xfs_buf.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include <linux/stddef.h>
  20. #include <linux/errno.h>
  21. #include <linux/slab.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/init.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/bio.h>
  26. #include <linux/sysctl.h>
  27. #include <linux/proc_fs.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/percpu.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/hash.h>
  32. #include <linux/kthread.h>
  33. #include <linux/migrate.h>
  34. #include <linux/backing-dev.h>
  35. #include <linux/freezer.h>
  36. static kmem_zone_t *xfs_buf_zone;
  37. STATIC int xfsbufd(void *);
  38. STATIC int xfsbufd_wakeup(int, gfp_t);
  39. STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
  40. static struct shrinker xfs_buf_shake = {
  41. .shrink = xfsbufd_wakeup,
  42. .seeks = DEFAULT_SEEKS,
  43. };
  44. static struct workqueue_struct *xfslogd_workqueue;
  45. struct workqueue_struct *xfsdatad_workqueue;
  46. #ifdef XFS_BUF_TRACE
  47. void
  48. xfs_buf_trace(
  49. xfs_buf_t *bp,
  50. char *id,
  51. void *data,
  52. void *ra)
  53. {
  54. ktrace_enter(xfs_buf_trace_buf,
  55. bp, id,
  56. (void *)(unsigned long)bp->b_flags,
  57. (void *)(unsigned long)bp->b_hold.counter,
  58. (void *)(unsigned long)bp->b_sema.count,
  59. (void *)current,
  60. data, ra,
  61. (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
  62. (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
  63. (void *)(unsigned long)bp->b_buffer_length,
  64. NULL, NULL, NULL, NULL, NULL);
  65. }
  66. ktrace_t *xfs_buf_trace_buf;
  67. #define XFS_BUF_TRACE_SIZE 4096
  68. #define XB_TRACE(bp, id, data) \
  69. xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
  70. #else
  71. #define XB_TRACE(bp, id, data) do { } while (0)
  72. #endif
  73. #ifdef XFS_BUF_LOCK_TRACKING
  74. # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
  75. # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
  76. # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
  77. #else
  78. # define XB_SET_OWNER(bp) do { } while (0)
  79. # define XB_CLEAR_OWNER(bp) do { } while (0)
  80. # define XB_GET_OWNER(bp) do { } while (0)
  81. #endif
  82. #define xb_to_gfp(flags) \
  83. ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
  84. ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  85. #define xb_to_km(flags) \
  86. (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  87. #define xfs_buf_allocate(flags) \
  88. kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
  89. #define xfs_buf_deallocate(bp) \
  90. kmem_zone_free(xfs_buf_zone, (bp));
  91. /*
  92. * Page Region interfaces.
  93. *
  94. * For pages in filesystems where the blocksize is smaller than the
  95. * pagesize, we use the page->private field (long) to hold a bitmap
  96. * of uptodate regions within the page.
  97. *
  98. * Each such region is "bytes per page / bits per long" bytes long.
  99. *
  100. * NBPPR == number-of-bytes-per-page-region
  101. * BTOPR == bytes-to-page-region (rounded up)
  102. * BTOPRT == bytes-to-page-region-truncated (rounded down)
  103. */
  104. #if (BITS_PER_LONG == 32)
  105. #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
  106. #elif (BITS_PER_LONG == 64)
  107. #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
  108. #else
  109. #error BITS_PER_LONG must be 32 or 64
  110. #endif
  111. #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
  112. #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
  113. #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
  114. STATIC unsigned long
  115. page_region_mask(
  116. size_t offset,
  117. size_t length)
  118. {
  119. unsigned long mask;
  120. int first, final;
  121. first = BTOPR(offset);
  122. final = BTOPRT(offset + length - 1);
  123. first = min(first, final);
  124. mask = ~0UL;
  125. mask <<= BITS_PER_LONG - (final - first);
  126. mask >>= BITS_PER_LONG - (final);
  127. ASSERT(offset + length <= PAGE_CACHE_SIZE);
  128. ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
  129. return mask;
  130. }
  131. STATIC_INLINE void
  132. set_page_region(
  133. struct page *page,
  134. size_t offset,
  135. size_t length)
  136. {
  137. set_page_private(page,
  138. page_private(page) | page_region_mask(offset, length));
  139. if (page_private(page) == ~0UL)
  140. SetPageUptodate(page);
  141. }
  142. STATIC_INLINE int
  143. test_page_region(
  144. struct page *page,
  145. size_t offset,
  146. size_t length)
  147. {
  148. unsigned long mask = page_region_mask(offset, length);
  149. return (mask && (page_private(page) & mask) == mask);
  150. }
  151. /*
  152. * Mapping of multi-page buffers into contiguous virtual space
  153. */
  154. typedef struct a_list {
  155. void *vm_addr;
  156. struct a_list *next;
  157. } a_list_t;
  158. static a_list_t *as_free_head;
  159. static int as_list_len;
  160. static DEFINE_SPINLOCK(as_lock);
  161. /*
  162. * Try to batch vunmaps because they are costly.
  163. */
  164. STATIC void
  165. free_address(
  166. void *addr)
  167. {
  168. a_list_t *aentry;
  169. #ifdef CONFIG_XEN
  170. /*
  171. * Xen needs to be able to make sure it can get an exclusive
  172. * RO mapping of pages it wants to turn into a pagetable. If
  173. * a newly allocated page is also still being vmap()ed by xfs,
  174. * it will cause pagetable construction to fail. This is a
  175. * quick workaround to always eagerly unmap pages so that Xen
  176. * is happy.
