xfs_inode.c 131 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_imap.h"
  26. #include "xfs_trans.h"
  27. #include "xfs_trans_priv.h"
  28. #include "xfs_sb.h"
  29. #include "xfs_ag.h"
  30. #include "xfs_dir2.h"
  31. #include "xfs_dmapi.h"
  32. #include "xfs_mount.h"
  33. #include "xfs_bmap_btree.h"
  34. #include "xfs_alloc_btree.h"
  35. #include "xfs_ialloc_btree.h"
  36. #include "xfs_dir2_sf.h"
  37. #include "xfs_attr_sf.h"
  38. #include "xfs_dinode.h"
  39. #include "xfs_inode.h"
  40. #include "xfs_buf_item.h"
  41. #include "xfs_inode_item.h"
  42. #include "xfs_btree.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_dir2_trace.h"
  50. #include "xfs_quota.h"
  51. #include "xfs_acl.h"
  52. #include "xfs_filestream.h"
  53. #include "xfs_vnodeops.h"
  54. kmem_zone_t *xfs_ifork_zone;
  55. kmem_zone_t *xfs_inode_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_irec_t irec;
  77. xfs_bmbt_rec_host_t rec;
  78. int i;
  79. for (i = 0; i < nrecs; i++) {
  80. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81. rec.l0 = get_unaligned(&ep->l0);
  82. rec.l1 = get_unaligned(&ep->l1);
  83. xfs_bmbt_get_all(&rec, &irec);
  84. if (fmt == XFS_EXTFMT_NOSTATE)
  85. ASSERT(irec.br_state == XFS_EXT_NORM);
  86. }
  87. }
  88. #else /* DEBUG */
  89. #define xfs_validate_extents(ifp, nrecs, fmt)
  90. #endif /* DEBUG */
  91. /*
  92. * Check that none of the inode's in the buffer have a next
  93. * unlinked field of 0.
  94. */
  95. #if defined(DEBUG)
  96. void
  97. xfs_inobp_check(
  98. xfs_mount_t *mp,
  99. xfs_buf_t *bp)
  100. {
  101. int i;
  102. int j;
  103. xfs_dinode_t *dip;
  104. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  105. for (i = 0; i < j; i++) {
  106. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  107. i * mp->m_sb.sb_inodesize);
  108. if (!dip->di_next_unlinked) {
  109. xfs_fs_cmn_err(CE_ALERT, mp,
  110. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  111. bp);
  112. ASSERT(dip->di_next_unlinked);
  113. }
  114. }
  115. }
  116. #endif
  117. /*
  118. * Find the buffer associated with the given inode map
  119. * We do basic validation checks on the buffer once it has been
  120. * retrieved from disk.
  121. */
  122. STATIC int
  123. xfs_imap_to_bp(
  124. xfs_mount_t *mp,
  125. xfs_trans_t *tp,
  126. xfs_imap_t *imap,
  127. xfs_buf_t **bpp,
  128. uint buf_flags,
  129. uint imap_flags)
  130. {
  131. int error;
  132. int i;
  133. int ni;
  134. xfs_buf_t *bp;
  135. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  136. (int)imap->im_len, buf_flags, &bp);
  137. if (error) {
  138. if (error != EAGAIN) {
  139. cmn_err(CE_WARN,
  140. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  141. "an error %d on %s. Returning error.",
  142. error, mp->m_fsname);
  143. } else {
  144. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  145. }
  146. return error;
  147. }
  148. /*
  149. * Validate the magic number and version of every inode in the buffer
  150. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  151. */
  152. #ifdef DEBUG
  153. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  154. #else /* usual case */
  155. ni = 1;
  156. #endif
  157. for (i = 0; i < ni; i++) {
  158. int di_ok;
  159. xfs_dinode_t *dip;
  160. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  161. (i << mp->m_sb.sb_inodelog));
  162. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  163. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  164. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  165. XFS_ERRTAG_ITOBP_INOTOBP,
  166. XFS_RANDOM_ITOBP_INOTOBP))) {
  167. if (imap_flags & XFS_IMAP_BULKSTAT) {
  168. xfs_trans_brelse(tp, bp);
  169. return XFS_ERROR(EINVAL);
  170. }
  171. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  172. XFS_ERRLEVEL_HIGH, mp, dip);
  173. #ifdef DEBUG
  174. cmn_err(CE_PANIC,
  175. "Device %s - bad inode magic/vsn "
  176. "daddr %lld #%d (magic=%x)",
  177. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  178. (unsigned long long)imap->im_blkno, i,
  179. be16_to_cpu(dip->di_core.di_magic));
  180. #endif
  181. xfs_trans_brelse(tp, bp);
  182. return XFS_ERROR(EFSCORRUPTED);
  183. }
  184. }
  185. xfs_inobp_check(mp, bp);
  186. /*
  187. * Mark the buffer as an inode buffer now that it looks good
  188. */
  189. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  190. *bpp = bp;
  191. return 0;
  192. }
  193. /*
  194. * This routine is called to map an inode number within a file
  195. * system to the buffer containing the on-disk version of the
  196. * inode. It returns a pointer to the buffer containing the
  197. * on-disk inode in the bpp parameter, and in the dip parameter
  198. * it returns a pointer to the on-disk inode within that buffer.
  199. *
  200. * If a non-zero error is returned, then the contents of bpp and
  201. * dipp are undefined.
  202. *
  203. * Use xfs_imap() to determine the size and location of the
  204. * buffer to read from disk.
  205. */
  206. STATIC int
  207. xfs_inotobp(
  208. xfs_mount_t *mp,
  209. xfs_trans_t *tp,
  210. xfs_ino_t ino,
  211. xfs_dinode_t **dipp,
  212. xfs_buf_t **bpp,
  213. int *offset)
  214. {
  215. xfs_imap_t imap;
  216. xfs_buf_t *bp;
  217. int error;
  218. imap.im_blkno = 0;
  219. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  220. if (error)
  221. return error;
  222. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
  223. if (error)
  224. return error;
  225. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  226. *bpp = bp;
  227. *offset = imap.im_boffset;
  228. return 0;
  229. }
  230. /*
  231. * This routine is called to map an inode to the buffer containing
  232. * the on-disk version of the inode. It returns a pointer to the
  233. * buffer containing the on-disk inode in the bpp parameter, and in
  234. * the dip parameter it returns a pointer to the on-disk inode within
  235. * that buffer.
  236. *
  237. * If a non-zero error is returned, then the contents of bpp and
  238. * dipp are undefined.
  239. *
  240. * If the inode is new and has not yet been initialized, use xfs_imap()
  241. * to determine the size and location of the buffer to read from disk.
  242. * If the inode has already been mapped to its buffer and read in once,
  243. * then use the mapping information stored in the inode rather than
  244. * calling xfs_imap(). This allows us to avoid the overhead of looking
  245. * at the inode btree for small block file systems (see xfs_dilocate()).
  246. * We can tell whether the inode has been mapped in before by comparing
  247. * its disk block address to 0. Only uninitialized inodes will have
  248. * 0 for the disk block address.
  249. */
  250. int
  251. xfs_itobp(
  252. xfs_mount_t *mp,
  253. xfs_trans_t *tp,
  254. xfs_inode_t *ip,
  255. xfs_dinode_t **dipp,
  256. xfs_buf_t **bpp,
  257. xfs_daddr_t bno,
  258. uint imap_flags,
  259. uint buf_flags)
  260. {
  261. xfs_imap_t imap;
  262. xfs_buf_t *bp;
  263. int error;
  264. if (ip->i_blkno == (xfs_daddr_t)0) {
  265. imap.im_blkno = bno;
  266. error = xfs_imap(mp, tp, ip->i_ino, &imap,
  267. XFS_IMAP_LOOKUP | imap_flags);
  268. if (error)
  269. return error;
  270. /*
  271. * Fill in the fields in the inode that will be used to
  272. * map the inode to its buffer from now on.
  273. */
  274. ip->i_blkno = imap.im_blkno;
  275. ip->i_len = imap.im_len;
  276. ip->i_boffset = imap.im_boffset;
  277. } else {
  278. /*
  279. * We've already mapped the inode once, so just use the
  280. * mapping that we saved the first time.
  281. */
  282. imap.im_blkno = ip->i_blkno;
  283. imap.im_len = ip->i_len;
  284. imap.im_boffset = ip->i_boffset;
  285. }
  286. ASSERT(bno == 0 || bno == imap.im_blkno);
  287. error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
  288. if (error)
  289. return error;
  290. if (!bp) {
  291. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  292. ASSERT(tp == NULL);
  293. *bpp = NULL;
  294. return EAGAIN;
  295. }
  296. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  297. *bpp = bp;
  298. return 0;
  299. }
  300. /*
  301. * Move inode type and inode format specific information from the
  302. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  303. * this means set if_rdev to the proper value. For files, directories,
  304. * and symlinks this means to bring in the in-line data or extent
  305. * pointers. For a file in B-tree format, only the root is immediately
  306. * brought in-core. The rest will be in-lined in if_extents when it
  307. * is first referenced (see xfs_iread_extents()).
  308. */
  309. STATIC int
  310. xfs_iformat(
  311. xfs_inode_t *ip,
  312. xfs_dinode_t *dip)
  313. {
  314. xfs_attr_shortform_t *atp;
  315. int size;
  316. int error;
  317. xfs_fsize_t di_size;
  318. ip->i_df.if_ext_max =
  319. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  320. error = 0;
  321. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  322. be16_to_cpu(dip->di_core.di_anextents) >
  323. be64_to_cpu(dip->di_core.di_nblocks))) {
  324. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  325. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  326. (unsigned long long)ip->i_ino,
  327. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  328. be16_to_cpu(dip->di_core.di_anextents)),
  329. (unsigned long long)
  330. be64_to_cpu(dip->di_core.di_nblocks));
  331. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  332. ip->i_mount, dip);
  333. return XFS_ERROR(EFSCORRUPTED);
  334. }
  335. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  336. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  337. "corrupt dinode %Lu, forkoff = 0x%x.",
  338. (unsigned long long)ip->i_ino,
  339. dip->di_core.di_forkoff);
  340. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  341. ip->i_mount, dip);
  342. return XFS_ERROR(EFSCORRUPTED);
  343. }
  344. switch (ip->i_d.di_mode & S_IFMT) {
  345. case S_IFIFO:
  346. case S_IFCHR:
  347. case S_IFBLK:
  348. case S_IFSOCK:
  349. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  350. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  351. ip->i_mount, dip);
  352. return XFS_ERROR(EFSCORRUPTED);
  353. }
  354. ip->i_d.di_size = 0;
  355. ip->i_size = 0;
  356. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  357. break;
  358. case S_IFREG:
  359. case S_IFLNK:
  360. case S_IFDIR:
  361. switch (dip->di_core.di_format) {
  362. case XFS_DINODE_FMT_LOCAL:
  363. /*
  364. * no local regular files yet
  365. */
  366. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  367. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  368. "corrupt inode %Lu "
  369. "(local format for regular file).",
  370. (unsigned long long) ip->i_ino);
  371. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  372. XFS_ERRLEVEL_LOW,
  373. ip->i_mount, dip);
  374. return XFS_ERROR(EFSCORRUPTED);
  375. }
  376. di_size = be64_to_cpu(dip->di_core.di_size);
  377. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  378. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  379. "corrupt inode %Lu "
  380. "(bad size %Ld for local inode).",
  381. (unsigned long long) ip->i_ino,
  382. (long long) di_size);
  383. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  384. XFS_ERRLEVEL_LOW,
  385. ip->i_mount, dip);
  386. return XFS_ERROR(EFSCORRUPTED);
  387. }
  388. size = (int)di_size;
  389. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  390. break;
  391. case XFS_DINODE_FMT_EXTENTS:
  392. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  393. break;
  394. case XFS_DINODE_FMT_BTREE:
  395. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  396. break;
  397. default:
  398. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  399. ip->i_mount);
  400. return XFS_ERROR(EFSCORRUPTED);
  401. }
  402. break;
  403. default:
  404. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  405. return XFS_ERROR(EFSCORRUPTED);
  406. }
  407. if (error) {
  408. return error;
  409. }
  410. if (!XFS_DFORK_Q(dip))
  411. return 0;
  412. ASSERT(ip->i_afp == NULL);
  413. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  414. ip->i_afp->if_ext_max =
  415. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  416. switch (dip->di_core.di_aformat) {
  417. case XFS_DINODE_FMT_LOCAL:
  418. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  419. size = be16_to_cpu(atp->hdr.totsize);
  420. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  421. break;
  422. case XFS_DINODE_FMT_EXTENTS:
  423. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  424. break;
  425. case XFS_DINODE_FMT_BTREE:
  426. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  427. break;
  428. default:
  429. error = XFS_ERROR(EFSCORRUPTED);
  430. break;
  431. }
  432. if (error) {
  433. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  434. ip->i_afp = NULL;
  435. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  436. }
  437. return error;
  438. }
  439. /*
  440. * The file is in-lined in the on-disk inode.
  441. * If it fits into if_inline_data, then copy
  442. * it there, otherwise allocate a buffer for it
  443. * and copy the data there. Either way, set
  444. * if_data to point at the data.
  445. * If we allocate a buffer for the data, make
  446. * sure that its size is a multiple of 4 and
  447. * record the real size in i_real_bytes.
  448. */
  449. STATIC int
  450. xfs_iformat_local(
  451. xfs_inode_t *ip,
  452. xfs_dinode_t *dip,
  453. int whichfork,
  454. int size)
  455. {
  456. xfs_ifork_t *ifp;
  457. int real_size;
  458. /*
  459. * If the size is unreasonable, then something
  460. * is wrong and we just bail out rather than crash in
  461. * kmem_alloc() or memcpy() below.
  462. */
  463. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  464. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  465. "corrupt inode %Lu "
  466. "(bad size %d for local fork, size = %d).",
  467. (unsigned long long) ip->i_ino, size,
  468. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  469. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  470. ip->i_mount, dip);
  471. return XFS_ERROR(EFSCORRUPTED);
  472. }
  473. ifp = XFS_IFORK_PTR(ip, whichfork);
  474. real_size = 0;
  475. if (size == 0)
  476. ifp->if_u1.if_data = NULL;
  477. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  478. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  479. else {
  480. real_size = roundup(size, 4);
  481. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  482. }
  483. ifp->if_bytes = size;
  484. ifp->if_real_bytes = real_size;
  485. if (size)
  486. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  487. ifp->if_flags &= ~XFS_IFEXTENTS;
  488. ifp->if_flags |= XFS_IFINLINE;
  489. return 0;
  490. }
  491. /*
  492. * The file consists of a set of extents all
  493. * of which fit into the on-disk inode.
  494. * If there are few enough extents to fit into
  495. * the if_inline_ext, then copy them there.
  496. * Otherwise allocate a buffer for them and copy
  497. * them into it. Either way, set if_extents
  498. * to point at the extents.
  499. */
  500. STATIC int
  501. xfs_iformat_extents(
  502. xfs_inode_t *ip,
  503. xfs_dinode_t *dip,
  504. int whichfork)
  505. {
  506. xfs_bmbt_rec_t *dp;
  507. xfs_ifork_t *ifp;
  508. int nex;
  509. int size;
  510. int i;
  511. ifp = XFS_IFORK_PTR(ip, whichfork);
  512. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  513. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  514. /*
  515. * If the number of extents is unreasonable, then something
  516. * is wrong and we just bail out rather than crash in
  517. * kmem_alloc() or memcpy() below.
  518. */
  519. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  520. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  521. "corrupt inode %Lu ((a)extents = %d).",
  522. (unsigned long long) ip->i_ino, nex);
  523. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  524. ip->i_mount, dip);
  525. return XFS_ERROR(EFSCORRUPTED);
  526. }
  527. ifp->if_real_bytes = 0;
  528. if (nex == 0)
  529. ifp->if_u1.if_extents = NULL;
  530. else if (nex <= XFS_INLINE_EXTS)
  531. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  532. else
  533. xfs_iext_add(ifp, 0, nex);
  534. ifp->if_bytes = size;
  535. if (size) {
  536. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  537. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  538. for (i = 0; i < nex; i++, dp++) {
  539. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  540. ep->l0 = get_unaligned_be64(&dp->l0);
  541. ep->l1 = get_unaligned_be64(&dp->l1);
  542. }
  543. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  544. if (whichfork != XFS_DATA_FORK ||
  545. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  546. if (unlikely(xfs_check_nostate_extents(
  547. ifp, 0, nex))) {
  548. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  549. XFS_ERRLEVEL_LOW,
  550. ip->i_mount);
  551. return XFS_ERROR(EFSCORRUPTED);
  552. }
  553. }
  554. ifp->if_flags |= XFS_IFEXTENTS;
  555. return 0;
  556. }
  557. /*
  558. * The file has too many extents to fit into
  559. * the inode, so they are in B-tree format.
  560. * Allocate a buffer for the root of the B-tree
  561. * and copy the root into it. The i_extents
  562. * field will remain NULL until all of the
  563. * extents are read in (when they are needed).
  564. */
  565. STATIC int
  566. xfs_iformat_btree(
  567. xfs_inode_t *ip,
  568. xfs_dinode_t *dip,
  569. int whichfork)
  570. {
  571. xfs_bmdr_block_t *dfp;
  572. xfs_ifork_t *ifp;
  573. /* REFERENCED */
  574. int nrecs;
  575. int size;
  576. ifp = XFS_IFORK_PTR(ip, whichfork);
  577. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  578. size = XFS_BMAP_BROOT_SPACE(dfp);
  579. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  580. /*
  581. * blow out if -- fork has less extents than can fit in
  582. * fork (fork shouldn't be a btree format), root btree
  583. * block has more records than can fit into the fork,
  584. * or the number of extents is greater than the number of
  585. * blocks.
  586. */
  587. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  588. || XFS_BMDR_SPACE_CALC(nrecs) >
  589. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  590. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  591. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  592. "corrupt inode %Lu (btree).",
  593. (unsigned long long) ip->i_ino);
  594. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  595. ip->i_mount);
  596. return XFS_ERROR(EFSCORRUPTED);
  597. }
  598. ifp->if_broot_bytes = size;
  599. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  600. ASSERT(ifp->if_broot != NULL);
  601. /*
  602. * Copy and convert from the on-disk structure
  603. * to the in-memory structure.
