sched.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035
  1. /*
  2. * linux/net/sunrpc/sched.c
  3. *
  4. * Scheduling for synchronous and asynchronous RPC requests.
  5. *
  6. * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
  7. *
  8. * TCP NFS related read + write fixes
  9. * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10. */
  11. #include <linux/module.h>
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/slab.h>
  15. #include <linux/mempool.h>
  16. #include <linux/smp.h>
  17. #include <linux/smp_lock.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/mutex.h>
  20. #include <linux/sunrpc/clnt.h>
  21. #ifdef RPC_DEBUG
  22. #define RPCDBG_FACILITY RPCDBG_SCHED
  23. #define RPC_TASK_MAGIC_ID 0xf00baa
  24. #endif
  25. /*
  26. * RPC slabs and memory pools
  27. */
  28. #define RPC_BUFFER_MAXSIZE (2048)
  29. #define RPC_BUFFER_POOLSIZE (8)
  30. #define RPC_TASK_POOLSIZE (8)
  31. static struct kmem_cache *rpc_task_slabp __read_mostly;
  32. static struct kmem_cache *rpc_buffer_slabp __read_mostly;
  33. static mempool_t *rpc_task_mempool __read_mostly;
  34. static mempool_t *rpc_buffer_mempool __read_mostly;
  35. static void rpc_async_schedule(struct work_struct *);
  36. static void rpc_release_task(struct rpc_task *task);
  37. static void __rpc_queue_timer_fn(unsigned long ptr);
  38. /*
  39. * RPC tasks sit here while waiting for conditions to improve.
  40. */
  41. static struct rpc_wait_queue delay_queue;
  42. /*
  43. * rpciod-related stuff
  44. */
  45. struct workqueue_struct *rpciod_workqueue;
  46. /*
  47. * Disable the timer for a given RPC task. Should be called with
  48. * queue->lock and bh_disabled in order to avoid races within
  49. * rpc_run_timer().
  50. */
  51. static void
  52. __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  53. {
  54. if (task->tk_timeout == 0)
  55. return;
  56. dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  57. task->tk_timeout = 0;
  58. list_del(&task->u.tk_wait.timer_list);
  59. if (list_empty(&queue->timer_list.list))
  60. del_timer(&queue->timer_list.timer);
  61. }
  62. static void
  63. rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  64. {
  65. queue->timer_list.expires = expires;
  66. mod_timer(&queue->timer_list.timer, expires);
  67. }
  68. /*
  69. * Set up a timer for the current task.
  70. */
  71. static void
  72. __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  73. {
  74. if (!task->tk_timeout)
  75. return;
  76. dprintk("RPC: %5u setting alarm for %lu ms\n",
  77. task->tk_pid, task->tk_timeout * 1000 / HZ);
  78. task->u.tk_wait.expires = jiffies + task->tk_timeout;
  79. if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  80. rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  81. list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  82. }
  83. /*
  84. * Add new request to a priority queue.
  85. */
  86. static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
  87. {
  88. struct list_head *q;
  89. struct rpc_task *t;
  90. INIT_LIST_HEAD(&task->u.tk_wait.links);
  91. q = &queue->tasks[task->tk_priority];
  92. if (unlikely(task->tk_priority > queue->maxpriority))
  93. q = &queue->tasks[queue->maxpriority];
  94. list_for_each_entry(t, q, u.tk_wait.list) {
  95. if (t->tk_owner == task->tk_owner) {
  96. list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
  97. return;
  98. }
  99. }
  100. list_add_tail(&task->u.tk_wait.list, q);
  101. }
  102. /*
  103. * Add new request to wait queue.
  104. *
  105. * Swapper tasks always get inserted at the head of the queue.
  106. * This should avoid many nasty memory deadlocks and hopefully
  107. * improve overall performance.
  108. * Everyone else gets appended to the queue to ensure proper FIFO behavior.
