ste_dma40.c 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/dmaengine.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/clk.h>
  14. #include <linux/delay.h>
  15. #include <linux/err.h>
  16. #include <linux/amba/bus.h>
  17. #include <plat/ste_dma40.h>
  18. #include "ste_dma40_ll.h"
  19. #define D40_NAME "dma40"
  20. #define D40_PHY_CHAN -1
  21. /* For masking out/in 2 bit channel positions */
  22. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  23. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  24. /* Maximum iterations taken before giving up suspending a channel */
  25. #define D40_SUSPEND_MAX_IT 500
  26. /* Hardware requirement on LCLA alignment */
  27. #define LCLA_ALIGNMENT 0x40000
  28. /* Max number of links per event group */
  29. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  30. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  31. /* Attempts before giving up to trying to get pages that are aligned */
  32. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  33. /* Bit markings for allocation map */
  34. #define D40_ALLOC_FREE (1 << 31)
  35. #define D40_ALLOC_PHY (1 << 30)
  36. #define D40_ALLOC_LOG_FREE 0
  37. /**
  38. * enum 40_command - The different commands and/or statuses.
  39. *
  40. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  41. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  42. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  43. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  44. */
  45. enum d40_command {
  46. D40_DMA_STOP = 0,
  47. D40_DMA_RUN = 1,
  48. D40_DMA_SUSPEND_REQ = 2,
  49. D40_DMA_SUSPENDED = 3
  50. };
  51. /**
  52. * struct d40_lli_pool - Structure for keeping LLIs in memory
  53. *
  54. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  55. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  56. * pre_alloc_lli is used.
  57. * @dma_addr: DMA address, if mapped
  58. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  59. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  60. * one buffer to one buffer.
  61. */
  62. struct d40_lli_pool {
  63. void *base;
  64. int size;
  65. dma_addr_t dma_addr;
  66. /* Space for dst and src, plus an extra for padding */
  67. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  68. };
  69. /**
  70. * struct d40_desc - A descriptor is one DMA job.
  71. *
  72. * @lli_phy: LLI settings for physical channel. Both src and dst=
  73. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  74. * lli_len equals one.
  75. * @lli_log: Same as above but for logical channels.
  76. * @lli_pool: The pool with two entries pre-allocated.
  77. * @lli_len: Number of llis of current descriptor.
  78. * @lli_current: Number of transferred llis.
  79. * @lcla_alloc: Number of LCLA entries allocated.
  80. * @txd: DMA engine struct. Used for among other things for communication
  81. * during a transfer.
  82. * @node: List entry.
  83. * @is_in_client_list: true if the client owns this descriptor.
  84. * the previous one.
  85. *
  86. * This descriptor is used for both logical and physical transfers.
  87. */
  88. struct d40_desc {
  89. /* LLI physical */
  90. struct d40_phy_lli_bidir lli_phy;
  91. /* LLI logical */
  92. struct d40_log_lli_bidir lli_log;
  93. struct d40_lli_pool lli_pool;
  94. int lli_len;
  95. int lli_current;
  96. int lcla_alloc;
  97. struct dma_async_tx_descriptor txd;
  98. struct list_head node;
  99. bool is_in_client_list;
  100. bool cyclic;
  101. };
  102. /**
  103. * struct d40_lcla_pool - LCLA pool settings and data.
  104. *
  105. * @base: The virtual address of LCLA. 18 bit aligned.
  106. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  107. * This pointer is only there for clean-up on error.
  108. * @pages: The number of pages needed for all physical channels.
  109. * Only used later for clean-up on error
  110. * @lock: Lock to protect the content in this struct.
  111. * @alloc_map: big map over which LCLA entry is own by which job.
  112. */
  113. struct d40_lcla_pool {
  114. void *base;
  115. dma_addr_t dma_addr;
  116. void *base_unaligned;
  117. int pages;
  118. spinlock_t lock;
  119. struct d40_desc **alloc_map;
  120. };
  121. /**
  122. * struct d40_phy_res - struct for handling eventlines mapped to physical
  123. * channels.
  124. *
  125. * @lock: A lock protection this entity.
  126. * @num: The physical channel number of this entity.
  127. * @allocated_src: Bit mapped to show which src event line's are mapped to
  128. * this physical channel. Can also be free or physically allocated.
  129. * @allocated_dst: Same as for src but is dst.
  130. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  131. * event line number.
  132. */
  133. struct d40_phy_res {
  134. spinlock_t lock;
  135. int num;
  136. u32 allocated_src;
  137. u32 allocated_dst;
  138. };
  139. struct d40_base;
  140. /**
  141. * struct d40_chan - Struct that describes a channel.
  142. *
  143. * @lock: A spinlock to protect this struct.
  144. * @log_num: The logical number, if any of this channel.
  145. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  146. * current cookie.
  147. * @pending_tx: The number of pending transfers. Used between interrupt handler
  148. * and tasklet.
  149. * @busy: Set to true when transfer is ongoing on this channel.
  150. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  151. * point is NULL, then the channel is not allocated.
  152. * @chan: DMA engine handle.
  153. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  154. * transfer and call client callback.
  155. * @client: Cliented owned descriptor list.
  156. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  157. * @active: Active descriptor.
  158. * @queue: Queued jobs.
  159. * @prepare_queue: Prepared jobs.
  160. * @dma_cfg: The client configuration of this dma channel.
  161. * @configured: whether the dma_cfg configuration is valid
  162. * @base: Pointer to the device instance struct.
  163. * @src_def_cfg: Default cfg register setting for src.
  164. * @dst_def_cfg: Default cfg register setting for dst.
  165. * @log_def: Default logical channel settings.
  166. * @lcla: Space for one dst src pair for logical channel transfers.
  167. * @lcpa: Pointer to dst and src lcpa settings.
  168. * @runtime_addr: runtime configured address.
  169. * @runtime_direction: runtime configured direction.
  170. *
  171. * This struct can either "be" a logical or a physical channel.
  172. */
  173. struct d40_chan {
  174. spinlock_t lock;
  175. int log_num;
  176. /* ID of the most recent completed transfer */
  177. int completed;
  178. int pending_tx;
  179. bool busy;
  180. struct d40_phy_res *phy_chan;
  181. struct dma_chan chan;
  182. struct tasklet_struct tasklet;
  183. struct list_head client;
  184. struct list_head pending_queue;
  185. struct list_head active;
  186. struct list_head queue;
  187. struct list_head prepare_queue;
  188. struct stedma40_chan_cfg dma_cfg;
  189. bool configured;
  190. struct d40_base *base;
  191. /* Default register configurations */
  192. u32 src_def_cfg;
  193. u32 dst_def_cfg;
  194. struct d40_def_lcsp log_def;
  195. struct d40_log_lli_full *lcpa;
  196. /* Runtime reconfiguration */
  197. dma_addr_t runtime_addr;
  198. enum dma_data_direction runtime_direction;
  199. };
  200. /**
  201. * struct d40_base - The big global struct, one for each probe'd instance.
  202. *
  203. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  204. * @execmd_lock: Lock for execute command usage since several channels share
  205. * the same physical register.
  206. * @dev: The device structure.
  207. * @virtbase: The virtual base address of the DMA's register.
  208. * @rev: silicon revision detected.
  209. * @clk: Pointer to the DMA clock structure.
  210. * @phy_start: Physical memory start of the DMA registers.
  211. * @phy_size: Size of the DMA register map.
  212. * @irq: The IRQ number.
  213. * @num_phy_chans: The number of physical channels. Read from HW. This
  214. * is the number of available channels for this driver, not counting "Secure
  215. * mode" allocated physical channels.
  216. * @num_log_chans: The number of logical channels. Calculated from
  217. * num_phy_chans.
  218. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  219. * @dma_slave: dma_device channels that can do only do slave transfers.
  220. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  221. * @log_chans: Room for all possible logical channels in system.
  222. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  223. * to log_chans entries.
  224. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  225. * to phy_chans entries.
  226. * @plat_data: Pointer to provided platform_data which is the driver
  227. * configuration.
  228. * @phy_res: Vector containing all physical channels.
  229. * @lcla_pool: lcla pool settings and data.
  230. * @lcpa_base: The virtual mapped address of LCPA.
  231. * @phy_lcpa: The physical address of the LCPA.
  232. * @lcpa_size: The size of the LCPA area.
  233. * @desc_slab: cache for descriptors.
  234. */
  235. struct d40_base {
  236. spinlock_t interrupt_lock;
  237. spinlock_t execmd_lock;
  238. struct device *dev;
  239. void __iomem *virtbase;
  240. u8 rev:4;
  241. struct clk *clk;
  242. phys_addr_t phy_start;
  243. resource_size_t phy_size;
  244. int irq;
  245. int num_phy_chans;
  246. int num_log_chans;
  247. struct dma_device dma_both;
  248. struct dma_device dma_slave;
  249. struct dma_device dma_memcpy;
  250. struct d40_chan *phy_chans;
  251. struct d40_chan *log_chans;
  252. struct d40_chan **lookup_log_chans;
  253. struct d40_chan **lookup_phy_chans;
  254. struct stedma40_platform_data *plat_data;
  255. /* Physical half channels */
  256. struct d40_phy_res *phy_res;
  257. struct d40_lcla_pool lcla_pool;
  258. void *lcpa_base;
  259. dma_addr_t phy_lcpa;
  260. resource_size_t lcpa_size;
  261. struct kmem_cache *desc_slab;
  262. };
  263. /**
  264. * struct d40_interrupt_lookup - lookup table for interrupt handler
  265. *
  266. * @src: Interrupt mask register.
  267. * @clr: Interrupt clear register.
  268. * @is_error: true if this is an error interrupt.
  269. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  270. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  271. */
  272. struct d40_interrupt_lookup {
  273. u32 src;
  274. u32 clr;
  275. bool is_error;
  276. int offset;
  277. };
  278. /**
  279. * struct d40_reg_val - simple lookup struct
  280. *
  281. * @reg: The register.
  282. * @val: The value that belongs to the register in reg.
