head *rcu)
  5823. {
  5824. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5825. /*
  5826. * If its an overlapping domain it has private groups, iterate and
  5827. * nuke them all.
  5828. */
  5829. if (sd->flags & SD_OVERLAP) {
  5830. free_sched_groups(sd->groups, 1);
  5831. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5832. kfree(sd->groups->sgp);
  5833. kfree(sd->groups);
  5834. }
  5835. kfree(sd);
  5836. }
  5837. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5838. {
  5839. call_rcu(&sd->rcu, free_sched_domain);
  5840. }
  5841. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5842. {
  5843. for (; sd; sd = sd->parent)
  5844. destroy_sched_domain(sd, cpu);
  5845. }
  5846. /*
  5847. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5848. * hold the hotplug lock.
  5849. */
  5850. static void
  5851. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5852. {
  5853. struct rq *rq = cpu_rq(cpu);
  5854. struct sched_domain *tmp;
  5855. /* Remove the sched domains which do not contribute to scheduling. */
  5856. for (tmp = sd; tmp; ) {
  5857. struct sched_domain *parent = tmp->parent;
  5858. if (!parent)
  5859. break;
  5860. if (sd_parent_degenerate(tmp, parent)) {
  5861. tmp->parent = parent->parent;
  5862. if (parent->parent)
  5863. parent->parent->child = tmp;
  5864. destroy_sched_domain(parent, cpu);
  5865. } else
  5866. tmp = tmp->parent;
  5867. }
  5868. if (sd && sd_degenerate(sd)) {
  5869. tmp = sd;
  5870. sd = sd->parent;
  5871. destroy_sched_domain(tmp, cpu);
  5872. if (sd)
  5873. sd->child = NULL;
  5874. }
  5875. sched_domain_debug(sd, cpu);
  5876. rq_attach_root(rq, rd);
  5877. tmp = rq->sd;
  5878. rcu_assign_pointer(rq->sd, sd);
  5879. destroy_sched_domains(tmp, cpu);
  5880. }
  5881. /* cpus with isolated domains */
  5882. static cpumask_var_t cpu_isolated_map;
  5883. /* Setup the mask of cpus configured for isolated domains */
  5884. static int __init isolated_cpu_setup(char *str)
  5885. {
  5886. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5887. cpulist_parse(str, cpu_isolated_map);
  5888. return 1;
  5889. }
  5890. __setup("isolcpus=", isolated_cpu_setup);
  5891. #define SD_NODES_PER_DOMAIN 16
  5892. #ifdef CONFIG_NUMA
  5893. /**
  5894. * find_next_best_node - find the next node to include in a sched_domain
  5895. * @node: node whose sched_domain we're building
  5896. * @used_nodes: nodes already in the sched_domain
  5897. *
  5898. * Find the next node to include in a given scheduling domain. Simply
  5899. * finds the closest node not already in the @used_nodes map.
  5900. *
  5901. * Should use nodemask_t.
  5902. */
  5903. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5904. {
  5905. int i, n, val, min_val, best_node = -1;
  5906. min_val = INT_MAX;
  5907. for (i = 0; i < nr_node_ids; i++) {
  5908. /* Start at @node */
  5909. n = (node + i) % nr_node_ids;
  5910. if (!nr_cpus_node(n))
  5911. continue;
  5912. /* Skip already used nodes */
  5913. if (node_isset(n, *used_nodes))
  5914. continue;
  5915. /* Simple min distance search */
  5916. val = node_distance(node, n);
  5917. if (val < min_val) {
  5918. min_val = val;
  5919. best_node = n;
  5920. }
  5921. }
  5922. if (best_node != -1)
  5923. node_set(best_node, *used_nodes);
  5924. return best_node;
  5925. }
  5926. /**
  5927. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5928. * @node: node whose cpumask we're constructing
  5929. * @span: resulting cpumask
  5930. *
  5931. * Given a node, construct a good cpumask for its sched_domain to span. It
  5932. * should be one that prevents unnecessary balancing, but also spreads tasks
  5933. * out optimally.
  5934. */
  5935. static void sched_domain_node_span(int node, struct cpumask *span)
  5936. {
  5937. nodemask_t used_nodes;
  5938. int i;
  5939. cpumask_clear(span);
  5940. nodes_clear(used_nodes);
  5941. cpumask_or(span, span, cpumask_of_node(node));
  5942. node_set(node, used_nodes);
  5943. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5944. int next_node = find_next_best_node(node, &used_nodes);
  5945. if (next_node < 0)
  5946. break;
  5947. cpumask_or(span, span, cpumask_of_node(next_node));
  5948. }
  5949. }
  5950. static const struct cpumask *cpu_node_mask(int cpu)
  5951. {
  5952. lockdep_assert_held(&sched_domains_mutex);
  5953. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5954. return sched_domains_tmpmask;
  5955. }
  5956. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5957. {
  5958. return cpu_possible_mask;
  5959. }
  5960. #endif /* CONFIG_NUMA */
  5961. static const struct cpumask *cpu_cpu_mask(int cpu)
  5962. {
  5963. return cpumask_of_node(cpu_to_node(cpu));
  5964. }
  5965. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5966. struct sd_data {
  5967. struct sched_domain **__percpu sd;
  5968. struct sched_group **__percpu sg;
  5969. struct sched_group_power **__percpu sgp;
  5970. };
  5971. struct s_data {
  5972. struct sched_domain ** __percpu sd;
  5973. struct root_domain *rd;
  5974. };
  5975. enum s_alloc {
  5976. sa_rootdomain,
  5977. sa_sd,
  5978. sa_sd_storage,
  5979. sa_none,
  5980. };
  5981. struct sched_domain_topology_level;
  5982. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5983. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5984. #define SDTL_OVERLAP 0x01
  5985. struct sched_domain_topology_level {
  5986. sched_domain_init_f init;
  5987. sched_domain_mask_f mask;
  5988. int flags;
  5989. struct sd_data data;
  5990. };
  5991. static int
  5992. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5993. {
  5994. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5995. const struct cpumask *span = sched_domain_span(sd);
  5996. struct cpumask *covered = sched_domains_tmpmask;
  5997. struct sd_data *sdd = sd->private;
  5998. struct sched_domain *child;
  5999. int i;
  6000. cpumask_clear(covered);
  6001. for_each_cpu(i, span) {
  6002. struct cpumask *sg_span;
  6003. if (cpumask_test_cpu(i, covered))
  6004. continue;
  6005. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6006. GFP_KERNEL, cpu_to_node(i));
  6007. if (!sg)
  6008. goto fail;
  6009. sg_span = sched_group_cpus(sg);
  6010. child = *per_cpu_ptr(sdd->sd, i);
  6011. if (child->child) {
  6012. child = child->child;
  6013. cpumask_copy(sg_span, sched_domain_span(child));
  6014. } else
  6015. cpumask_set_cpu(i, sg_span);
  6016. cpumask_or(covered, covered, sg_span);
  6017. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  6018. atomic_inc(&sg->sgp->ref);
  6019. if (cpumask_test_cpu(cpu, sg_span))
  6020. groups = sg;
  6021. if (!first)
  6022. first = sg;
  6023. if (last)
  6024. last->next = sg;
  6025. last = sg;
  6026. last->next = first;
  6027. }
  6028. sd->groups = groups;
  6029. return 0;
  6030. fail:
  6031. free_sched_groups(first, 0);
  6032. return -ENOMEM;
  6033. }
  6034. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  6035. {
  6036. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  6037. struct sched_domain *child = sd->child;
  6038. if (child)
  6039. cpu = cpumask_first(sched_domain_span(child));
  6040. if (sg) {
  6041. *sg = *per_cpu_ptr(sdd->sg, cpu);
  6042. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  6043. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  6044. }
  6045. return cpu;
  6046. }
  6047. /*
  6048. * build_sched_groups will build a circular linked list of the groups
  6049. * covered by the given span, and will set each group's ->cpumask correctly,
  6050. * and ->cpu_power to 0.
  6051. *
  6052. * Assumes the sched_domain tree is fully constructed
  6053. */
  6054. static int
  6055. build_sched_groups(struct sched_domain *sd, int cpu)
  6056. {
  6057. struct sched_group *first = NULL, *last = NULL;
  6058. struct sd_data *sdd = sd->private;
  6059. const struct cpumask *span = sched_domain_span(sd);
  6060. struct cpumask *covered;
  6061. int i;
  6062. get_group(cpu, sdd, &sd->groups);
  6063. atomic_inc(&sd->groups->ref);
  6064. if (cpu != cpumask_first(sched_domain_span(sd)))
  6065. return 0;
  6066. lockdep_assert_held(&sched_domains_mutex);
  6067. covered = sched_domains_tmpmask;
  6068. cpumask_clear(covered);
  6069. for_each_cpu(i, span) {
  6070. struct sched_group *sg;
  6071. int group = get_group(i, sdd, &sg);
  6072. int j;
  6073. if (cpumask_test_cpu(i, covered))
  6074. continue;
  6075. cpumask_clear(sched_group_cpus(sg));
  6076. sg->sgp->power = 0;
  6077. for_each_cpu(j, span) {
  6078. if (get_group(j, sdd, NULL) != group)
  6079. continue;
  6080. cpumask_set_cpu(j, covered);
  6081. cpumask_set_cpu(j, sched_group_cpus(sg));
  6082. }
  6083. if (!first)
  6084. first = sg;
  6085. if (last)
  6086. last->next = sg;
  6087. last = sg;
  6088. }
  6089. last->next = first;
  6090. return 0;
  6091. }
  6092. /*
  6093. * Initialize sched groups cpu_power.