  109. */
  110. static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  111. {
  112. BUG_ON (RPC_IS_QUEUED(task));
  113. if (RPC_IS_PRIORITY(queue))
  114. __rpc_add_wait_queue_priority(queue, task);
  115. else if (RPC_IS_SWAPPER(task))
  116. list_add(&task->u.tk_wait.list, &queue->tasks[0]);
  117. else
  118. list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
  119. task->tk_waitqueue = queue;
  120. queue->qlen++;
  121. rpc_set_queued(task);
  122. dprintk("RPC: %5u added to queue %p \"%s\"\n",
  123. task->tk_pid, queue, rpc_qname(queue));
  124. }
  125. /*
  126. * Remove request from a priority queue.
  127. */
  128. static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
  129. {
  130. struct rpc_task *t;
  131. if (!list_empty(&task->u.tk_wait.links)) {
  132. t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
  133. list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
  134. list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
  135. }
  136. }
  137. /*
  138. * Remove request from queue.
  139. * Note: must be called with spin lock held.
  140. */
  141. static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  142. {
  143. __rpc_disable_timer(queue, task);
  144. if (RPC_IS_PRIORITY(queue))
  145. __rpc_remove_wait_queue_priority(task);
  146. list_del(&task->u.tk_wait.list);
  147. queue->qlen--;
  148. dprintk("RPC: %5u removed from queue %p \"%s\"\n",
  149. task->tk_pid, queue, rpc_qname(queue));
  150. }
  151. static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
  152. {
  153. queue->priority = priority;
  154. queue->count = 1 << (priority * 2);
  155. }
  156. static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
  157. {
  158. queue->owner = pid;
  159. queue->nr = RPC_BATCH_COUNT;
  160. }
  161. static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
  162. {
  163. rpc_set_waitqueue_priority(queue, queue->maxpriority);
  164. rpc_set_waitqueue_owner(queue, 0);
  165. }
  166. static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
  167. {
  168. int i;
  169. spin_lock_init(&queue->lock);
  170. for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
  171. INIT_LIST_HEAD(&queue->tasks[i]);
  172. queue->maxpriority = nr_queues - 1;
  173. rpc_reset_waitqueue_priority(queue);
  174. queue->qlen = 0;
  175. setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
  176. INIT_LIST_HEAD(&queue->timer_list.list);
  177. #ifdef RPC_DEBUG
  178. queue->name = qname;
  179. #endif
  180. }
  181. void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  182. {
  183. __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
  184. }
  185. void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  186. {
  187. __rpc_init_priority_wait_queue(queue, qname, 1);
  188. }
  189. EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
  190. void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
  191. {
  192. del_timer_sync(&queue->timer_list.timer);
  193. }
  194. EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
  195. static int rpc_wait_bit_killable(void *word)
  196. {
  197. if (fatal_signal_pending(current))
  198. return -ERESTARTSYS;
  199. schedule();
  200. return 0;
  201. }
  202. #ifdef RPC_DEBUG
  203. static void rpc_task_set_debuginfo(struct rpc_task *task)
  204. {
  205. static atomic_t rpc_pid;
  206. task->tk_magic = RPC_TASK_MAGIC_ID;
  207. task->tk_pid = atomic_inc_return(&rpc_pid);
  208. }
  209. #else
  210. static inline void rpc_task_set_debuginfo(struct rpc_task *task)
  211. {
  212. }
  213. #endif
  214. static void rpc_set_active(struct rpc_task *task)
  215. {
  216. struct rpc_clnt *clnt;
  217. if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
  218. return;
  219. rpc_task_set_debuginfo(task);
  220. /* Add to global list of all tasks */
  221. clnt = task->tk_client;
  222. if (clnt != NULL) {
  223. spin_lock(&clnt->cl_lock);
  224. list_add_tail(&task->tk_task, &clnt->cl_tasks);
  225. spin_unlock(&clnt->cl_lock);
  226. }
  227. }
  228. /*
  229. * Mark an RPC call as having completed by clearing the 'active' bit
  230. */
  231. static void rpc_mark_complete_task(struct rpc_task *task)
  232. {
  233. smp_mb__before_clear_bit();
  234. clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  235. smp_mb__after_clear_bit();
  236. wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
  237. }
  238. /*
  239. * Allow callers to wait for completion of an RPC call
  240. */
  241. int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
  242. {
  243. if (action == NULL)
  244. action = rpc_wait_bit_killable;
  245. return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
  246. action, TASK_KILLABLE);
  247. }
  248. EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
  249. /*
  250. * Make an RPC task runnable.