  283. */
  284. struct d40_reg_val {
  285. unsigned int reg;
  286. unsigned int val;
  287. };
  288. static struct device *chan2dev(struct d40_chan *d40c)
  289. {
  290. return &d40c->chan.dev->device;
  291. }
  292. static bool chan_is_physical(struct d40_chan *chan)
  293. {
  294. return chan->log_num == D40_PHY_CHAN;
  295. }
  296. static bool chan_is_logical(struct d40_chan *chan)
  297. {
  298. return !chan_is_physical(chan);
  299. }
  300. static void __iomem *chan_base(struct d40_chan *chan)
  301. {
  302. return chan->base->virtbase + D40_DREG_PCBASE +
  303. chan->phy_chan->num * D40_DREG_PCDELTA;
  304. }
  305. #define d40_err(dev, format, arg...) \
  306. dev_err(dev, "[%s] " format, __func__, ## arg)
  307. #define chan_err(d40c, format, arg...) \
  308. d40_err(chan2dev(d40c), format, ## arg)
  309. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  310. int lli_len)
  311. {
  312. bool is_log = chan_is_logical(d40c);
  313. u32 align;
  314. void *base;
  315. if (is_log)
  316. align = sizeof(struct d40_log_lli);
  317. else
  318. align = sizeof(struct d40_phy_lli);
  319. if (lli_len == 1) {
  320. base = d40d->lli_pool.pre_alloc_lli;
  321. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  322. d40d->lli_pool.base = NULL;
  323. } else {
  324. d40d->lli_pool.size = lli_len * 2 * align;
  325. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  326. d40d->lli_pool.base = base;
  327. if (d40d->lli_pool.base == NULL)
  328. return -ENOMEM;
  329. }
  330. if (is_log) {
  331. d40d->lli_log.src = PTR_ALIGN(base, align);
  332. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  333. d40d->lli_pool.dma_addr = 0;
  334. } else {
  335. d40d->lli_phy.src = PTR_ALIGN(base, align);
  336. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  337. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  338. d40d->lli_phy.src,
  339. d40d->lli_pool.size,
  340. DMA_TO_DEVICE);
  341. if (dma_mapping_error(d40c->base->dev,
  342. d40d->lli_pool.dma_addr)) {
  343. kfree(d40d->lli_pool.base);
  344. d40d->lli_pool.base = NULL;
  345. d40d->lli_pool.dma_addr = 0;
  346. return -ENOMEM;
  347. }
  348. }
  349. return 0;
  350. }
  351. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  352. {
  353. if (d40d->lli_pool.dma_addr)
  354. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  355. d40d->lli_pool.size, DMA_TO_DEVICE);
  356. kfree(d40d->lli_pool.base);
  357. d40d->lli_pool.base = NULL;
  358. d40d->lli_pool.size = 0;
  359. d40d->lli_log.src = NULL;
  360. d40d->lli_log.dst = NULL;
  361. d40d->lli_phy.src = NULL;
  362. d40d->lli_phy.dst = NULL;
  363. }
  364. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  365. struct d40_desc *d40d)
  366. {
  367. unsigned long flags;
  368. int i;
  369. int ret = -EINVAL;
  370. int p;
  371. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  372. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  373. /*
  374. * Allocate both src and dst at the same time, therefore the half
  375. * start on 1 since 0 can't be used since zero is used as end marker.
  376. */
  377. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  378. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  379. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  380. d40d->lcla_alloc++;
  381. ret = i;
  382. break;
  383. }
  384. }
  385. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  386. return ret;
  387. }
  388. static int d40_lcla_free_all(struct d40_chan *d40c,
  389. struct d40_desc *d40d)
  390. {
  391. unsigned long flags;
  392. int i;
  393. int ret = -EINVAL;
  394. if (chan_is_physical(d40c))
  395. return 0;
  396. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  397. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  398. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  399. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  400. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  401. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  402. d40d->lcla_alloc--;
  403. if (d40d->lcla_alloc == 0) {
  404. ret = 0;
  405. break;
  406. }
  407. }
  408. }
  409. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  410. return ret;
  411. }
  412. static void d40_desc_remove(struct d40_desc *d40d)
  413. {
  414. list_del(&d40d->node);
  415. }
  416. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  417. {
  418. struct d40_desc *desc = NULL;
  419. if (!list_empty(&d40c->client)) {
  420. struct d40_desc *d;
  421. struct d40_desc *_d;
  422. list_for_each_entry_safe(d, _d, &d40c->client, node)
  423. if (async_tx_test_ack(&d->txd)) {
  424. d40_desc_remove(d);
  425. desc = d;
  426. memset(desc, 0, sizeof(*desc));
  427. break;
  428. }
  429. }
  430. if (!desc)
  431. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  432. if (desc)
  433. INIT_LIST_HEAD(&desc->node);
  434. return desc;
  435. }
  436. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  437. {
  438. d40_pool_lli_free(d40c, d40d);
  439. d40_lcla_free_all(d40c, d40d);
  440. kmem_cache_free(d40c->base->desc_slab, d40d);
  441. }
  442. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  443. {
  444. list_add_tail(&desc->node, &d40c->active);
  445. }
  446. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  447. {
  448. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  449. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  450. void __iomem *base = chan_base(chan);
  451. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  452. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  453. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  454. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  455. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  456. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  457. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  458. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  459. }
  460. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  461. {
  462. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  463. struct d40_log_lli_bidir *lli = &desc->lli_log;
  464. int lli_current = desc->lli_current;
  465. int lli_len = desc->lli_len;
  466. bool cyclic = desc->cyclic;
  467. int curr_lcla = -EINVAL;
  468. int first_lcla = 0;
  469. bool linkback;
  470. /*
  471. * We may have partially running cyclic transfers, in case we did't get
  472. * enough LCLA entries.
  473. */
  474. linkback = cyclic && lli_current == 0;
  475. /*
  476. * For linkback, we need one LCLA even with only one link, because we
  477. * can't link back to the one in LCPA space
  478. */
  479. if (linkback || (lli_len - lli_current > 1)) {
  480. curr_lcla = d40_lcla_alloc_one(chan, desc);
  481. first_lcla = curr_lcla;
  482. }
  483. /*
  484. * For linkback, we normally load the LCPA in the loop since we need to
  485. * link it to the second LCLA and not the first. However, if we
  486. * couldn't even get a first LCLA, then we have to run in LCPA and
  487. * reload manually.
  488. */
  489. if (!linkback || curr_lcla == -EINVAL) {
  490. unsigned int flags = 0;
  491. if (curr_lcla == -EINVAL)
  492. flags |= LLI_TERM_INT;
  493. d40_log_lli_lcpa_write(chan->lcpa,
  494. &lli->dst[lli_current],
  495. &lli->src[lli_current],
  496. curr_lcla,
  497. flags);
  498. lli_current++;
  499. }
  500. if (curr_lcla < 0)
  501. goto out;
  502. for (; lli_current < lli_len; lli_current++) {
  503. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  504. 8 * curr_lcla * 2;
  505. struct d40_log_lli *lcla = pool->base + lcla_offset;
  506. unsigned int flags = 0;
  507. int next_lcla;
  508. if (lli_current + 1 < lli_len)
  509. next_lcla = d40_lcla_alloc_one(chan, desc);
  510. else
  511. next_lcla = linkback ? first_lcla : -EINVAL;
  512. if (cyclic || next_lcla == -EINVAL)
  513. flags |= LLI_TERM_INT;
  514. if (linkback && curr_lcla == first_lcla) {
  515. /* First link goes in both LCPA and LCLA */
  516. d40_log_lli_lcpa_write(chan->lcpa,
  517. &lli->dst[lli_current],
  518. &lli->src[lli_current],
  519. next_lcla, flags);
  520. }
  521. /*
  522. * One unused LCLA in the cyclic case if the very first
  523. * next_lcla fails...
  524. */
  525. d40_log_lli_lcla_write(lcla,
  526. &lli->dst[lli_current],
  527. &lli->src[lli_current],
  528. next_lcla, flags);
  529. dma_sync_single_range_for_device(chan->base->dev,
  530. pool->dma_addr, lcla_offset,
  531. 2 * sizeof(struct d40_log_lli),
  532. DMA_TO_DEVICE);
  533. curr_lcla = next_lcla;
  534. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  535. lli_current++;
  536. break;
  537. }
  538. }
  539. out:
  540. desc->lli_current = lli_current;
  541. }
  542. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  543. {
  544. if (chan_is_physical(d40c)) {
  545. d40_phy_lli_load(d40c, d40d);
  546. d40d->lli_current = d40d->lli_len;
  547. } else
  548. d40_log_lli_to_lcxa(d40c, d40d);
  549. }
  550. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  551. {
  552. struct d40_desc *d;
  553. if (list_empty(&d40c->active))
  554. return NULL;
  555. d = list_first_entry(&d40c->active,
  556. struct d40_desc,
  557. node);
  558. return d;
  559. }
  560. /* remove desc from current queue and add it to the pending_queue */
  561. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  562. {
  563. d40_desc_remove(desc);
  564. desc->is_in_client_list = false;
  565. list_add_tail(&desc->node, &d40c->pending_queue);
  566. }
  567. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  568. {
  569. struct d40_desc *d;
  570. if (list_empty(&d40c->pending_queue))
  571. return NULL;
  572. d = list_first_entry(&d40c->pending_queue,
  573. struct d40_desc,
  574. node);
  575. return d;
  576. }
  577. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  578. {
  579. struct d40_desc *d;
  580. if (list_empty(&d40c->queue))
  581. return NULL;
  582. d = list_first_entry(&d40c->queue,
  583. struct d40_desc,
  584. node);
  585. return d;
  586. }
  587. static int d40_psize_2_burst_size(bool is_log, int psize)
  588. {
  589. if (is_log) {
  590. if (psize == STEDMA40_PSIZE_LOG_1)
  591. return 1;
  592. } else {
  593. if (psize == STEDMA40_PSIZE_PHY_1)
  594. return 1;
  595. }
  596. return 2 << psize;
  597. }
  598. /*
  599. * The dma only supports transmitting packages up to
  600. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  601. * dma elements required to send the entire sg list
  602. */
  603. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  604. {
  605. int dmalen;
  606. u32 max_w = max(data_width1, data_width2);
  607. u32 min_w = min(data_width1, data_width2);
  608. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  609. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  610. seg_max -= (1 << max_w);
  611. if (!IS_ALIGNED(size, 1 << max_w))
  612. return -EINVAL;
  613. if (size <= seg_max)
  614. dmalen = 1;
  615. else {
  616. dmalen = size / seg_max;
  617. if (dmalen * seg_max < size)
  618. dmalen++;
  619. }
  620. return dmalen;
  621. }
  622. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  623. u32 data_width1, u32 data_width2)
  624. {
  625. struct scatterlist *sg;
  626. int i;
  627. int len = 0;
  628. int ret;
  629. for_each_sg(sgl, sg, sg_len, i) {
  630. ret = d40_size_2_dmalen(sg_dma_len(sg),
  631. data_width1, data_width2);
  632. if (ret < 0)
  633. return ret;
  634. len += ret;
  635. }
  636. return len;
  637. }
  638. /* Support functions for logical channels */
  639. static int d40_channel_execute_command(struct d40_chan *d40c,
  640. enum d40_command command)
  641. {
  642. u32 status;
  643. int i;
  644. void __iomem *active_reg;
  645. int ret = 0;
  646. unsigned long flags;
  647. u32 wmask;
  648. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  649. if (d40c->phy_chan->num % 2 == 0)
  650. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  651. else
  652. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  653. if (command == D40_DMA_SUSPEND_REQ) {
  654. status = (readl(active_reg) &
  655. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  656. D40_CHAN_POS(d40c->phy_chan->num);
  657. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  658. goto done;
  659. }
  660. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  661. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  662. active_reg);
  663. if (command == D40_DMA_SUSPEND_REQ) {
  664. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  665. status = (readl(active_reg) &
  666. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  667. D40_CHAN_POS(d40c->phy_chan->num);
  668. cpu_relax();
  669. /*
  670. * Reduce the number of bus accesses while
  671. * waiting for the DMA to suspend.