  604. */
  605. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  606. ifp->if_broot, size);
  607. ifp->if_flags &= ~XFS_IFEXTENTS;
  608. ifp->if_flags |= XFS_IFBROOT;
  609. return 0;
  610. }
  611. void
  612. xfs_dinode_from_disk(
  613. xfs_icdinode_t *to,
  614. xfs_dinode_core_t *from)
  615. {
  616. to->di_magic = be16_to_cpu(from->di_magic);
  617. to->di_mode = be16_to_cpu(from->di_mode);
  618. to->di_version = from ->di_version;
  619. to->di_format = from->di_format;
  620. to->di_onlink = be16_to_cpu(from->di_onlink);
  621. to->di_uid = be32_to_cpu(from->di_uid);
  622. to->di_gid = be32_to_cpu(from->di_gid);
  623. to->di_nlink = be32_to_cpu(from->di_nlink);
  624. to->di_projid = be16_to_cpu(from->di_projid);
  625. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  626. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  627. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  628. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  629. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  630. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  631. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  632. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  633. to->di_size = be64_to_cpu(from->di_size);
  634. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  635. to->di_extsize = be32_to_cpu(from->di_extsize);
  636. to->di_nextents = be32_to_cpu(from->di_nextents);
  637. to->di_anextents = be16_to_cpu(from->di_anextents);
  638. to->di_forkoff = from->di_forkoff;
  639. to->di_aformat = from->di_aformat;
  640. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  641. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  642. to->di_flags = be16_to_cpu(from->di_flags);
  643. to->di_gen = be32_to_cpu(from->di_gen);
  644. }
  645. void
  646. xfs_dinode_to_disk(
  647. xfs_dinode_core_t *to,
  648. xfs_icdinode_t *from)
  649. {
  650. to->di_magic = cpu_to_be16(from->di_magic);
  651. to->di_mode = cpu_to_be16(from->di_mode);
  652. to->di_version = from ->di_version;
  653. to->di_format = from->di_format;
  654. to->di_onlink = cpu_to_be16(from->di_onlink);
  655. to->di_uid = cpu_to_be32(from->di_uid);
  656. to->di_gid = cpu_to_be32(from->di_gid);
  657. to->di_nlink = cpu_to_be32(from->di_nlink);
  658. to->di_projid = cpu_to_be16(from->di_projid);
  659. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  660. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  661. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  662. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  663. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  664. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  665. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  666. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  667. to->di_size = cpu_to_be64(from->di_size);
  668. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  669. to->di_extsize = cpu_to_be32(from->di_extsize);
  670. to->di_nextents = cpu_to_be32(from->di_nextents);
  671. to->di_anextents = cpu_to_be16(from->di_anextents);
  672. to->di_forkoff = from->di_forkoff;
  673. to->di_aformat = from->di_aformat;
  674. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  675. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  676. to->di_flags = cpu_to_be16(from->di_flags);
  677. to->di_gen = cpu_to_be32(from->di_gen);
  678. }
  679. STATIC uint
  680. _xfs_dic2xflags(
  681. __uint16_t di_flags)
  682. {
  683. uint flags = 0;
  684. if (di_flags & XFS_DIFLAG_ANY) {
  685. if (di_flags & XFS_DIFLAG_REALTIME)
  686. flags |= XFS_XFLAG_REALTIME;
  687. if (di_flags & XFS_DIFLAG_PREALLOC)
  688. flags |= XFS_XFLAG_PREALLOC;
  689. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  690. flags |= XFS_XFLAG_IMMUTABLE;
  691. if (di_flags & XFS_DIFLAG_APPEND)
  692. flags |= XFS_XFLAG_APPEND;
  693. if (di_flags & XFS_DIFLAG_SYNC)
  694. flags |= XFS_XFLAG_SYNC;
  695. if (di_flags & XFS_DIFLAG_NOATIME)
  696. flags |= XFS_XFLAG_NOATIME;
  697. if (di_flags & XFS_DIFLAG_NODUMP)
  698. flags |= XFS_XFLAG_NODUMP;
  699. if (di_flags & XFS_DIFLAG_RTINHERIT)
  700. flags |= XFS_XFLAG_RTINHERIT;
  701. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  702. flags |= XFS_XFLAG_PROJINHERIT;
  703. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  704. flags |= XFS_XFLAG_NOSYMLINKS;
  705. if (di_flags & XFS_DIFLAG_EXTSIZE)
  706. flags |= XFS_XFLAG_EXTSIZE;
  707. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  708. flags |= XFS_XFLAG_EXTSZINHERIT;
  709. if (di_flags & XFS_DIFLAG_NODEFRAG)
  710. flags |= XFS_XFLAG_NODEFRAG;
  711. if (di_flags & XFS_DIFLAG_FILESTREAM)
  712. flags |= XFS_XFLAG_FILESTREAM;
  713. }
  714. return flags;
  715. }
  716. uint
  717. xfs_ip2xflags(
  718. xfs_inode_t *ip)
  719. {
  720. xfs_icdinode_t *dic = &ip->i_d;
  721. return _xfs_dic2xflags(dic->di_flags) |
  722. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  723. }
  724. uint
  725. xfs_dic2xflags(
  726. xfs_dinode_t *dip)
  727. {
  728. xfs_dinode_core_t *dic = &dip->di_core;
  729. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  730. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  731. }
  732. /*
  733. * Given a mount structure and an inode number, return a pointer
  734. * to a newly allocated in-core inode corresponding to the given
  735. * inode number.
  736. *
  737. * Initialize the inode's attributes and extent pointers if it
  738. * already has them (it will not if the inode has no links).
  739. */
  740. int
  741. xfs_iread(
  742. xfs_mount_t *mp,
  743. xfs_trans_t *tp,
  744. xfs_ino_t ino,
  745. xfs_inode_t **ipp,
  746. xfs_daddr_t bno,
  747. uint imap_flags)
  748. {
  749. xfs_buf_t *bp;
  750. xfs_dinode_t *dip;
  751. xfs_inode_t *ip;
  752. int error;
  753. ASSERT(xfs_inode_zone != NULL);
  754. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  755. ip->i_ino = ino;
  756. ip->i_mount = mp;
  757. atomic_set(&ip->i_iocount, 0);
  758. spin_lock_init(&ip->i_flags_lock);
  759. /*
  760. * Get pointer's to the on-disk inode and the buffer containing it.
  761. * If the inode number refers to a block outside the file system
  762. * then xfs_itobp() will return NULL. In this case we should
  763. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  764. * know that this is a new incore inode.
  765. */
  766. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
  767. if (error) {
  768. kmem_zone_free(xfs_inode_zone, ip);
  769. return error;
  770. }
  771. /*
  772. * Initialize inode's trace buffers.
  773. * Do this before xfs_iformat in case it adds entries.
  774. */
  775. #ifdef XFS_INODE_TRACE
  776. ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
  777. #endif
  778. #ifdef XFS_BMAP_TRACE
  779. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
  780. #endif
  781. #ifdef XFS_BMBT_TRACE
  782. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
  783. #endif
  784. #ifdef XFS_RW_TRACE
  785. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
  786. #endif
  787. #ifdef XFS_ILOCK_TRACE
  788. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
  789. #endif
  790. #ifdef XFS_DIR2_TRACE
  791. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
  792. #endif
  793. /*
  794. * If we got something that isn't an inode it means someone
  795. * (nfs or dmi) has a stale handle.
  796. */
  797. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  798. kmem_zone_free(xfs_inode_zone, ip);
  799. xfs_trans_brelse(tp, bp);
  800. #ifdef DEBUG
  801. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  802. "dip->di_core.di_magic (0x%x) != "
  803. "XFS_DINODE_MAGIC (0x%x)",
  804. be16_to_cpu(dip->di_core.di_magic),
  805. XFS_DINODE_MAGIC);
  806. #endif /* DEBUG */
  807. return XFS_ERROR(EINVAL);
  808. }
  809. /*
  810. * If the on-disk inode is already linked to a directory
  811. * entry, copy all of the inode into the in-core inode.
  812. * xfs_iformat() handles copying in the inode format
  813. * specific information.
  814. * Otherwise, just get the truly permanent information.
  815. */
  816. if (dip->di_core.di_mode) {
  817. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  818. error = xfs_iformat(ip, dip);
  819. if (error) {
  820. kmem_zone_free(xfs_inode_zone, ip);
  821. xfs_trans_brelse(tp, bp);
  822. #ifdef DEBUG
  823. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  824. "xfs_iformat() returned error %d",
  825. error);
  826. #endif /* DEBUG */
  827. return error;
  828. }
  829. } else {
  830. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  831. ip->i_d.di_version = dip->di_core.di_version;
  832. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  833. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  834. /*
  835. * Make sure to pull in the mode here as well in
  836. * case the inode is released without being used.
  837. * This ensures that xfs_inactive() will see that
  838. * the inode is already free and not try to mess
  839. * with the uninitialized part of it.
  840. */
  841. ip->i_d.di_mode = 0;
  842. /*
  843. * Initialize the per-fork minima and maxima for a new
  844. * inode here. xfs_iformat will do it for old inodes.
  845. */
  846. ip->i_df.if_ext_max =
  847. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  848. }
  849. INIT_LIST_HEAD(&ip->i_reclaim);
  850. /*
  851. * The inode format changed when we moved the link count and
  852. * made it 32 bits long. If this is an old format inode,
  853. * convert it in memory to look like a new one. If it gets
  854. * flushed to disk we will convert back before flushing or
  855. * logging it. We zero out the new projid field and the old link
  856. * count field. We'll handle clearing the pad field (the remains
  857. * of the old uuid field) when we actually convert the inode to
  858. * the new format. We don't change the version number so that we
  859. * can distinguish this from a real new format inode.
  860. */
  861. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  862. ip->i_d.di_nlink = ip->i_d.di_onlink;
  863. ip->i_d.di_onlink = 0;
  864. ip->i_d.di_projid = 0;
  865. }
  866. ip->i_delayed_blks = 0;
  867. ip->i_size = ip->i_d.di_size;
  868. /*
  869. * Mark the buffer containing the inode as something to keep
  870. * around for a while. This helps to keep recently accessed
  871. * meta-data in-core longer.
  872. */
  873. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  874. /*
  875. * Use xfs_trans_brelse() to release the buffer containing the
  876. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  877. * in xfs_itobp() above. If tp is NULL, this is just a normal
  878. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  879. * will only release the buffer if it is not dirty within the
  880. * transaction. It will be OK to release the buffer in this case,
  881. * because inodes on disk are never destroyed and we will be
  882. * locking the new in-core inode before putting it in the hash
  883. * table where other processes can find it. Thus we don't have
  884. * to worry about the inode being changed just because we released
  885. * the buffer.
  886. */
  887. xfs_trans_brelse(tp, bp);
  888. *ipp = ip;
  889. return 0;
  890. }
  891. /*
  892. * Read in extents from a btree-format inode.
  893. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  894. */
  895. int
  896. xfs_iread_extents(
  897. xfs_trans_t *tp,
  898. xfs_inode_t *ip,
  899. int whichfork)
  900. {
  901. int error;
  902. xfs_ifork_t *ifp;
  903. xfs_extnum_t nextents;
  904. size_t size;
  905. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  906. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  907. ip->i_mount);
  908. return XFS_ERROR(EFSCORRUPTED);
  909. }
  910. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  911. size = nextents * sizeof(xfs_bmbt_rec_t);
  912. ifp = XFS_IFORK_PTR(ip, whichfork);
  913. /*
  914. * We know that the size is valid (it's checked in iformat_btree)
  915. */
  916. ifp->if_lastex = NULLEXTNUM;
  917. ifp->if_bytes = ifp->if_real_bytes = 0;
  918. ifp->if_flags |= XFS_IFEXTENTS;
  919. xfs_iext_add(ifp, 0, nextents);
  920. error = xfs_bmap_read_extents(tp, ip, whichfork);
  921. if (error) {
  922. xfs_iext_destroy(ifp);
  923. ifp->if_flags &= ~XFS_IFEXTENTS;
  924. return error;
  925. }
  926. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  927. return 0;
  928. }
  929. /*
  930. * Allocate an inode on disk and return a copy of its in-core version.
  931. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  932. * appropriately within the inode. The uid and gid for the inode are
  933. * set according to the contents of the given cred structure.
  934. *
  935. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  936. * has a free inode available, call xfs_iget()
  937. * to obtain the in-core version of the allocated inode. Finally,
  938. * fill in the inode and log its initial contents. In this case,
  939. * ialloc_context would be set to NULL and call_again set to false.
  940. *
  941. * If xfs_dialloc() does not have an available inode,
  942. * it will replenish its supply by doing an allocation. Since we can
  943. * only do one allocation within a transaction without deadlocks, we
  944. * must commit the current transaction before returning the inode itself.
  945. * In this case, therefore, we will set call_again to true and return.
  946. * The caller should then commit the current transaction, start a new
  947. * transaction, and call xfs_ialloc() again to actually get the inode.
  948. *
  949. * To ensure that some other process does not grab the inode that
  950. * was allocated during the first call to xfs_ialloc(), this routine
  951. * also returns the [locked] bp pointing to the head of the freelist
  952. * as ialloc_context. The caller should hold this buffer across
  953. * the commit and pass it back into this routine on the second call.
  954. *
  955. * If we are allocating quota inodes, we do not have a parent inode
  956. * to attach to or associate with (i.e. pip == NULL) because they
  957. * are not linked into the directory structure - they are attached
  958. * directly to the superblock - and so have no parent.
  959. */
  960. int
  961. xfs_ialloc(
  962. xfs_trans_t *tp,
  963. xfs_inode_t *pip,
  964. mode_t mode,
  965. xfs_nlink_t nlink,
  966. xfs_dev_t rdev,
  967. cred_t *cr,
  968. xfs_prid_t prid,
  969. int okalloc,
  970. xfs_buf_t **ialloc_context,
  971. boolean_t *call_again,
  972. xfs_inode_t **ipp)
  973. {
  974. xfs_ino_t ino;
  975. xfs_inode_t *ip;
  976. uint flags;
  977. int error;
  978. timespec_t tv;
  979. /*
  980. * Call the space management code to pick
  981. * the on-disk inode to be allocated.
  982. */
  983. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  984. ialloc_context, call_again, &ino);
  985. if (error != 0) {
  986. return error;
  987. }
  988. if (*call_again || ino == NULLFSINO) {
  989. *ipp = NULL;
  990. return 0;
  991. }
  992. ASSERT(*ialloc_context == NULL);
  993. /*
  994. * Get the in-core inode with the lock held exclusively.
  995. * This is because we're setting fields here we need
  996. * to prevent others from looking at until we're done.
  997. */
  998. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  999. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1000. if (error != 0) {
  1001. return error;
  1002. }
  1003. ASSERT(ip != NULL);
  1004. ip->i_d.di_mode = (__uint16_t)mode;
  1005. ip->i_d.di_onlink = 0;
  1006. ip->i_d.di_nlink = nlink;
  1007. ASSERT(ip->i_d.di_nlink == nlink);
  1008. ip->i_d.di_uid = current_fsuid();
  1009. ip->i_d.di_gid = current_fsgid();
  1010. ip->i_d.di_projid = prid;
  1011. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1012. /*
  1013. * If the superblock version is up to where we support new format
  1014. * inodes and this is currently an old format inode, then change
  1015. * the inode version number now. This way we only do the conversion
  1016. * here rather than here and in the flush/logging code.
  1017. */
  1018. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  1019. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1020. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1021. /*
  1022. * We've already zeroed the old link count, the projid field,
  1023. * and the pad field.
  1024. */
  1025. }
  1026. /*
  1027. * Project ids won't be stored on disk if we are using a version 1 inode.
  1028. */
  1029. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1030. xfs_bump_ino_vers2(tp, ip);
  1031. if (pip && XFS_INHERIT_GID(pip)) {
  1032. ip->i_d.di_gid = pip->i_d.di_gid;
  1033. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1034. ip->i_d.di_mode |= S_ISGID;
  1035. }
  1036. }
  1037. /*
  1038. * If the group ID of the new file does not match the effective group
  1039. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1040. * (and only if the irix_sgid_inherit compatibility variable is set).
  1041. */
  1042. if ((irix_sgid_inherit) &&
  1043. (ip->i_d.di_mode & S_ISGID) &&
  1044. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1045. ip->i_d.di_mode &= ~S_ISGID;
  1046. }
  1047. ip->i_d.di_size = 0;
  1048. ip->i_size = 0;
  1049. ip->i_d.di_nextents = 0;
  1050. ASSERT(ip->i_d.di_nblocks == 0);
  1051. nanotime(&tv);
  1052. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1053. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1054. ip->i_d.di_atime = ip->i_d.di_mtime;
  1055. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1056. /*
  1057. * di_gen will have been taken care of in xfs_iread.