  251. *
  252. * Note: If the task is ASYNC, this must be called with
  253. * the spinlock held to protect the wait queue operation.
  254. */
  255. static void rpc_make_runnable(struct rpc_task *task)
  256. {
  257. rpc_clear_queued(task);
  258. if (rpc_test_and_set_running(task))
  259. return;
  260. /* We might have raced */
  261. if (RPC_IS_QUEUED(task)) {
  262. rpc_clear_running(task);
  263. return;
  264. }
  265. if (RPC_IS_ASYNC(task)) {
  266. int status;
  267. INIT_WORK(&task->u.tk_work, rpc_async_schedule);
  268. status = queue_work(rpciod_workqueue, &task->u.tk_work);
  269. if (status < 0) {
  270. printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
  271. task->tk_status = status;
  272. return;
  273. }
  274. } else
  275. wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
  276. }
  277. /*
  278. * Prepare for sleeping on a wait queue.
  279. * By always appending tasks to the list we ensure FIFO behavior.
  280. * NB: An RPC task will only receive interrupt-driven events as long
  281. * as it's on a wait queue.
  282. */
  283. static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  284. rpc_action action)
  285. {
  286. dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
  287. task->tk_pid, rpc_qname(q), jiffies);
  288. if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
  289. printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
  290. return;
  291. }
  292. __rpc_add_wait_queue(q, task);
  293. BUG_ON(task->tk_callback != NULL);
  294. task->tk_callback = action;
  295. __rpc_add_timer(q, task);
  296. }
  297. void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  298. rpc_action action)
  299. {
  300. /* Mark the task as being activated if so needed */
  301. rpc_set_active(task);
  302. /*
  303. * Protect the queue operations.
  304. */
  305. spin_lock_bh(&q->lock);
  306. __rpc_sleep_on(q, task, action);
  307. spin_unlock_bh(&q->lock);
  308. }
  309. EXPORT_SYMBOL_GPL(rpc_sleep_on);
  310. /**
  311. * __rpc_do_wake_up_task - wake up a single rpc_task
  312. * @queue: wait queue
  313. * @task: task to be woken up
  314. *
  315. * Caller must hold queue->lock, and have cleared the task queued flag.
  316. */
  317. static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  318. {
  319. dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
  320. task->tk_pid, jiffies);
  321. #ifdef RPC_DEBUG
  322. BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
  323. #endif
  324. /* Has the task been executed yet? If not, we cannot wake it up! */
  325. if (!RPC_IS_ACTIVATED(task)) {
  326. printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
  327. return;
  328. }
  329. __rpc_remove_wait_queue(queue, task);
  330. rpc_make_runnable(task);
  331. dprintk("RPC: __rpc_wake_up_task done\n");
  332. }
  333. /*
  334. * Wake up a queued task while the queue lock is being held
  335. */
  336. static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
  337. {
  338. if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
  339. __rpc_do_wake_up_task(queue, task);
  340. }
  341. /*
  342. * Wake up a task on a specific queue
  343. */
  344. void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  345. {
  346. spin_lock_bh(&queue->lock);
  347. rpc_wake_up_task_queue_locked(queue, task);
  348. spin_unlock_bh(&queue->lock);
  349. }
  350. EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
  351. /*
  352. * Wake up the specified task
  353. */
  354. static void rpc_wake_up_task(struct rpc_task *task)
  355. {
  356. rpc_wake_up_queued_task(task->tk_waitqueue, task);
  357. }
  358. /*
  359. * Wake up the next task on a priority queue.