  6094. *
  6095. * cpu_power indicates the capacity of sched group, which is used while
  6096. * distributing the load between different sched groups in a sched domain.
  6097. * Typically cpu_power for all the groups in a sched domain will be same unless
  6098. * there are asymmetries in the topology. If there are asymmetries, group
  6099. * having more cpu_power will pickup more load compared to the group having
  6100. * less cpu_power.
  6101. */
  6102. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6103. {
  6104. struct sched_group *sg = sd->groups;
  6105. WARN_ON(!sd || !sg);
  6106. do {
  6107. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  6108. sg = sg->next;
  6109. } while (sg != sd->groups);
  6110. if (cpu != group_first_cpu(sg))
  6111. return;
  6112. update_group_power(sd, cpu);
  6113. }
  6114. /*
  6115. * Initializers for schedule domains
  6116. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6117. */
  6118. #ifdef CONFIG_SCHED_DEBUG
  6119. # define SD_INIT_NAME(sd, type) sd->name = #type
  6120. #else
  6121. # define SD_INIT_NAME(sd, type) do { } while (0)
  6122. #endif
  6123. #define SD_INIT_FUNC(type) \
  6124. static noinline struct sched_domain * \
  6125. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  6126. { \
  6127. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  6128. *sd = SD_##type##_INIT; \
  6129. SD_INIT_NAME(sd, type); \
  6130. sd->private = &tl->data; \
  6131. return sd; \
  6132. }
  6133. SD_INIT_FUNC(CPU)
  6134. #ifdef CONFIG_NUMA
  6135. SD_INIT_FUNC(ALLNODES)
  6136. SD_INIT_FUNC(NODE)
  6137. #endif
  6138. #ifdef CONFIG_SCHED_SMT
  6139. SD_INIT_FUNC(SIBLING)
  6140. #endif
  6141. #ifdef CONFIG_SCHED_MC
  6142. SD_INIT_FUNC(MC)
  6143. #endif
  6144. #ifdef CONFIG_SCHED_BOOK
  6145. SD_INIT_FUNC(BOOK)
  6146. #endif
  6147. static int default_relax_domain_level = -1;
  6148. int sched_domain_level_max;
  6149. static int __init setup_relax_domain_level(char *str)
  6150. {
  6151. unsigned long val;
  6152. val = simple_strtoul(str, NULL, 0);
  6153. if (val < sched_domain_level_max)
  6154. default_relax_domain_level = val;
  6155. return 1;
  6156. }
  6157. __setup("relax_domain_level=", setup_relax_domain_level);
  6158. static void set_domain_attribute(struct sched_domain *sd,
  6159. struct sched_domain_attr *attr)
  6160. {
  6161. int request;
  6162. if (!attr || attr->relax_domain_level < 0) {
  6163. if (default_relax_domain_level < 0)
  6164. return;
  6165. else
  6166. request = default_relax_domain_level;
  6167. } else
  6168. request = attr->relax_domain_level;
  6169. if (request < sd->level) {
  6170. /* turn off idle balance on this domain */
  6171. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6172. } else {
  6173. /* turn on idle balance on this domain */
  6174. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6175. }
  6176. }
  6177. static void __sdt_free(const struct cpumask *cpu_map);
  6178. static int __sdt_alloc(const struct cpumask *cpu_map);
  6179. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6180. const struct cpumask *cpu_map)
  6181. {
  6182. switch (what) {
  6183. case sa_rootdomain:
  6184. if (!atomic_read(&d->rd->refcount))
  6185. free_rootdomain(&d->rd->rcu); /* fall through */
  6186. case sa_sd:
  6187. free_percpu(d->sd); /* fall through */
  6188. case sa_sd_storage:
  6189. __sdt_free(cpu_map); /* fall through */
  6190. case sa_none:
  6191. break;
  6192. }
  6193. }
  6194. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6195. const struct cpumask *cpu_map)
  6196. {
  6197. memset(d, 0, sizeof(*d));
  6198. if (__sdt_alloc(cpu_map))
  6199. return sa_sd_storage;
  6200. d->sd = alloc_percpu(struct sched_domain *);
  6201. if (!d->sd)
  6202. return sa_sd_storage;
  6203. d->rd = alloc_rootdomain();
  6204. if (!d->rd)
  6205. return sa_sd;
  6206. return sa_rootdomain;
  6207. }
  6208. /*
  6209. * NULL the sd_data elements we've used to build the sched_domain and
  6210. * sched_group structure so that the subsequent __free_domain_allocs()
  6211. * will not free the data we're using.
  6212. */
  6213. static void claim_allocations(int cpu, struct sched_domain *sd)
  6214. {
  6215. struct sd_data *sdd = sd->private;
  6216. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6217. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6218. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  6219. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6220. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  6221. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  6222. }
  6223. #ifdef CONFIG_SCHED_SMT
  6224. static const struct cpumask *cpu_smt_mask(int cpu)
  6225. {
  6226. return topology_thread_cpumask(cpu);
  6227. }
  6228. #endif
  6229. /*
  6230. * Topology list, bottom-up.
  6231. */
  6232. static struct sched_domain_topology_level default_topology[] = {
  6233. #ifdef CONFIG_SCHED_SMT
  6234. { sd_init_SIBLING, cpu_smt_mask, },
  6235. #endif
  6236. #ifdef CONFIG_SCHED_MC
  6237. { sd_init_MC, cpu_coregroup_mask, },
  6238. #endif
  6239. #ifdef CONFIG_SCHED_BOOK
  6240. { sd_init_BOOK, cpu_book_mask, },
  6241. #endif
  6242. { sd_init_CPU, cpu_cpu_mask, },
  6243. #ifdef CONFIG_NUMA
  6244. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  6245. { sd_init_ALLNODES, cpu_allnodes_mask, },
  6246. #endif
  6247. { NULL, },
  6248. };
  6249. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  6250. static int __sdt_alloc(const struct cpumask *cpu_map)
  6251. {
  6252. struct sched_domain_topology_level *tl;
  6253. int j;
  6254. for (tl = sched_domain_topology; tl->init; tl++) {
  6255. struct sd_data *sdd = &tl->data;
  6256. sdd->sd = alloc_percpu(struct sched_domain *);
  6257. if (!sdd->sd)
  6258. return -ENOMEM;
  6259. sdd->sg = alloc_percpu(struct sched_group *);
  6260. if (!sdd->sg)
  6261. return -ENOMEM;
  6262. sdd->sgp = alloc_percpu(struct sched_group_power *);
  6263. if (!sdd->sgp)
  6264. return -ENOMEM;
  6265. for_each_cpu(j, cpu_map) {
  6266. struct sched_domain *sd;
  6267. struct sched_group *sg;
  6268. struct sched_group_power *sgp;
  6269. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6270. GFP_KERNEL, cpu_to_node(j));
  6271. if (!sd)
  6272. return -ENOMEM;
  6273. *per_cpu_ptr(sdd->sd, j) = sd;
  6274. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6275. GFP_KERNEL, cpu_to_node(j));
  6276. if (!sg)
  6277. return -ENOMEM;
  6278. *per_cpu_ptr(sdd->sg, j) = sg;
  6279. sgp = kzalloc_node(sizeof(struct sched_group_power),
  6280. GFP_KERNEL, cpu_to_node(j));
  6281. if (!sgp)
  6282. return -ENOMEM;
  6283. *per_cpu_ptr(sdd->sgp, j) = sgp;
  6284. }
  6285. }
  6286. return 0;
  6287. }
  6288. static void __sdt_free(const struct cpumask *cpu_map)
  6289. {
  6290. struct sched_domain_topology_level *tl;
  6291. int j;
  6292. for (tl = sched_domain_topology; tl->init; tl++) {
  6293. struct sd_data *sdd = &tl->data;
  6294. for_each_cpu(j, cpu_map) {
  6295. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  6296. if (sd && (sd->flags & SD_OVERLAP))
  6297. free_sched_groups(sd->groups, 0);
  6298. kfree(*per_cpu_ptr(sdd->sd, j));
  6299. kfree(*per_cpu_ptr(sdd->sg, j));
  6300. kfree(*per_cpu_ptr(sdd->sgp, j));
  6301. }
  6302. free_percpu(sdd->sd);
  6303. free_percpu(sdd->sg);
  6304. free_percpu(sdd->sgp);
  6305. }
  6306. }
  6307. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  6308. struct s_data *d, const struct cpumask *cpu_map,
  6309. struct sched_domain_attr *attr, struct sched_domain *child,
  6310. int cpu)
  6311. {
  6312. struct sched_domain *sd = tl->init(tl, cpu);
  6313. if (!sd)
  6314. return child;
  6315. set_domain_attribute(sd, attr);
  6316. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6317. if (child) {
  6318. sd->level = child->level + 1;
  6319. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6320. child->parent = sd;
  6321. }
  6322. sd->child = child;
  6323. return sd;
  6324. }
  6325. /*
  6326. * Build sched domains for a given set of cpus and attach the sched domains
  6327. * to the individual cpus
  6328. */
  6329. static int build_sched_domains(const struct cpumask *cpu_map,
  6330. struct sched_domain_attr *attr)
  6331. {
  6332. enum s_alloc alloc_state = sa_none;
  6333. struct sched_domain *sd;
  6334. struct s_data d;
  6335. int i, ret = -ENOMEM;
  6336. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6337. if (alloc_state != sa_rootdomain)