  1058. */
  1059. ip->i_d.di_extsize = 0;
  1060. ip->i_d.di_dmevmask = 0;
  1061. ip->i_d.di_dmstate = 0;
  1062. ip->i_d.di_flags = 0;
  1063. flags = XFS_ILOG_CORE;
  1064. switch (mode & S_IFMT) {
  1065. case S_IFIFO:
  1066. case S_IFCHR:
  1067. case S_IFBLK:
  1068. case S_IFSOCK:
  1069. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1070. ip->i_df.if_u2.if_rdev = rdev;
  1071. ip->i_df.if_flags = 0;
  1072. flags |= XFS_ILOG_DEV;
  1073. break;
  1074. case S_IFREG:
  1075. if (pip && xfs_inode_is_filestream(pip)) {
  1076. error = xfs_filestream_associate(pip, ip);
  1077. if (error < 0)
  1078. return -error;
  1079. if (!error)
  1080. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1081. }
  1082. /* fall through */
  1083. case S_IFDIR:
  1084. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1085. uint di_flags = 0;
  1086. if ((mode & S_IFMT) == S_IFDIR) {
  1087. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1088. di_flags |= XFS_DIFLAG_RTINHERIT;
  1089. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1090. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1091. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1092. }
  1093. } else if ((mode & S_IFMT) == S_IFREG) {
  1094. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1095. di_flags |= XFS_DIFLAG_REALTIME;
  1096. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1097. di_flags |= XFS_DIFLAG_EXTSIZE;
  1098. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1099. }
  1100. }
  1101. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1102. xfs_inherit_noatime)
  1103. di_flags |= XFS_DIFLAG_NOATIME;
  1104. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1105. xfs_inherit_nodump)
  1106. di_flags |= XFS_DIFLAG_NODUMP;
  1107. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1108. xfs_inherit_sync)
  1109. di_flags |= XFS_DIFLAG_SYNC;
  1110. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1111. xfs_inherit_nosymlinks)
  1112. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1113. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1114. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1115. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1116. xfs_inherit_nodefrag)
  1117. di_flags |= XFS_DIFLAG_NODEFRAG;
  1118. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1119. di_flags |= XFS_DIFLAG_FILESTREAM;
  1120. ip->i_d.di_flags |= di_flags;
  1121. }
  1122. /* FALLTHROUGH */
  1123. case S_IFLNK:
  1124. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1125. ip->i_df.if_flags = XFS_IFEXTENTS;
  1126. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1127. ip->i_df.if_u1.if_extents = NULL;
  1128. break;
  1129. default:
  1130. ASSERT(0);
  1131. }
  1132. /*
  1133. * Attribute fork settings for new inode.
  1134. */
  1135. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1136. ip->i_d.di_anextents = 0;
  1137. /*
  1138. * Log the new values stuffed into the inode.
  1139. */
  1140. xfs_trans_log_inode(tp, ip, flags);
  1141. /* now that we have an i_mode we can setup inode ops and unlock */
  1142. xfs_setup_inode(ip);
  1143. *ipp = ip;
  1144. return 0;
  1145. }
  1146. /*
  1147. * Check to make sure that there are no blocks allocated to the
  1148. * file beyond the size of the file. We don't check this for
  1149. * files with fixed size extents or real time extents, but we
  1150. * at least do it for regular files.
  1151. */
  1152. #ifdef DEBUG
  1153. void
  1154. xfs_isize_check(
  1155. xfs_mount_t *mp,
  1156. xfs_inode_t *ip,
  1157. xfs_fsize_t isize)
  1158. {
  1159. xfs_fileoff_t map_first;
  1160. int nimaps;
  1161. xfs_bmbt_irec_t imaps[2];
  1162. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1163. return;
  1164. if (XFS_IS_REALTIME_INODE(ip))
  1165. return;
  1166. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1167. return;
  1168. nimaps = 2;
  1169. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1170. /*
  1171. * The filesystem could be shutting down, so bmapi may return
  1172. * an error.
  1173. */
  1174. if (xfs_bmapi(NULL, ip, map_first,
  1175. (XFS_B_TO_FSB(mp,
  1176. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1177. map_first),
  1178. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1179. NULL, NULL))
  1180. return;
  1181. ASSERT(nimaps == 1);
  1182. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1183. }
  1184. #endif /* DEBUG */
  1185. /*
  1186. * Calculate the last possible buffered byte in a file. This must
  1187. * include data that was buffered beyond the EOF by the write code.
  1188. * This also needs to deal with overflowing the xfs_fsize_t type
  1189. * which can happen for sizes near the limit.
  1190. *
  1191. * We also need to take into account any blocks beyond the EOF. It
  1192. * may be the case that they were buffered by a write which failed.
  1193. * In that case the pages will still be in memory, but the inode size
  1194. * will never have been updated.
  1195. */
  1196. xfs_fsize_t
  1197. xfs_file_last_byte(
  1198. xfs_inode_t *ip)
  1199. {
  1200. xfs_mount_t *mp;
  1201. xfs_fsize_t last_byte;
  1202. xfs_fileoff_t last_block;
  1203. xfs_fileoff_t size_last_block;
  1204. int error;
  1205. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1206. mp = ip->i_mount;
  1207. /*
  1208. * Only check for blocks beyond the EOF if the extents have
  1209. * been read in. This eliminates the need for the inode lock,
  1210. * and it also saves us from looking when it really isn't
  1211. * necessary.
  1212. */
  1213. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1214. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1215. XFS_DATA_FORK);
  1216. if (error) {
  1217. last_block = 0;
  1218. }
  1219. } else {
  1220. last_block = 0;
  1221. }
  1222. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1223. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1224. last_byte = XFS_FSB_TO_B(mp, last_block);
  1225. if (last_byte < 0) {
  1226. return XFS_MAXIOFFSET(mp);
  1227. }
  1228. last_byte += (1 << mp->m_writeio_log);
  1229. if (last_byte < 0) {
  1230. return XFS_MAXIOFFSET(mp);
  1231. }
  1232. return last_byte;
  1233. }
  1234. #if defined(XFS_RW_TRACE)
  1235. STATIC void
  1236. xfs_itrunc_trace(
  1237. int tag,
  1238. xfs_inode_t *ip,
  1239. int flag,
  1240. xfs_fsize_t new_size,
  1241. xfs_off_t toss_start,
  1242. xfs_off_t toss_finish)
  1243. {
  1244. if (ip->i_rwtrace == NULL) {
  1245. return;
  1246. }
  1247. ktrace_enter(ip->i_rwtrace,
  1248. (void*)((long)tag),
  1249. (void*)ip,
  1250. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1251. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1252. (void*)((long)flag),
  1253. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1254. (void*)(unsigned long)(new_size & 0xffffffff),
  1255. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1256. (void*)(unsigned long)(toss_start & 0xffffffff),
  1257. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1258. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1259. (void*)(unsigned long)current_cpu(),
  1260. (void*)(unsigned long)current_pid(),
  1261. (void*)NULL,
  1262. (void*)NULL,
  1263. (void*)NULL);
  1264. }
  1265. #else
  1266. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1267. #endif
  1268. /*
  1269. * Start the truncation of the file to new_size. The new size
  1270. * must be smaller than the current size. This routine will
  1271. * clear the buffer and page caches of file data in the removed
  1272. * range, and xfs_itruncate_finish() will remove the underlying
  1273. * disk blocks.
  1274. *
  1275. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1276. * must NOT have the inode lock held at all. This is because we're
  1277. * calling into the buffer/page cache code and we can't hold the
  1278. * inode lock when we do so.
  1279. *
  1280. * We need to wait for any direct I/Os in flight to complete before we
  1281. * proceed with the truncate. This is needed to prevent the extents
  1282. * being read or written by the direct I/Os from being removed while the
  1283. * I/O is in flight as there is no other method of synchronising
  1284. * direct I/O with the truncate operation. Also, because we hold
  1285. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1286. * started until the truncate completes and drops the lock. Essentially,
  1287. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1288. * between direct I/Os and the truncate operation.
  1289. *
  1290. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1291. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1292. * in the case that the caller is locking things out of order and
  1293. * may not be able to call xfs_itruncate_finish() with the inode lock
  1294. * held without dropping the I/O lock. If the caller must drop the
  1295. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1296. * must be called again with all the same restrictions as the initial
  1297. * call.
  1298. */
  1299. int
  1300. xfs_itruncate_start(
  1301. xfs_inode_t *ip,
  1302. uint flags,
  1303. xfs_fsize_t new_size)
  1304. {
  1305. xfs_fsize_t last_byte;
  1306. xfs_off_t toss_start;
  1307. xfs_mount_t *mp;
  1308. int error = 0;
  1309. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1310. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1311. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1312. (flags == XFS_ITRUNC_MAYBE));
  1313. mp = ip->i_mount;
  1314. /* wait for the completion of any pending DIOs */
  1315. if (new_size == 0 || new_size < ip->i_size)
  1316. vn_iowait(ip);
  1317. /*
  1318. * Call toss_pages or flushinval_pages to get rid of pages
  1319. * overlapping the region being removed. We have to use
  1320. * the less efficient flushinval_pages in the case that the
  1321. * caller may not be able to finish the truncate without
  1322. * dropping the inode's I/O lock. Make sure
  1323. * to catch any pages brought in by buffers overlapping
  1324. * the EOF by searching out beyond the isize by our
  1325. * block size. We round new_size up to a block boundary
  1326. * so that we don't toss things on the same block as
  1327. * new_size but before it.
  1328. *
  1329. * Before calling toss_page or flushinval_pages, make sure to
  1330. * call remapf() over the same region if the file is mapped.
  1331. * This frees up mapped file references to the pages in the
  1332. * given range and for the flushinval_pages case it ensures
  1333. * that we get the latest mapped changes flushed out.
  1334. */
  1335. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1336. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1337. if (toss_start < 0) {
  1338. /*
  1339. * The place to start tossing is beyond our maximum
  1340. * file size, so there is no way that the data extended
  1341. * out there.
  1342. */
  1343. return 0;
  1344. }
  1345. last_byte = xfs_file_last_byte(ip);
  1346. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1347. last_byte);
  1348. if (last_byte > toss_start) {
  1349. if (flags & XFS_ITRUNC_DEFINITE) {
  1350. xfs_tosspages(ip, toss_start,
  1351. -1, FI_REMAPF_LOCKED);
  1352. } else {
  1353. error = xfs_flushinval_pages(ip, toss_start,
  1354. -1, FI_REMAPF_LOCKED);
  1355. }
  1356. }
  1357. #ifdef DEBUG
  1358. if (new_size == 0) {
  1359. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1360. }
  1361. #endif
  1362. return error;
  1363. }
  1364. /*
  1365. * Shrink the file to the given new_size. The new size must be smaller than
  1366. * the current size. This will free up the underlying blocks in the removed
  1367. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1368. *
  1369. * The transaction passed to this routine must have made a permanent log
  1370. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1371. * given transaction and start new ones, so make sure everything involved in
  1372. * the transaction is tidy before calling here. Some transaction will be
  1373. * returned to the caller to be committed. The incoming transaction must
  1374. * already include the inode, and both inode locks must be held exclusively.
  1375. * The inode must also be "held" within the transaction. On return the inode
  1376. * will be "held" within the returned transaction. This routine does NOT
  1377. * require any disk space to be reserved for it within the transaction.
  1378. *
  1379. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1380. * indicates the fork which is to be truncated. For the attribute fork we only
  1381. * support truncation to size 0.
  1382. *
  1383. * We use the sync parameter to indicate whether or not the first transaction
  1384. * we perform might have to be synchronous. For the attr fork, it needs to be
  1385. * so if the unlink of the inode is not yet known to be permanent in the log.
  1386. * This keeps us from freeing and reusing the blocks of the attribute fork
  1387. * before the unlink of the inode becomes permanent.
  1388. *
  1389. * For the data fork, we normally have to run synchronously if we're being
  1390. * called out of the inactive path or we're being called out of the create path
  1391. * where we're truncating an existing file. Either way, the truncate needs to
  1392. * be sync so blocks don't reappear in the file with altered data in case of a
  1393. * crash. wsync filesystems can run the first case async because anything that
  1394. * shrinks the inode has to run sync so by the time we're called here from
  1395. * inactive, the inode size is permanently set to 0.
  1396. *
  1397. * Calls from the truncate path always need to be sync unless we're in a wsync
  1398. * filesystem and the file has already been unlinked.
  1399. *
  1400. * The caller is responsible for correctly setting the sync parameter. It gets
  1401. * too hard for us to guess here which path we're being called out of just
  1402. * based on inode state.
  1403. *
  1404. * If we get an error, we must return with the inode locked and linked into the
  1405. * current transaction. This keeps things simple for the higher level code,
  1406. * because it always knows that the inode is locked and held in the transaction
  1407. * that returns to it whether errors occur or not. We don't mark the inode
  1408. * dirty on error so that transactions can be easily aborted if possible.
  1409. */
  1410. int
  1411. xfs_itruncate_finish(
  1412. xfs_trans_t **tp,
  1413. xfs_inode_t *ip,
  1414. xfs_fsize_t new_size,
  1415. int fork,
  1416. int sync)
  1417. {
  1418. xfs_fsblock_t first_block;
  1419. xfs_fileoff_t first_unmap_block;
  1420. xfs_fileoff_t last_block;
  1421. xfs_filblks_t unmap_len=0;
  1422. xfs_mount_t *mp;
  1423. xfs_trans_t *ntp;
  1424. int done;
  1425. int committed;
  1426. xfs_bmap_free_t free_list;
  1427. int error;
  1428. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1429. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1430. ASSERT(*tp != NULL);
  1431. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1432. ASSERT(ip->i_transp == *tp);
  1433. ASSERT(ip->i_itemp != NULL);
  1434. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1435. ntp = *tp;
  1436. mp = (ntp)->t_mountp;
  1437. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1438. /*
  1439. * We only support truncating the entire attribute fork.
  1440. */
  1441. if (fork == XFS_ATTR_FORK) {
  1442. new_size = 0LL;
  1443. }
  1444. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1445. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1446. /*
  1447. * The first thing we do is set the size to new_size permanently
  1448. * on disk. This way we don't have to worry about anyone ever
  1449. * being able to look at the data being freed even in the face
  1450. * of a crash. What we're getting around here is the case where
  1451. * we free a block, it is allocated to another file, it is written
  1452. * to, and then we crash. If the new data gets written to the
  1453. * file but the log buffers containing the free and reallocation
  1454. * don't, then we'd end up with garbage in the blocks being freed.
  1455. * As long as we make the new_size permanent before actually
  1456. * freeing any blocks it doesn't matter if they get writtten to.
  1457. *
  1458. * The callers must signal into us whether or not the size
  1459. * setting here must be synchronous. There are a few cases
  1460. * where it doesn't have to be synchronous. Those cases
  1461. * occur if the file is unlinked and we know the unlink is
  1462. * permanent or if the blocks being truncated are guaranteed
  1463. * to be beyond the inode eof (regardless of the link count)
  1464. * and the eof value is permanent. Both of these cases occur
  1465. * only on wsync-mounted filesystems. In those cases, we're
  1466. * guaranteed that no user will ever see the data in the blocks
  1467. * that are being truncated so the truncate can run async.
  1468. * In the free beyond eof case, the file may wind up with
  1469. * more blocks allocated to it than it needs if we crash
  1470. * and that won't get fixed until the next time the file
  1471. * is re-opened and closed but that's ok as that shouldn't
  1472. * be too many blocks.
  1473. *
  1474. * However, we can't just make all wsync xactions run async
  1475. * because there's one call out of the create path that needs
  1476. * to run sync where it's truncating an existing file to size
  1477. * 0 whose size is > 0.
  1478. *
  1479. * It's probably possible to come up with a test in this
  1480. * routine that would correctly distinguish all the above
  1481. * cases from the values of the function parameters and the
  1482. * inode state but for sanity's sake, I've decided to let the
  1483. * layers above just tell us. It's simpler to correctly figure
  1484. * out in the layer above exactly under what conditions we
  1485. * can run async and I think it's easier for others read and
  1486. * follow the logic in case something has to be changed.
  1487. * cscope is your friend -- rcc.
  1488. *
  1489. * The attribute fork is much simpler.
  1490. *
  1491. * For the attribute fork we allow the caller to tell us whether
  1492. * the unlink of the inode that led to this call is yet permanent
  1493. * in the on disk log. If it is not and we will be freeing extents
  1494. * in this inode then we make the first transaction synchronous
  1495. * to make sure that the unlink is permanent by the time we free
  1496. * the blocks.
  1497. */
  1498. if (fork == XFS_DATA_FORK) {
  1499. if (ip->i_d.di_nextents > 0) {
  1500. /*
  1501. * If we are not changing the file size then do
  1502. * not update the on-disk file size - we may be
  1503. * called from xfs_inactive_free_eofblocks(). If we
  1504. * update the on-disk file size and then the system
  1505. * crashes before the contents of the file are
  1506. * flushed to disk then the files may be full of
  1507. * holes (ie NULL files bug).
  1508. */
  1509. if (ip->i_size != new_size) {
  1510. ip->i_d.di_size = new_size;
  1511. ip->i_size = new_size;
  1512. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1513. }
  1514. }
  1515. } else if (sync) {
  1516. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1517. if (ip->i_d.di_anextents > 0)
  1518. xfs_trans_set_sync(ntp);
  1519. }
  1520. ASSERT(fork == XFS_DATA_FORK ||
  1521. (fork == XFS_ATTR_FORK &&
  1522. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1523. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1524. /*
  1525. * Since it is possible for space to become allocated beyond
  1526. * the end of the file (in a crash where the space is allocated
  1527. * but the inode size is not yet updated), simply remove any
  1528. * blocks which show up between the new EOF and the maximum
  1529. * possible file size. If the first block to be removed is
  1530. * beyond the maximum file size (ie it is the same as last_block),
  1531. * then there is nothing to do.
  1532. */
  1533. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1534. ASSERT(first_unmap_block <= last_block);
  1535. done = 0;
  1536. if (last_block == first_unmap_block) {
  1537. done = 1;
  1538. } else {
  1539. unmap_len = last_block - first_unmap_block + 1;
  1540. }
  1541. while (!done) {
  1542. /*
  1543. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1544. * will tell us whether it freed the entire range or
  1545. * not. If this is a synchronous mount (wsync),
  1546. * then we can tell bunmapi to keep all the
  1547. * transactions asynchronous since the unlink
  1548. * transaction that made this inode inactive has
  1549. * already hit the disk. There's no danger of
  1550. * the freed blocks being reused, there being a
  1551. * crash, and the reused blocks suddenly reappearing
  1552. * in this file with garbage in them once recovery
  1553. * runs.
  1554. */
  1555. XFS_BMAP_INIT(&free_list, &first_block);
  1556. error = xfs_bunmapi(ntp, ip,
  1557. first_unmap_block, unmap_len,
  1558. XFS_BMAPI_AFLAG(fork) |
  1559. (sync ? 0 : XFS_BMAPI_ASYNC),
  1560. XFS_ITRUNC_MAX_EXTENTS,
  1561. &first_block, &free_list,
  1562. NULL, &done);
  1563. if (error) {
  1564. /*
  1565. * If the bunmapi call encounters an error,
  1566. * return to the caller where the transaction
  1567. * can be properly aborted. We just need to
  1568. * make sure we're not holding any resources
  1569. * that we were not when we came in.