  360. */
  361. static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
  362. {
  363. struct list_head *q;
  364. struct rpc_task *task;
  365. /*
  366. * Service a batch of tasks from a single owner.
  367. */
  368. q = &queue->tasks[queue->priority];
  369. if (!list_empty(q)) {
  370. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  371. if (queue->owner == task->tk_owner) {
  372. if (--queue->nr)
  373. goto out;
  374. list_move_tail(&task->u.tk_wait.list, q);
  375. }
  376. /*
  377. * Check if we need to switch queues.
  378. */
  379. if (--queue->count)
  380. goto new_owner;
  381. }
  382. /*
  383. * Service the next queue.
  384. */
  385. do {
  386. if (q == &queue->tasks[0])
  387. q = &queue->tasks[queue->maxpriority];
  388. else
  389. q = q - 1;
  390. if (!list_empty(q)) {
  391. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  392. goto new_queue;
  393. }
  394. } while (q != &queue->tasks[queue->priority]);
  395. rpc_reset_waitqueue_priority(queue);
  396. return NULL;
  397. new_queue:
  398. rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
  399. new_owner:
  400. rpc_set_waitqueue_owner(queue, task->tk_owner);
  401. out:
  402. rpc_wake_up_task_queue_locked(queue, task);
  403. return task;
  404. }
  405. /*
  406. * Wake up the next task on the wait queue.
  407. */
  408. struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
  409. {
  410. struct rpc_task *task = NULL;
  411. dprintk("RPC: wake_up_next(%p \"%s\")\n",
  412. queue, rpc_qname(queue));
  413. spin_lock_bh(&queue->lock);
  414. if (RPC_IS_PRIORITY(queue))
  415. task = __rpc_wake_up_next_priority(queue);
  416. else {
  417. task_for_first(task, &queue->tasks[0])
  418. rpc_wake_up_task_queue_locked(queue, task);
  419. }
  420. spin_unlock_bh(&queue->lock);
  421. return task;
  422. }
  423. EXPORT_SYMBOL_GPL(rpc_wake_up_next);
  424. /**
  425. * rpc_wake_up - wake up all rpc_tasks
  426. * @queue: rpc_wait_queue on which the tasks are sleeping
  427. *
  428. * Grabs queue->lock
  429. */
  430. void rpc_wake_up(struct rpc_wait_queue *queue)
  431. {
  432. struct rpc_task *task, *next;
  433. struct list_head *head;
  434. spin_lock_bh(&queue->lock);
  435. head = &queue->tasks[queue->maxpriority];
  436. for (;;) {
  437. list_for_each_entry_safe(task, next, head, u.tk_wait.list)
  438. rpc_wake_up_task_queue_locked(queue, task);
  439. if (head == &queue->tasks[0])
  440. break;
  441. head--;
  442. }
  443. spin_unlock_bh(&queue->lock);
  444. }
  445. EXPORT_SYMBOL_GPL(rpc_wake_up);
  446. /**
  447. * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
  448. * @queue: rpc_wait_queue on which the tasks are sleeping
  449. * @status: status value to set
  450. *
  451. * Grabs queue->lock
  452. */
  453. void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
  454. {
  455. struct rpc_task *task, *next;
  456. struct list_head *head;
  457. spin_lock_bh(&queue->lock);
  458. head = &queue->tasks[queue->maxpriority];
  459. for (;;) {
  460. list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
  461. task->tk_status = status;
  462. rpc_wake_up_task_queue_locked(queue, task);
  463. }
  464. if (head == &queue->tasks[0])
  465. break;
  466. head--;
  467. }
  468. spin_unlock_bh(&queue->lock);
  469. }
  470. EXPORT_SYMBOL_GPL(rpc_wake_up_status);
  471. static void __rpc_queue_timer_fn(unsigned long ptr)
  472. {
  473. struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
  474. struct rpc_task *task, *n;
  475. unsigned long expires, now, timeo;
  476. spin_lock(&queue->lock);
  477. expires = now = jiffies;