  672. */
  673. udelay(3);
  674. if (status == D40_DMA_STOP ||
  675. status == D40_DMA_SUSPENDED)
  676. break;
  677. }
  678. if (i == D40_SUSPEND_MAX_IT) {
  679. chan_err(d40c,
  680. "unable to suspend the chl %d (log: %d) status %x\n",
  681. d40c->phy_chan->num, d40c->log_num,
  682. status);
  683. dump_stack();
  684. ret = -EBUSY;
  685. }
  686. }
  687. done:
  688. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  689. return ret;
  690. }
  691. static void d40_term_all(struct d40_chan *d40c)
  692. {
  693. struct d40_desc *d40d;
  694. struct d40_desc *_d;
  695. /* Release active descriptors */
  696. while ((d40d = d40_first_active_get(d40c))) {
  697. d40_desc_remove(d40d);
  698. d40_desc_free(d40c, d40d);
  699. }
  700. /* Release queued descriptors waiting for transfer */
  701. while ((d40d = d40_first_queued(d40c))) {
  702. d40_desc_remove(d40d);
  703. d40_desc_free(d40c, d40d);
  704. }
  705. /* Release pending descriptors */
  706. while ((d40d = d40_first_pending(d40c))) {
  707. d40_desc_remove(d40d);
  708. d40_desc_free(d40c, d40d);
  709. }
  710. /* Release client owned descriptors */
  711. if (!list_empty(&d40c->client))
  712. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  713. d40_desc_remove(d40d);
  714. d40_desc_free(d40c, d40d);
  715. }
  716. /* Release descriptors in prepare queue */
  717. if (!list_empty(&d40c->prepare_queue))
  718. list_for_each_entry_safe(d40d, _d,
  719. &d40c->prepare_queue, node) {
  720. d40_desc_remove(d40d);
  721. d40_desc_free(d40c, d40d);
  722. }
  723. d40c->pending_tx = 0;
  724. d40c->busy = false;
  725. }
  726. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  727. u32 event, int reg)
  728. {
  729. void __iomem *addr = chan_base(d40c) + reg;
  730. int tries;
  731. if (!enable) {
  732. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  733. | ~D40_EVENTLINE_MASK(event), addr);
  734. return;
  735. }
  736. /*
  737. * The hardware sometimes doesn't register the enable when src and dst
  738. * event lines are active on the same logical channel. Retry to ensure
  739. * it does. Usually only one retry is sufficient.
  740. */
  741. tries = 100;
  742. while (--tries) {
  743. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  744. | ~D40_EVENTLINE_MASK(event), addr);
  745. if (readl(addr) & D40_EVENTLINE_MASK(event))
  746. break;
  747. }
  748. if (tries != 99)
  749. dev_dbg(chan2dev(d40c),
  750. "[%s] workaround enable S%cLNK (%d tries)\n",
  751. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  752. 100 - tries);
  753. WARN_ON(!tries);
  754. }
  755. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  756. {
  757. unsigned long flags;
  758. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  759. /* Enable event line connected to device (or memcpy) */
  760. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  761. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  762. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  763. __d40_config_set_event(d40c, do_enable, event,
  764. D40_CHAN_REG_SSLNK);
  765. }
  766. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  767. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  768. __d40_config_set_event(d40c, do_enable, event,
  769. D40_CHAN_REG_SDLNK);
  770. }
  771. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  772. }
  773. static u32 d40_chan_has_events(struct d40_chan *d40c)
  774. {
  775. void __iomem *chanbase = chan_base(d40c);
  776. u32 val;
  777. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  778. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  779. return val;
  780. }
  781. static u32 d40_get_prmo(struct d40_chan *d40c)
  782. {
  783. static const unsigned int phy_map[] = {
  784. [STEDMA40_PCHAN_BASIC_MODE]
  785. = D40_DREG_PRMO_PCHAN_BASIC,
  786. [STEDMA40_PCHAN_MODULO_MODE]
  787. = D40_DREG_PRMO_PCHAN_MODULO,
  788. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  789. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  790. };
  791. static const unsigned int log_map[] = {
  792. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  793. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  794. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  795. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  796. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  797. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  798. };
  799. if (chan_is_physical(d40c))
  800. return phy_map[d40c->dma_cfg.mode_opt];
  801. else
  802. return log_map[d40c->dma_cfg.mode_opt];
  803. }
  804. static void d40_config_write(struct d40_chan *d40c)
  805. {
  806. u32 addr_base;
  807. u32 var;
  808. /* Odd addresses are even addresses + 4 */
  809. addr_base = (d40c->phy_chan->num % 2) * 4;
  810. /* Setup channel mode to logical or physical */
  811. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  812. D40_CHAN_POS(d40c->phy_chan->num);
  813. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  814. /* Setup operational mode option register */
  815. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  816. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  817. if (chan_is_logical(d40c)) {
  818. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  819. & D40_SREG_ELEM_LOG_LIDX_MASK;
  820. void __iomem *chanbase = chan_base(d40c);
  821. /* Set default config for CFG reg */
  822. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  823. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  824. /* Set LIDX for lcla */
  825. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  826. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  827. }
  828. }
  829. static u32 d40_residue(struct d40_chan *d40c)
  830. {
  831. u32 num_elt;
  832. if (chan_is_logical(d40c))
  833. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  834. >> D40_MEM_LCSP2_ECNT_POS;
  835. else {
  836. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  837. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  838. >> D40_SREG_ELEM_PHY_ECNT_POS;
  839. }
  840. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  841. }
  842. static bool d40_tx_is_linked(struct d40_chan *d40c)
  843. {
  844. bool is_link;
  845. if (chan_is_logical(d40c))
  846. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  847. else
  848. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  849. & D40_SREG_LNK_PHYS_LNK_MASK;
  850. return is_link;
  851. }
  852. static int d40_pause(struct d40_chan *d40c)
  853. {
  854. int res = 0;
  855. unsigned long flags;
  856. if (!d40c->busy)
  857. return 0;
  858. spin_lock_irqsave(&d40c->lock, flags);
  859. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  860. if (res == 0) {
  861. if (chan_is_logical(d40c)) {
  862. d40_config_set_event(d40c, false);
  863. /* Resume the other logical channels if any */
  864. if (d40_chan_has_events(d40c))
  865. res = d40_channel_execute_command(d40c,
  866. D40_DMA_RUN);
  867. }
  868. }
  869. spin_unlock_irqrestore(&d40c->lock, flags);
  870. return res;
  871. }
  872. static int d40_resume(struct d40_chan *d40c)
  873. {
  874. int res = 0;
  875. unsigned long flags;
  876. if (!d40c->busy)
  877. return 0;
  878. spin_lock_irqsave(&d40c->lock, flags);
  879. if (d40c->base->rev == 0)
  880. if (chan_is_logical(d40c)) {
  881. res = d40_channel_execute_command(d40c,
  882. D40_DMA_SUSPEND_REQ);
  883. goto no_suspend;
  884. }
  885. /* If bytes left to transfer or linked tx resume job */
  886. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  887. if (chan_is_logical(d40c))
  888. d40_config_set_event(d40c, true);
  889. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  890. }
  891. no_suspend:
  892. spin_unlock_irqrestore(&d40c->lock, flags);
  893. return res;
  894. }
  895. static int d40_terminate_all(struct d40_chan *chan)
  896. {
  897. unsigned long flags;
  898. int ret = 0;
  899. ret = d40_pause(chan);
  900. if (!ret && chan_is_physical(chan))
  901. ret = d40_channel_execute_command(chan, D40_DMA_STOP);
  902. spin_lock_irqsave(&chan->lock, flags);
  903. d40_term_all(chan);
  904. spin_unlock_irqrestore(&chan->lock, flags);
  905. return ret;
  906. }
  907. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  908. {
  909. struct d40_chan *d40c = container_of(tx->chan,
  910. struct d40_chan,
  911. chan);
  912. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  913. unsigned long flags;
  914. spin_lock_irqsave(&d40c->lock, flags);
  915. d40c->chan.cookie++;
  916. if (d40c->chan.cookie < 0)
  917. d40c->chan.cookie = 1;
  918. d40d->txd.cookie = d40c->chan.cookie;
  919. d40_desc_queue(d40c, d40d);
  920. spin_unlock_irqrestore(&d40c->lock, flags);
  921. return tx->cookie;
  922. }
  923. static int d40_start(struct d40_chan *d40c)
  924. {
  925. if (d40c->base->rev == 0) {
  926. int err;
  927. if (chan_is_logical(d40c)) {
  928. err = d40_channel_execute_command(d40c,
  929. D40_DMA_SUSPEND_REQ);
  930. if (err)
  931. return err;
  932. }
  933. }
  934. if (chan_is_logical(d40c))
  935. d40_config_set_event(d40c, true);
  936. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  937. }
  938. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  939. {
  940. struct d40_desc *d40d;
  941. int err;
  942. /* Start queued jobs, if any */
  943. d40d = d40_first_queued(d40c);
  944. if (d40d != NULL) {
  945. d40c->busy = true;
  946. /* Remove from queue */
  947. d40_desc_remove(d40d);
  948. /* Add to active queue */
  949. d40_desc_submit(d40c, d40d);
  950. /* Initiate DMA job */
  951. d40_desc_load(d40c, d40d);
  952. /* Start dma job */
  953. err = d40_start(d40c);
  954. if (err)
  955. return NULL;
  956. }
  957. return d40d;
  958. }
  959. /* called from interrupt context */
  960. static void dma_tc_handle(struct d40_chan *d40c)
  961. {
  962. struct d40_desc *d40d;
  963. /* Get first active entry from list */
  964. d40d = d40_first_active_get(d40c);
  965. if (d40d == NULL)
  966. return;
  967. if (d40d->cyclic) {
  968. /*
  969. * If this was a paritially loaded list, we need to reloaded
  970. * it, and only when the list is completed. We need to check
  971. * for done because the interrupt will hit for every link, and
  972. * not just the last one.