  1570. */
  1571. xfs_bmap_cancel(&free_list);
  1572. return error;
  1573. }
  1574. /*
  1575. * Duplicate the transaction that has the permanent
  1576. * reservation and commit the old transaction.
  1577. */
  1578. error = xfs_bmap_finish(tp, &free_list, &committed);
  1579. ntp = *tp;
  1580. if (committed) {
  1581. /* link the inode into the next xact in the chain */
  1582. xfs_trans_ijoin(ntp, ip,
  1583. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1584. xfs_trans_ihold(ntp, ip);
  1585. }
  1586. if (error) {
  1587. /*
  1588. * If the bmap finish call encounters an error, return
  1589. * to the caller where the transaction can be properly
  1590. * aborted. We just need to make sure we're not
  1591. * holding any resources that we were not when we came
  1592. * in.
  1593. *
  1594. * Aborting from this point might lose some blocks in
  1595. * the file system, but oh well.
  1596. */
  1597. xfs_bmap_cancel(&free_list);
  1598. return error;
  1599. }
  1600. if (committed) {
  1601. /*
  1602. * Mark the inode dirty so it will be logged and
  1603. * moved forward in the log as part of every commit.
  1604. */
  1605. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1606. }
  1607. ntp = xfs_trans_dup(ntp);
  1608. error = xfs_trans_commit(*tp, 0);
  1609. *tp = ntp;
  1610. /* link the inode into the next transaction in the chain */
  1611. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1612. xfs_trans_ihold(ntp, ip);
  1613. if (!error)
  1614. error = xfs_trans_reserve(ntp, 0,
  1615. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1616. XFS_TRANS_PERM_LOG_RES,
  1617. XFS_ITRUNCATE_LOG_COUNT);
  1618. if (error)
  1619. return error;
  1620. }
  1621. /*
  1622. * Only update the size in the case of the data fork, but
  1623. * always re-log the inode so that our permanent transaction
  1624. * can keep on rolling it forward in the log.
  1625. */
  1626. if (fork == XFS_DATA_FORK) {
  1627. xfs_isize_check(mp, ip, new_size);
  1628. /*
  1629. * If we are not changing the file size then do
  1630. * not update the on-disk file size - we may be
  1631. * called from xfs_inactive_free_eofblocks(). If we
  1632. * update the on-disk file size and then the system
  1633. * crashes before the contents of the file are
  1634. * flushed to disk then the files may be full of
  1635. * holes (ie NULL files bug).
  1636. */
  1637. if (ip->i_size != new_size) {
  1638. ip->i_d.di_size = new_size;
  1639. ip->i_size = new_size;
  1640. }
  1641. }
  1642. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1643. ASSERT((new_size != 0) ||
  1644. (fork == XFS_ATTR_FORK) ||
  1645. (ip->i_delayed_blks == 0));
  1646. ASSERT((new_size != 0) ||
  1647. (fork == XFS_ATTR_FORK) ||
  1648. (ip->i_d.di_nextents == 0));
  1649. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1650. return 0;
  1651. }
  1652. /*
  1653. * This is called when the inode's link count goes to 0.
  1654. * We place the on-disk inode on a list in the AGI. It
  1655. * will be pulled from this list when the inode is freed.
  1656. */
  1657. int
  1658. xfs_iunlink(
  1659. xfs_trans_t *tp,
  1660. xfs_inode_t *ip)
  1661. {
  1662. xfs_mount_t *mp;
  1663. xfs_agi_t *agi;
  1664. xfs_dinode_t *dip;
  1665. xfs_buf_t *agibp;
  1666. xfs_buf_t *ibp;
  1667. xfs_agnumber_t agno;
  1668. xfs_daddr_t agdaddr;
  1669. xfs_agino_t agino;
  1670. short bucket_index;
  1671. int offset;
  1672. int error;
  1673. int agi_ok;
  1674. ASSERT(ip->i_d.di_nlink == 0);
  1675. ASSERT(ip->i_d.di_mode != 0);
  1676. ASSERT(ip->i_transp == tp);
  1677. mp = tp->t_mountp;
  1678. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1679. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1680. /*
  1681. * Get the agi buffer first. It ensures lock ordering
  1682. * on the list.
  1683. */
  1684. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1685. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1686. if (error)
  1687. return error;
  1688. /*
  1689. * Validate the magic number of the agi block.
  1690. */
  1691. agi = XFS_BUF_TO_AGI(agibp);
  1692. agi_ok =
  1693. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1694. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1695. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1696. XFS_RANDOM_IUNLINK))) {
  1697. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1698. xfs_trans_brelse(tp, agibp);
  1699. return XFS_ERROR(EFSCORRUPTED);
  1700. }
  1701. /*
  1702. * Get the index into the agi hash table for the
  1703. * list this inode will go on.
  1704. */
  1705. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1706. ASSERT(agino != 0);
  1707. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1708. ASSERT(agi->agi_unlinked[bucket_index]);
  1709. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1710. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1711. /*
  1712. * There is already another inode in the bucket we need
  1713. * to add ourselves to. Add us at the front of the list.
  1714. * Here we put the head pointer into our next pointer,
  1715. * and then we fall through to point the head at us.
  1716. */
  1717. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1718. if (error)
  1719. return error;
  1720. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1721. /* both on-disk, don't endian flip twice */
  1722. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1723. offset = ip->i_boffset +
  1724. offsetof(xfs_dinode_t, di_next_unlinked);
  1725. xfs_trans_inode_buf(tp, ibp);
  1726. xfs_trans_log_buf(tp, ibp, offset,
  1727. (offset + sizeof(xfs_agino_t) - 1));
  1728. xfs_inobp_check(mp, ibp);
  1729. }
  1730. /*
  1731. * Point the bucket head pointer at the inode being inserted.
  1732. */
  1733. ASSERT(agino != 0);
  1734. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1735. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1736. (sizeof(xfs_agino_t) * bucket_index);
  1737. xfs_trans_log_buf(tp, agibp, offset,
  1738. (offset + sizeof(xfs_agino_t) - 1));
  1739. return 0;
  1740. }
  1741. /*
  1742. * Pull the on-disk inode from the AGI unlinked list.
  1743. */
  1744. STATIC int
  1745. xfs_iunlink_remove(
  1746. xfs_trans_t *tp,
  1747. xfs_inode_t *ip)
  1748. {
  1749. xfs_ino_t next_ino;
  1750. xfs_mount_t *mp;
  1751. xfs_agi_t *agi;
  1752. xfs_dinode_t *dip;
  1753. xfs_buf_t *agibp;
  1754. xfs_buf_t *ibp;
  1755. xfs_agnumber_t agno;
  1756. xfs_daddr_t agdaddr;
  1757. xfs_agino_t agino;
  1758. xfs_agino_t next_agino;
  1759. xfs_buf_t *last_ibp;
  1760. xfs_dinode_t *last_dip = NULL;
  1761. short bucket_index;
  1762. int offset, last_offset = 0;
  1763. int error;
  1764. int agi_ok;
  1765. /*
  1766. * First pull the on-disk inode from the AGI unlinked list.
  1767. */
  1768. mp = tp->t_mountp;
  1769. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1770. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1771. /*
  1772. * Get the agi buffer first. It ensures lock ordering
  1773. * on the list.
  1774. */
  1775. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1776. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1777. if (error) {
  1778. cmn_err(CE_WARN,
  1779. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1780. error, mp->m_fsname);
  1781. return error;
  1782. }
  1783. /*
  1784. * Validate the magic number of the agi block.
  1785. */
  1786. agi = XFS_BUF_TO_AGI(agibp);
  1787. agi_ok =
  1788. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1789. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1790. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1791. XFS_RANDOM_IUNLINK_REMOVE))) {
  1792. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1793. mp, agi);
  1794. xfs_trans_brelse(tp, agibp);
  1795. cmn_err(CE_WARN,
  1796. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1797. mp->m_fsname);
  1798. return XFS_ERROR(EFSCORRUPTED);
  1799. }
  1800. /*
  1801. * Get the index into the agi hash table for the
  1802. * list this inode will go on.
  1803. */
  1804. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1805. ASSERT(agino != 0);
  1806. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1807. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1808. ASSERT(agi->agi_unlinked[bucket_index]);
  1809. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1810. /*
  1811. * We're at the head of the list. Get the inode's
  1812. * on-disk buffer to see if there is anyone after us
  1813. * on the list. Only modify our next pointer if it
  1814. * is not already NULLAGINO. This saves us the overhead
  1815. * of dealing with the buffer when there is no need to
  1816. * change it.
  1817. */
  1818. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1819. if (error) {
  1820. cmn_err(CE_WARN,
  1821. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1822. error, mp->m_fsname);
  1823. return error;
  1824. }
  1825. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1826. ASSERT(next_agino != 0);
  1827. if (next_agino != NULLAGINO) {
  1828. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1829. offset = ip->i_boffset +
  1830. offsetof(xfs_dinode_t, di_next_unlinked);
  1831. xfs_trans_inode_buf(tp, ibp);
  1832. xfs_trans_log_buf(tp, ibp, offset,
  1833. (offset + sizeof(xfs_agino_t) - 1));
  1834. xfs_inobp_check(mp, ibp);
  1835. } else {
  1836. xfs_trans_brelse(tp, ibp);
  1837. }
  1838. /*
  1839. * Point the bucket head pointer at the next inode.
  1840. */
  1841. ASSERT(next_agino != 0);
  1842. ASSERT(next_agino != agino);
  1843. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1844. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1845. (sizeof(xfs_agino_t) * bucket_index);
  1846. xfs_trans_log_buf(tp, agibp, offset,
  1847. (offset + sizeof(xfs_agino_t) - 1));
  1848. } else {
  1849. /*
  1850. * We need to search the list for the inode being freed.
  1851. */
  1852. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1853. last_ibp = NULL;
  1854. while (next_agino != agino) {
  1855. /*
  1856. * If the last inode wasn't the one pointing to
  1857. * us, then release its buffer since we're not
  1858. * going to do anything with it.
  1859. */
  1860. if (last_ibp != NULL) {
  1861. xfs_trans_brelse(tp, last_ibp);
  1862. }
  1863. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1864. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1865. &last_ibp, &last_offset);
  1866. if (error) {
  1867. cmn_err(CE_WARN,
  1868. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1869. error, mp->m_fsname);
  1870. return error;
  1871. }
  1872. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1873. ASSERT(next_agino != NULLAGINO);
  1874. ASSERT(next_agino != 0);
  1875. }
  1876. /*
  1877. * Now last_ibp points to the buffer previous to us on
  1878. * the unlinked list. Pull us from the list.
  1879. */
  1880. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1881. if (error) {
  1882. cmn_err(CE_WARN,
  1883. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1884. error, mp->m_fsname);
  1885. return error;
  1886. }
  1887. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1888. ASSERT(next_agino != 0);
  1889. ASSERT(next_agino != agino);
  1890. if (next_agino != NULLAGINO) {
  1891. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1892. offset = ip->i_boffset +
  1893. offsetof(xfs_dinode_t, di_next_unlinked);
  1894. xfs_trans_inode_buf(tp, ibp);
  1895. xfs_trans_log_buf(tp, ibp, offset,
  1896. (offset + sizeof(xfs_agino_t) - 1));
  1897. xfs_inobp_check(mp, ibp);
  1898. } else {
  1899. xfs_trans_brelse(tp, ibp);
  1900. }
  1901. /*
  1902. * Point the previous inode on the list to the next inode.
  1903. */
  1904. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1905. ASSERT(next_agino != 0);
  1906. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1907. xfs_trans_inode_buf(tp, last_ibp);
  1908. xfs_trans_log_buf(tp, last_ibp, offset,
  1909. (offset + sizeof(xfs_agino_t) - 1));
  1910. xfs_inobp_check(mp, last_ibp);
  1911. }
  1912. return 0;
  1913. }
  1914. STATIC void
  1915. xfs_ifree_cluster(
  1916. xfs_inode_t *free_ip,
  1917. xfs_trans_t *tp,
  1918. xfs_ino_t inum)
  1919. {
  1920. xfs_mount_t *mp = free_ip->i_mount;
  1921. int blks_per_cluster;
  1922. int nbufs;
  1923. int ninodes;
  1924. int i, j, found, pre_flushed;
  1925. xfs_daddr_t blkno;
  1926. xfs_buf_t *bp;
  1927. xfs_inode_t *ip, **ip_found;
  1928. xfs_inode_log_item_t *iip;
  1929. xfs_log_item_t *lip;
  1930. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  1931. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1932. blks_per_cluster = 1;
  1933. ninodes = mp->m_sb.sb_inopblock;
  1934. nbufs = XFS_IALLOC_BLOCKS(mp);
  1935. } else {
  1936. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1937. mp->m_sb.sb_blocksize;
  1938. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1939. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1940. }
  1941. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  1942. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1943. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1944. XFS_INO_TO_AGBNO(mp, inum));
  1945. /*
  1946. * Look for each inode in memory and attempt to lock it,
  1947. * we can be racing with flush and tail pushing here.
  1948. * any inode we get the locks on, add to an array of
  1949. * inode items to process later.
  1950. *
  1951. * The get the buffer lock, we could beat a flush
  1952. * or tail pushing thread to the lock here, in which
  1953. * case they will go looking for the inode buffer
  1954. * and fail, we need some other form of interlock
  1955. * here.
  1956. */
  1957. found = 0;
  1958. for (i = 0; i < ninodes; i++) {
  1959. read_lock(&pag->pag_ici_lock);
  1960. ip = radix_tree_lookup(&pag->pag_ici_root,
  1961. XFS_INO_TO_AGINO(mp, (inum + i)));
  1962. /* Inode not in memory or we found it already,
  1963. * nothing to do
  1964. */
  1965. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1966. read_unlock(&pag->pag_ici_lock);
  1967. continue;
  1968. }
  1969. if (xfs_inode_clean(ip)) {
  1970. read_unlock(&pag->pag_ici_lock);
  1971. continue;
  1972. }
  1973. /* If we can get the locks then add it to the
  1974. * list, otherwise by the time we get the bp lock
  1975. * below it will already be attached to the
  1976. * inode buffer.
  1977. */
  1978. /* This inode will already be locked - by us, lets
  1979. * keep it that way.
  1980. */
  1981. if (ip == free_ip) {
  1982. if (xfs_iflock_nowait(ip)) {
  1983. xfs_iflags_set(ip, XFS_ISTALE);
  1984. if (xfs_inode_clean(ip)) {
  1985. xfs_ifunlock(ip);
  1986. } else {
  1987. ip_found[found++] = ip;
  1988. }
  1989. }
  1990. read_unlock(&pag->pag_ici_lock);
  1991. continue;
  1992. }
  1993. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1994. if (xfs_iflock_nowait(ip)) {
  1995. xfs_iflags_set(ip, XFS_ISTALE);
  1996. if (xfs_inode_clean(ip)) {
  1997. xfs_ifunlock(ip);
  1998. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1999. } else {
  2000. ip_found[found++] = ip;
  2001. }
  2002. } else {
  2003. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2004. }
  2005. }
  2006. read_unlock(&pag->pag_ici_lock);
  2007. }
  2008. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2009. mp->m_bsize * blks_per_cluster,
  2010. XFS_BUF_LOCK);
  2011. pre_flushed = 0;
  2012. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2013. while (lip) {
  2014. if (lip->li_type == XFS_LI_INODE) {
  2015. iip = (xfs_inode_log_item_t *)lip;
  2016. ASSERT(iip->ili_logged == 1);
  2017. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2018. spin_lock(&mp->m_ail_lock);
  2019. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2020. spin_unlock(&mp->m_ail_lock);
  2021. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2022. pre_flushed++;
  2023. }
  2024. lip = lip->li_bio_list;
  2025. }
  2026. for (i = 0; i < found; i++) {
  2027. ip = ip_found[i];
  2028. iip = ip->i_itemp;
  2029. if (!iip) {
  2030. ip->i_update_core = 0;
  2031. xfs_ifunlock(ip);
  2032. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2033. continue;
  2034. }
  2035. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2036. iip->ili_format.ilf_fields = 0;
  2037. iip->ili_logged = 1;
  2038. spin_lock(&mp->m_ail_lock);
  2039. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2040. spin_unlock(&mp->m_ail_lock);
  2041. xfs_buf_attach_iodone(bp,
  2042. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2043. xfs_istale_done, (xfs_log_item_t *)iip);
  2044. if (ip != free_ip) {
  2045. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2046. }
  2047. }
  2048. if (found || pre_flushed)
  2049. xfs_trans_stale_inode_buf(tp, bp);
  2050. xfs_trans_binval(tp, bp);
  2051. }
  2052. kmem_free(ip_found);
  2053. xfs_put_perag(mp, pag);
  2054. }
  2055. /*
  2056. * This is called to return an inode to the inode free list.
  2057. * The inode should already be truncated to 0 length and have
  2058. * no pages associated with it. This routine also assumes that
  2059. * the inode is already a part of the transaction.
  2060. *
  2061. * The on-disk copy of the inode will have been added to the list
  2062. * of unlinked inodes in the AGI. We need to remove the inode from
  2063. * that list atomically with respect to freeing it here.
  2064. */
  2065. int
  2066. xfs_ifree(
  2067. xfs_trans_t *tp,
  2068. xfs_inode_t *ip,
  2069. xfs_bmap_free_t *flist)
  2070. {
  2071. int error;
  2072. int delete;
  2073. xfs_ino_t first_ino;
  2074. xfs_dinode_t *dip;
  2075. xfs_buf_t *ibp;
  2076. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2077. ASSERT(ip->i_transp == tp);
  2078. ASSERT(ip->i_d.di_nlink == 0);
  2079. ASSERT(ip->i_d.di_nextents == 0);
  2080. ASSERT(ip->i_d.di_anextents == 0);
  2081. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2082. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2083. ASSERT(ip->i_d.di_nblocks == 0);
  2084. /*
  2085. * Pull the on-disk inode from the AGI unlinked list.
  2086. */
  2087. error = xfs_iunlink_remove(tp, ip);
  2088. if (error != 0) {
  2089. return error;
  2090. }
  2091. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2092. if (error != 0) {
  2093. return error;
  2094. }
  2095. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2096. ip->i_d.di_flags = 0;
  2097. ip->i_d.di_dmevmask = 0;
  2098. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2099. ip->i_df.if_ext_max =
  2100. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2101. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2102. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2103. /*
  2104. * Bump the generation count so no one will be confused
  2105. * by reincarnations of this inode.