  6338. goto error;
  6339. /* Set up domains for cpus specified by the cpu_map. */
  6340. for_each_cpu(i, cpu_map) {
  6341. struct sched_domain_topology_level *tl;
  6342. sd = NULL;
  6343. for (tl = sched_domain_topology; tl->init; tl++) {
  6344. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  6345. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  6346. sd->flags |= SD_OVERLAP;
  6347. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  6348. break;
  6349. }
  6350. while (sd->child)
  6351. sd = sd->child;
  6352. *per_cpu_ptr(d.sd, i) = sd;
  6353. }
  6354. /* Build the groups for the domains */
  6355. for_each_cpu(i, cpu_map) {
  6356. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6357. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6358. if (sd->flags & SD_OVERLAP) {
  6359. if (build_overlap_sched_groups(sd, i))
  6360. goto error;
  6361. } else {
  6362. if (build_sched_groups(sd, i))
  6363. goto error;
  6364. }
  6365. }
  6366. }
  6367. /* Calculate CPU power for physical packages and nodes */
  6368. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6369. if (!cpumask_test_cpu(i, cpu_map))
  6370. continue;
  6371. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6372. claim_allocations(i, sd);
  6373. init_sched_groups_power(i, sd);
  6374. }
  6375. }
  6376. /* Attach the domains */
  6377. rcu_read_lock();
  6378. for_each_cpu(i, cpu_map) {
  6379. sd = *per_cpu_ptr(d.sd, i);
  6380. cpu_attach_domain(sd, d.rd, i);
  6381. }
  6382. rcu_read_unlock();
  6383. ret = 0;
  6384. error:
  6385. __free_domain_allocs(&d, alloc_state, cpu_map);
  6386. return ret;
  6387. }
  6388. static cpumask_var_t *doms_cur; /* current sched domains */
  6389. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6390. static struct sched_domain_attr *dattr_cur;
  6391. /* attribues of custom domains in 'doms_cur' */
  6392. /*
  6393. * Special case: If a kmalloc of a doms_cur partition (array of
  6394. * cpumask) fails, then fallback to a single sched domain,
  6395. * as determined by the single cpumask fallback_doms.
  6396. */
  6397. static cpumask_var_t fallback_doms;
  6398. /*
  6399. * arch_update_cpu_topology lets virtualized architectures update the
  6400. * cpu core maps. It is supposed to return 1 if the topology changed
  6401. * or 0 if it stayed the same.
  6402. */
  6403. int __attribute__((weak)) arch_update_cpu_topology(void)
  6404. {
  6405. return 0;
  6406. }
  6407. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6408. {
  6409. int i;
  6410. cpumask_var_t *doms;
  6411. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6412. if (!doms)
  6413. return NULL;
  6414. for (i = 0; i < ndoms; i++) {
  6415. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6416. free_sched_domains(doms, i);
  6417. return NULL;
  6418. }
  6419. }
  6420. return doms;
  6421. }
  6422. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6423. {
  6424. unsigned int i;
  6425. for (i = 0; i < ndoms; i++)
  6426. free_cpumask_var(doms[i]);
  6427. kfree(doms);
  6428. }
  6429. /*
  6430. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6431. * For now this just excludes isolated cpus, but could be used to
  6432. * exclude other special cases in the future.
  6433. */
  6434. static int init_sched_domains(const struct cpumask *cpu_map)
  6435. {
  6436. int err;
  6437. arch_update_cpu_topology();
  6438. ndoms_cur = 1;
  6439. doms_cur = alloc_sched_domains(ndoms_cur);
  6440. if (!doms_cur)
  6441. doms_cur = &fallback_doms;
  6442. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6443. dattr_cur = NULL;
  6444. err = build_sched_domains(doms_cur[0], NULL);
  6445. register_sched_domain_sysctl();
  6446. return err;
  6447. }
  6448. /*
  6449. * Detach sched domains from a group of cpus specified in cpu_map
  6450. * These cpus will now be attached to the NULL domain
  6451. */
  6452. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6453. {
  6454. int i;
  6455. rcu_read_lock();
  6456. for_each_cpu(i, cpu_map)
  6457. cpu_attach_domain(NULL, &def_root_domain, i);
  6458. rcu_read_unlock();
  6459. }
  6460. /* handle null as "default" */
  6461. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6462. struct sched_domain_attr *new, int idx_new)
  6463. {
  6464. struct sched_domain_attr tmp;
  6465. /* fast path */
  6466. if (!new && !cur)
  6467. return 1;
  6468. tmp = SD_ATTR_INIT;
  6469. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6470. new ? (new + idx_new) : &tmp,
  6471. sizeof(struct sched_domain_attr));
  6472. }
  6473. /*
  6474. * Partition sched domains as specified by the 'ndoms_new'
  6475. * cpumasks in the array doms_new[] of cpumasks. This compares
  6476. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6477. * It destroys each deleted domain and builds each new domain.
  6478. *
  6479. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6480. * The masks don't intersect (don't overlap.) We should setup one
  6481. * sched domain for each mask. CPUs not in any of the cpumasks will
  6482. * not be load balanced. If the same cpumask appears both in the
  6483. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6484. * it as it is.
  6485. *
  6486. * The passed in 'doms_new' should be allocated using
  6487. * alloc_sched_domains. This routine takes ownership of it and will
  6488. * free_sched_domains it when done with it. If the caller failed the
  6489. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6490. * and partition_sched_domains() will fallback to the single partition
  6491. * 'fallback_doms', it also forces the domains to be rebuilt.
  6492. *
  6493. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6494. * ndoms_new == 0 is a special case for destroying existing domains,
  6495. * and it will not create the default domain.
  6496. *
  6497. * Call with hotplug lock held
  6498. */
  6499. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6500. struct sched_domain_attr *dattr_new)
  6501. {
  6502. int i, j, n;
  6503. int new_topology;
  6504. mutex_lock(&sched_domains_mutex);
  6505. /* always unregister in case we don't destroy any domains */
  6506. unregister_sched_domain_sysctl();
  6507. /* Let architecture update cpu core mappings. */
  6508. new_topology = arch_update_cpu_topology();
  6509. n = doms_new ? ndoms_new : 0;
  6510. /* Destroy deleted domains */
  6511. for (i = 0; i < ndoms_cur; i++) {
  6512. for (j = 0; j < n && !new_topology; j++) {
  6513. if (cpumask_equal(doms_cur[i], doms_new[j])
  6514. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6515. goto match1;
  6516. }
  6517. /* no match - a current sched domain not in new doms_new[] */
  6518. detach_destroy_domains(doms_cur[i]);
  6519. match1:
  6520. ;
  6521. }
  6522. if (doms_new == NULL) {
  6523. ndoms_cur = 0;
  6524. doms_new = &fallback_doms;
  6525. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6526. WARN_ON_ONCE(dattr_new);
  6527. }
  6528. /* Build new domains */
  6529. for (i = 0; i < ndoms_new; i++) {
  6530. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6531. if (cpumask_equal(doms_new[i], doms_cur[j])
  6532. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6533. goto match2;
  6534. }
  6535. /* no match - add a new doms_new */
  6536. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6537. match2:
  6538. ;
  6539. }
  6540. /* Remember the new sched domains */
  6541. if (doms_cur != &fallback_doms)
  6542. free_sched_domains(doms_cur, ndoms_cur);
  6543. kfree(dattr_cur); /* kfree(NULL) is safe */
  6544. doms_cur = doms_new;
  6545. dattr_cur = dattr_new;
  6546. ndoms_cur = ndoms_new;
  6547. register_sched_domain_sysctl();
  6548. mutex_unlock(&sched_domains_mutex);
  6549. }
  6550. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6551. static void reinit_sched_domains(void)
  6552. {
  6553. get_online_cpus();
  6554. /* Destroy domains first to force the rebuild */
  6555. partition_sched_domains(0, NULL, NULL);
  6556. rebuild_sched_domains();
  6557. put_online_cpus();
  6558. }
  6559. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6560. {
  6561. unsigned int level = 0;
  6562. if (sscanf(buf, "%u", &level) != 1)
  6563. return -EINVAL;
  6564. /*
  6565. * level is always be positive so don't check for
  6566. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6567. * What happens on 0 or 1 byte write,
  6568. * need to check for count as well?