  973. */
  974. if (d40d->lli_current < d40d->lli_len
  975. && !d40_tx_is_linked(d40c)
  976. && !d40_residue(d40c)) {
  977. d40_lcla_free_all(d40c, d40d);
  978. d40_desc_load(d40c, d40d);
  979. (void) d40_start(d40c);
  980. if (d40d->lli_current == d40d->lli_len)
  981. d40d->lli_current = 0;
  982. }
  983. } else {
  984. d40_lcla_free_all(d40c, d40d);
  985. if (d40d->lli_current < d40d->lli_len) {
  986. d40_desc_load(d40c, d40d);
  987. /* Start dma job */
  988. (void) d40_start(d40c);
  989. return;
  990. }
  991. if (d40_queue_start(d40c) == NULL)
  992. d40c->busy = false;
  993. }
  994. d40c->pending_tx++;
  995. tasklet_schedule(&d40c->tasklet);
  996. }
  997. static void dma_tasklet(unsigned long data)
  998. {
  999. struct d40_chan *d40c = (struct d40_chan *) data;
  1000. struct d40_desc *d40d;
  1001. unsigned long flags;
  1002. dma_async_tx_callback callback;
  1003. void *callback_param;
  1004. spin_lock_irqsave(&d40c->lock, flags);
  1005. /* Get first active entry from list */
  1006. d40d = d40_first_active_get(d40c);
  1007. if (d40d == NULL)
  1008. goto err;
  1009. if (!d40d->cyclic)
  1010. d40c->completed = d40d->txd.cookie;
  1011. /*
  1012. * If terminating a channel pending_tx is set to zero.
  1013. * This prevents any finished active jobs to return to the client.
  1014. */
  1015. if (d40c->pending_tx == 0) {
  1016. spin_unlock_irqrestore(&d40c->lock, flags);
  1017. return;
  1018. }
  1019. /* Callback to client */
  1020. callback = d40d->txd.callback;
  1021. callback_param = d40d->txd.callback_param;
  1022. if (!d40d->cyclic) {
  1023. if (async_tx_test_ack(&d40d->txd)) {
  1024. d40_desc_remove(d40d);
  1025. d40_desc_free(d40c, d40d);
  1026. } else {
  1027. if (!d40d->is_in_client_list) {
  1028. d40_desc_remove(d40d);
  1029. d40_lcla_free_all(d40c, d40d);
  1030. list_add_tail(&d40d->node, &d40c->client);
  1031. d40d->is_in_client_list = true;
  1032. }
  1033. }
  1034. }
  1035. d40c->pending_tx--;
  1036. if (d40c->pending_tx)
  1037. tasklet_schedule(&d40c->tasklet);
  1038. spin_unlock_irqrestore(&d40c->lock, flags);
  1039. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1040. callback(callback_param);
  1041. return;
  1042. err:
  1043. /* Rescue manoeuvre if receiving double interrupts */
  1044. if (d40c->pending_tx > 0)
  1045. d40c->pending_tx--;
  1046. spin_unlock_irqrestore(&d40c->lock, flags);
  1047. }
  1048. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1049. {
  1050. static const struct d40_interrupt_lookup il[] = {
  1051. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1052. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1053. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1054. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1055. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1056. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1057. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1058. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1059. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1060. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1061. };
  1062. int i;
  1063. u32 regs[ARRAY_SIZE(il)];
  1064. u32 idx;
  1065. u32 row;
  1066. long chan = -1;
  1067. struct d40_chan *d40c;
  1068. unsigned long flags;
  1069. struct d40_base *base = data;
  1070. spin_lock_irqsave(&base->interrupt_lock, flags);
  1071. /* Read interrupt status of both logical and physical channels */
  1072. for (i = 0; i < ARRAY_SIZE(il); i++)
  1073. regs[i] = readl(base->virtbase + il[i].src);
  1074. for (;;) {
  1075. chan = find_next_bit((unsigned long *)regs,
  1076. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1077. /* No more set bits found? */
  1078. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1079. break;
  1080. row = chan / BITS_PER_LONG;
  1081. idx = chan & (BITS_PER_LONG - 1);
  1082. /* ACK interrupt */
  1083. writel(1 << idx, base->virtbase + il[row].clr);
  1084. if (il[row].offset == D40_PHY_CHAN)
  1085. d40c = base->lookup_phy_chans[idx];
  1086. else
  1087. d40c = base->lookup_log_chans[il[row].offset + idx];
  1088. spin_lock(&d40c->lock);
  1089. if (!il[row].is_error)
  1090. dma_tc_handle(d40c);
  1091. else
  1092. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1093. chan, il[row].offset, idx);
  1094. spin_unlock(&d40c->lock);
  1095. }
  1096. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1097. return IRQ_HANDLED;
  1098. }
  1099. static int d40_validate_conf(struct d40_chan *d40c,
  1100. struct stedma40_chan_cfg *conf)
  1101. {
  1102. int res = 0;
  1103. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1104. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1105. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1106. if (!conf->dir) {
  1107. chan_err(d40c, "Invalid direction.\n");
  1108. res = -EINVAL;
  1109. }
  1110. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1111. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1112. d40c->runtime_addr == 0) {
  1113. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1114. conf->dst_dev_type);
  1115. res = -EINVAL;
  1116. }
  1117. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1118. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1119. d40c->runtime_addr == 0) {
  1120. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1121. conf->src_dev_type);
  1122. res = -EINVAL;
  1123. }
  1124. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1125. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1126. chan_err(d40c, "Invalid dst\n");
  1127. res = -EINVAL;
  1128. }
  1129. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1130. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1131. chan_err(d40c, "Invalid src\n");
  1132. res = -EINVAL;
  1133. }
  1134. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1135. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1136. chan_err(d40c, "No event line\n");
  1137. res = -EINVAL;
  1138. }
  1139. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1140. (src_event_group != dst_event_group)) {
  1141. chan_err(d40c, "Invalid event group\n");
  1142. res = -EINVAL;
  1143. }
  1144. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1145. /*
  1146. * DMAC HW supports it. Will be added to this driver,
  1147. * in case any dma client requires it.
  1148. */
  1149. chan_err(d40c, "periph to periph not supported\n");
  1150. res = -EINVAL;
  1151. }
  1152. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1153. (1 << conf->src_info.data_width) !=
  1154. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1155. (1 << conf->dst_info.data_width)) {
  1156. /*
  1157. * The DMAC hardware only supports
  1158. * src (burst x width) == dst (burst x width)
  1159. */
  1160. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1161. res = -EINVAL;
  1162. }
  1163. return res;
  1164. }
  1165. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1166. int log_event_line, bool is_log)
  1167. {
  1168. unsigned long flags;
  1169. spin_lock_irqsave(&phy->lock, flags);
  1170. if (!is_log) {
  1171. /* Physical interrupts are masked per physical full channel */
  1172. if (phy->allocated_src == D40_ALLOC_FREE &&
  1173. phy->allocated_dst == D40_ALLOC_FREE) {
  1174. phy->allocated_dst = D40_ALLOC_PHY;
  1175. phy->allocated_src = D40_ALLOC_PHY;
  1176. goto found;
  1177. } else
  1178. goto not_found;
  1179. }
  1180. /* Logical channel */
  1181. if (is_src) {
  1182. if (phy->allocated_src == D40_ALLOC_PHY)
  1183. goto not_found;
  1184. if (phy->allocated_src == D40_ALLOC_FREE)
  1185. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1186. if (!(phy->allocated_src & (1 << log_event_line))) {
  1187. phy->allocated_src |= 1 << log_event_line;
  1188. goto found;
  1189. } else
  1190. goto not_found;
  1191. } else {
  1192. if (phy->allocated_dst == D40_ALLOC_PHY)
  1193. goto not_found;
  1194. if (phy->allocated_dst == D40_ALLOC_FREE)
  1195. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1196. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1197. phy->allocated_dst |= 1 << log_event_line;
  1198. goto found;
  1199. } else
  1200. goto not_found;
  1201. }
  1202. not_found:
  1203. spin_unlock_irqrestore(&phy->lock, flags);
  1204. return false;
  1205. found:
  1206. spin_unlock_irqrestore(&phy->lock, flags);
  1207. return true;
  1208. }
  1209. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1210. int log_event_line)
  1211. {
  1212. unsigned long flags;
  1213. bool is_free = false;
  1214. spin_lock_irqsave(&phy->lock, flags);
  1215. if (!log_event_line) {
  1216. phy->allocated_dst = D40_ALLOC_FREE;
  1217. phy->allocated_src = D40_ALLOC_FREE;
  1218. is_free = true;
  1219. goto out;
  1220. }
  1221. /* Logical channel */
  1222. if (is_src) {
  1223. phy->allocated_src &= ~(1 << log_event_line);
  1224. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1225. phy->allocated_src = D40_ALLOC_FREE;
  1226. } else {
  1227. phy->allocated_dst &= ~(1 << log_event_line);
  1228. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1229. phy->allocated_dst = D40_ALLOC_FREE;
  1230. }
  1231. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1232. D40_ALLOC_FREE);
  1233. out:
  1234. spin_unlock_irqrestore(&phy->lock, flags);
  1235. return is_free;
  1236. }
  1237. static int d40_allocate_channel(struct d40_chan *d40c)
  1238. {
  1239. int dev_type;
  1240. int event_group;
  1241. int event_line;
  1242. struct d40_phy_res *phys;
  1243. int i;
  1244. int j;
  1245. int log_num;
  1246. bool is_src;
  1247. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1248. phys = d40c->base->phy_res;
  1249. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1250. dev_type = d40c->dma_cfg.src_dev_type;
  1251. log_num = 2 * dev_type;
  1252. is_src = true;
  1253. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1254. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1255. /* dst event lines are used for logical memcpy */
  1256. dev_type = d40c->dma_cfg.dst_dev_type;
  1257. log_num = 2 * dev_type + 1;
  1258. is_src = false;
  1259. } else
  1260. return -EINVAL;
  1261. event_group = D40_TYPE_TO_GROUP(dev_type);
  1262. event_line = D40_TYPE_TO_EVENT(dev_type);
  1263. if (!is_log) {
  1264. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1265. /* Find physical half channel */
  1266. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1267. if (d40_alloc_mask_set(&phys[i], is_src,
  1268. 0, is_log))
  1269. goto found_phy;
  1270. }
  1271. } else
  1272. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1273. int phy_num = j + event_group * 2;
  1274. for (i = phy_num; i < phy_num + 2; i++) {
  1275. if (d40_alloc_mask_set(&phys[i],
  1276. is_src,
  1277. 0,
  1278. is_log))
  1279. goto found_phy;
  1280. }
  1281. }
  1282. return -EINVAL;
  1283. found_phy:
  1284. d40c->phy_chan = &phys[i];
  1285. d40c->log_num = D40_PHY_CHAN;
  1286. goto out;
  1287. }
  1288. if (dev_type == -1)
  1289. return -EINVAL;
  1290. /* Find logical channel */
  1291. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1292. int phy_num = j + event_group * 2;
  1293. /*
  1294. * Spread logical channels across all available physical rather
  1295. * than pack every logical channel at the first available phy
  1296. * channels.