  478. list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
  479. timeo = task->u.tk_wait.expires;
  480. if (time_after_eq(now, timeo)) {
  481. dprintk("RPC: %5u timeout\n", task->tk_pid);
  482. task->tk_status = -ETIMEDOUT;
  483. rpc_wake_up_task_queue_locked(queue, task);
  484. continue;
  485. }
  486. if (expires == now || time_after(expires, timeo))
  487. expires = timeo;
  488. }
  489. if (!list_empty(&queue->timer_list.list))
  490. rpc_set_queue_timer(queue, expires);
  491. spin_unlock(&queue->lock);
  492. }
  493. static void __rpc_atrun(struct rpc_task *task)
  494. {
  495. task->tk_status = 0;
  496. }
  497. /*
  498. * Run a task at a later time
  499. */
  500. void rpc_delay(struct rpc_task *task, unsigned long delay)
  501. {
  502. task->tk_timeout = delay;
  503. rpc_sleep_on(&delay_queue, task, __rpc_atrun);
  504. }
  505. EXPORT_SYMBOL_GPL(rpc_delay);
  506. /*
  507. * Helper to call task->tk_ops->rpc_call_prepare
  508. */
  509. static void rpc_prepare_task(struct rpc_task *task)
  510. {
  511. task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
  512. }
  513. /*
  514. * Helper that calls task->tk_ops->rpc_call_done if it exists
  515. */
  516. void rpc_exit_task(struct rpc_task *task)
  517. {
  518. task->tk_action = NULL;
  519. if (task->tk_ops->rpc_call_done != NULL) {
  520. task->tk_ops->rpc_call_done(task, task->tk_calldata);
  521. if (task->tk_action != NULL) {
  522. WARN_ON(RPC_ASSASSINATED(task));
  523. /* Always release the RPC slot and buffer memory */
  524. xprt_release(task);
  525. }
  526. }
  527. }
  528. EXPORT_SYMBOL_GPL(rpc_exit_task);
  529. void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
  530. {
  531. if (ops->rpc_release != NULL)
  532. ops->rpc_release(calldata);
  533. }
  534. /*
  535. * This is the RPC `scheduler' (or rather, the finite state machine).
  536. */
  537. static void __rpc_execute(struct rpc_task *task)
  538. {
  539. int status = 0;
  540. dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
  541. task->tk_pid, task->tk_flags);
  542. BUG_ON(RPC_IS_QUEUED(task));
  543. for (;;) {
  544. /*
  545. * Execute any pending callback.
  546. */
  547. if (task->tk_callback) {
  548. void (*save_callback)(struct rpc_task *);
  549. /*
  550. * We set tk_callback to NULL before calling it,
  551. * in case it sets the tk_callback field itself:
  552. */
  553. save_callback = task->tk_callback;
  554. task->tk_callback = NULL;
  555. save_callback(task);
  556. }
  557. /*
  558. * Perform the next FSM step.
  559. * tk_action may be NULL when the task has been killed
  560. * by someone else.
  561. */
  562. if (!RPC_IS_QUEUED(task)) {
  563. if (task->tk_action == NULL)
  564. break;
  565. task->tk_action(task);
  566. }
  567. /*
  568. * Lockless check for whether task is sleeping or not.
  569. */
  570. if (!RPC_IS_QUEUED(task))
  571. continue;
  572. rpc_clear_running(task);
  573. if (RPC_IS_ASYNC(task)) {
  574. /* Careful! we may have raced... */
  575. if (RPC_IS_QUEUED(task))
  576. return;
  577. if (rpc_test_and_set_running(task))
  578. return;
  579. continue;
  580. }
  581. /* sync task: sleep here */
  582. dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
  583. status = out_of_line_wait_on_bit(&task->tk_runstate,
  584. RPC_TASK_QUEUED, rpc_wait_bit_killable,
  585. TASK_KILLABLE);
  586. if (status == -ERESTARTSYS) {
  587. /*
  588. * When a sync task receives a signal, it exits with
  589. * -ERESTARTSYS. In order to catch any callbacks that
  590. * clean up after sleeping on some queue, we don't
  591. * break the loop here, but go around once more.