  6569. */
  6570. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6571. return -EINVAL;
  6572. if (smt)
  6573. sched_smt_power_savings = level;
  6574. else
  6575. sched_mc_power_savings = level;
  6576. reinit_sched_domains();
  6577. return count;
  6578. }
  6579. #ifdef CONFIG_SCHED_MC
  6580. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6581. struct sysdev_class_attribute *attr,
  6582. char *page)
  6583. {
  6584. return sprintf(page, "%u\n", sched_mc_power_savings);
  6585. }
  6586. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6587. struct sysdev_class_attribute *attr,
  6588. const char *buf, size_t count)
  6589. {
  6590. return sched_power_savings_store(buf, count, 0);
  6591. }
  6592. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6593. sched_mc_power_savings_show,
  6594. sched_mc_power_savings_store);
  6595. #endif
  6596. #ifdef CONFIG_SCHED_SMT
  6597. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6598. struct sysdev_class_attribute *attr,
  6599. char *page)
  6600. {
  6601. return sprintf(page, "%u\n", sched_smt_power_savings);
  6602. }
  6603. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6604. struct sysdev_class_attribute *attr,
  6605. const char *buf, size_t count)
  6606. {
  6607. return sched_power_savings_store(buf, count, 1);
  6608. }
  6609. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6610. sched_smt_power_savings_show,
  6611. sched_smt_power_savings_store);
  6612. #endif
  6613. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6614. {
  6615. int err = 0;
  6616. #ifdef CONFIG_SCHED_SMT
  6617. if (smt_capable())
  6618. err = sysfs_create_file(&cls->kset.kobj,
  6619. &attr_sched_smt_power_savings.attr);
  6620. #endif
  6621. #ifdef CONFIG_SCHED_MC
  6622. if (!err && mc_capable())
  6623. err = sysfs_create_file(&cls->kset.kobj,
  6624. &attr_sched_mc_power_savings.attr);
  6625. #endif
  6626. return err;
  6627. }
  6628. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6629. /*
  6630. * Update cpusets according to cpu_active mask. If cpusets are
  6631. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6632. * around partition_sched_domains().
  6633. */
  6634. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6635. void *hcpu)
  6636. {
  6637. switch (action & ~CPU_TASKS_FROZEN) {
  6638. case CPU_ONLINE:
  6639. case CPU_DOWN_FAILED:
  6640. cpuset_update_active_cpus();
  6641. return NOTIFY_OK;
  6642. default:
  6643. return NOTIFY_DONE;
  6644. }
  6645. }
  6646. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6647. void *hcpu)
  6648. {
  6649. switch (action & ~CPU_TASKS_FROZEN) {
  6650. case CPU_DOWN_PREPARE:
  6651. cpuset_update_active_cpus();
  6652. return NOTIFY_OK;
  6653. default:
  6654. return NOTIFY_DONE;
  6655. }
  6656. }
  6657. static int update_runtime(struct notifier_block *nfb,
  6658. unsigned long action, void *hcpu)
  6659. {
  6660. int cpu = (int)(long)hcpu;
  6661. switch (action) {
  6662. case CPU_DOWN_PREPARE:
  6663. case CPU_DOWN_PREPARE_FROZEN:
  6664. disable_runtime(cpu_rq(cpu));
  6665. return NOTIFY_OK;
  6666. case CPU_DOWN_FAILED:
  6667. case CPU_DOWN_FAILED_FROZEN:
  6668. case CPU_ONLINE:
  6669. case CPU_ONLINE_FROZEN:
  6670. enable_runtime(cpu_rq(cpu));
  6671. return NOTIFY_OK;
  6672. default:
  6673. return NOTIFY_DONE;
  6674. }
  6675. }
  6676. void __init sched_init_smp(void)
  6677. {
  6678. cpumask_var_t non_isolated_cpus;
  6679. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6680. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6681. get_online_cpus();
  6682. mutex_lock(&sched_domains_mutex);
  6683. init_sched_domains(cpu_active_mask);
  6684. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6685. if (cpumask_empty(non_isolated_cpus))
  6686. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6687. mutex_unlock(&sched_domains_mutex);
  6688. put_online_cpus();
  6689. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6690. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6691. /* RT runtime code needs to handle some hotplug events */
  6692. hotcpu_notifier(update_runtime, 0);
  6693. init_hrtick();
  6694. /* Move init over to a non-isolated CPU */
  6695. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6696. BUG();
  6697. sched_init_granularity();
  6698. free_cpumask_var(non_isolated_cpus);
  6699. init_sched_rt_class();
  6700. }
  6701. #else
  6702. void __init sched_init_smp(void)
  6703. {
  6704. sched_init_granularity();
  6705. }
  6706. #endif /* CONFIG_SMP */
  6707. const_debug unsigned int sysctl_timer_migration = 1;
  6708. int in_sched_functions(unsigned long addr)
  6709. {
  6710. return in_lock_functions(addr) ||
  6711. (addr >= (unsigned long)__sched_text_start
  6712. && addr < (unsigned long)__sched_text_end);
  6713. }
  6714. static void init_cfs_rq(struct cfs_rq *cfs_rq)
  6715. {
  6716. cfs_rq->tasks_timeline = RB_ROOT;
  6717. INIT_LIST_HEAD(&cfs_rq->tasks);
  6718. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6719. #ifndef CONFIG_64BIT
  6720. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6721. #endif
  6722. }
  6723. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6724. {
  6725. struct rt_prio_array *array;
  6726. int i;
  6727. array = &rt_rq->active;
  6728. for (i = 0; i < MAX_RT_PRIO; i++) {
  6729. INIT_LIST_HEAD(array->queue + i);
  6730. __clear_bit(i, array->bitmap);
  6731. }
  6732. /* delimiter for bitsearch: */
  6733. __set_bit(MAX_RT_PRIO, array->bitmap);
  6734. #if defined CONFIG_SMP
  6735. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6736. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6737. rt_rq->rt_nr_migratory = 0;
  6738. rt_rq->overloaded = 0;
  6739. plist_head_init(&rt_rq->pushable_tasks);
  6740. #endif
  6741. rt_rq->rt_time = 0;
  6742. rt_rq->rt_throttled = 0;
  6743. rt_rq->rt_runtime = 0;
  6744. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6745. }
  6746. #ifdef CONFIG_FAIR_GROUP_SCHED
  6747. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6748. struct sched_entity *se, int cpu,
  6749. struct sched_entity *parent)
  6750. {
  6751. struct rq *rq = cpu_rq(cpu);
  6752. cfs_rq->tg = tg;
  6753. cfs_rq->rq = rq;
  6754. #ifdef CONFIG_SMP
  6755. /* allow initial update_cfs_load() to truncate */
  6756. cfs_rq->load_stamp = 1;
  6757. #endif
  6758. tg->cfs_rq[cpu] = cfs_rq;
  6759. tg->se[cpu] = se;
  6760. /* se could be NULL for root_task_group */
  6761. if (!se)
  6762. return;
  6763. if (!parent)
  6764. se->cfs_rq = &rq->cfs;
  6765. else
  6766. se->cfs_rq = parent->my_q;
  6767. se->my_q = cfs_rq;
  6768. update_load_set(&se->load, 0);
  6769. se->parent = parent;
  6770. }
  6771. #endif
  6772. #ifdef CONFIG_RT_GROUP_SCHED
  6773. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6774. struct sched_rt_entity *rt_se, int cpu,
  6775. struct sched_rt_entity *parent)
  6776. {
  6777. struct rq *rq = cpu_rq(cpu);
  6778. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6779. rt_rq->rt_nr_boosted = 0;
  6780. rt_rq->rq = rq;
  6781. rt_rq->tg = tg;
  6782. tg->rt_rq[cpu] = rt_rq;
  6783. tg->rt_se[cpu] = rt_se;
  6784. if (!rt_se)
  6785. return;
  6786. if (!parent)
  6787. rt_se->rt_rq = &rq->rt;
  6788. else
  6789. rt_se->rt_rq = parent->my_q;
  6790. rt_se->my_q = rt_rq;
  6791. rt_se->parent = parent;
  6792. INIT_LIST_HEAD(&rt_se->run_list);
  6793. }
  6794. #endif
  6795. void __init sched_init(void)
  6796. {
  6797. int i, j;
  6798. unsigned long alloc_size = 0, ptr;
  6799. #ifdef CONFIG_FAIR_GROUP_SCHED
  6800. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6801. #endif
  6802. #ifdef CONFIG_RT_GROUP_SCHED
  6803. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6804. #endif
  6805. #ifdef CONFIG_CPUMASK_OFFSTACK
  6806. alloc_size += num_possible_cpus() * cpumask_size();
  6807. #endif
  6808. if (alloc_size) {
  6809. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6810. #ifdef CONFIG_FAIR_GROUP_SCHED
  6811. root_task_group.se = (struct sched_entity **)ptr;
  6812. ptr += nr_cpu_ids * sizeof(void **);
  6813. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6814. ptr += nr_cpu_ids * sizeof(void **);
  6815. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6816. #ifdef CONFIG_RT_GROUP_SCHED
  6817. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6818. ptr += nr_cpu_ids * sizeof(void **);
  6819. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6820. ptr += nr_cpu_ids * sizeof(void **);
  6821. #endif /* CONFIG_RT_GROUP_SCHED */
  6822. #ifdef CONFIG_CPUMASK_OFFSTACK
  6823. for_each_possible_cpu(i) {
  6824. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6825. ptr += cpumask_size();
  6826. }
  6827. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6828. }
  6829. #ifdef CONFIG_SMP
  6830. init_defrootdomain();
  6831. #endif
  6832. init_rt_bandwidth(&def_rt_bandwidth,
  6833. global_rt_period(), global_rt_runtime());
  6834. #ifdef CONFIG_RT_GROUP_SCHED
  6835. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6836. global_rt_period(), global_rt_runtime());
  6837. #endif /* CONFIG_RT_GROUP_SCHED */
  6838. #ifdef CONFIG_CGROUP_SCHED
  6839. list_add(&root_task_group.list, &task_groups);
  6840. INIT_LIST_HEAD(&root_task_group.children);
  6841. autogroup_init(&init_task);
  6842. #endif /* CONFIG_CGROUP_SCHED */
  6843. for_each_possible_cpu(i) {
  6844. struct rq *rq;
  6845. rq = cpu_rq(i);
  6846. raw_spin_lock_init(&rq->lock);
  6847. rq->nr_running = 0;
  6848. rq->calc_load_active = 0;
  6849. rq->calc_load_update = jiffies + LOAD_FREQ;
  6850. init_cfs_rq(&rq->cfs);
  6851. init_rt_rq(&rq->rt, rq);
  6852. #ifdef CONFIG_FAIR_GROUP_SCHED
  6853. root_task_group.shares = root_task_group_load;
  6854. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6855. /*
  6856. * How much cpu bandwidth does root_task_group get?