  2106. */
  2107. ip->i_d.di_gen++;
  2108. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2109. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  2110. if (error)
  2111. return error;
  2112. /*
  2113. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2114. * from picking up this inode when it is reclaimed (its incore state
  2115. * initialzed but not flushed to disk yet). The in-core di_mode is
  2116. * already cleared and a corresponding transaction logged.
  2117. * The hack here just synchronizes the in-core to on-disk
  2118. * di_mode value in advance before the actual inode sync to disk.
  2119. * This is OK because the inode is already unlinked and would never
  2120. * change its di_mode again for this inode generation.
  2121. * This is a temporary hack that would require a proper fix
  2122. * in the future.
  2123. */
  2124. dip->di_core.di_mode = 0;
  2125. if (delete) {
  2126. xfs_ifree_cluster(ip, tp, first_ino);
  2127. }
  2128. return 0;
  2129. }
  2130. /*
  2131. * Reallocate the space for if_broot based on the number of records
  2132. * being added or deleted as indicated in rec_diff. Move the records
  2133. * and pointers in if_broot to fit the new size. When shrinking this
  2134. * will eliminate holes between the records and pointers created by
  2135. * the caller. When growing this will create holes to be filled in
  2136. * by the caller.
  2137. *
  2138. * The caller must not request to add more records than would fit in
  2139. * the on-disk inode root. If the if_broot is currently NULL, then
  2140. * if we adding records one will be allocated. The caller must also
  2141. * not request that the number of records go below zero, although
  2142. * it can go to zero.
  2143. *
  2144. * ip -- the inode whose if_broot area is changing
  2145. * ext_diff -- the change in the number of records, positive or negative,
  2146. * requested for the if_broot array.
  2147. */
  2148. void
  2149. xfs_iroot_realloc(
  2150. xfs_inode_t *ip,
  2151. int rec_diff,
  2152. int whichfork)
  2153. {
  2154. int cur_max;
  2155. xfs_ifork_t *ifp;
  2156. xfs_bmbt_block_t *new_broot;
  2157. int new_max;
  2158. size_t new_size;
  2159. char *np;
  2160. char *op;
  2161. /*
  2162. * Handle the degenerate case quietly.
  2163. */
  2164. if (rec_diff == 0) {
  2165. return;
  2166. }
  2167. ifp = XFS_IFORK_PTR(ip, whichfork);
  2168. if (rec_diff > 0) {
  2169. /*
  2170. * If there wasn't any memory allocated before, just
  2171. * allocate it now and get out.
  2172. */
  2173. if (ifp->if_broot_bytes == 0) {
  2174. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2175. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2176. KM_SLEEP);
  2177. ifp->if_broot_bytes = (int)new_size;
  2178. return;
  2179. }
  2180. /*
  2181. * If there is already an existing if_broot, then we need
  2182. * to realloc() it and shift the pointers to their new
  2183. * location. The records don't change location because
  2184. * they are kept butted up against the btree block header.
  2185. */
  2186. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2187. new_max = cur_max + rec_diff;
  2188. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2189. ifp->if_broot = (xfs_bmbt_block_t *)
  2190. kmem_realloc(ifp->if_broot,
  2191. new_size,
  2192. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2193. KM_SLEEP);
  2194. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2195. ifp->if_broot_bytes);
  2196. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2197. (int)new_size);
  2198. ifp->if_broot_bytes = (int)new_size;
  2199. ASSERT(ifp->if_broot_bytes <=
  2200. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2201. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2202. return;
  2203. }
  2204. /*
  2205. * rec_diff is less than 0. In this case, we are shrinking the
  2206. * if_broot buffer. It must already exist. If we go to zero
  2207. * records, just get rid of the root and clear the status bit.
  2208. */
  2209. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2210. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2211. new_max = cur_max + rec_diff;
  2212. ASSERT(new_max >= 0);
  2213. if (new_max > 0)
  2214. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2215. else
  2216. new_size = 0;
  2217. if (new_size > 0) {
  2218. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2219. /*
  2220. * First copy over the btree block header.
  2221. */
  2222. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2223. } else {
  2224. new_broot = NULL;
  2225. ifp->if_flags &= ~XFS_IFBROOT;
  2226. }
  2227. /*
  2228. * Only copy the records and pointers if there are any.
  2229. */
  2230. if (new_max > 0) {
  2231. /*
  2232. * First copy the records.
  2233. */
  2234. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2235. ifp->if_broot_bytes);
  2236. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2237. (int)new_size);
  2238. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2239. /*
  2240. * Then copy the pointers.
  2241. */
  2242. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2243. ifp->if_broot_bytes);
  2244. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2245. (int)new_size);
  2246. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2247. }
  2248. kmem_free(ifp->if_broot);
  2249. ifp->if_broot = new_broot;
  2250. ifp->if_broot_bytes = (int)new_size;
  2251. ASSERT(ifp->if_broot_bytes <=
  2252. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2253. return;
  2254. }
  2255. /*
  2256. * This is called when the amount of space needed for if_data
  2257. * is increased or decreased. The change in size is indicated by
  2258. * the number of bytes that need to be added or deleted in the
  2259. * byte_diff parameter.
  2260. *
  2261. * If the amount of space needed has decreased below the size of the
  2262. * inline buffer, then switch to using the inline buffer. Otherwise,
  2263. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2264. * to what is needed.
  2265. *
  2266. * ip -- the inode whose if_data area is changing
  2267. * byte_diff -- the change in the number of bytes, positive or negative,
  2268. * requested for the if_data array.
  2269. */
  2270. void
  2271. xfs_idata_realloc(
  2272. xfs_inode_t *ip,
  2273. int byte_diff,
  2274. int whichfork)
  2275. {
  2276. xfs_ifork_t *ifp;
  2277. int new_size;
  2278. int real_size;
  2279. if (byte_diff == 0) {
  2280. return;
  2281. }
  2282. ifp = XFS_IFORK_PTR(ip, whichfork);
  2283. new_size = (int)ifp->if_bytes + byte_diff;
  2284. ASSERT(new_size >= 0);
  2285. if (new_size == 0) {
  2286. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2287. kmem_free(ifp->if_u1.if_data);
  2288. }
  2289. ifp->if_u1.if_data = NULL;
  2290. real_size = 0;
  2291. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2292. /*
  2293. * If the valid extents/data can fit in if_inline_ext/data,
  2294. * copy them from the malloc'd vector and free it.
  2295. */
  2296. if (ifp->if_u1.if_data == NULL) {
  2297. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2298. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2299. ASSERT(ifp->if_real_bytes != 0);
  2300. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2301. new_size);
  2302. kmem_free(ifp->if_u1.if_data);
  2303. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2304. }
  2305. real_size = 0;
  2306. } else {
  2307. /*
  2308. * Stuck with malloc/realloc.
  2309. * For inline data, the underlying buffer must be
  2310. * a multiple of 4 bytes in size so that it can be
  2311. * logged and stay on word boundaries. We enforce
  2312. * that here.
  2313. */
  2314. real_size = roundup(new_size, 4);
  2315. if (ifp->if_u1.if_data == NULL) {
  2316. ASSERT(ifp->if_real_bytes == 0);
  2317. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2318. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2319. /*
  2320. * Only do the realloc if the underlying size
  2321. * is really changing.
  2322. */
  2323. if (ifp->if_real_bytes != real_size) {
  2324. ifp->if_u1.if_data =
  2325. kmem_realloc(ifp->if_u1.if_data,
  2326. real_size,
  2327. ifp->if_real_bytes,
  2328. KM_SLEEP);
  2329. }
  2330. } else {
  2331. ASSERT(ifp->if_real_bytes == 0);
  2332. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2333. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2334. ifp->if_bytes);
  2335. }
  2336. }
  2337. ifp->if_real_bytes = real_size;
  2338. ifp->if_bytes = new_size;
  2339. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2340. }
  2341. /*
  2342. * Map inode to disk block and offset.
  2343. *
  2344. * mp -- the mount point structure for the current file system
  2345. * tp -- the current transaction
  2346. * ino -- the inode number of the inode to be located
  2347. * imap -- this structure is filled in with the information necessary
  2348. * to retrieve the given inode from disk
  2349. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2350. * lookups in the inode btree were OK or not
  2351. */
  2352. int
  2353. xfs_imap(
  2354. xfs_mount_t *mp,
  2355. xfs_trans_t *tp,
  2356. xfs_ino_t ino,
  2357. xfs_imap_t *imap,
  2358. uint flags)
  2359. {
  2360. xfs_fsblock_t fsbno;
  2361. int len;
  2362. int off;
  2363. int error;
  2364. fsbno = imap->im_blkno ?
  2365. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2366. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2367. if (error)
  2368. return error;
  2369. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2370. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2371. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2372. imap->im_ioffset = (ushort)off;
  2373. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2374. /*
  2375. * If the inode number maps to a block outside the bounds
  2376. * of the file system then return NULL rather than calling
  2377. * read_buf and panicing when we get an error from the
  2378. * driver.
  2379. */
  2380. if ((imap->im_blkno + imap->im_len) >
  2381. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  2382. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
  2383. "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
  2384. " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
  2385. (unsigned long long) imap->im_blkno,
  2386. (unsigned long long) imap->im_len,
  2387. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  2388. return EINVAL;
  2389. }
  2390. return 0;
  2391. }
  2392. void
  2393. xfs_idestroy_fork(
  2394. xfs_inode_t *ip,
  2395. int whichfork)
  2396. {
  2397. xfs_ifork_t *ifp;
  2398. ifp = XFS_IFORK_PTR(ip, whichfork);
  2399. if (ifp->if_broot != NULL) {
  2400. kmem_free(ifp->if_broot);
  2401. ifp->if_broot = NULL;
  2402. }
  2403. /*
  2404. * If the format is local, then we can't have an extents
  2405. * array so just look for an inline data array. If we're
  2406. * not local then we may or may not have an extents list,
  2407. * so check and free it up if we do.
  2408. */
  2409. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2410. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2411. (ifp->if_u1.if_data != NULL)) {
  2412. ASSERT(ifp->if_real_bytes != 0);
  2413. kmem_free(ifp->if_u1.if_data);
  2414. ifp->if_u1.if_data = NULL;
  2415. ifp->if_real_bytes = 0;
  2416. }
  2417. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2418. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2419. ((ifp->if_u1.if_extents != NULL) &&
  2420. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2421. ASSERT(ifp->if_real_bytes != 0);
  2422. xfs_iext_destroy(ifp);
  2423. }
  2424. ASSERT(ifp->if_u1.if_extents == NULL ||
  2425. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2426. ASSERT(ifp->if_real_bytes == 0);
  2427. if (whichfork == XFS_ATTR_FORK) {
  2428. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2429. ip->i_afp = NULL;
  2430. }
  2431. }
  2432. /*
  2433. * This is called free all the memory associated with an inode.
  2434. * It must free the inode itself and any buffers allocated for
  2435. * if_extents/if_data and if_broot. It must also free the lock
  2436. * associated with the inode.
  2437. */
  2438. void
  2439. xfs_idestroy(
  2440. xfs_inode_t *ip)
  2441. {
  2442. switch (ip->i_d.di_mode & S_IFMT) {
  2443. case S_IFREG:
  2444. case S_IFDIR:
  2445. case S_IFLNK:
  2446. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2447. break;
  2448. }
  2449. if (ip->i_afp)
  2450. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2451. mrfree(&ip->i_lock);
  2452. mrfree(&ip->i_iolock);
  2453. #ifdef XFS_INODE_TRACE
  2454. ktrace_free(ip->i_trace);
  2455. #endif
  2456. #ifdef XFS_BMAP_TRACE
  2457. ktrace_free(ip->i_xtrace);
  2458. #endif
  2459. #ifdef XFS_BMBT_TRACE
  2460. ktrace_free(ip->i_btrace);
  2461. #endif
  2462. #ifdef XFS_RW_TRACE
  2463. ktrace_free(ip->i_rwtrace);
  2464. #endif
  2465. #ifdef XFS_ILOCK_TRACE
  2466. ktrace_free(ip->i_lock_trace);
  2467. #endif
  2468. #ifdef XFS_DIR2_TRACE
  2469. ktrace_free(ip->i_dir_trace);
  2470. #endif
  2471. if (ip->i_itemp) {
  2472. /*
  2473. * Only if we are shutting down the fs will we see an
  2474. * inode still in the AIL. If it is there, we should remove
  2475. * it to prevent a use-after-free from occurring.
  2476. */
  2477. xfs_mount_t *mp = ip->i_mount;
  2478. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2479. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2480. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2481. if (lip->li_flags & XFS_LI_IN_AIL) {
  2482. spin_lock(&mp->m_ail_lock);
  2483. if (lip->li_flags & XFS_LI_IN_AIL)
  2484. xfs_trans_delete_ail(mp, lip);
  2485. else
  2486. spin_unlock(&mp->m_ail_lock);
  2487. }
  2488. xfs_inode_item_destroy(ip);
  2489. }
  2490. kmem_zone_free(xfs_inode_zone, ip);
  2491. }
  2492. /*
  2493. * Increment the pin count of the given buffer.
  2494. * This value is protected by ipinlock spinlock in the mount structure.
  2495. */
  2496. void
  2497. xfs_ipin(
  2498. xfs_inode_t *ip)
  2499. {
  2500. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2501. atomic_inc(&ip->i_pincount);
  2502. }
  2503. /*
  2504. * Decrement the pin count of the given inode, and wake up
  2505. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2506. * inode must have been previously pinned with a call to xfs_ipin().
  2507. */
  2508. void
  2509. xfs_iunpin(
  2510. xfs_inode_t *ip)
  2511. {
  2512. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2513. if (atomic_dec_and_test(&ip->i_pincount))
  2514. wake_up(&ip->i_ipin_wait);
  2515. }
  2516. /*
  2517. * This is called to unpin an inode. It can be directed to wait or to return
  2518. * immediately without waiting for the inode to be unpinned. The caller must
  2519. * have the inode locked in at least shared mode so that the buffer cannot be
  2520. * subsequently pinned once someone is waiting for it to be unpinned.
  2521. */
  2522. STATIC void
  2523. __xfs_iunpin_wait(
  2524. xfs_inode_t *ip,
  2525. int wait)
  2526. {
  2527. xfs_inode_log_item_t *iip = ip->i_itemp;
  2528. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2529. if (atomic_read(&ip->i_pincount) == 0)
  2530. return;
  2531. /* Give the log a push to start the unpinning I/O */
  2532. xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
  2533. iip->ili_last_lsn : 0, XFS_LOG_FORCE);
  2534. if (wait)
  2535. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2536. }
  2537. static inline void
  2538. xfs_iunpin_wait(
  2539. xfs_inode_t *ip)
  2540. {
  2541. __xfs_iunpin_wait(ip, 1);
  2542. }
  2543. static inline void
  2544. xfs_iunpin_nowait(
  2545. xfs_inode_t *ip)
  2546. {
  2547. __xfs_iunpin_wait(ip, 0);
  2548. }
  2549. /*
  2550. * xfs_iextents_copy()
  2551. *
  2552. * This is called to copy the REAL extents (as opposed to the delayed
  2553. * allocation extents) from the inode into the given buffer. It
  2554. * returns the number of bytes copied into the buffer.
  2555. *
  2556. * If there are no delayed allocation extents, then we can just
  2557. * memcpy() the extents into the buffer. Otherwise, we need to
  2558. * examine each extent in turn and skip those which are delayed.
  2559. */
  2560. int
  2561. xfs_iextents_copy(
  2562. xfs_inode_t *ip,
  2563. xfs_bmbt_rec_t *dp,
  2564. int whichfork)
  2565. {
  2566. int copied;
  2567. int i;
  2568. xfs_ifork_t *ifp;
  2569. int nrecs;
  2570. xfs_fsblock_t start_block;
  2571. ifp = XFS_IFORK_PTR(ip, whichfork);
  2572. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2573. ASSERT(ifp->if_bytes > 0);
  2574. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2575. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2576. ASSERT(nrecs > 0);
  2577. /*
  2578. * There are some delayed allocation extents in the
  2579. * inode, so copy the extents one at a time and skip
  2580. * the delayed ones. There must be at least one
  2581. * non-delayed extent.
  2582. */
  2583. copied = 0;
  2584. for (i = 0; i < nrecs; i++) {
  2585. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2586. start_block = xfs_bmbt_get_startblock(ep);
  2587. if (ISNULLSTARTBLOCK(start_block)) {
  2588. /*
  2589. * It's a delayed allocation extent, so skip it.
  2590. */
  2591. continue;
  2592. }
  2593. /* Translate to on disk format */
  2594. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2595. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2596. dp++;
  2597. copied++;
  2598. }
  2599. ASSERT(copied != 0);
  2600. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2601. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2602. }
  2603. /*
  2604. * Each of the following cases stores data into the same region
  2605. * of the on-disk inode, so only one of them can be valid at
  2606. * any given time. While it is possible to have conflicting formats
  2607. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2608. * in EXTENTS format, this can only happen when the fork has
  2609. * changed formats after being modified but before being flushed.
  2610. * In these cases, the format always takes precedence, because the
  2611. * format indicates the current state of the fork.
  2612. */
  2613. /*ARGSUSED*/
  2614. STATIC void
  2615. xfs_iflush_fork(
  2616. xfs_inode_t *ip,
  2617. xfs_dinode_t *dip,
  2618. xfs_inode_log_item_t *iip,
  2619. int whichfork,
  2620. xfs_buf_t *bp)
  2621. {
  2622. char *cp;
  2623. xfs_ifork_t *ifp;
  2624. xfs_mount_t *mp;
  2625. #ifdef XFS_TRANS_DEBUG
  2626. int first;
  2627. #endif
  2628. static const short brootflag[2] =
  2629. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2630. static const short dataflag[2] =
  2631. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2632. static const short extflag[2] =
  2633. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2634. if (!iip)
  2635. return;
  2636. ifp = XFS_IFORK_PTR(ip, whichfork);
  2637. /*
  2638. * This can happen if we gave up in iformat in an error path,
  2639. * for the attribute fork.