  592. */
  593. dprintk("RPC: %5u got signal\n", task->tk_pid);
  594. task->tk_flags |= RPC_TASK_KILLED;
  595. rpc_exit(task, -ERESTARTSYS);
  596. rpc_wake_up_task(task);
  597. }
  598. rpc_set_running(task);
  599. dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
  600. }
  601. dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
  602. task->tk_status);
  603. /* Release all resources associated with the task */
  604. rpc_release_task(task);
  605. }
  606. /*
  607. * User-visible entry point to the scheduler.
  608. *
  609. * This may be called recursively if e.g. an async NFS task updates
  610. * the attributes and finds that dirty pages must be flushed.
  611. * NOTE: Upon exit of this function the task is guaranteed to be
  612. * released. In particular note that tk_release() will have
  613. * been called, so your task memory may have been freed.
  614. */
  615. void rpc_execute(struct rpc_task *task)
  616. {
  617. rpc_set_active(task);
  618. rpc_set_running(task);
  619. __rpc_execute(task);
  620. }
  621. static void rpc_async_schedule(struct work_struct *work)
  622. {
  623. __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
  624. }
  625. struct rpc_buffer {
  626. size_t len;
  627. char data[];
  628. };
  629. /**
  630. * rpc_malloc - allocate an RPC buffer
  631. * @task: RPC task that will use this buffer
  632. * @size: requested byte size
  633. *
  634. * To prevent rpciod from hanging, this allocator never sleeps,
  635. * returning NULL if the request cannot be serviced immediately.
  636. * The caller can arrange to sleep in a way that is safe for rpciod.
  637. *
  638. * Most requests are 'small' (under 2KiB) and can be serviced from a
  639. * mempool, ensuring that NFS reads and writes can always proceed,
  640. * and that there is good locality of reference for these buffers.
  641. *
  642. * In order to avoid memory starvation triggering more writebacks of
  643. * NFS requests, we avoid using GFP_KERNEL.
  644. */
  645. void *rpc_malloc(struct rpc_task *task, size_t size)
  646. {
  647. struct rpc_buffer *buf;
  648. gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
  649. size += sizeof(struct rpc_buffer);
  650. if (size <= RPC_BUFFER_MAXSIZE)
  651. buf = mempool_alloc(rpc_buffer_mempool, gfp);
  652. else
  653. buf = kmalloc(size, gfp);
  654. if (!buf)
  655. return NULL;
  656. buf->len = size;
  657. dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
  658. task->tk_pid, size, buf);
  659. return &buf->data;
  660. }
  661. EXPORT_SYMBOL_GPL(rpc_malloc);
  662. /**
  663. * rpc_free - free buffer allocated via rpc_malloc
  664. * @buffer: buffer to free
  665. *
  666. */
  667. void rpc_free(void *buffer)
  668. {
  669. size_t size;
  670. struct rpc_buffer *buf;
  671. if (!buffer)
  672. return;
  673. buf = container_of(buffer, struct rpc_buffer, data);
  674. size = buf->len;
  675. dprintk("RPC: freeing buffer of size %zu at %p\n",
  676. size, buf);
  677. if (size <= RPC_BUFFER_MAXSIZE)
  678. mempool_free(buf, rpc_buffer_mempool);
  679. else
  680. kfree(buf);
  681. }
  682. EXPORT_SYMBOL_GPL(rpc_free);
  683. /*
  684. * Creation and deletion of RPC task structures
  685. */
  686. static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
  687. {
  688. memset(task, 0, sizeof(*task));
  689. atomic_set(&task->tk_count, 1);
  690. task->tk_flags = task_setup_data->flags;
  691. task->tk_ops = task_setup_data->callback_ops;
  692. task->tk_calldata = task_setup_data->callback_data;
  693. INIT_LIST_HEAD(&task->tk_task);
  694. /* Initialize retry counters */
  695. task->tk_garb_retry = 2;
  696. task->tk_cred_retry = 2;