  6857. *
  6858. * In case of task-groups formed thr' the cgroup filesystem, it
  6859. * gets 100% of the cpu resources in the system. This overall
  6860. * system cpu resource is divided among the tasks of
  6861. * root_task_group and its child task-groups in a fair manner,
  6862. * based on each entity's (task or task-group's) weight
  6863. * (se->load.weight).
  6864. *
  6865. * In other words, if root_task_group has 10 tasks of weight
  6866. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6867. * then A0's share of the cpu resource is:
  6868. *
  6869. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6870. *
  6871. * We achieve this by letting root_task_group's tasks sit
  6872. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6873. */
  6874. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6875. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6876. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6877. #ifdef CONFIG_RT_GROUP_SCHED
  6878. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6879. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6880. #endif
  6881. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6882. rq->cpu_load[j] = 0;
  6883. rq->last_load_update_tick = jiffies;
  6884. #ifdef CONFIG_SMP
  6885. rq->sd = NULL;
  6886. rq->rd = NULL;
  6887. rq->cpu_power = SCHED_POWER_SCALE;
  6888. rq->post_schedule = 0;
  6889. rq->active_balance = 0;
  6890. rq->next_balance = jiffies;
  6891. rq->push_cpu = 0;
  6892. rq->cpu = i;
  6893. rq->online = 0;
  6894. rq->idle_stamp = 0;
  6895. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6896. rq_attach_root(rq, &def_root_domain);
  6897. #ifdef CONFIG_NO_HZ
  6898. rq->nohz_balance_kick = 0;
  6899. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6900. #endif
  6901. #endif
  6902. init_rq_hrtick(rq);
  6903. atomic_set(&rq->nr_iowait, 0);
  6904. }
  6905. set_load_weight(&init_task);
  6906. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6907. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6908. #endif
  6909. #ifdef CONFIG_SMP
  6910. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6911. #endif
  6912. #ifdef CONFIG_RT_MUTEXES
  6913. plist_head_init(&init_task.pi_waiters);
  6914. #endif
  6915. /*
  6916. * The boot idle thread does lazy MMU switching as well:
  6917. */
  6918. atomic_inc(&init_mm.mm_count);
  6919. enter_lazy_tlb(&init_mm, current);
  6920. /*
  6921. * Make us the idle thread. Technically, schedule() should not be
  6922. * called from this thread, however somewhere below it might be,
  6923. * but because we are the idle thread, we just pick up running again
  6924. * when this runqueue becomes "idle".
  6925. */
  6926. init_idle(current, smp_processor_id());
  6927. calc_load_update = jiffies + LOAD_FREQ;
  6928. /*
  6929. * During early bootup we pretend to be a normal task:
  6930. */
  6931. current->sched_class = &fair_sched_class;
  6932. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6933. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6934. #ifdef CONFIG_SMP
  6935. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6936. #ifdef CONFIG_NO_HZ
  6937. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6938. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6939. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6940. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6941. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6942. #endif
  6943. /* May be allocated at isolcpus cmdline parse time */
  6944. if (cpu_isolated_map == NULL)
  6945. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6946. #endif /* SMP */
  6947. scheduler_running = 1;
  6948. }
  6949. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6950. static inline int preempt_count_equals(int preempt_offset)
  6951. {
  6952. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6953. return (nested == preempt_offset);
  6954. }
  6955. void __might_sleep(const char *file, int line, int preempt_offset)
  6956. {
  6957. static unsigned long prev_jiffy; /* ratelimiting */
  6958. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6959. system_state != SYSTEM_RUNNING || oops_in_progress)
  6960. return;
  6961. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6962. return;
  6963. prev_jiffy = jiffies;
  6964. printk(KERN_ERR
  6965. "BUG: sleeping function called from invalid context at %s:%d\n",
  6966. file, line);
  6967. printk(KERN_ERR
  6968. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6969. in_atomic(), irqs_disabled(),
  6970. current->pid, current->comm);
  6971. debug_show_held_locks(current);
  6972. if (irqs_disabled())
  6973. print_irqtrace_events(current);
  6974. dump_stack();
  6975. }
  6976. EXPORT_SYMBOL(__might_sleep);
  6977. #endif
  6978. #ifdef CONFIG_MAGIC_SYSRQ
  6979. static void normalize_task(struct rq *rq, struct task_struct *p)
  6980. {
  6981. const struct sched_class *prev_class = p->sched_class;
  6982. int old_prio = p->prio;
  6983. int on_rq;
  6984. on_rq = p->on_rq;
  6985. if (on_rq)
  6986. deactivate_task(rq, p, 0);
  6987. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6988. if (on_rq) {
  6989. activate_task(rq, p, 0);
  6990. resched_task(rq->curr);
  6991. }
  6992. check_class_changed(rq, p, prev_class, old_prio);
  6993. }
  6994. void normalize_rt_tasks(void)
  6995. {
  6996. struct task_struct *g, *p;
  6997. unsigned long flags;
  6998. struct rq *rq;
  6999. read_lock_irqsave(&tasklist_lock, flags);
  7000. do_each_thread(g, p) {
  7001. /*
  7002. * Only normalize user tasks:
  7003. */
  7004. if (!p->mm)
  7005. continue;
  7006. p->se.exec_start = 0;
  7007. #ifdef CONFIG_SCHEDSTATS
  7008. p->se.statistics.wait_start = 0;
  7009. p->se.statistics.sleep_start = 0;
  7010. p->se.statistics.block_start = 0;
  7011. #endif
  7012. if (!rt_task(p)) {
  7013. /*
  7014. * Renice negative nice level userspace
  7015. * tasks back to 0:
  7016. */
  7017. if (TASK_NICE(p) < 0 && p->mm)
  7018. set_user_nice(p, 0);
  7019. continue;
  7020. }
  7021. raw_spin_lock(&p->pi_lock);
  7022. rq = __task_rq_lock(p);
  7023. normalize_task(rq, p);
  7024. __task_rq_unlock(rq);
  7025. raw_spin_unlock(&p->pi_lock);
  7026. } while_each_thread(g, p);
  7027. read_unlock_irqrestore(&tasklist_lock, flags);
  7028. }
  7029. #endif /* CONFIG_MAGIC_SYSRQ */
  7030. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7031. /*
  7032. * These functions are only useful for the IA64 MCA handling, or kdb.
  7033. *
  7034. * They can only be called when the whole system has been
  7035. * stopped - every CPU needs to be quiescent, and no scheduling
  7036. * activity can take place. Using them for anything else would
  7037. * be a serious bug, and as a result, they aren't even visible
  7038. * under any other configuration.
  7039. */
  7040. /**
  7041. * curr_task - return the current task for a given cpu.
  7042. * @cpu: the processor in question.
  7043. *
  7044. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7045. */
  7046. struct task_struct *curr_task(int cpu)
  7047. {
  7048. return cpu_curr(cpu);
  7049. }
  7050. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7051. #ifdef CONFIG_IA64
  7052. /**
  7053. * set_curr_task - set the current task for a given cpu.
  7054. * @cpu: the processor in question.
  7055. * @p: the task pointer to set.
  7056. *
  7057. * Description: This function must only be used when non-maskable interrupts
  7058. * are serviced on a separate stack. It allows the architecture to switch the
  7059. * notion of the current task on a cpu in a non-blocking manner. This function
  7060. * must be called with all CPU's synchronized, and interrupts disabled, the
  7061. * and caller must save the original value of the current task (see
  7062. * curr_task() above) and restore that value before reenabling interrupts and
  7063. * re-starting the system.