  1297. */
  1298. if (is_src) {
  1299. for (i = phy_num; i < phy_num + 2; i++) {
  1300. if (d40_alloc_mask_set(&phys[i], is_src,
  1301. event_line, is_log))
  1302. goto found_log;
  1303. }
  1304. } else {
  1305. for (i = phy_num + 1; i >= phy_num; i--) {
  1306. if (d40_alloc_mask_set(&phys[i], is_src,
  1307. event_line, is_log))
  1308. goto found_log;
  1309. }
  1310. }
  1311. }
  1312. return -EINVAL;
  1313. found_log:
  1314. d40c->phy_chan = &phys[i];
  1315. d40c->log_num = log_num;
  1316. out:
  1317. if (is_log)
  1318. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1319. else
  1320. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1321. return 0;
  1322. }
  1323. static int d40_config_memcpy(struct d40_chan *d40c)
  1324. {
  1325. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1326. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1327. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1328. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1329. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1330. memcpy[d40c->chan.chan_id];
  1331. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1332. dma_has_cap(DMA_SLAVE, cap)) {
  1333. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1334. } else {
  1335. chan_err(d40c, "No memcpy\n");
  1336. return -EINVAL;
  1337. }
  1338. return 0;
  1339. }
  1340. static int d40_free_dma(struct d40_chan *d40c)
  1341. {
  1342. int res = 0;
  1343. u32 event;
  1344. struct d40_phy_res *phy = d40c->phy_chan;
  1345. bool is_src;
  1346. /* Terminate all queued and active transfers */
  1347. d40_term_all(d40c);
  1348. if (phy == NULL) {
  1349. chan_err(d40c, "phy == null\n");
  1350. return -EINVAL;
  1351. }
  1352. if (phy->allocated_src == D40_ALLOC_FREE &&
  1353. phy->allocated_dst == D40_ALLOC_FREE) {
  1354. chan_err(d40c, "channel already free\n");
  1355. return -EINVAL;
  1356. }
  1357. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1358. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1359. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1360. is_src = false;
  1361. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1362. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1363. is_src = true;
  1364. } else {
  1365. chan_err(d40c, "Unknown direction\n");
  1366. return -EINVAL;
  1367. }
  1368. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1369. if (res) {
  1370. chan_err(d40c, "suspend failed\n");
  1371. return res;
  1372. }
  1373. if (chan_is_logical(d40c)) {
  1374. /* Release logical channel, deactivate the event line */
  1375. d40_config_set_event(d40c, false);
  1376. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1377. /*
  1378. * Check if there are more logical allocation
  1379. * on this phy channel.
  1380. */
  1381. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1382. /* Resume the other logical channels if any */
  1383. if (d40_chan_has_events(d40c)) {
  1384. res = d40_channel_execute_command(d40c,
  1385. D40_DMA_RUN);
  1386. if (res) {
  1387. chan_err(d40c,
  1388. "Executing RUN command\n");
  1389. return res;
  1390. }
  1391. }
  1392. return 0;
  1393. }
  1394. } else {
  1395. (void) d40_alloc_mask_free(phy, is_src, 0);
  1396. }
  1397. /* Release physical channel */
  1398. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1399. if (res) {
  1400. chan_err(d40c, "Failed to stop channel\n");
  1401. return res;
  1402. }
  1403. d40c->phy_chan = NULL;
  1404. d40c->configured = false;
  1405. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1406. return 0;
  1407. }
  1408. static bool d40_is_paused(struct d40_chan *d40c)
  1409. {
  1410. void __iomem *chanbase = chan_base(d40c);
  1411. bool is_paused = false;
  1412. unsigned long flags;
  1413. void __iomem *active_reg;
  1414. u32 status;
  1415. u32 event;
  1416. spin_lock_irqsave(&d40c->lock, flags);
  1417. if (chan_is_physical(d40c)) {
  1418. if (d40c->phy_chan->num % 2 == 0)
  1419. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1420. else
  1421. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1422. status = (readl(active_reg) &
  1423. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1424. D40_CHAN_POS(d40c->phy_chan->num);
  1425. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1426. is_paused = true;
  1427. goto _exit;
  1428. }
  1429. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1430. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1431. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1432. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1433. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1434. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1435. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1436. } else {
  1437. chan_err(d40c, "Unknown direction\n");
  1438. goto _exit;
  1439. }
  1440. status = (status & D40_EVENTLINE_MASK(event)) >>
  1441. D40_EVENTLINE_POS(event);
  1442. if (status != D40_DMA_RUN)
  1443. is_paused = true;
  1444. _exit:
  1445. spin_unlock_irqrestore(&d40c->lock, flags);
  1446. return is_paused;
  1447. }
  1448. static u32 stedma40_residue(struct dma_chan *chan)
  1449. {
  1450. struct d40_chan *d40c =
  1451. container_of(chan, struct d40_chan, chan);
  1452. u32 bytes_left;
  1453. unsigned long flags;
  1454. spin_lock_irqsave(&d40c->lock, flags);
  1455. bytes_left = d40_residue(d40c);
  1456. spin_unlock_irqrestore(&d40c->lock, flags);
  1457. return bytes_left;
  1458. }
  1459. static int
  1460. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1461. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1462. unsigned int sg_len, dma_addr_t src_dev_addr,
  1463. dma_addr_t dst_dev_addr)
  1464. {
  1465. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1466. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1467. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1468. int ret;
  1469. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1470. src_dev_addr,
  1471. desc->lli_log.src,
  1472. chan->log_def.lcsp1,
  1473. src_info->data_width,
  1474. dst_info->data_width);
  1475. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1476. dst_dev_addr,
  1477. desc->lli_log.dst,
  1478. chan->log_def.lcsp3,
  1479. dst_info->data_width,
  1480. src_info->data_width);
  1481. return ret < 0 ? ret : 0;
  1482. }
  1483. static int
  1484. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1485. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1486. unsigned int sg_len, dma_addr_t src_dev_addr,
  1487. dma_addr_t dst_dev_addr)
  1488. {
  1489. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1490. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1491. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1492. unsigned long flags = 0;
  1493. int ret;
  1494. if (desc->cyclic)
  1495. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1496. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1497. desc->lli_phy.src,
  1498. virt_to_phys(desc->lli_phy.src),
  1499. chan->src_def_cfg,
  1500. src_info, dst_info, flags);
  1501. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1502. desc->lli_phy.dst,
  1503. virt_to_phys(desc->lli_phy.dst),
  1504. chan->dst_def_cfg,
  1505. dst_info, src_info, flags);
  1506. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1507. desc->lli_pool.size, DMA_TO_DEVICE);
  1508. return ret < 0 ? ret : 0;
  1509. }
  1510. static struct d40_desc *
  1511. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1512. unsigned int sg_len, unsigned long dma_flags)
  1513. {
  1514. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1515. struct d40_desc *desc;
  1516. int ret;
  1517. desc = d40_desc_get(chan);
  1518. if (!desc)
  1519. return NULL;
  1520. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1521. cfg->dst_info.data_width);
  1522. if (desc->lli_len < 0) {
  1523. chan_err(chan, "Unaligned size\n");
  1524. goto err;
  1525. }
  1526. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1527. if (ret < 0) {
  1528. chan_err(chan, "Could not allocate lli\n");
  1529. goto err;
  1530. }
  1531. desc->lli_current = 0;
  1532. desc->txd.flags = dma_flags;
  1533. desc->txd.tx_submit = d40_tx_submit;
  1534. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1535. return desc;
  1536. err:
  1537. d40_desc_free(chan, desc);
  1538. return NULL;
  1539. }
  1540. static dma_addr_t
  1541. d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
  1542. {
  1543. struct stedma40_platform_data *plat = chan->base->plat_data;
  1544. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1545. dma_addr_t addr = 0;
  1546. if (chan->runtime_addr)
  1547. return chan->runtime_addr;
  1548. if (direction == DMA_FROM_DEVICE)
  1549. addr = plat->dev_rx[cfg->src_dev_type];
  1550. else if (direction == DMA_TO_DEVICE)
  1551. addr = plat->dev_tx[cfg->dst_dev_type];
  1552. return addr;
  1553. }
  1554. static struct dma_async_tx_descriptor *
  1555. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1556. struct scatterlist *sg_dst, unsigned int sg_len,
  1557. enum dma_data_direction direction, unsigned long dma_flags)
  1558. {
  1559. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1560. dma_addr_t src_dev_addr = 0;
  1561. dma_addr_t dst_dev_addr = 0;
  1562. struct d40_desc *desc;
  1563. unsigned long flags;
  1564. int ret;
  1565. if (!chan->phy_chan) {
  1566. chan_err(chan, "Cannot prepare unallocated channel\n");
  1567. return NULL;
  1568. }
  1569. spin_lock_irqsave(&chan->lock, flags);
  1570. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1571. if (desc == NULL)
  1572. goto err;
  1573. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1574. desc->cyclic = true;
  1575. if (direction != DMA_NONE) {
  1576. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1577. if (direction == DMA_FROM_DEVICE)
  1578. src_dev_addr = dev_addr;
  1579. else if (direction == DMA_TO_DEVICE)
  1580. dst_dev_addr = dev_addr;
  1581. }
  1582. if (chan_is_logical(chan))
  1583. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1584. sg_len, src_dev_addr, dst_dev_addr);
  1585. else
  1586. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1587. sg_len, src_dev_addr, dst_dev_addr);
  1588. if (ret) {
  1589. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1590. chan_is_logical(chan) ? "log" : "phy", ret);
  1591. goto err;
  1592. }
  1593. /*
  1594. * add descriptor to the prepare queue in order to be able
  1595. * to free them later in terminate_all
  1596. */
  1597. list_add_tail(&desc->node, &chan->prepare_queue);
  1598. spin_unlock_irqrestore(&chan->lock, flags);
  1599. return &desc->txd;
  1600. err:
  1601. if (desc)
  1602. d40_desc_free(chan, desc);
  1603. spin_unlock_irqrestore(&chan->lock, flags);