  697. task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
  698. task->tk_owner = current->tgid;
  699. /* Initialize workqueue for async tasks */
  700. task->tk_workqueue = task_setup_data->workqueue;
  701. task->tk_client = task_setup_data->rpc_client;
  702. if (task->tk_client != NULL) {
  703. kref_get(&task->tk_client->cl_kref);
  704. if (task->tk_client->cl_softrtry)
  705. task->tk_flags |= RPC_TASK_SOFT;
  706. }
  707. if (task->tk_ops->rpc_call_prepare != NULL)
  708. task->tk_action = rpc_prepare_task;
  709. if (task_setup_data->rpc_message != NULL) {
  710. task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
  711. task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
  712. task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
  713. /* Bind the user cred */
  714. rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
  715. if (task->tk_action == NULL)
  716. rpc_call_start(task);
  717. }
  718. /* starting timestamp */
  719. task->tk_start = jiffies;
  720. dprintk("RPC: new task initialized, procpid %u\n",
  721. task_pid_nr(current));
  722. }
  723. static struct rpc_task *
  724. rpc_alloc_task(void)
  725. {
  726. return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
  727. }
  728. /*
  729. * Create a new task for the specified client.
  730. */
  731. struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
  732. {
  733. struct rpc_task *task = setup_data->task;
  734. unsigned short flags = 0;
  735. if (task == NULL) {
  736. task = rpc_alloc_task();
  737. if (task == NULL)
  738. goto out;
  739. flags = RPC_TASK_DYNAMIC;
  740. }
  741. rpc_init_task(task, setup_data);
  742. task->tk_flags |= flags;
  743. dprintk("RPC: allocated task %p\n", task);
  744. out:
  745. return task;
  746. }
  747. static void rpc_free_task(struct rpc_task *task)
  748. {
  749. const struct rpc_call_ops *tk_ops = task->tk_ops;
  750. void *calldata = task->tk_calldata;
  751. if (task->tk_flags & RPC_TASK_DYNAMIC) {
  752. dprintk("RPC: %5u freeing task\n", task->tk_pid);
  753. mempool_free(task, rpc_task_mempool);
  754. }
  755. rpc_release_calldata(tk_ops, calldata);
  756. }
  757. static void rpc_async_release(struct work_struct *work)
  758. {
  759. rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
  760. }
  761. void rpc_put_task(struct rpc_task *task)
  762. {
  763. if (!atomic_dec_and_test(&task->tk_count))
  764. return;
  765. /* Release resources */
  766. if (task->tk_rqstp)
  767. xprt_release(task);
  768. if (task->tk_msg.rpc_cred)
  769. rpcauth_unbindcred(task);
  770. if (task->tk_client) {
  771. rpc_release_client(task->tk_client);
  772. task->tk_client = NULL;
  773. }
  774. if (task->tk_workqueue != NULL) {
  775. INIT_WORK(&task->u.tk_work, rpc_async_release);
  776. queue_work(task->tk_workqueue, &task->u.tk_work);
  777. } else
  778. rpc_free_task(task);
  779. }
  780. EXPORT_SYMBOL_GPL(rpc_put_task);
  781. static void rpc_release_task(struct rpc_task *task)
  782. {
  783. #ifdef RPC_DEBUG
  784. BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
  785. #endif
  786. dprintk("RPC: %5u release task\n", task->tk_pid);
  787. if (!list_empty(&task->tk_task)) {
  788. struct rpc_clnt *clnt = task->tk_client;
  789. /* Remove from client task list */
  790. spin_lock(&clnt->cl_lock);
  791. list_del(&task->tk_task);
  792. spin_unlock(&clnt->cl_lock);
  793. }
  794. BUG_ON (RPC_IS_QUEUED(task));
  795. #ifdef RPC_DEBUG
  796. task->tk_magic = 0;
  797. #endif
  798. /* Wake up anyone who is waiting for task completion */
  799. rpc_mark_complete_task(task);
  800. rpc_put_task(task);
  801. }
  802. /*
  803. * Kill all tasks for the given client.