  7064. *
  7065. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7066. */
  7067. void set_curr_task(int cpu, struct task_struct *p)
  7068. {
  7069. cpu_curr(cpu) = p;
  7070. }
  7071. #endif
  7072. #ifdef CONFIG_FAIR_GROUP_SCHED
  7073. static void free_fair_sched_group(struct task_group *tg)
  7074. {
  7075. int i;
  7076. for_each_possible_cpu(i) {
  7077. if (tg->cfs_rq)
  7078. kfree(tg->cfs_rq[i]);
  7079. if (tg->se)
  7080. kfree(tg->se[i]);
  7081. }
  7082. kfree(tg->cfs_rq);
  7083. kfree(tg->se);
  7084. }
  7085. static
  7086. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7087. {
  7088. struct cfs_rq *cfs_rq;
  7089. struct sched_entity *se;
  7090. int i;
  7091. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7092. if (!tg->cfs_rq)
  7093. goto err;
  7094. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7095. if (!tg->se)
  7096. goto err;
  7097. tg->shares = NICE_0_LOAD;
  7098. for_each_possible_cpu(i) {
  7099. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7100. GFP_KERNEL, cpu_to_node(i));
  7101. if (!cfs_rq)
  7102. goto err;
  7103. se = kzalloc_node(sizeof(struct sched_entity),
  7104. GFP_KERNEL, cpu_to_node(i));
  7105. if (!se)
  7106. goto err_free_rq;
  7107. init_cfs_rq(cfs_rq);
  7108. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7109. }
  7110. return 1;
  7111. err_free_rq:
  7112. kfree(cfs_rq);
  7113. err:
  7114. return 0;
  7115. }
  7116. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7117. {
  7118. struct rq *rq = cpu_rq(cpu);
  7119. unsigned long flags;
  7120. /*
  7121. * Only empty task groups can be destroyed; so we can speculatively
  7122. * check on_list without danger of it being re-added.
  7123. */
  7124. if (!tg->cfs_rq[cpu]->on_list)
  7125. return;
  7126. raw_spin_lock_irqsave(&rq->lock, flags);
  7127. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7128. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7129. }
  7130. #else /* !CONFIG_FAIR_GROUP_SCHED */
  7131. static inline void free_fair_sched_group(struct task_group *tg)
  7132. {
  7133. }
  7134. static inline
  7135. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7136. {
  7137. return 1;
  7138. }
  7139. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7140. {
  7141. }
  7142. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7143. #ifdef CONFIG_RT_GROUP_SCHED
  7144. static void free_rt_sched_group(struct task_group *tg)
  7145. {
  7146. int i;
  7147. if (tg->rt_se)
  7148. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7149. for_each_possible_cpu(i) {
  7150. if (tg->rt_rq)
  7151. kfree(tg->rt_rq[i]);
  7152. if (tg->rt_se)
  7153. kfree(tg->rt_se[i]);
  7154. }
  7155. kfree(tg->rt_rq);
  7156. kfree(tg->rt_se);
  7157. }
  7158. static
  7159. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7160. {
  7161. struct rt_rq *rt_rq;
  7162. struct sched_rt_entity *rt_se;
  7163. int i;
  7164. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7165. if (!tg->rt_rq)
  7166. goto err;
  7167. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7168. if (!tg->rt_se)
  7169. goto err;
  7170. init_rt_bandwidth(&tg->rt_bandwidth,
  7171. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7172. for_each_possible_cpu(i) {
  7173. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7174. GFP_KERNEL, cpu_to_node(i));
  7175. if (!rt_rq)
  7176. goto err;
  7177. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7178. GFP_KERNEL, cpu_to_node(i));
  7179. if (!rt_se)
  7180. goto err_free_rq;
  7181. init_rt_rq(rt_rq, cpu_rq(i));
  7182. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7183. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7184. }
  7185. return 1;
  7186. err_free_rq:
  7187. kfree(rt_rq);
  7188. err:
  7189. return 0;
  7190. }
  7191. #else /* !CONFIG_RT_GROUP_SCHED */
  7192. static inline void free_rt_sched_group(struct task_group *tg)
  7193. {
  7194. }
  7195. static inline
  7196. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7197. {
  7198. return 1;
  7199. }
  7200. #endif /* CONFIG_RT_GROUP_SCHED */
  7201. #ifdef CONFIG_CGROUP_SCHED
  7202. static void free_sched_group(struct task_group *tg)
  7203. {
  7204. free_fair_sched_group(tg);
  7205. free_rt_sched_group(tg);
  7206. autogroup_free(tg);
  7207. kfree(tg);
  7208. }
  7209. /* allocate runqueue etc for a new task group */
  7210. struct task_group *sched_create_group(struct task_group *parent)
  7211. {
  7212. struct task_group *tg;
  7213. unsigned long flags;
  7214. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7215. if (!tg)
  7216. return ERR_PTR(-ENOMEM);
  7217. if (!alloc_fair_sched_group(tg, parent))
  7218. goto err;
  7219. if (!alloc_rt_sched_group(tg, parent))
  7220. goto err;
  7221. spin_lock_irqsave(&task_group_lock, flags);
  7222. list_add_rcu(&tg->list, &task_groups);
  7223. WARN_ON(!parent); /* root should already exist */
  7224. tg->parent = parent;
  7225. INIT_LIST_HEAD(&tg->children);
  7226. list_add_rcu(&tg->siblings, &parent->children);
  7227. spin_unlock_irqrestore(&task_group_lock, flags);
  7228. return tg;
  7229. err:
  7230. free_sched_group(tg);
  7231. return ERR_PTR(-ENOMEM);
  7232. }
  7233. /* rcu callback to free various structures associated with a task group */
  7234. static void free_sched_group_rcu(struct rcu_head *rhp)
  7235. {
  7236. /* now it should be safe to free those cfs_rqs */
  7237. free_sched_group(container_of(rhp, struct task_group, rcu));
  7238. }
  7239. /* Destroy runqueue etc associated with a task group */
  7240. void sched_destroy_group(struct task_group *tg)
  7241. {
  7242. unsigned long flags;
  7243. int i;
  7244. /* end participation in shares distribution */
  7245. for_each_possible_cpu(i)
  7246. unregister_fair_sched_group(tg, i);
  7247. spin_lock_irqsave(&task_group_lock, flags);
  7248. list_del_rcu(&tg->list);
  7249. list_del_rcu(&tg->siblings);
  7250. spin_unlock_irqrestore(&task_group_lock, flags);
  7251. /* wait for possible concurrent references to cfs_rqs complete */
  7252. call_rcu(&tg->rcu, free_sched_group_rcu);
  7253. }
  7254. /* change task's runqueue when it moves between groups.
  7255. * The caller of this function should have put the task in its new group
  7256. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7257. * reflect its new group.
  7258. */
  7259. void sched_move_task(struct task_struct *tsk)
  7260. {
  7261. int on_rq, running;
  7262. unsigned long flags;
  7263. struct rq *rq;
  7264. rq = task_rq_lock(tsk, &flags);
  7265. running = task_current(rq, tsk);
  7266. on_rq = tsk->on_rq;
  7267. if (on_rq)
  7268. dequeue_task(rq, tsk, 0);
  7269. if (unlikely(running))
  7270. tsk->sched_class->put_prev_task(rq, tsk);
  7271. #ifdef CONFIG_FAIR_GROUP_SCHED
  7272. if (tsk->sched_class->task_move_group)
  7273. tsk->sched_class->task_move_group(tsk, on_rq);
  7274. else
  7275. #endif
  7276. set_task_rq(tsk, task_cpu(tsk));
  7277. if (unlikely(running))
  7278. tsk->sched_class->set_curr_task(rq);
  7279. if (on_rq)
  7280. enqueue_task(rq, tsk, 0);
  7281. task_rq_unlock(rq, tsk, &flags);
  7282. }
  7283. #endif /* CONFIG_CGROUP_SCHED */
  7284. #ifdef CONFIG_FAIR_GROUP_SCHED
  7285. static DEFINE_MUTEX(shares_mutex);
  7286. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7287. {
  7288. int i;
  7289. unsigned long flags;
  7290. /*
  7291. * We can't change the weight of the root cgroup.
  7292. */
  7293. if (!tg->se[0])
  7294. return -EINVAL;
  7295. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  7296. mutex_lock(&shares_mutex);
  7297. if (tg->shares == shares)
  7298. goto done;
  7299. tg->shares = shares;
  7300. for_each_possible_cpu(i) {
  7301. struct rq *rq = cpu_rq(i);
  7302. struct sched_entity *se;
  7303. se = tg->se[i];
  7304. /* Propagate contribution to hierarchy */
  7305. raw_spin_lock_irqsave(&rq->lock, flags);
  7306. for_each_sched_entity(se)
  7307. update_cfs_shares(group_cfs_rq(se));
  7308. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7309. }
  7310. done:
  7311. mutex_unlock(&shares_mutex);
  7312. return 0;
  7313. }
  7314. unsigned long sched_group_shares(struct task_group *tg)
  7315. {
  7316. return tg->shares;
  7317. }
  7318. #endif
  7319. #ifdef CONFIG_RT_GROUP_SCHED
  7320. /*
  7321. * Ensure that the real time constraints are schedulable.