  2640. */
  2641. if (!ifp) {
  2642. ASSERT(whichfork == XFS_ATTR_FORK);
  2643. return;
  2644. }
  2645. cp = XFS_DFORK_PTR(dip, whichfork);
  2646. mp = ip->i_mount;
  2647. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2648. case XFS_DINODE_FMT_LOCAL:
  2649. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2650. (ifp->if_bytes > 0)) {
  2651. ASSERT(ifp->if_u1.if_data != NULL);
  2652. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2653. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2654. }
  2655. break;
  2656. case XFS_DINODE_FMT_EXTENTS:
  2657. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2658. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2659. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2660. (ifp->if_bytes == 0));
  2661. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2662. (ifp->if_bytes > 0));
  2663. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2664. (ifp->if_bytes > 0)) {
  2665. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2666. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2667. whichfork);
  2668. }
  2669. break;
  2670. case XFS_DINODE_FMT_BTREE:
  2671. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2672. (ifp->if_broot_bytes > 0)) {
  2673. ASSERT(ifp->if_broot != NULL);
  2674. ASSERT(ifp->if_broot_bytes <=
  2675. (XFS_IFORK_SIZE(ip, whichfork) +
  2676. XFS_BROOT_SIZE_ADJ));
  2677. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2678. (xfs_bmdr_block_t *)cp,
  2679. XFS_DFORK_SIZE(dip, mp, whichfork));
  2680. }
  2681. break;
  2682. case XFS_DINODE_FMT_DEV:
  2683. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2684. ASSERT(whichfork == XFS_DATA_FORK);
  2685. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2686. }
  2687. break;
  2688. case XFS_DINODE_FMT_UUID:
  2689. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2690. ASSERT(whichfork == XFS_DATA_FORK);
  2691. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2692. sizeof(uuid_t));
  2693. }
  2694. break;
  2695. default:
  2696. ASSERT(0);
  2697. break;
  2698. }
  2699. }
  2700. STATIC int
  2701. xfs_iflush_cluster(
  2702. xfs_inode_t *ip,
  2703. xfs_buf_t *bp)
  2704. {
  2705. xfs_mount_t *mp = ip->i_mount;
  2706. xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
  2707. unsigned long first_index, mask;
  2708. unsigned long inodes_per_cluster;
  2709. int ilist_size;
  2710. xfs_inode_t **ilist;
  2711. xfs_inode_t *iq;
  2712. int nr_found;
  2713. int clcount = 0;
  2714. int bufwasdelwri;
  2715. int i;
  2716. ASSERT(pag->pagi_inodeok);
  2717. ASSERT(pag->pag_ici_init);
  2718. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2719. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2720. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2721. if (!ilist)
  2722. return 0;
  2723. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2724. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2725. read_lock(&pag->pag_ici_lock);
  2726. /* really need a gang lookup range call here */
  2727. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2728. first_index, inodes_per_cluster);
  2729. if (nr_found == 0)
  2730. goto out_free;
  2731. for (i = 0; i < nr_found; i++) {
  2732. iq = ilist[i];
  2733. if (iq == ip)
  2734. continue;
  2735. /* if the inode lies outside this cluster, we're done. */
  2736. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2737. break;
  2738. /*
  2739. * Do an un-protected check to see if the inode is dirty and
  2740. * is a candidate for flushing. These checks will be repeated
  2741. * later after the appropriate locks are acquired.
  2742. */
  2743. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2744. continue;
  2745. /*
  2746. * Try to get locks. If any are unavailable or it is pinned,
  2747. * then this inode cannot be flushed and is skipped.
  2748. */
  2749. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2750. continue;
  2751. if (!xfs_iflock_nowait(iq)) {
  2752. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2753. continue;
  2754. }
  2755. if (xfs_ipincount(iq)) {
  2756. xfs_ifunlock(iq);
  2757. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2758. continue;
  2759. }
  2760. /*
  2761. * arriving here means that this inode can be flushed. First
  2762. * re-check that it's dirty before flushing.
  2763. */
  2764. if (!xfs_inode_clean(iq)) {
  2765. int error;
  2766. error = xfs_iflush_int(iq, bp);
  2767. if (error) {
  2768. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2769. goto cluster_corrupt_out;
  2770. }
  2771. clcount++;
  2772. } else {
  2773. xfs_ifunlock(iq);
  2774. }
  2775. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2776. }
  2777. if (clcount) {
  2778. XFS_STATS_INC(xs_icluster_flushcnt);
  2779. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2780. }
  2781. out_free:
  2782. read_unlock(&pag->pag_ici_lock);
  2783. kmem_free(ilist);
  2784. return 0;
  2785. cluster_corrupt_out:
  2786. /*
  2787. * Corruption detected in the clustering loop. Invalidate the
  2788. * inode buffer and shut down the filesystem.
  2789. */
  2790. read_unlock(&pag->pag_ici_lock);
  2791. /*
  2792. * Clean up the buffer. If it was B_DELWRI, just release it --
  2793. * brelse can handle it with no problems. If not, shut down the
  2794. * filesystem before releasing the buffer.
  2795. */
  2796. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2797. if (bufwasdelwri)
  2798. xfs_buf_relse(bp);
  2799. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2800. if (!bufwasdelwri) {
  2801. /*
  2802. * Just like incore_relse: if we have b_iodone functions,
  2803. * mark the buffer as an error and call them. Otherwise
  2804. * mark it as stale and brelse.
  2805. */
  2806. if (XFS_BUF_IODONE_FUNC(bp)) {
  2807. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2808. XFS_BUF_UNDONE(bp);
  2809. XFS_BUF_STALE(bp);
  2810. XFS_BUF_SHUT(bp);
  2811. XFS_BUF_ERROR(bp,EIO);
  2812. xfs_biodone(bp);
  2813. } else {
  2814. XFS_BUF_STALE(bp);
  2815. xfs_buf_relse(bp);
  2816. }
  2817. }
  2818. /*
  2819. * Unlocks the flush lock
  2820. */
  2821. xfs_iflush_abort(iq);
  2822. kmem_free(ilist);
  2823. return XFS_ERROR(EFSCORRUPTED);
  2824. }
  2825. /*
  2826. * xfs_iflush() will write a modified inode's changes out to the
  2827. * inode's on disk home. The caller must have the inode lock held
  2828. * in at least shared mode and the inode flush completion must be
  2829. * active as well. The inode lock will still be held upon return from
  2830. * the call and the caller is free to unlock it.
  2831. * The inode flush will be completed when the inode reaches the disk.
  2832. * The flags indicate how the inode's buffer should be written out.
  2833. */
  2834. int
  2835. xfs_iflush(
  2836. xfs_inode_t *ip,
  2837. uint flags)
  2838. {
  2839. xfs_inode_log_item_t *iip;
  2840. xfs_buf_t *bp;
  2841. xfs_dinode_t *dip;
  2842. xfs_mount_t *mp;
  2843. int error;
  2844. int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
  2845. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2846. XFS_STATS_INC(xs_iflush_count);
  2847. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2848. ASSERT(!completion_done(&ip->i_flush));
  2849. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2850. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2851. iip = ip->i_itemp;
  2852. mp = ip->i_mount;
  2853. /*
  2854. * If the inode isn't dirty, then just release the inode
  2855. * flush lock and do nothing.
  2856. */
  2857. if (xfs_inode_clean(ip)) {
  2858. xfs_ifunlock(ip);
  2859. return 0;
  2860. }
  2861. /*
  2862. * We can't flush the inode until it is unpinned, so wait for it if we
  2863. * are allowed to block. We know noone new can pin it, because we are
  2864. * holding the inode lock shared and you need to hold it exclusively to
  2865. * pin the inode.
  2866. *
  2867. * If we are not allowed to block, force the log out asynchronously so
  2868. * that when we come back the inode will be unpinned. If other inodes
  2869. * in the same cluster are dirty, they will probably write the inode
  2870. * out for us if they occur after the log force completes.
  2871. */
  2872. if (noblock && xfs_ipincount(ip)) {
  2873. xfs_iunpin_nowait(ip);
  2874. xfs_ifunlock(ip);
  2875. return EAGAIN;
  2876. }
  2877. xfs_iunpin_wait(ip);
  2878. /*
  2879. * This may have been unpinned because the filesystem is shutting
  2880. * down forcibly. If that's the case we must not write this inode
  2881. * to disk, because the log record didn't make it to disk!
  2882. */
  2883. if (XFS_FORCED_SHUTDOWN(mp)) {
  2884. ip->i_update_core = 0;
  2885. if (iip)
  2886. iip->ili_format.ilf_fields = 0;
  2887. xfs_ifunlock(ip);
  2888. return XFS_ERROR(EIO);
  2889. }
  2890. /*
  2891. * Decide how buffer will be flushed out. This is done before
  2892. * the call to xfs_iflush_int because this field is zeroed by it.
  2893. */
  2894. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2895. /*
  2896. * Flush out the inode buffer according to the directions
  2897. * of the caller. In the cases where the caller has given
  2898. * us a choice choose the non-delwri case. This is because
  2899. * the inode is in the AIL and we need to get it out soon.
  2900. */
  2901. switch (flags) {
  2902. case XFS_IFLUSH_SYNC:
  2903. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2904. flags = 0;
  2905. break;
  2906. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2907. case XFS_IFLUSH_ASYNC:
  2908. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2909. flags = INT_ASYNC;
  2910. break;
  2911. case XFS_IFLUSH_DELWRI:
  2912. flags = INT_DELWRI;
  2913. break;
  2914. default:
  2915. ASSERT(0);
  2916. flags = 0;
  2917. break;
  2918. }
  2919. } else {
  2920. switch (flags) {
  2921. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2922. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2923. case XFS_IFLUSH_DELWRI:
  2924. flags = INT_DELWRI;
  2925. break;
  2926. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2927. case XFS_IFLUSH_ASYNC:
  2928. flags = INT_ASYNC;
  2929. break;
  2930. case XFS_IFLUSH_SYNC:
  2931. flags = 0;
  2932. break;
  2933. default:
  2934. ASSERT(0);
  2935. flags = 0;
  2936. break;
  2937. }
  2938. }
  2939. /*
  2940. * Get the buffer containing the on-disk inode.
  2941. */
  2942. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
  2943. noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
  2944. if (error || !bp) {
  2945. xfs_ifunlock(ip);
  2946. return error;
  2947. }
  2948. /*
  2949. * First flush out the inode that xfs_iflush was called with.
  2950. */
  2951. error = xfs_iflush_int(ip, bp);
  2952. if (error)
  2953. goto corrupt_out;
  2954. /*
  2955. * If the buffer is pinned then push on the log now so we won't
  2956. * get stuck waiting in the write for too long.
  2957. */
  2958. if (XFS_BUF_ISPINNED(bp))
  2959. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2960. /*
  2961. * inode clustering:
  2962. * see if other inodes can be gathered into this write
  2963. */
  2964. error = xfs_iflush_cluster(ip, bp);
  2965. if (error)
  2966. goto cluster_corrupt_out;
  2967. if (flags & INT_DELWRI) {
  2968. xfs_bdwrite(mp, bp);
  2969. } else if (flags & INT_ASYNC) {
  2970. error = xfs_bawrite(mp, bp);
  2971. } else {
  2972. error = xfs_bwrite(mp, bp);
  2973. }
  2974. return error;
  2975. corrupt_out:
  2976. xfs_buf_relse(bp);
  2977. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2978. cluster_corrupt_out:
  2979. /*
  2980. * Unlocks the flush lock
  2981. */
  2982. xfs_iflush_abort(ip);
  2983. return XFS_ERROR(EFSCORRUPTED);
  2984. }
  2985. STATIC int
  2986. xfs_iflush_int(
  2987. xfs_inode_t *ip,
  2988. xfs_buf_t *bp)
  2989. {
  2990. xfs_inode_log_item_t *iip;
  2991. xfs_dinode_t *dip;
  2992. xfs_mount_t *mp;
  2993. #ifdef XFS_TRANS_DEBUG
  2994. int first;
  2995. #endif
  2996. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2997. ASSERT(!completion_done(&ip->i_flush));
  2998. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2999. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3000. iip = ip->i_itemp;
  3001. mp = ip->i_mount;
  3002. /*
  3003. * If the inode isn't dirty, then just release the inode
  3004. * flush lock and do nothing.
  3005. */
  3006. if (xfs_inode_clean(ip)) {
  3007. xfs_ifunlock(ip);
  3008. return 0;
  3009. }
  3010. /* set *dip = inode's place in the buffer */
  3011. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3012. /*
  3013. * Clear i_update_core before copying out the data.
  3014. * This is for coordination with our timestamp updates
  3015. * that don't hold the inode lock. They will always
  3016. * update the timestamps BEFORE setting i_update_core,
  3017. * so if we clear i_update_core after they set it we
  3018. * are guaranteed to see their updates to the timestamps.
  3019. * I believe that this depends on strongly ordered memory
  3020. * semantics, but we have that. We use the SYNCHRONIZE
  3021. * macro to make sure that the compiler does not reorder
  3022. * the i_update_core access below the data copy below.
  3023. */
  3024. ip->i_update_core = 0;
  3025. SYNCHRONIZE();
  3026. /*
  3027. * Make sure to get the latest atime from the Linux inode.
  3028. */
  3029. xfs_synchronize_atime(ip);
  3030. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3031. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3032. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3033. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3034. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3035. goto corrupt_out;
  3036. }
  3037. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3038. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3039. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3040. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3041. ip->i_ino, ip, ip->i_d.di_magic);
  3042. goto corrupt_out;
  3043. }
  3044. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3045. if (XFS_TEST_ERROR(
  3046. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3047. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3048. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3049. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3050. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3051. ip->i_ino, ip);
  3052. goto corrupt_out;
  3053. }
  3054. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3055. if (XFS_TEST_ERROR(
  3056. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3057. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3058. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3059. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3060. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3061. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3062. ip->i_ino, ip);
  3063. goto corrupt_out;
  3064. }
  3065. }
  3066. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3067. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3068. XFS_RANDOM_IFLUSH_5)) {
  3069. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3070. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3071. ip->i_ino,
  3072. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3073. ip->i_d.di_nblocks,
  3074. ip);
  3075. goto corrupt_out;
  3076. }
  3077. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3078. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3079. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3080. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3081. ip->i_ino, ip->i_d.di_forkoff, ip);
  3082. goto corrupt_out;
  3083. }
  3084. /*
  3085. * bump the flush iteration count, used to detect flushes which
  3086. * postdate a log record during recovery.
  3087. */
  3088. ip->i_d.di_flushiter++;
  3089. /*
  3090. * Copy the dirty parts of the inode into the on-disk
  3091. * inode. We always copy out the core of the inode,
  3092. * because if the inode is dirty at all the core must
  3093. * be.
  3094. */
  3095. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3096. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3097. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3098. ip->i_d.di_flushiter = 0;
  3099. /*
  3100. * If this is really an old format inode and the superblock version
  3101. * has not been updated to support only new format inodes, then
  3102. * convert back to the old inode format. If the superblock version
  3103. * has been updated, then make the conversion permanent.
  3104. */
  3105. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3106. xfs_sb_version_hasnlink(&mp->m_sb));
  3107. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3108. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  3109. /*
  3110. * Convert it back.
  3111. */
  3112. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3113. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3114. } else {
  3115. /*
  3116. * The superblock version has already been bumped,
  3117. * so just make the conversion to the new inode
  3118. * format permanent.
  3119. */
  3120. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3121. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3122. ip->i_d.di_onlink = 0;
  3123. dip->di_core.di_onlink = 0;
  3124. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3125. memset(&(dip->di_core.di_pad[0]), 0,
  3126. sizeof(dip->di_core.di_pad));
  3127. ASSERT(ip->i_d.di_projid == 0);
  3128. }
  3129. }
  3130. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  3131. if (XFS_IFORK_Q(ip))
  3132. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3133. xfs_inobp_check(mp, bp);
  3134. /*
  3135. * We've recorded everything logged in the inode, so we'd
  3136. * like to clear the ilf_fields bits so we don't log and
  3137. * flush things unnecessarily. However, we can't stop
  3138. * logging all this information until the data we've copied
  3139. * into the disk buffer is written to disk. If we did we might
  3140. * overwrite the copy of the inode in the log with all the
  3141. * data after re-logging only part of it, and in the face of
  3142. * a crash we wouldn't have all the data we need to recover.
  3143. *
  3144. * What we do is move the bits to the ili_last_fields field.
  3145. * When logging the inode, these bits are moved back to the
  3146. * ilf_fields field. In the xfs_iflush_done() routine we
  3147. * clear ili_last_fields, since we know that the information
  3148. * those bits represent is permanently on disk. As long as
  3149. * the flush completes before the inode is logged again, then
  3150. * both ilf_fields and ili_last_fields will be cleared.
  3151. *
  3152. * We can play with the ilf_fields bits here, because the inode
  3153. * lock must be held exclusively in order to set bits there
  3154. * and the flush lock protects the ili_last_fields bits.
  3155. * Set ili_logged so the flush done
  3156. * routine can tell whether or not to look in the AIL.
  3157. * Also, store the current LSN of the inode so that we can tell
  3158. * whether the item has moved in the AIL from xfs_iflush_done().
  3159. * In order to read the lsn we need the AIL lock, because
  3160. * it is a 64 bit value that cannot be read atomically.
  3161. */
  3162. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3163. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3164. iip->ili_format.ilf_fields = 0;
  3165. iip->ili_logged = 1;
  3166. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3167. spin_lock(&mp->m_ail_lock);
  3168. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3169. spin_unlock(&mp->m_ail_lock);
  3170. /*
  3171. * Attach the function xfs_iflush_done to the inode's
  3172. * buffer. This will remove the inode from the AIL
  3173. * and unlock the inode's flush lock when the inode is
  3174. * completely written to disk.
  3175. */
  3176. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3177. xfs_iflush_done, (xfs_log_item_t *)iip);
  3178. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3179. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3180. } else {
  3181. /*
  3182. * We're flushing an inode which is not in the AIL and has
  3183. * not been logged but has i_update_core set. For this
  3184. * case we can use a B_DELWRI flush and immediately drop
  3185. * the inode flush lock because we can avoid the whole
  3186. * AIL state thing. It's OK to drop the flush lock now,
  3187. * because we've already locked the buffer and to do anything
  3188. * you really need both.