  804. * XXX: kill their descendants as well?
  805. */
  806. void rpc_killall_tasks(struct rpc_clnt *clnt)
  807. {
  808. struct rpc_task *rovr;
  809. if (list_empty(&clnt->cl_tasks))
  810. return;
  811. dprintk("RPC: killing all tasks for client %p\n", clnt);
  812. /*
  813. * Spin lock all_tasks to prevent changes...
  814. */
  815. spin_lock(&clnt->cl_lock);
  816. list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
  817. if (! RPC_IS_ACTIVATED(rovr))
  818. continue;
  819. if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
  820. rovr->tk_flags |= RPC_TASK_KILLED;
  821. rpc_exit(rovr, -EIO);
  822. rpc_wake_up_task(rovr);
  823. }
  824. }
  825. spin_unlock(&clnt->cl_lock);
  826. }
  827. EXPORT_SYMBOL_GPL(rpc_killall_tasks);
  828. int rpciod_up(void)
  829. {
  830. return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
  831. }
  832. void rpciod_down(void)
  833. {
  834. module_put(THIS_MODULE);
  835. }
  836. /*
  837. * Start up the rpciod workqueue.
  838. */
  839. static int rpciod_start(void)
  840. {
  841. struct workqueue_struct *wq;
  842. /*
  843. * Create the rpciod thread and wait for it to start.
  844. */
  845. dprintk("RPC: creating workqueue rpciod\n");
  846. wq = create_workqueue("rpciod");
  847. rpciod_workqueue = wq;
  848. return rpciod_workqueue != NULL;
  849. }
  850. static void rpciod_stop(void)
  851. {
  852. struct workqueue_struct *wq = NULL;
  853. if (rpciod_workqueue == NULL)
  854. return;
  855. dprintk("RPC: destroying workqueue rpciod\n");
  856. wq = rpciod_workqueue;
  857. rpciod_workqueue = NULL;
  858. destroy_workqueue(wq);
  859. }
  860. void
  861. rpc_destroy_mempool(void)
  862. {
  863. rpciod_stop();
  864. if (rpc_buffer_mempool)
  865. mempool_destroy(rpc_buffer_mempool);
  866. if (rpc_task_mempool)
  867. mempool_destroy(rpc_task_mempool);
  868. if (rpc_task_slabp)
  869. kmem_cache_destroy(rpc_task_slabp);
  870. if (rpc_buffer_slabp)
  871. kmem_cache_destroy(rpc_buffer_slabp);
  872. rpc_destroy_wait_queue(&delay_queue);
  873. }
  874. int
  875. rpc_init_mempool(void)
  876. {
  877. /*
  878. * The following is not strictly a mempool initialisation,
  879. * but there is no harm in doing it here
  880. */
  881. rpc_init_wait_queue(&delay_queue, "delayq");
  882. if (!rpciod_start())
  883. goto err_nomem;
  884. rpc_task_slabp = kmem_cache_create("rpc_tasks",
  885. sizeof(struct rpc_task),
  886. 0, SLAB_HWCACHE_ALIGN,
  887. NULL);
  888. if (!rpc_task_slabp)
  889. goto err_nomem;
  890. rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
  891. RPC_BUFFER_MAXSIZE,
  892. 0, SLAB_HWCACHE_ALIGN,
  893. NULL);
  894. if (!rpc_buffer_slabp)
  895. goto err_nomem;
  896. rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
  897. rpc_task_slabp);
  898. if (!rpc_task_mempool)
  899. goto err_nomem;
  900. rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
  901. rpc_buffer_slabp);
  902. if (!rpc_buffer_mempool)
  903. goto err_nomem;
  904. return 0;
  905. err_nomem:
  906. rpc_destroy_mempool();
  907. return -ENOMEM;
  908. }