  7322. */
  7323. static DEFINE_MUTEX(rt_constraints_mutex);
  7324. static unsigned long to_ratio(u64 period, u64 runtime)
  7325. {
  7326. if (runtime == RUNTIME_INF)
  7327. return 1ULL << 20;
  7328. return div64_u64(runtime << 20, period);
  7329. }
  7330. /* Must be called with tasklist_lock held */
  7331. static inline int tg_has_rt_tasks(struct task_group *tg)
  7332. {
  7333. struct task_struct *g, *p;
  7334. do_each_thread(g, p) {
  7335. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7336. return 1;
  7337. } while_each_thread(g, p);
  7338. return 0;
  7339. }
  7340. struct rt_schedulable_data {
  7341. struct task_group *tg;
  7342. u64 rt_period;
  7343. u64 rt_runtime;
  7344. };
  7345. static int tg_schedulable(struct task_group *tg, void *data)
  7346. {
  7347. struct rt_schedulable_data *d = data;
  7348. struct task_group *child;
  7349. unsigned long total, sum = 0;
  7350. u64 period, runtime;
  7351. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7352. runtime = tg->rt_bandwidth.rt_runtime;
  7353. if (tg == d->tg) {
  7354. period = d->rt_period;
  7355. runtime = d->rt_runtime;
  7356. }
  7357. /*
  7358. * Cannot have more runtime than the period.
  7359. */
  7360. if (runtime > period && runtime != RUNTIME_INF)
  7361. return -EINVAL;
  7362. /*
  7363. * Ensure we don't starve existing RT tasks.
  7364. */
  7365. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7366. return -EBUSY;
  7367. total = to_ratio(period, runtime);
  7368. /*
  7369. * Nobody can have more than the global setting allows.
  7370. */
  7371. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7372. return -EINVAL;
  7373. /*
  7374. * The sum of our children's runtime should not exceed our own.
  7375. */
  7376. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7377. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7378. runtime = child->rt_bandwidth.rt_runtime;
  7379. if (child == d->tg) {
  7380. period = d->rt_period;
  7381. runtime = d->rt_runtime;
  7382. }
  7383. sum += to_ratio(period, runtime);
  7384. }
  7385. if (sum > total)
  7386. return -EINVAL;
  7387. return 0;
  7388. }
  7389. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7390. {
  7391. struct rt_schedulable_data data = {
  7392. .tg = tg,
  7393. .rt_period = period,
  7394. .rt_runtime = runtime,
  7395. };
  7396. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7397. }
  7398. static int tg_set_bandwidth(struct task_group *tg,
  7399. u64 rt_period, u64 rt_runtime)
  7400. {
  7401. int i, err = 0;
  7402. mutex_lock(&rt_constraints_mutex);
  7403. read_lock(&tasklist_lock);
  7404. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7405. if (err)
  7406. goto unlock;
  7407. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7408. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7409. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7410. for_each_possible_cpu(i) {
  7411. struct rt_rq *rt_rq = tg->rt_rq[i];
  7412. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7413. rt_rq->rt_runtime = rt_runtime;
  7414. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7415. }
  7416. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7417. unlock:
  7418. read_unlock(&tasklist_lock);
  7419. mutex_unlock(&rt_constraints_mutex);
  7420. return err;
  7421. }
  7422. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7423. {
  7424. u64 rt_runtime, rt_period;
  7425. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7426. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7427. if (rt_runtime_us < 0)
  7428. rt_runtime = RUNTIME_INF;
  7429. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7430. }
  7431. long sched_group_rt_runtime(struct task_group *tg)
  7432. {
  7433. u64 rt_runtime_us;
  7434. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7435. return -1;
  7436. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7437. do_div(rt_runtime_us, NSEC_PER_USEC);
  7438. return rt_runtime_us;
  7439. }
  7440. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7441. {
  7442. u64 rt_runtime, rt_period;
  7443. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7444. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7445. if (rt_period == 0)
  7446. return -EINVAL;
  7447. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7448. }
  7449. long sched_group_rt_period(struct task_group *tg)
  7450. {
  7451. u64 rt_period_us;
  7452. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7453. do_div(rt_period_us, NSEC_PER_USEC);
  7454. return rt_period_us;
  7455. }
  7456. static int sched_rt_global_constraints(void)
  7457. {
  7458. u64 runtime, period;
  7459. int ret = 0;
  7460. if (sysctl_sched_rt_period <= 0)
  7461. return -EINVAL;
  7462. runtime = global_rt_runtime();
  7463. period = global_rt_period();
  7464. /*
  7465. * Sanity check on the sysctl variables.
  7466. */
  7467. if (runtime > period && runtime != RUNTIME_INF)
  7468. return -EINVAL;
  7469. mutex_lock(&rt_constraints_mutex);
  7470. read_lock(&tasklist_lock);
  7471. ret = __rt_schedulable(NULL, 0, 0);
  7472. read_unlock(&tasklist_lock);
  7473. mutex_unlock(&rt_constraints_mutex);
  7474. return ret;
  7475. }
  7476. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7477. {
  7478. /* Don't accept realtime tasks when there is no way for them to run */
  7479. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7480. return 0;
  7481. return 1;
  7482. }
  7483. #else /* !CONFIG_RT_GROUP_SCHED */
  7484. static int sched_rt_global_constraints(void)
  7485. {
  7486. unsigned long flags;
  7487. int i;
  7488. if (sysctl_sched_rt_period <= 0)
  7489. return -EINVAL;
  7490. /*
  7491. * There's always some RT tasks in the root group
  7492. * -- migration, kstopmachine etc..
  7493. */
  7494. if (sysctl_sched_rt_runtime == 0)
  7495. return -EBUSY;
  7496. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7497. for_each_possible_cpu(i) {
  7498. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7499. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7500. rt_rq->rt_runtime = global_rt_runtime();
  7501. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7502. }
  7503. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7504. return 0;
  7505. }
  7506. #endif /* CONFIG_RT_GROUP_SCHED */
  7507. int sched_rt_handler(struct ctl_table *table, int write,
  7508. void __user *buffer, size_t *lenp,
  7509. loff_t *ppos)
  7510. {
  7511. int ret;
  7512. int old_period, old_runtime;
  7513. static DEFINE_MUTEX(mutex);
  7514. mutex_lock(&mutex);
  7515. old_period = sysctl_sched_rt_period;
  7516. old_runtime = sysctl_sched_rt_runtime;
  7517. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7518. if (!ret && write) {
  7519. ret = sched_rt_global_constraints();
  7520. if (ret) {
  7521. sysctl_sched_rt_period = old_period;
  7522. sysctl_sched_rt_runtime = old_runtime;
  7523. } else {
  7524. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7525. def_rt_bandwidth.rt_period =
  7526. ns_to_ktime(global_rt_period());
  7527. }
  7528. }
  7529. mutex_unlock(&mutex);
  7530. return ret;
  7531. }
  7532. #ifdef CONFIG_CGROUP_SCHED
  7533. /* return corresponding task_group object of a cgroup */
  7534. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7535. {
  7536. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7537. struct task_group, css);
  7538. }
  7539. static struct cgroup_subsys_state *
  7540. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7541. {
  7542. struct task_group *tg, *parent;
  7543. if (!cgrp->parent) {
  7544. /* This is early initialization for the top cgroup */
  7545. return &root_task_group.css;
  7546. }
  7547. parent = cgroup_tg(cgrp->parent);
  7548. tg = sched_create_group(parent);
  7549. if (IS_ERR(tg))
  7550. return ERR_PTR(-ENOMEM);
  7551. return &tg->css;
  7552. }
  7553. static void
  7554. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7555. {
  7556. struct task_group *tg = cgroup_tg(cgrp);
  7557. sched_destroy_group(tg);
  7558. }
  7559. static int
  7560. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7561. {
  7562. #ifdef CONFIG_RT_GROUP_SCHED
  7563. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7564. return -EINVAL;
  7565. #else
  7566. /* We don't support RT-tasks being in separate groups */
  7567. if (tsk->sched_class != &fair_sched_class)
  7568. return -EINVAL;
  7569. #endif
  7570. return 0;
  7571. }
  7572. static void
  7573. cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7574. {
  7575. sched_move_task(tsk);
  7576. }
  7577. static void
  7578. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7579. struct cgroup *old_cgrp, struct task_struct *task)
  7580. {
  7581. /*
  7582. * cgroup_exit() is called in the copy_process() failure path.
  7583. * Ignore this case since the task hasn't ran yet, this avoids
  7584. * trying to poke a half freed task state from generic code.