  1604. return NULL;
  1605. }
  1606. bool stedma40_filter(struct dma_chan *chan, void *data)
  1607. {
  1608. struct stedma40_chan_cfg *info = data;
  1609. struct d40_chan *d40c =
  1610. container_of(chan, struct d40_chan, chan);
  1611. int err;
  1612. if (data) {
  1613. err = d40_validate_conf(d40c, info);
  1614. if (!err)
  1615. d40c->dma_cfg = *info;
  1616. } else
  1617. err = d40_config_memcpy(d40c);
  1618. if (!err)
  1619. d40c->configured = true;
  1620. return err == 0;
  1621. }
  1622. EXPORT_SYMBOL(stedma40_filter);
  1623. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1624. {
  1625. bool realtime = d40c->dma_cfg.realtime;
  1626. bool highprio = d40c->dma_cfg.high_priority;
  1627. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1628. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1629. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1630. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1631. u32 bit = 1 << event;
  1632. /* Destination event lines are stored in the upper halfword */
  1633. if (!src)
  1634. bit <<= 16;
  1635. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1636. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1637. }
  1638. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1639. {
  1640. if (d40c->base->rev < 3)
  1641. return;
  1642. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1643. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1644. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1645. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1646. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1647. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1648. }
  1649. /* DMA ENGINE functions */
  1650. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1651. {
  1652. int err;
  1653. unsigned long flags;
  1654. struct d40_chan *d40c =
  1655. container_of(chan, struct d40_chan, chan);
  1656. bool is_free_phy;
  1657. spin_lock_irqsave(&d40c->lock, flags);
  1658. d40c->completed = chan->cookie = 1;
  1659. /* If no dma configuration is set use default configuration (memcpy) */
  1660. if (!d40c->configured) {
  1661. err = d40_config_memcpy(d40c);
  1662. if (err) {
  1663. chan_err(d40c, "Failed to configure memcpy channel\n");
  1664. goto fail;
  1665. }
  1666. }
  1667. is_free_phy = (d40c->phy_chan == NULL);
  1668. err = d40_allocate_channel(d40c);
  1669. if (err) {
  1670. chan_err(d40c, "Failed to allocate channel\n");
  1671. goto fail;
  1672. }
  1673. /* Fill in basic CFG register values */
  1674. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1675. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1676. d40_set_prio_realtime(d40c);
  1677. if (chan_is_logical(d40c)) {
  1678. d40_log_cfg(&d40c->dma_cfg,
  1679. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1680. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1681. d40c->lcpa = d40c->base->lcpa_base +
  1682. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1683. else
  1684. d40c->lcpa = d40c->base->lcpa_base +
  1685. d40c->dma_cfg.dst_dev_type *
  1686. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1687. }
  1688. /*
  1689. * Only write channel configuration to the DMA if the physical
  1690. * resource is free. In case of multiple logical channels
  1691. * on the same physical resource, only the first write is necessary.
  1692. */
  1693. if (is_free_phy)
  1694. d40_config_write(d40c);
  1695. fail:
  1696. spin_unlock_irqrestore(&d40c->lock, flags);
  1697. return err;
  1698. }
  1699. static void d40_free_chan_resources(struct dma_chan *chan)
  1700. {
  1701. struct d40_chan *d40c =
  1702. container_of(chan, struct d40_chan, chan);
  1703. int err;
  1704. unsigned long flags;
  1705. if (d40c->phy_chan == NULL) {
  1706. chan_err(d40c, "Cannot free unallocated channel\n");
  1707. return;
  1708. }
  1709. spin_lock_irqsave(&d40c->lock, flags);
  1710. err = d40_free_dma(d40c);
  1711. if (err)
  1712. chan_err(d40c, "Failed to free channel\n");
  1713. spin_unlock_irqrestore(&d40c->lock, flags);
  1714. }
  1715. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1716. dma_addr_t dst,
  1717. dma_addr_t src,
  1718. size_t size,
  1719. unsigned long dma_flags)
  1720. {
  1721. struct scatterlist dst_sg;
  1722. struct scatterlist src_sg;
  1723. sg_init_table(&dst_sg, 1);
  1724. sg_init_table(&src_sg, 1);
  1725. sg_dma_address(&dst_sg) = dst;
  1726. sg_dma_address(&src_sg) = src;
  1727. sg_dma_len(&dst_sg) = size;
  1728. sg_dma_len(&src_sg) = size;
  1729. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1730. }
  1731. static struct dma_async_tx_descriptor *
  1732. d40_prep_memcpy_sg(struct dma_chan *chan,
  1733. struct scatterlist *dst_sg, unsigned int dst_nents,
  1734. struct scatterlist *src_sg, unsigned int src_nents,
  1735. unsigned long dma_flags)
  1736. {
  1737. if (dst_nents != src_nents)
  1738. return NULL;
  1739. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1740. }
  1741. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1742. struct scatterlist *sgl,
  1743. unsigned int sg_len,
  1744. enum dma_data_direction direction,
  1745. unsigned long dma_flags)
  1746. {
  1747. if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
  1748. return NULL;
  1749. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1750. }
  1751. static struct dma_async_tx_descriptor *
  1752. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1753. size_t buf_len, size_t period_len,
  1754. enum dma_data_direction direction)
  1755. {
  1756. unsigned int periods = buf_len / period_len;
  1757. struct dma_async_tx_descriptor *txd;
  1758. struct scatterlist *sg;
  1759. int i;
  1760. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  1761. for (i = 0; i < periods; i++) {
  1762. sg_dma_address(&sg[i]) = dma_addr;
  1763. sg_dma_len(&sg[i]) = period_len;
  1764. dma_addr += period_len;
  1765. }
  1766. sg[periods].offset = 0;
  1767. sg[periods].length = 0;
  1768. sg[periods].page_link =
  1769. ((unsigned long)sg | 0x01) & ~0x02;
  1770. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1771. DMA_PREP_INTERRUPT);
  1772. kfree(sg);
  1773. return txd;
  1774. }
  1775. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1776. dma_cookie_t cookie,
  1777. struct dma_tx_state *txstate)
  1778. {
  1779. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1780. dma_cookie_t last_used;
  1781. dma_cookie_t last_complete;
  1782. int ret;
  1783. if (d40c->phy_chan == NULL) {
  1784. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1785. return -EINVAL;
  1786. }
  1787. last_complete = d40c->completed;
  1788. last_used = chan->cookie;
  1789. if (d40_is_paused(d40c))
  1790. ret = DMA_PAUSED;
  1791. else
  1792. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1793. dma_set_tx_state(txstate, last_complete, last_used,
  1794. stedma40_residue(chan));
  1795. return ret;
  1796. }
  1797. static void d40_issue_pending(struct dma_chan *chan)
  1798. {
  1799. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1800. unsigned long flags;
  1801. if (d40c->phy_chan == NULL) {
  1802. chan_err(d40c, "Channel is not allocated!\n");
  1803. return;
  1804. }
  1805. spin_lock_irqsave(&d40c->lock, flags);
  1806. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  1807. /* Busy means that queued jobs are already being processed */
  1808. if (!d40c->busy)
  1809. (void) d40_queue_start(d40c);
  1810. spin_unlock_irqrestore(&d40c->lock, flags);
  1811. }
  1812. static int
  1813. dma40_config_to_halfchannel(struct d40_chan *d40c,
  1814. struct stedma40_half_channel_info *info,
  1815. enum dma_slave_buswidth width,
  1816. u32 maxburst)
  1817. {
  1818. enum stedma40_periph_data_width addr_width;
  1819. int psize;
  1820. switch (width) {
  1821. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1822. addr_width = STEDMA40_BYTE_WIDTH;
  1823. break;
  1824. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1825. addr_width = STEDMA40_HALFWORD_WIDTH;
  1826. break;
  1827. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1828. addr_width = STEDMA40_WORD_WIDTH;
  1829. break;
  1830. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1831. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1832. break;
  1833. default:
  1834. dev_err(d40c->base->dev,
  1835. "illegal peripheral address width "
  1836. "requested (%d)\n",
  1837. width);
  1838. return -EINVAL;
  1839. }
  1840. if (chan_is_logical(d40c)) {
  1841. if (maxburst >= 16)
  1842. psize = STEDMA40_PSIZE_LOG_16;
  1843. else if (maxburst >= 8)
  1844. psize = STEDMA40_PSIZE_LOG_8;
  1845. else if (maxburst >= 4)
  1846. psize = STEDMA40_PSIZE_LOG_4;
  1847. else
  1848. psize = STEDMA40_PSIZE_LOG_1;
  1849. } else {
  1850. if (maxburst >= 16)
  1851. psize = STEDMA40_PSIZE_PHY_16;
  1852. else if (maxburst >= 8)
  1853. psize = STEDMA40_PSIZE_PHY_8;
  1854. else if (maxburst >= 4)
  1855. psize = STEDMA40_PSIZE_PHY_4;
  1856. else
  1857. psize = STEDMA40_PSIZE_PHY_1;
  1858. }
  1859. info->data_width = addr_width;
  1860. info->psize = psize;
  1861. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1862. return 0;
  1863. }
  1864. /* Runtime reconfiguration extension */
  1865. static int d40_set_runtime_config(struct dma_chan *chan,
  1866. struct dma_slave_config *config)
  1867. {
  1868. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1869. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1870. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  1871. dma_addr_t config_addr;
  1872. u32 src_maxburst, dst_maxburst;
  1873. int ret;
  1874. src_addr_width = config->src_addr_width;
  1875. src_maxburst = config->src_maxburst;
  1876. dst_addr_width = config->dst_addr_width;
  1877. dst_maxburst = config->dst_maxburst;
  1878. if (config->direction == DMA_FROM_DEVICE) {
  1879. dma_addr_t dev_addr_rx =
  1880. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1881. config_addr = config->src_addr;
  1882. if (dev_addr_rx)
  1883. dev_dbg(d40c->base->dev,
  1884. "channel has a pre-wired RX address %08x "
  1885. "overriding with %08x\n",
  1886. dev_addr_rx, config_addr);
  1887. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1888. dev_dbg(d40c->base->dev,
  1889. "channel was not configured for peripheral "
  1890. "to memory transfer (%d) overriding\n",
  1891. cfg->dir);
  1892. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1893. /* Configure the memory side */
  1894. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  1895. dst_addr_width = src_addr_width;
  1896. if (dst_maxburst == 0)
  1897. dst_maxburst = src_maxburst;
  1898. } else if (config->direction == DMA_TO_DEVICE) {
  1899. dma_addr_t dev_addr_tx =