  3189. */
  3190. if (iip != NULL) {
  3191. ASSERT(iip->ili_logged == 0);
  3192. ASSERT(iip->ili_last_fields == 0);
  3193. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3194. }
  3195. xfs_ifunlock(ip);
  3196. }
  3197. return 0;
  3198. corrupt_out:
  3199. return XFS_ERROR(EFSCORRUPTED);
  3200. }
  3201. /*
  3202. * Flush all inactive inodes in mp.
  3203. */
  3204. void
  3205. xfs_iflush_all(
  3206. xfs_mount_t *mp)
  3207. {
  3208. xfs_inode_t *ip;
  3209. again:
  3210. XFS_MOUNT_ILOCK(mp);
  3211. ip = mp->m_inodes;
  3212. if (ip == NULL)
  3213. goto out;
  3214. do {
  3215. /* Make sure we skip markers inserted by sync */
  3216. if (ip->i_mount == NULL) {
  3217. ip = ip->i_mnext;
  3218. continue;
  3219. }
  3220. if (!VFS_I(ip)) {
  3221. XFS_MOUNT_IUNLOCK(mp);
  3222. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3223. goto again;
  3224. }
  3225. ASSERT(vn_count(VFS_I(ip)) == 0);
  3226. ip = ip->i_mnext;
  3227. } while (ip != mp->m_inodes);
  3228. out:
  3229. XFS_MOUNT_IUNLOCK(mp);
  3230. }
  3231. #ifdef XFS_ILOCK_TRACE
  3232. ktrace_t *xfs_ilock_trace_buf;
  3233. void
  3234. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3235. {
  3236. ktrace_enter(ip->i_lock_trace,
  3237. (void *)ip,
  3238. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3239. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3240. (void *)ra, /* caller of ilock */
  3241. (void *)(unsigned long)current_cpu(),
  3242. (void *)(unsigned long)current_pid(),
  3243. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3244. }
  3245. #endif
  3246. /*
  3247. * Return a pointer to the extent record at file index idx.
  3248. */
  3249. xfs_bmbt_rec_host_t *
  3250. xfs_iext_get_ext(
  3251. xfs_ifork_t *ifp, /* inode fork pointer */
  3252. xfs_extnum_t idx) /* index of target extent */
  3253. {
  3254. ASSERT(idx >= 0);
  3255. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3256. return ifp->if_u1.if_ext_irec->er_extbuf;
  3257. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3258. xfs_ext_irec_t *erp; /* irec pointer */
  3259. int erp_idx = 0; /* irec index */
  3260. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3261. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3262. return &erp->er_extbuf[page_idx];
  3263. } else if (ifp->if_bytes) {
  3264. return &ifp->if_u1.if_extents[idx];
  3265. } else {
  3266. return NULL;
  3267. }
  3268. }
  3269. /*
  3270. * Insert new item(s) into the extent records for incore inode
  3271. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3272. */
  3273. void
  3274. xfs_iext_insert(
  3275. xfs_ifork_t *ifp, /* inode fork pointer */
  3276. xfs_extnum_t idx, /* starting index of new items */
  3277. xfs_extnum_t count, /* number of inserted items */
  3278. xfs_bmbt_irec_t *new) /* items to insert */
  3279. {
  3280. xfs_extnum_t i; /* extent record index */
  3281. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3282. xfs_iext_add(ifp, idx, count);
  3283. for (i = idx; i < idx + count; i++, new++)
  3284. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3285. }
  3286. /*
  3287. * This is called when the amount of space required for incore file
  3288. * extents needs to be increased. The ext_diff parameter stores the
  3289. * number of new extents being added and the idx parameter contains
  3290. * the extent index where the new extents will be added. If the new
  3291. * extents are being appended, then we just need to (re)allocate and
  3292. * initialize the space. Otherwise, if the new extents are being
  3293. * inserted into the middle of the existing entries, a bit more work
  3294. * is required to make room for the new extents to be inserted. The
  3295. * caller is responsible for filling in the new extent entries upon
  3296. * return.
  3297. */
  3298. void
  3299. xfs_iext_add(
  3300. xfs_ifork_t *ifp, /* inode fork pointer */
  3301. xfs_extnum_t idx, /* index to begin adding exts */
  3302. int ext_diff) /* number of extents to add */
  3303. {
  3304. int byte_diff; /* new bytes being added */
  3305. int new_size; /* size of extents after adding */
  3306. xfs_extnum_t nextents; /* number of extents in file */
  3307. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3308. ASSERT((idx >= 0) && (idx <= nextents));
  3309. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3310. new_size = ifp->if_bytes + byte_diff;
  3311. /*
  3312. * If the new number of extents (nextents + ext_diff)
  3313. * fits inside the inode, then continue to use the inline
  3314. * extent buffer.
  3315. */
  3316. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3317. if (idx < nextents) {
  3318. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3319. &ifp->if_u2.if_inline_ext[idx],
  3320. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3321. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3322. }
  3323. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3324. ifp->if_real_bytes = 0;
  3325. ifp->if_lastex = nextents + ext_diff;
  3326. }
  3327. /*
  3328. * Otherwise use a linear (direct) extent list.
  3329. * If the extents are currently inside the inode,
  3330. * xfs_iext_realloc_direct will switch us from
  3331. * inline to direct extent allocation mode.
  3332. */
  3333. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3334. xfs_iext_realloc_direct(ifp, new_size);
  3335. if (idx < nextents) {
  3336. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3337. &ifp->if_u1.if_extents[idx],
  3338. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3339. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3340. }
  3341. }
  3342. /* Indirection array */
  3343. else {
  3344. xfs_ext_irec_t *erp;
  3345. int erp_idx = 0;
  3346. int page_idx = idx;
  3347. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3348. if (ifp->if_flags & XFS_IFEXTIREC) {
  3349. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3350. } else {
  3351. xfs_iext_irec_init(ifp);
  3352. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3353. erp = ifp->if_u1.if_ext_irec;
  3354. }
  3355. /* Extents fit in target extent page */
  3356. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3357. if (page_idx < erp->er_extcount) {
  3358. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3359. &erp->er_extbuf[page_idx],
  3360. (erp->er_extcount - page_idx) *
  3361. sizeof(xfs_bmbt_rec_t));
  3362. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3363. }
  3364. erp->er_extcount += ext_diff;
  3365. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3366. }
  3367. /* Insert a new extent page */
  3368. else if (erp) {
  3369. xfs_iext_add_indirect_multi(ifp,
  3370. erp_idx, page_idx, ext_diff);
  3371. }
  3372. /*
  3373. * If extent(s) are being appended to the last page in
  3374. * the indirection array and the new extent(s) don't fit
  3375. * in the page, then erp is NULL and erp_idx is set to
  3376. * the next index needed in the indirection array.
  3377. */
  3378. else {
  3379. int count = ext_diff;
  3380. while (count) {
  3381. erp = xfs_iext_irec_new(ifp, erp_idx);
  3382. erp->er_extcount = count;
  3383. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3384. if (count) {
  3385. erp_idx++;
  3386. }
  3387. }
  3388. }
  3389. }
  3390. ifp->if_bytes = new_size;
  3391. }
  3392. /*
  3393. * This is called when incore extents are being added to the indirection
  3394. * array and the new extents do not fit in the target extent list. The
  3395. * erp_idx parameter contains the irec index for the target extent list
  3396. * in the indirection array, and the idx parameter contains the extent
  3397. * index within the list. The number of extents being added is stored
  3398. * in the count parameter.
  3399. *
  3400. * |-------| |-------|
  3401. * | | | | idx - number of extents before idx
  3402. * | idx | | count |
  3403. * | | | | count - number of extents being inserted at idx
  3404. * |-------| |-------|
  3405. * | count | | nex2 | nex2 - number of extents after idx + count
  3406. * |-------| |-------|
  3407. */
  3408. void
  3409. xfs_iext_add_indirect_multi(
  3410. xfs_ifork_t *ifp, /* inode fork pointer */
  3411. int erp_idx, /* target extent irec index */
  3412. xfs_extnum_t idx, /* index within target list */
  3413. int count) /* new extents being added */
  3414. {
  3415. int byte_diff; /* new bytes being added */
  3416. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3417. xfs_extnum_t ext_diff; /* number of extents to add */
  3418. xfs_extnum_t ext_cnt; /* new extents still needed */
  3419. xfs_extnum_t nex2; /* extents after idx + count */
  3420. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3421. int nlists; /* number of irec's (lists) */
  3422. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3423. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3424. nex2 = erp->er_extcount - idx;
  3425. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3426. /*
  3427. * Save second part of target extent list
  3428. * (all extents past */
  3429. if (nex2) {
  3430. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3431. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3432. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3433. erp->er_extcount -= nex2;
  3434. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3435. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3436. }
  3437. /*
  3438. * Add the new extents to the end of the target
  3439. * list, then allocate new irec record(s) and
  3440. * extent buffer(s) as needed to store the rest
  3441. * of the new extents.
  3442. */
  3443. ext_cnt = count;
  3444. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3445. if (ext_diff) {
  3446. erp->er_extcount += ext_diff;
  3447. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3448. ext_cnt -= ext_diff;
  3449. }
  3450. while (ext_cnt) {
  3451. erp_idx++;
  3452. erp = xfs_iext_irec_new(ifp, erp_idx);
  3453. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3454. erp->er_extcount = ext_diff;
  3455. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3456. ext_cnt -= ext_diff;
  3457. }
  3458. /* Add nex2 extents back to indirection array */
  3459. if (nex2) {
  3460. xfs_extnum_t ext_avail;
  3461. int i;
  3462. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3463. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3464. i = 0;
  3465. /*
  3466. * If nex2 extents fit in the current page, append
  3467. * nex2_ep after the new extents.
  3468. */
  3469. if (nex2 <= ext_avail) {
  3470. i = erp->er_extcount;
  3471. }
  3472. /*
  3473. * Otherwise, check if space is available in the
  3474. * next page.
  3475. */
  3476. else if ((erp_idx < nlists - 1) &&
  3477. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3478. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3479. erp_idx++;
  3480. erp++;
  3481. /* Create a hole for nex2 extents */
  3482. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3483. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3484. }
  3485. /*
  3486. * Final choice, create a new extent page for
  3487. * nex2 extents.
  3488. */
  3489. else {
  3490. erp_idx++;
  3491. erp = xfs_iext_irec_new(ifp, erp_idx);
  3492. }
  3493. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3494. kmem_free(nex2_ep);
  3495. erp->er_extcount += nex2;
  3496. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3497. }
  3498. }
  3499. /*
  3500. * This is called when the amount of space required for incore file
  3501. * extents needs to be decreased. The ext_diff parameter stores the
  3502. * number of extents to be removed and the idx parameter contains
  3503. * the extent index where the extents will be removed from.
  3504. *
  3505. * If the amount of space needed has decreased below the linear
  3506. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3507. * extent array. Otherwise, use kmem_realloc() to adjust the
  3508. * size to what is needed.
  3509. */
  3510. void
  3511. xfs_iext_remove(
  3512. xfs_ifork_t *ifp, /* inode fork pointer */
  3513. xfs_extnum_t idx, /* index to begin removing exts */
  3514. int ext_diff) /* number of extents to remove */
  3515. {
  3516. xfs_extnum_t nextents; /* number of extents in file */
  3517. int new_size; /* size of extents after removal */
  3518. ASSERT(ext_diff > 0);
  3519. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3520. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3521. if (new_size == 0) {
  3522. xfs_iext_destroy(ifp);
  3523. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3524. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3525. } else if (ifp->if_real_bytes) {
  3526. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3527. } else {
  3528. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3529. }
  3530. ifp->if_bytes = new_size;
  3531. }
  3532. /*
  3533. * This removes ext_diff extents from the inline buffer, beginning
  3534. * at extent index idx.
  3535. */
  3536. void
  3537. xfs_iext_remove_inline(
  3538. xfs_ifork_t *ifp, /* inode fork pointer */
  3539. xfs_extnum_t idx, /* index to begin removing exts */
  3540. int ext_diff) /* number of extents to remove */
  3541. {
  3542. int nextents; /* number of extents in file */
  3543. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3544. ASSERT(idx < XFS_INLINE_EXTS);
  3545. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3546. ASSERT(((nextents - ext_diff) > 0) &&
  3547. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3548. if (idx + ext_diff < nextents) {
  3549. memmove(&ifp->if_u2.if_inline_ext[idx],
  3550. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3551. (nextents - (idx + ext_diff)) *
  3552. sizeof(xfs_bmbt_rec_t));
  3553. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3554. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3555. } else {
  3556. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3557. ext_diff * sizeof(xfs_bmbt_rec_t));
  3558. }
  3559. }
  3560. /*
  3561. * This removes ext_diff extents from a linear (direct) extent list,
  3562. * beginning at extent index idx. If the extents are being removed
  3563. * from the end of the list (ie. truncate) then we just need to re-
  3564. * allocate the list to remove the extra space. Otherwise, if the
  3565. * extents are being removed from the middle of the existing extent
  3566. * entries, then we first need to move the extent records beginning
  3567. * at idx + ext_diff up in the list to overwrite the records being
  3568. * removed, then remove the extra space via kmem_realloc.
  3569. */
  3570. void
  3571. xfs_iext_remove_direct(
  3572. xfs_ifork_t *ifp, /* inode fork pointer */
  3573. xfs_extnum_t idx, /* index to begin removing exts */
  3574. int ext_diff) /* number of extents to remove */
  3575. {
  3576. xfs_extnum_t nextents; /* number of extents in file */
  3577. int new_size; /* size of extents after removal */
  3578. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3579. new_size = ifp->if_bytes -
  3580. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3581. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3582. if (new_size == 0) {
  3583. xfs_iext_destroy(ifp);
  3584. return;
  3585. }
  3586. /* Move extents up in the list (if needed) */
  3587. if (idx + ext_diff < nextents) {
  3588. memmove(&ifp->if_u1.if_extents[idx],
  3589. &ifp->if_u1.if_extents[idx + ext_diff],
  3590. (nextents - (idx + ext_diff)) *
  3591. sizeof(xfs_bmbt_rec_t));
  3592. }
  3593. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3594. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3595. /*
  3596. * Reallocate the direct extent list. If the extents
  3597. * will fit inside the inode then xfs_iext_realloc_direct
  3598. * will switch from direct to inline extent allocation
  3599. * mode for us.
  3600. */
  3601. xfs_iext_realloc_direct(ifp, new_size);
  3602. ifp->if_bytes = new_size;
  3603. }
  3604. /*
  3605. * This is called when incore extents are being removed from the
  3606. * indirection array and the extents being removed span multiple extent
  3607. * buffers. The idx parameter contains the file extent index where we
  3608. * want to begin removing extents, and the count parameter contains
  3609. * how many extents need to be removed.
  3610. *
  3611. * |-------| |-------|
  3612. * | nex1 | | | nex1 - number of extents before idx
  3613. * |-------| | count |
  3614. * | | | | count - number of extents being removed at idx
  3615. * | count | |-------|
  3616. * | | | nex2 | nex2 - number of extents after idx + count
  3617. * |-------| |-------|
  3618. */
  3619. void
  3620. xfs_iext_remove_indirect(
  3621. xfs_ifork_t *ifp, /* inode fork pointer */
  3622. xfs_extnum_t idx, /* index to begin removing extents */
  3623. int count) /* number of extents to remove */
  3624. {
  3625. xfs_ext_irec_t *erp; /* indirection array pointer */
  3626. int erp_idx = 0; /* indirection array index */
  3627. xfs_extnum_t ext_cnt; /* extents left to remove */
  3628. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3629. xfs_extnum_t nex1; /* number of extents before idx */
  3630. xfs_extnum_t nex2; /* extents after idx + count */
  3631. int nlists; /* entries in indirection array */
  3632. int page_idx = idx; /* index in target extent list */
  3633. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3634. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3635. ASSERT(erp != NULL);
  3636. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3637. nex1 = page_idx;
  3638. ext_cnt = count;
  3639. while (ext_cnt) {
  3640. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3641. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3642. /*
  3643. * Check for deletion of entire list;
  3644. * xfs_iext_irec_remove() updates extent offsets.
  3645. */
  3646. if (ext_diff == erp->er_extcount) {
  3647. xfs_iext_irec_remove(ifp, erp_idx);
  3648. ext_cnt -= ext_diff;
  3649. nex1 = 0;
  3650. if (ext_cnt) {
  3651. ASSERT(erp_idx < ifp->if_real_bytes /
  3652. XFS_IEXT_BUFSZ);
  3653. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3654. nex1 = 0;
  3655. continue;
  3656. } else {
  3657. break;
  3658. }
  3659. }
  3660. /* Move extents up (if needed) */
  3661. if (nex2) {
  3662. memmove(&erp->er_extbuf[nex1],
  3663. &erp->er_extbuf[nex1 + ext_diff],
  3664. nex2 * sizeof(xfs_bmbt_rec_t));
  3665. }
  3666. /* Zero out rest of page */
  3667. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3668. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3669. /* Update remaining counters */
  3670. erp->er_extcount -= ext_diff;
  3671. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3672. ext_cnt -= ext_diff;
  3673. nex1 = 0;
  3674. erp_idx++;
  3675. erp++;
  3676. }
  3677. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3678. xfs_iext_irec_compact(ifp);
  3679. }
  3680. /*
  3681. * Create, destroy, or resize a linear (direct) block of extents.