  7585. */
  7586. if (!(task->flags & PF_EXITING))
  7587. return;
  7588. sched_move_task(task);
  7589. }
  7590. #ifdef CONFIG_FAIR_GROUP_SCHED
  7591. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7592. u64 shareval)
  7593. {
  7594. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  7595. }
  7596. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7597. {
  7598. struct task_group *tg = cgroup_tg(cgrp);
  7599. return (u64) scale_load_down(tg->shares);
  7600. }
  7601. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7602. #ifdef CONFIG_RT_GROUP_SCHED
  7603. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7604. s64 val)
  7605. {
  7606. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7607. }
  7608. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7609. {
  7610. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7611. }
  7612. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7613. u64 rt_period_us)
  7614. {
  7615. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7616. }
  7617. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7618. {
  7619. return sched_group_rt_period(cgroup_tg(cgrp));
  7620. }
  7621. #endif /* CONFIG_RT_GROUP_SCHED */
  7622. static struct cftype cpu_files[] = {
  7623. #ifdef CONFIG_FAIR_GROUP_SCHED
  7624. {
  7625. .name = "shares",
  7626. .read_u64 = cpu_shares_read_u64,
  7627. .write_u64 = cpu_shares_write_u64,
  7628. },
  7629. #endif
  7630. #ifdef CONFIG_RT_GROUP_SCHED
  7631. {
  7632. .name = "rt_runtime_us",
  7633. .read_s64 = cpu_rt_runtime_read,
  7634. .write_s64 = cpu_rt_runtime_write,
  7635. },
  7636. {
  7637. .name = "rt_period_us",
  7638. .read_u64 = cpu_rt_period_read_uint,
  7639. .write_u64 = cpu_rt_period_write_uint,
  7640. },
  7641. #endif
  7642. };
  7643. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7644. {
  7645. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7646. }
  7647. struct cgroup_subsys cpu_cgroup_subsys = {
  7648. .name = "cpu",
  7649. .create = cpu_cgroup_create,
  7650. .destroy = cpu_cgroup_destroy,
  7651. .can_attach_task = cpu_cgroup_can_attach_task,
  7652. .attach_task = cpu_cgroup_attach_task,
  7653. .exit = cpu_cgroup_exit,
  7654. .populate = cpu_cgroup_populate,
  7655. .subsys_id = cpu_cgroup_subsys_id,
  7656. .early_init = 1,
  7657. };
  7658. #endif /* CONFIG_CGROUP_SCHED */
  7659. #ifdef CONFIG_CGROUP_CPUACCT
  7660. /*
  7661. * CPU accounting code for task groups.
  7662. *
  7663. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7664. * (balbir@in.ibm.com).
  7665. */
  7666. /* track cpu usage of a group of tasks and its child groups */
  7667. struct cpuacct {
  7668. struct cgroup_subsys_state css;
  7669. /* cpuusage holds pointer to a u64-type object on every cpu */
  7670. u64 __percpu *cpuusage;
  7671. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7672. struct cpuacct *parent;
  7673. };
  7674. struct cgroup_subsys cpuacct_subsys;
  7675. /* return cpu accounting group corresponding to this container */
  7676. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7677. {
  7678. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7679. struct cpuacct, css);
  7680. }
  7681. /* return cpu accounting group to which this task belongs */
  7682. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7683. {
  7684. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7685. struct cpuacct, css);
  7686. }
  7687. /* create a new cpu accounting group */
  7688. static struct cgroup_subsys_state *cpuacct_create(
  7689. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7690. {
  7691. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7692. int i;
  7693. if (!ca)
  7694. goto out;
  7695. ca->cpuusage = alloc_percpu(u64);
  7696. if (!ca->cpuusage)
  7697. goto out_free_ca;
  7698. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7699. if (percpu_counter_init(&ca->cpustat[i], 0))
  7700. goto out_free_counters;
  7701. if (cgrp->parent)
  7702. ca->parent = cgroup_ca(cgrp->parent);
  7703. return &ca->css;
  7704. out_free_counters:
  7705. while (--i >= 0)
  7706. percpu_counter_destroy(&ca->cpustat[i]);
  7707. free_percpu(ca->cpuusage);
  7708. out_free_ca:
  7709. kfree(ca);
  7710. out:
  7711. return ERR_PTR(-ENOMEM);
  7712. }
  7713. /* destroy an existing cpu accounting group */
  7714. static void
  7715. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7716. {
  7717. struct cpuacct *ca = cgroup_ca(cgrp);
  7718. int i;
  7719. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7720. percpu_counter_destroy(&ca->cpustat[i]);
  7721. free_percpu(ca->cpuusage);
  7722. kfree(ca);
  7723. }
  7724. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7725. {
  7726. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7727. u64 data;
  7728. #ifndef CONFIG_64BIT
  7729. /*
  7730. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7731. */
  7732. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7733. data = *cpuusage;
  7734. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7735. #else
  7736. data = *cpuusage;
  7737. #endif
  7738. return data;
  7739. }
  7740. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7741. {
  7742. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7743. #ifndef CONFIG_64BIT
  7744. /*
  7745. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7746. */
  7747. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7748. *cpuusage = val;
  7749. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7750. #else
  7751. *cpuusage = val;
  7752. #endif
  7753. }
  7754. /* return total cpu usage (in nanoseconds) of a group */
  7755. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7756. {
  7757. struct cpuacct *ca = cgroup_ca(cgrp);
  7758. u64 totalcpuusage = 0;
  7759. int i;
  7760. for_each_present_cpu(i)
  7761. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7762. return totalcpuusage;
  7763. }
  7764. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7765. u64 reset)
  7766. {
  7767. struct cpuacct *ca = cgroup_ca(cgrp);
  7768. int err = 0;
  7769. int i;
  7770. if (reset) {
  7771. err = -EINVAL;
  7772. goto out;
  7773. }
  7774. for_each_present_cpu(i)
  7775. cpuacct_cpuusage_write(ca, i, 0);
  7776. out:
  7777. return err;
  7778. }
  7779. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7780. struct seq_file *m)
  7781. {
  7782. struct cpuacct *ca = cgroup_ca(cgroup);
  7783. u64 percpu;
  7784. int i;
  7785. for_each_present_cpu(i) {
  7786. percpu = cpuacct_cpuusage_read(ca, i);
  7787. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7788. }
  7789. seq_printf(m, "\n");
  7790. return 0;
  7791. }
  7792. static const char *cpuacct_stat_desc[] = {
  7793. [CPUACCT_STAT_USER] = "user",
  7794. [CPUACCT_STAT_SYSTEM] = "system",
  7795. };
  7796. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7797. struct cgroup_map_cb *cb)
  7798. {
  7799. struct cpuacct *ca = cgroup_ca(cgrp);
  7800. int i;
  7801. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7802. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7803. val = cputime64_to_clock_t(val);
  7804. cb->fill(cb, cpuacct_stat_desc[i], val);
  7805. }
  7806. return 0;
  7807. }
  7808. static struct cftype files[] = {
  7809. {
  7810. .name = "usage",
  7811. .read_u64 = cpuusage_read,
  7812. .write_u64 = cpuusage_write,
  7813. },
  7814. {
  7815. .name = "usage_percpu",
  7816. .read_seq_string = cpuacct_percpu_seq_read,
  7817. },
  7818. {
  7819. .name = "stat",
  7820. .read_map = cpuacct_stats_show,
  7821. },
  7822. };
  7823. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7824. {
  7825. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7826. }
  7827. /*
  7828. * charge this task's execution time to its accounting group.
  7829. *
  7830. * called with rq->lock held.
  7831. */
  7832. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7833. {
  7834. struct cpuacct *ca;
  7835. int cpu;
  7836. if (unlikely(!cpuacct_subsys.active))
  7837. return;
  7838. cpu = task_cpu(tsk);
  7839. rcu_read_lock();
  7840. ca = task_ca(tsk);
  7841. for (; ca; ca = ca->parent) {
  7842. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7843. *cpuusage += cputime;
  7844. }
  7845. rcu_read_unlock();
  7846. }
  7847. /*
  7848. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7849. * in cputime_t units. As a result, cpuacct_update_stats calls
  7850. * percpu_counter_add with values large enough to always overflow the
  7851. * per cpu batch limit causing bad SMP scalability.
  7852. *
  7853. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7854. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7855. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7856. */
  7857. #ifdef CONFIG_SMP
  7858. #define CPUACCT_BATCH \
  7859. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7860. #else
  7861. #define CPUACCT_BATCH 0
  7862. #endif
  7863. /*
  7864. * Charge the system/user time to the task's accounting group.
  7865. */
  7866. static void cpuacct_update_stats(struct task_struct *tsk,
  7867. enum cpuacct_stat_index idx, cputime_t val)
  7868. {
  7869. struct cpuacct *ca;
  7870. int batch = CPUACCT_BATCH;
  7871. if (unlikely(!cpuacct_subsys.active))
  7872. return;
  7873. rcu_read_lock();
  7874. ca = task_ca(tsk);
  7875. do {
  7876. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7877. ca = ca->parent;
  7878. } while (ca);
  7879. rcu_read_unlock();
  7880. }
  7881. struct cgroup_subsys cpuacct_subsys = {
  7882. .name = "cpuacct",
  7883. .create = cpuacct_create,
  7884. .destroy = cpuacct_destroy,
  7885. .populate = cpuacct_populate,
  7886. .subsys_id = cpuacct_subsys_id,
  7887. };
  7888. #endif /* CONFIG_CGROUP_CPUACCT */