  1900. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1901. config_addr = config->dst_addr;
  1902. if (dev_addr_tx)
  1903. dev_dbg(d40c->base->dev,
  1904. "channel has a pre-wired TX address %08x "
  1905. "overriding with %08x\n",
  1906. dev_addr_tx, config_addr);
  1907. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1908. dev_dbg(d40c->base->dev,
  1909. "channel was not configured for memory "
  1910. "to peripheral transfer (%d) overriding\n",
  1911. cfg->dir);
  1912. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1913. /* Configure the memory side */
  1914. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  1915. src_addr_width = dst_addr_width;
  1916. if (src_maxburst == 0)
  1917. src_maxburst = dst_maxburst;
  1918. } else {
  1919. dev_err(d40c->base->dev,
  1920. "unrecognized channel direction %d\n",
  1921. config->direction);
  1922. return -EINVAL;
  1923. }
  1924. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  1925. dev_err(d40c->base->dev,
  1926. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  1927. src_maxburst,
  1928. src_addr_width,
  1929. dst_maxburst,
  1930. dst_addr_width);
  1931. return -EINVAL;
  1932. }
  1933. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  1934. src_addr_width,
  1935. src_maxburst);
  1936. if (ret)
  1937. return ret;
  1938. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  1939. dst_addr_width,
  1940. dst_maxburst);
  1941. if (ret)
  1942. return ret;
  1943. /* Fill in register values */
  1944. if (chan_is_logical(d40c))
  1945. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1946. else
  1947. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1948. &d40c->dst_def_cfg, false);
  1949. /* These settings will take precedence later */
  1950. d40c->runtime_addr = config_addr;
  1951. d40c->runtime_direction = config->direction;
  1952. dev_dbg(d40c->base->dev,
  1953. "configured channel %s for %s, data width %d/%d, "
  1954. "maxburst %d/%d elements, LE, no flow control\n",
  1955. dma_chan_name(chan),
  1956. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1957. src_addr_width, dst_addr_width,
  1958. src_maxburst, dst_maxburst);
  1959. return 0;
  1960. }
  1961. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1962. unsigned long arg)
  1963. {
  1964. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1965. if (d40c->phy_chan == NULL) {
  1966. chan_err(d40c, "Channel is not allocated!\n");
  1967. return -EINVAL;
  1968. }
  1969. switch (cmd) {
  1970. case DMA_TERMINATE_ALL:
  1971. return d40_terminate_all(d40c);
  1972. case DMA_PAUSE:
  1973. return d40_pause(d40c);
  1974. case DMA_RESUME:
  1975. return d40_resume(d40c);
  1976. case DMA_SLAVE_CONFIG:
  1977. return d40_set_runtime_config(chan,
  1978. (struct dma_slave_config *) arg);
  1979. default:
  1980. break;
  1981. }
  1982. /* Other commands are unimplemented */
  1983. return -ENXIO;
  1984. }
  1985. /* Initialization functions */
  1986. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1987. struct d40_chan *chans, int offset,
  1988. int num_chans)
  1989. {
  1990. int i = 0;
  1991. struct d40_chan *d40c;
  1992. INIT_LIST_HEAD(&dma->channels);
  1993. for (i = offset; i < offset + num_chans; i++) {
  1994. d40c = &chans[i];
  1995. d40c->base = base;
  1996. d40c->chan.device = dma;
  1997. spin_lock_init(&d40c->lock);
  1998. d40c->log_num = D40_PHY_CHAN;
  1999. INIT_LIST_HEAD(&d40c->active);
  2000. INIT_LIST_HEAD(&d40c->queue);
  2001. INIT_LIST_HEAD(&d40c->pending_queue);
  2002. INIT_LIST_HEAD(&d40c->client);
  2003. INIT_LIST_HEAD(&d40c->prepare_queue);
  2004. tasklet_init(&d40c->tasklet, dma_tasklet,
  2005. (unsigned long) d40c);
  2006. list_add_tail(&d40c->chan.device_node,
  2007. &dma->channels);
  2008. }
  2009. }
  2010. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2011. {
  2012. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2013. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2014. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2015. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2016. /*
  2017. * This controller can only access address at even
  2018. * 32bit boundaries, i.e. 2^2
  2019. */
  2020. dev->copy_align = 2;
  2021. }
  2022. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2023. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2024. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2025. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2026. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2027. dev->device_free_chan_resources = d40_free_chan_resources;
  2028. dev->device_issue_pending = d40_issue_pending;
  2029. dev->device_tx_status = d40_tx_status;
  2030. dev->device_control = d40_control;
  2031. dev->dev = base->dev;
  2032. }
  2033. static int __init d40_dmaengine_init(struct d40_base *base,
  2034. int num_reserved_chans)
  2035. {
  2036. int err ;
  2037. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2038. 0, base->num_log_chans);
  2039. dma_cap_zero(base->dma_slave.cap_mask);
  2040. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2041. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2042. d40_ops_init(base, &base->dma_slave);
  2043. err = dma_async_device_register(&base->dma_slave);
  2044. if (err) {
  2045. d40_err(base->dev, "Failed to register slave channels\n");
  2046. goto failure1;
  2047. }
  2048. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2049. base->num_log_chans, base->plat_data->memcpy_len);
  2050. dma_cap_zero(base->dma_memcpy.cap_mask);
  2051. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2052. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2053. d40_ops_init(base, &base->dma_memcpy);
  2054. err = dma_async_device_register(&base->dma_memcpy);
  2055. if (err) {
  2056. d40_err(base->dev,
  2057. "Failed to regsiter memcpy only channels\n");
  2058. goto failure2;
  2059. }
  2060. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2061. 0, num_reserved_chans);
  2062. dma_cap_zero(base->dma_both.cap_mask);
  2063. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2064. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2065. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2066. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2067. d40_ops_init(base, &base->dma_both);
  2068. err = dma_async_device_register(&base->dma_both);
  2069. if (err) {
  2070. d40_err(base->dev,
  2071. "Failed to register logical and physical capable channels\n");
  2072. goto failure3;
  2073. }
  2074. return 0;
  2075. failure3:
  2076. dma_async_device_unregister(&base->dma_memcpy);
  2077. failure2:
  2078. dma_async_device_unregister(&base->dma_slave);
  2079. failure1:
  2080. return err;
  2081. }
  2082. /* Initialization functions. */
  2083. static int __init d40_phy_res_init(struct d40_base *base)
  2084. {
  2085. int i;
  2086. int num_phy_chans_avail = 0;
  2087. u32 val[2];
  2088. int odd_even_bit = -2;
  2089. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2090. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2091. for (i = 0; i < base->num_phy_chans; i++) {
  2092. base->phy_res[i].num = i;
  2093. odd_even_bit += 2 * ((i % 2) == 0);
  2094. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2095. /* Mark security only channels as occupied */
  2096. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2097. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2098. } else {
  2099. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2100. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2101. num_phy_chans_avail++;
  2102. }
  2103. spin_lock_init(&base->phy_res[i].lock);
  2104. }
  2105. /* Mark disabled channels as occupied */
  2106. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2107. int chan = base->plat_data->disabled_channels[i];
  2108. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2109. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2110. num_phy_chans_avail--;
  2111. }
  2112. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2113. num_phy_chans_avail, base->num_phy_chans);
  2114. /* Verify settings extended vs standard */
  2115. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2116. for (i = 0; i < base->num_phy_chans; i++) {
  2117. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2118. (val[0] & 0x3) != 1)
  2119. dev_info(base->dev,
  2120. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2121. __func__, i, val[0] & 0x3);
  2122. val[0] = val[0] >> 2;
  2123. }
  2124. return num_phy_chans_avail;
  2125. }
  2126. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2127. {
  2128. struct stedma40_platform_data *plat_data;
  2129. struct clk *clk = NULL;
  2130. void __iomem *virtbase = NULL;
  2131. struct resource *res = NULL;
  2132. struct d40_base *base = NULL;
  2133. int num_log_chans = 0;
  2134. int num_phy_chans;
  2135. int i;
  2136. u32 pid;
  2137. u32 cid;
  2138. u8 rev;
  2139. clk = clk_get(&pdev->dev, NULL);
  2140. if (IS_ERR(clk)) {
  2141. d40_err(&pdev->dev, "No matching clock found\n");
  2142. goto failure;
  2143. }
  2144. clk_enable(clk);
  2145. /* Get IO for DMAC base address */
  2146. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2147. if (!res)
  2148. goto failure;
  2149. if (request_mem_region(res->start, resource_size(res),
  2150. D40_NAME " I/O base") == NULL)
  2151. goto failure;
  2152. virtbase = ioremap(res->start, resource_size(res));
  2153. if (!virtbase)
  2154. goto failure;
  2155. /* This is just a regular AMBA PrimeCell ID actually */
  2156. for (pid = 0, i = 0; i < 4; i++)
  2157. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2158. & 255) << (i * 8);
  2159. for (cid = 0, i = 0; i < 4; i++)
  2160. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2161. & 255) << (i * 8);
  2162. if (cid != AMBA_CID) {
  2163. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2164. goto failure;
  2165. }
  2166. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2167. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2168. AMBA_MANF_BITS(pid),
  2169. AMBA_VENDOR_ST);
  2170. goto failure;
  2171. }
  2172. /*
  2173. * HW revision:
  2174. * DB8500ed has revision 0
  2175. * ? has revision 1
  2176. * DB8500v1 has revision 2
  2177. * DB8500v2 has revision 3
  2178. */
  2179. rev = AMBA_REV_BITS(pid);
  2180. /* The number of physical channels on this HW */
  2181. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2182. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2183. rev, res->start);
  2184. plat_data = pdev->dev.platform_data;
  2185. /* Count the number of logical channels in use */
  2186. for (i = 0; i < plat_data->dev_len; i++)
  2187. if (plat_data->dev_rx[i] != 0)
  2188. num_log_chans++;