  3682. */
  3683. void
  3684. xfs_iext_realloc_direct(
  3685. xfs_ifork_t *ifp, /* inode fork pointer */
  3686. int new_size) /* new size of extents */
  3687. {
  3688. int rnew_size; /* real new size of extents */
  3689. rnew_size = new_size;
  3690. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3691. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3692. (new_size != ifp->if_real_bytes)));
  3693. /* Free extent records */
  3694. if (new_size == 0) {
  3695. xfs_iext_destroy(ifp);
  3696. }
  3697. /* Resize direct extent list and zero any new bytes */
  3698. else if (ifp->if_real_bytes) {
  3699. /* Check if extents will fit inside the inode */
  3700. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3701. xfs_iext_direct_to_inline(ifp, new_size /
  3702. (uint)sizeof(xfs_bmbt_rec_t));
  3703. ifp->if_bytes = new_size;
  3704. return;
  3705. }
  3706. if (!is_power_of_2(new_size)){
  3707. rnew_size = roundup_pow_of_two(new_size);
  3708. }
  3709. if (rnew_size != ifp->if_real_bytes) {
  3710. ifp->if_u1.if_extents =
  3711. kmem_realloc(ifp->if_u1.if_extents,
  3712. rnew_size,
  3713. ifp->if_real_bytes, KM_NOFS);
  3714. }
  3715. if (rnew_size > ifp->if_real_bytes) {
  3716. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3717. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3718. rnew_size - ifp->if_real_bytes);
  3719. }
  3720. }
  3721. /*
  3722. * Switch from the inline extent buffer to a direct
  3723. * extent list. Be sure to include the inline extent
  3724. * bytes in new_size.
  3725. */
  3726. else {
  3727. new_size += ifp->if_bytes;
  3728. if (!is_power_of_2(new_size)) {
  3729. rnew_size = roundup_pow_of_two(new_size);
  3730. }
  3731. xfs_iext_inline_to_direct(ifp, rnew_size);
  3732. }
  3733. ifp->if_real_bytes = rnew_size;
  3734. ifp->if_bytes = new_size;
  3735. }
  3736. /*
  3737. * Switch from linear (direct) extent records to inline buffer.
  3738. */
  3739. void
  3740. xfs_iext_direct_to_inline(
  3741. xfs_ifork_t *ifp, /* inode fork pointer */
  3742. xfs_extnum_t nextents) /* number of extents in file */
  3743. {
  3744. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3745. ASSERT(nextents <= XFS_INLINE_EXTS);
  3746. /*
  3747. * The inline buffer was zeroed when we switched
  3748. * from inline to direct extent allocation mode,
  3749. * so we don't need to clear it here.
  3750. */
  3751. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3752. nextents * sizeof(xfs_bmbt_rec_t));
  3753. kmem_free(ifp->if_u1.if_extents);
  3754. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3755. ifp->if_real_bytes = 0;
  3756. }
  3757. /*
  3758. * Switch from inline buffer to linear (direct) extent records.
  3759. * new_size should already be rounded up to the next power of 2
  3760. * by the caller (when appropriate), so use new_size as it is.
  3761. * However, since new_size may be rounded up, we can't update
  3762. * if_bytes here. It is the caller's responsibility to update
  3763. * if_bytes upon return.
  3764. */
  3765. void
  3766. xfs_iext_inline_to_direct(
  3767. xfs_ifork_t *ifp, /* inode fork pointer */
  3768. int new_size) /* number of extents in file */
  3769. {
  3770. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3771. memset(ifp->if_u1.if_extents, 0, new_size);
  3772. if (ifp->if_bytes) {
  3773. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3774. ifp->if_bytes);
  3775. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3776. sizeof(xfs_bmbt_rec_t));
  3777. }
  3778. ifp->if_real_bytes = new_size;
  3779. }
  3780. /*
  3781. * Resize an extent indirection array to new_size bytes.
  3782. */
  3783. void
  3784. xfs_iext_realloc_indirect(
  3785. xfs_ifork_t *ifp, /* inode fork pointer */
  3786. int new_size) /* new indirection array size */
  3787. {
  3788. int nlists; /* number of irec's (ex lists) */
  3789. int size; /* current indirection array size */
  3790. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3791. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3792. size = nlists * sizeof(xfs_ext_irec_t);
  3793. ASSERT(ifp->if_real_bytes);
  3794. ASSERT((new_size >= 0) && (new_size != size));
  3795. if (new_size == 0) {
  3796. xfs_iext_destroy(ifp);
  3797. } else {
  3798. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3799. kmem_realloc(ifp->if_u1.if_ext_irec,
  3800. new_size, size, KM_NOFS);
  3801. }
  3802. }
  3803. /*
  3804. * Switch from indirection array to linear (direct) extent allocations.
  3805. */
  3806. void
  3807. xfs_iext_indirect_to_direct(
  3808. xfs_ifork_t *ifp) /* inode fork pointer */
  3809. {
  3810. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3811. xfs_extnum_t nextents; /* number of extents in file */
  3812. int size; /* size of file extents */
  3813. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3814. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3815. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3816. size = nextents * sizeof(xfs_bmbt_rec_t);
  3817. xfs_iext_irec_compact_pages(ifp);
  3818. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3819. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3820. kmem_free(ifp->if_u1.if_ext_irec);
  3821. ifp->if_flags &= ~XFS_IFEXTIREC;
  3822. ifp->if_u1.if_extents = ep;
  3823. ifp->if_bytes = size;
  3824. if (nextents < XFS_LINEAR_EXTS) {
  3825. xfs_iext_realloc_direct(ifp, size);
  3826. }
  3827. }
  3828. /*
  3829. * Free incore file extents.
  3830. */
  3831. void
  3832. xfs_iext_destroy(
  3833. xfs_ifork_t *ifp) /* inode fork pointer */
  3834. {
  3835. if (ifp->if_flags & XFS_IFEXTIREC) {
  3836. int erp_idx;
  3837. int nlists;
  3838. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3839. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3840. xfs_iext_irec_remove(ifp, erp_idx);
  3841. }
  3842. ifp->if_flags &= ~XFS_IFEXTIREC;
  3843. } else if (ifp->if_real_bytes) {
  3844. kmem_free(ifp->if_u1.if_extents);
  3845. } else if (ifp->if_bytes) {
  3846. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3847. sizeof(xfs_bmbt_rec_t));
  3848. }
  3849. ifp->if_u1.if_extents = NULL;
  3850. ifp->if_real_bytes = 0;
  3851. ifp->if_bytes = 0;
  3852. }
  3853. /*
  3854. * Return a pointer to the extent record for file system block bno.
  3855. */
  3856. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3857. xfs_iext_bno_to_ext(
  3858. xfs_ifork_t *ifp, /* inode fork pointer */
  3859. xfs_fileoff_t bno, /* block number to search for */
  3860. xfs_extnum_t *idxp) /* index of target extent */
  3861. {
  3862. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3863. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3864. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3865. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3866. int high; /* upper boundary in search */
  3867. xfs_extnum_t idx = 0; /* index of target extent */
  3868. int low; /* lower boundary in search */
  3869. xfs_extnum_t nextents; /* number of file extents */
  3870. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3871. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3872. if (nextents == 0) {
  3873. *idxp = 0;
  3874. return NULL;
  3875. }
  3876. low = 0;
  3877. if (ifp->if_flags & XFS_IFEXTIREC) {
  3878. /* Find target extent list */
  3879. int erp_idx = 0;
  3880. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3881. base = erp->er_extbuf;
  3882. high = erp->er_extcount - 1;
  3883. } else {
  3884. base = ifp->if_u1.if_extents;
  3885. high = nextents - 1;
  3886. }
  3887. /* Binary search extent records */
  3888. while (low <= high) {
  3889. idx = (low + high) >> 1;
  3890. ep = base + idx;
  3891. startoff = xfs_bmbt_get_startoff(ep);
  3892. blockcount = xfs_bmbt_get_blockcount(ep);
  3893. if (bno < startoff) {
  3894. high = idx - 1;
  3895. } else if (bno >= startoff + blockcount) {
  3896. low = idx + 1;
  3897. } else {
  3898. /* Convert back to file-based extent index */
  3899. if (ifp->if_flags & XFS_IFEXTIREC) {
  3900. idx += erp->er_extoff;
  3901. }
  3902. *idxp = idx;
  3903. return ep;
  3904. }
  3905. }
  3906. /* Convert back to file-based extent index */
  3907. if (ifp->if_flags & XFS_IFEXTIREC) {
  3908. idx += erp->er_extoff;
  3909. }
  3910. if (bno >= startoff + blockcount) {
  3911. if (++idx == nextents) {
  3912. ep = NULL;
  3913. } else {
  3914. ep = xfs_iext_get_ext(ifp, idx);
  3915. }
  3916. }
  3917. *idxp = idx;
  3918. return ep;
  3919. }
  3920. /*
  3921. * Return a pointer to the indirection array entry containing the
  3922. * extent record for filesystem block bno. Store the index of the
  3923. * target irec in *erp_idxp.
  3924. */
  3925. xfs_ext_irec_t * /* pointer to found extent record */
  3926. xfs_iext_bno_to_irec(
  3927. xfs_ifork_t *ifp, /* inode fork pointer */
  3928. xfs_fileoff_t bno, /* block number to search for */
  3929. int *erp_idxp) /* irec index of target ext list */
  3930. {
  3931. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3932. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3933. int erp_idx; /* indirection array index */
  3934. int nlists; /* number of extent irec's (lists) */
  3935. int high; /* binary search upper limit */
  3936. int low; /* binary search lower limit */
  3937. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3938. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3939. erp_idx = 0;
  3940. low = 0;
  3941. high = nlists - 1;
  3942. while (low <= high) {
  3943. erp_idx = (low + high) >> 1;
  3944. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3945. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3946. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3947. high = erp_idx - 1;
  3948. } else if (erp_next && bno >=
  3949. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3950. low = erp_idx + 1;
  3951. } else {
  3952. break;
  3953. }
  3954. }
  3955. *erp_idxp = erp_idx;
  3956. return erp;
  3957. }
  3958. /*
  3959. * Return a pointer to the indirection array entry containing the
  3960. * extent record at file extent index *idxp. Store the index of the
  3961. * target irec in *erp_idxp and store the page index of the target
  3962. * extent record in *idxp.
  3963. */
  3964. xfs_ext_irec_t *
  3965. xfs_iext_idx_to_irec(
  3966. xfs_ifork_t *ifp, /* inode fork pointer */
  3967. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3968. int *erp_idxp, /* pointer to target irec */
  3969. int realloc) /* new bytes were just added */
  3970. {
  3971. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3972. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3973. int erp_idx; /* indirection array index */
  3974. int nlists; /* number of irec's (ex lists) */
  3975. int high; /* binary search upper limit */
  3976. int low; /* binary search lower limit */
  3977. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3978. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3979. ASSERT(page_idx >= 0 && page_idx <=
  3980. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3981. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3982. erp_idx = 0;
  3983. low = 0;
  3984. high = nlists - 1;
  3985. /* Binary search extent irec's */
  3986. while (low <= high) {
  3987. erp_idx = (low + high) >> 1;
  3988. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3989. prev = erp_idx > 0 ? erp - 1 : NULL;
  3990. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3991. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3992. high = erp_idx - 1;
  3993. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3994. (page_idx == erp->er_extoff + erp->er_extcount &&
  3995. !realloc)) {
  3996. low = erp_idx + 1;
  3997. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3998. erp->er_extcount == XFS_LINEAR_EXTS) {
  3999. ASSERT(realloc);
  4000. page_idx = 0;
  4001. erp_idx++;
  4002. erp = erp_idx < nlists ? erp + 1 : NULL;
  4003. break;
  4004. } else {
  4005. page_idx -= erp->er_extoff;
  4006. break;
  4007. }
  4008. }
  4009. *idxp = page_idx;
  4010. *erp_idxp = erp_idx;
  4011. return(erp);
  4012. }
  4013. /*
  4014. * Allocate and initialize an indirection array once the space needed
  4015. * for incore extents increases above XFS_IEXT_BUFSZ.
  4016. */
  4017. void
  4018. xfs_iext_irec_init(
  4019. xfs_ifork_t *ifp) /* inode fork pointer */
  4020. {
  4021. xfs_ext_irec_t *erp; /* indirection array pointer */
  4022. xfs_extnum_t nextents; /* number of extents in file */
  4023. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4024. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4025. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4026. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  4027. if (nextents == 0) {
  4028. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  4029. } else if (!ifp->if_real_bytes) {
  4030. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4031. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4032. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4033. }
  4034. erp->er_extbuf = ifp->if_u1.if_extents;
  4035. erp->er_extcount = nextents;
  4036. erp->er_extoff = 0;
  4037. ifp->if_flags |= XFS_IFEXTIREC;
  4038. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4039. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4040. ifp->if_u1.if_ext_irec = erp;
  4041. return;
  4042. }
  4043. /*
  4044. * Allocate and initialize a new entry in the indirection array.
  4045. */
  4046. xfs_ext_irec_t *
  4047. xfs_iext_irec_new(
  4048. xfs_ifork_t *ifp, /* inode fork pointer */
  4049. int erp_idx) /* index for new irec */
  4050. {
  4051. xfs_ext_irec_t *erp; /* indirection array pointer */
  4052. int i; /* loop counter */
  4053. int nlists; /* number of irec's (ex lists) */
  4054. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4055. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4056. /* Resize indirection array */
  4057. xfs_iext_realloc_indirect(ifp, ++nlists *
  4058. sizeof(xfs_ext_irec_t));
  4059. /*
  4060. * Move records down in the array so the
  4061. * new page can use erp_idx.
  4062. */
  4063. erp = ifp->if_u1.if_ext_irec;
  4064. for (i = nlists - 1; i > erp_idx; i--) {
  4065. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4066. }
  4067. ASSERT(i == erp_idx);
  4068. /* Initialize new extent record */
  4069. erp = ifp->if_u1.if_ext_irec;
  4070. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  4071. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4072. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4073. erp[erp_idx].er_extcount = 0;
  4074. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4075. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4076. return (&erp[erp_idx]);
  4077. }
  4078. /*
  4079. * Remove a record from the indirection array.
  4080. */
  4081. void
  4082. xfs_iext_irec_remove(
  4083. xfs_ifork_t *ifp, /* inode fork pointer */
  4084. int erp_idx) /* irec index to remove */
  4085. {
  4086. xfs_ext_irec_t *erp; /* indirection array pointer */
  4087. int i; /* loop counter */
  4088. int nlists; /* number of irec's (ex lists) */
  4089. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4090. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4091. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4092. if (erp->er_extbuf) {
  4093. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4094. -erp->er_extcount);
  4095. kmem_free(erp->er_extbuf);
  4096. }
  4097. /* Compact extent records */
  4098. erp = ifp->if_u1.if_ext_irec;
  4099. for (i = erp_idx; i < nlists - 1; i++) {
  4100. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4101. }
  4102. /*
  4103. * Manually free the last extent record from the indirection
  4104. * array. A call to xfs_iext_realloc_indirect() with a size
  4105. * of zero would result in a call to xfs_iext_destroy() which
  4106. * would in turn call this function again, creating a nasty
  4107. * infinite loop.
  4108. */
  4109. if (--nlists) {
  4110. xfs_iext_realloc_indirect(ifp,
  4111. nlists * sizeof(xfs_ext_irec_t));
  4112. } else {
  4113. kmem_free(ifp->if_u1.if_ext_irec);
  4114. }
  4115. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4116. }
  4117. /*
  4118. * This is called to clean up large amounts of unused memory allocated
  4119. * by the indirection array. Before compacting anything though, verify
  4120. * that the indirection array is still needed and switch back to the
  4121. * linear extent list (or even the inline buffer) if possible. The
  4122. * compaction policy is as follows:
  4123. *
  4124. * Full Compaction: Extents fit into a single page (or inline buffer)
  4125. * Partial Compaction: Extents occupy less than 50% of allocated space
  4126. * No Compaction: Extents occupy at least 50% of allocated space
  4127. */
  4128. void
  4129. xfs_iext_irec_compact(
  4130. xfs_ifork_t *ifp) /* inode fork pointer */
  4131. {
  4132. xfs_extnum_t nextents; /* number of extents in file */
  4133. int nlists; /* number of irec's (ex lists) */
  4134. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4135. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4136. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4137. if (nextents == 0) {
  4138. xfs_iext_destroy(ifp);
  4139. } else if (nextents <= XFS_INLINE_EXTS) {
  4140. xfs_iext_indirect_to_direct(ifp);
  4141. xfs_iext_direct_to_inline(ifp, nextents);
  4142. } else if (nextents <= XFS_LINEAR_EXTS) {
  4143. xfs_iext_indirect_to_direct(ifp);
  4144. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4145. xfs_iext_irec_compact_pages(ifp);
  4146. }
  4147. }
  4148. /*
  4149. * Combine extents from neighboring extent pages.
  4150. */
  4151. void
  4152. xfs_iext_irec_compact_pages(
  4153. xfs_ifork_t *ifp) /* inode fork pointer */
  4154. {
  4155. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4156. int erp_idx = 0; /* indirection array index */
  4157. int nlists; /* number of irec's (ex lists) */
  4158. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4159. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4160. while (erp_idx < nlists - 1) {
  4161. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4162. erp_next = erp + 1;
  4163. if (erp_next->er_extcount <=
  4164. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4165. memcpy(&erp->er_extbuf[erp->er_extcount],
  4166. erp_next->er_extbuf, erp_next->er_extcount *
  4167. sizeof(xfs_bmbt_rec_t));
  4168. erp->er_extcount += erp_next->er_extcount;
  4169. /*
  4170. * Free page before removing extent record
  4171. * so er_extoffs don't get modified in
  4172. * xfs_iext_irec_remove.
  4173. */
  4174. kmem_free(erp_next->er_extbuf);
  4175. erp_next->er_extbuf = NULL;
  4176. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4177. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4178. } else {
  4179. erp_idx++;
  4180. }
  4181. }
  4182. }
  4183. /*
  4184. * This is called to update the er_extoff field in the indirection
  4185. * array when extents have been added or removed from one of the
  4186. * extent lists. erp_idx contains the irec index to begin updating
  4187. * at and ext_diff contains the number of extents that were added
  4188. * or removed.
  4189. */
  4190. void
  4191. xfs_iext_irec_update_extoffs(
  4192. xfs_ifork_t *ifp, /* inode fork pointer */
  4193. int erp_idx, /* irec index to update */
  4194. int ext_diff) /* number of new extents */
  4195. {
  4196. int i; /* loop counter */
  4197. int nlists; /* number of irec's (ex lists */
  4198. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4199. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4200. for (i = erp_idx; i < nlists; i++) {
  4201. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4202. }
  4203. }