  2189. for (i = 0; i < plat_data->dev_len; i++)
  2190. if (plat_data->dev_tx[i] != 0)
  2191. num_log_chans++;
  2192. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2193. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2194. sizeof(struct d40_chan), GFP_KERNEL);
  2195. if (base == NULL) {
  2196. d40_err(&pdev->dev, "Out of memory\n");
  2197. goto failure;
  2198. }
  2199. base->rev = rev;
  2200. base->clk = clk;
  2201. base->num_phy_chans = num_phy_chans;
  2202. base->num_log_chans = num_log_chans;
  2203. base->phy_start = res->start;
  2204. base->phy_size = resource_size(res);
  2205. base->virtbase = virtbase;
  2206. base->plat_data = plat_data;
  2207. base->dev = &pdev->dev;
  2208. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2209. base->log_chans = &base->phy_chans[num_phy_chans];
  2210. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2211. GFP_KERNEL);
  2212. if (!base->phy_res)
  2213. goto failure;
  2214. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2215. sizeof(struct d40_chan *),
  2216. GFP_KERNEL);
  2217. if (!base->lookup_phy_chans)
  2218. goto failure;
  2219. if (num_log_chans + plat_data->memcpy_len) {
  2220. /*
  2221. * The max number of logical channels are event lines for all
  2222. * src devices and dst devices
  2223. */
  2224. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2225. sizeof(struct d40_chan *),
  2226. GFP_KERNEL);
  2227. if (!base->lookup_log_chans)
  2228. goto failure;
  2229. }
  2230. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2231. sizeof(struct d40_desc *) *
  2232. D40_LCLA_LINK_PER_EVENT_GRP,
  2233. GFP_KERNEL);
  2234. if (!base->lcla_pool.alloc_map)
  2235. goto failure;
  2236. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2237. 0, SLAB_HWCACHE_ALIGN,
  2238. NULL);
  2239. if (base->desc_slab == NULL)
  2240. goto failure;
  2241. return base;
  2242. failure:
  2243. if (!IS_ERR(clk)) {
  2244. clk_disable(clk);
  2245. clk_put(clk);
  2246. }
  2247. if (virtbase)
  2248. iounmap(virtbase);
  2249. if (res)
  2250. release_mem_region(res->start,
  2251. resource_size(res));
  2252. if (virtbase)
  2253. iounmap(virtbase);
  2254. if (base) {
  2255. kfree(base->lcla_pool.alloc_map);
  2256. kfree(base->lookup_log_chans);
  2257. kfree(base->lookup_phy_chans);
  2258. kfree(base->phy_res);
  2259. kfree(base);
  2260. }
  2261. return NULL;
  2262. }
  2263. static void __init d40_hw_init(struct d40_base *base)
  2264. {
  2265. static const struct d40_reg_val dma_init_reg[] = {
  2266. /* Clock every part of the DMA block from start */
  2267. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2268. /* Interrupts on all logical channels */
  2269. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2270. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2271. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2272. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2273. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2274. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2275. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2276. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2277. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2278. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2279. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2280. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2281. };
  2282. int i;
  2283. u32 prmseo[2] = {0, 0};
  2284. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2285. u32 pcmis = 0;
  2286. u32 pcicr = 0;
  2287. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2288. writel(dma_init_reg[i].val,
  2289. base->virtbase + dma_init_reg[i].reg);
  2290. /* Configure all our dma channels to default settings */
  2291. for (i = 0; i < base->num_phy_chans; i++) {
  2292. activeo[i % 2] = activeo[i % 2] << 2;
  2293. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2294. == D40_ALLOC_PHY) {
  2295. activeo[i % 2] |= 3;
  2296. continue;
  2297. }
  2298. /* Enable interrupt # */
  2299. pcmis = (pcmis << 1) | 1;
  2300. /* Clear interrupt # */
  2301. pcicr = (pcicr << 1) | 1;
  2302. /* Set channel to physical mode */
  2303. prmseo[i % 2] = prmseo[i % 2] << 2;
  2304. prmseo[i % 2] |= 1;
  2305. }
  2306. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2307. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2308. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2309. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2310. /* Write which interrupt to enable */
  2311. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2312. /* Write which interrupt to clear */
  2313. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2314. }
  2315. static int __init d40_lcla_allocate(struct d40_base *base)
  2316. {
  2317. struct d40_lcla_pool *pool = &base->lcla_pool;
  2318. unsigned long *page_list;
  2319. int i, j;
  2320. int ret = 0;
  2321. /*
  2322. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2323. * To full fill this hardware requirement without wasting 256 kb
  2324. * we allocate pages until we get an aligned one.
  2325. */
  2326. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2327. GFP_KERNEL);
  2328. if (!page_list) {
  2329. ret = -ENOMEM;
  2330. goto failure;
  2331. }
  2332. /* Calculating how many pages that are required */
  2333. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2334. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2335. page_list[i] = __get_free_pages(GFP_KERNEL,
  2336. base->lcla_pool.pages);
  2337. if (!page_list[i]) {
  2338. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2339. base->lcla_pool.pages);
  2340. for (j = 0; j < i; j++)
  2341. free_pages(page_list[j], base->lcla_pool.pages);
  2342. goto failure;
  2343. }
  2344. if ((virt_to_phys((void *)page_list[i]) &
  2345. (LCLA_ALIGNMENT - 1)) == 0)
  2346. break;
  2347. }
  2348. for (j = 0; j < i; j++)
  2349. free_pages(page_list[j], base->lcla_pool.pages);
  2350. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2351. base->lcla_pool.base = (void *)page_list[i];
  2352. } else {
  2353. /*
  2354. * After many attempts and no succees with finding the correct
  2355. * alignment, try with allocating a big buffer.
  2356. */
  2357. dev_warn(base->dev,
  2358. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2359. __func__, base->lcla_pool.pages);
  2360. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2361. base->num_phy_chans +
  2362. LCLA_ALIGNMENT,
  2363. GFP_KERNEL);
  2364. if (!base->lcla_pool.base_unaligned) {
  2365. ret = -ENOMEM;
  2366. goto failure;
  2367. }
  2368. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2369. LCLA_ALIGNMENT);
  2370. }
  2371. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2372. SZ_1K * base->num_phy_chans,
  2373. DMA_TO_DEVICE);
  2374. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2375. pool->dma_addr = 0;
  2376. ret = -ENOMEM;
  2377. goto failure;
  2378. }
  2379. writel(virt_to_phys(base->lcla_pool.base),
  2380. base->virtbase + D40_DREG_LCLA);
  2381. failure:
  2382. kfree(page_list);
  2383. return ret;
  2384. }
  2385. static int __init d40_probe(struct platform_device *pdev)
  2386. {
  2387. int err;
  2388. int ret = -ENOENT;
  2389. struct d40_base *base;
  2390. struct resource *res = NULL;
  2391. int num_reserved_chans;
  2392. u32 val;
  2393. base = d40_hw_detect_init(pdev);
  2394. if (!base)
  2395. goto failure;
  2396. num_reserved_chans = d40_phy_res_init(base);
  2397. platform_set_drvdata(pdev, base);
  2398. spin_lock_init(&base->interrupt_lock);
  2399. spin_lock_init(&base->execmd_lock);
  2400. /* Get IO for logical channel parameter address */
  2401. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2402. if (!res) {
  2403. ret = -ENOENT;
  2404. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2405. goto failure;
  2406. }
  2407. base->lcpa_size = resource_size(res);
  2408. base->phy_lcpa = res->start;
  2409. if (request_mem_region(res->start, resource_size(res),
  2410. D40_NAME " I/O lcpa") == NULL) {
  2411. ret = -EBUSY;
  2412. d40_err(&pdev->dev,
  2413. "Failed to request LCPA region 0x%x-0x%x\n",
  2414. res->start, res->end);
  2415. goto failure;
  2416. }
  2417. /* We make use of ESRAM memory for this. */
  2418. val = readl(base->virtbase + D40_DREG_LCPA);
  2419. if (res->start != val && val != 0) {
  2420. dev_warn(&pdev->dev,
  2421. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2422. __func__, val, res->start);
  2423. } else
  2424. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2425. base->lcpa_base = ioremap(res->start, resource_size(res));
  2426. if (!base->lcpa_base) {
  2427. ret = -ENOMEM;
  2428. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2429. goto failure;
  2430. }
  2431. ret = d40_lcla_allocate(base);
  2432. if (ret) {
  2433. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2434. goto failure;
  2435. }
  2436. spin_lock_init(&base->lcla_pool.lock);
  2437. base->irq = platform_get_irq(pdev, 0);
  2438. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2439. if (ret) {
  2440. d40_err(&pdev->dev, "No IRQ defined\n");
  2441. goto failure;
  2442. }
  2443. err = d40_dmaengine_init(base, num_reserved_chans);
  2444. if (err)
  2445. goto failure;
  2446. d40_hw_init(base);
  2447. dev_info(base->dev, "initialized\n");
  2448. return 0;
  2449. failure:
  2450. if (base) {
  2451. if (base->desc_slab)
  2452. kmem_cache_destroy(base->desc_slab);
  2453. if (base->virtbase)
  2454. iounmap(base->virtbase);
  2455. if (base->lcla_pool.dma_addr)
  2456. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2457. SZ_1K * base->num_phy_chans,
  2458. DMA_TO_DEVICE);
  2459. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2460. free_pages((unsigned long)base->lcla_pool.base,
  2461. base->lcla_pool.pages);
  2462. kfree(base->lcla_pool.base_unaligned);
  2463. if (base->phy_lcpa)
  2464. release_mem_region(base->phy_lcpa,
  2465. base->lcpa_size);
  2466. if (base->phy_start)
  2467. release_mem_region(base->phy_start,
  2468. base->phy_size);
  2469. if (base->clk) {
  2470. clk_disable(base->clk);
  2471. clk_put(base->clk);
  2472. }
  2473. kfree(base->lcla_pool.alloc_map);
  2474. kfree(base->lookup_log_chans);
  2475. kfree(base->lookup_phy_chans);
  2476. kfree(base->phy_res);
  2477. kfree(base);
  2478. }
  2479. d40_err(&pdev->dev, "probe failed\n");
  2480. return ret;
  2481. }
  2482. static struct platform_driver d40_driver = {
  2483. .driver = {
  2484. .owner = THIS_MODULE,
  2485. .name = D40_NAME,
  2486. },
  2487. };
  2488. static int __init stedma40_init(void)
  2489. {
  2490. return platform_driver_probe(&d40_driver, d40_probe);
  2491. }
  2492. subsys_initcall(stedma40_init);