  177. */
  178. vunmap(addr);
  179. return;
  180. #endif
  181. aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
  182. if (likely(aentry)) {
  183. spin_lock(&as_lock);
  184. aentry->next = as_free_head;
  185. aentry->vm_addr = addr;
  186. as_free_head = aentry;
  187. as_list_len++;
  188. spin_unlock(&as_lock);
  189. } else {
  190. vunmap(addr);
  191. }
  192. }
  193. STATIC void
  194. purge_addresses(void)
  195. {
  196. a_list_t *aentry, *old;
  197. if (as_free_head == NULL)
  198. return;
  199. spin_lock(&as_lock);
  200. aentry = as_free_head;
  201. as_free_head = NULL;
  202. as_list_len = 0;
  203. spin_unlock(&as_lock);
  204. while ((old = aentry) != NULL) {
  205. vunmap(aentry->vm_addr);
  206. aentry = aentry->next;
  207. kfree(old);
  208. }
  209. }
  210. /*
  211. * Internal xfs_buf_t object manipulation
  212. */
  213. STATIC void
  214. _xfs_buf_initialize(
  215. xfs_buf_t *bp,
  216. xfs_buftarg_t *target,
  217. xfs_off_t range_base,
  218. size_t range_length,
  219. xfs_buf_flags_t flags)
  220. {
  221. /*
  222. * We don't want certain flags to appear in b_flags.
  223. */
  224. flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
  225. memset(bp, 0, sizeof(xfs_buf_t));
  226. atomic_set(&bp->b_hold, 1);
  227. init_completion(&bp->b_iowait);
  228. INIT_LIST_HEAD(&bp->b_list);
  229. INIT_LIST_HEAD(&bp->b_hash_list);
  230. init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
  231. XB_SET_OWNER(bp);
  232. bp->b_target = target;
  233. bp->b_file_offset = range_base;
  234. /*
  235. * Set buffer_length and count_desired to the same value initially.
  236. * I/O routines should use count_desired, which will be the same in
  237. * most cases but may be reset (e.g. XFS recovery).
  238. */
  239. bp->b_buffer_length = bp->b_count_desired = range_length;
  240. bp->b_flags = flags;
  241. bp->b_bn = XFS_BUF_DADDR_NULL;
  242. atomic_set(&bp->b_pin_count, 0);
  243. init_waitqueue_head(&bp->b_waiters);
  244. XFS_STATS_INC(xb_create);
  245. XB_TRACE(bp, "initialize", target);
  246. }
  247. /*
  248. * Allocate a page array capable of holding a specified number
  249. * of pages, and point the page buf at it.
  250. */
  251. STATIC int
  252. _xfs_buf_get_pages(
  253. xfs_buf_t *bp,
  254. int page_count,
  255. xfs_buf_flags_t flags)
  256. {
  257. /* Make sure that we have a page list */
  258. if (bp->b_pages == NULL) {
  259. bp->b_offset = xfs_buf_poff(bp->b_file_offset);
  260. bp->b_page_count = page_count;
  261. if (page_count <= XB_PAGES) {
  262. bp->b_pages = bp->b_page_array;
  263. } else {
  264. bp->b_pages = kmem_alloc(sizeof(struct page *) *
  265. page_count, xb_to_km(flags));
  266. if (bp->b_pages == NULL)
  267. return -ENOMEM;
  268. }
  269. memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
  270. }
  271. return 0;
  272. }
  273. /*
  274. * Frees b_pages if it was allocated.
  275. */
  276. STATIC void
  277. _xfs_buf_free_pages(
  278. xfs_buf_t *bp)
  279. {
  280. if (bp->b_pages != bp->b_page_array) {
  281. kmem_free(bp->b_pages);
  282. }
  283. }
  284. /*
  285. * Releases the specified buffer.
  286. *
  287. * The modification state of any associated pages is left unchanged.
  288. * The buffer most not be on any hash - use xfs_buf_rele instead for
  289. * hashed and refcounted buffers
  290. */
  291. void
  292. xfs_buf_free(
  293. xfs_buf_t *bp)
  294. {
  295. XB_TRACE(bp, "free", 0);
  296. ASSERT(list_empty(&bp->b_hash_list));
  297. if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
  298. uint i;
  299. if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
  300. free_address(bp->b_addr - bp->b_offset);
  301. for (i = 0; i < bp->b_page_count; i++) {
  302. struct page *page = bp->b_pages[i];
  303. if (bp->b_flags & _XBF_PAGE_CACHE)
  304. ASSERT(!PagePrivate(page));
  305. page_cache_release(page);
  306. }
  307. _xfs_buf_free_pages(bp);
  308. }
  309. xfs_buf_deallocate(bp);
  310. }
  311. /*
  312. * Finds all pages for buffer in question and builds it's page list.
  313. */
  314. STATIC int
  315. _xfs_buf_lookup_pages(
  316. xfs_buf_t *bp,
  317. uint flags)
  318. {
  319. struct address_space *mapping = bp->b_target->bt_mapping;
  320. size_t blocksize = bp->b_target->bt_bsize;
  321. size_t size = bp->b_count_desired;
  322. size_t nbytes, offset;
  323. gfp_t gfp_mask = xb_to_gfp(flags);
  324. unsigned short page_count, i;
  325. pgoff_t first;
  326. xfs_off_t end;
  327. int error;
  328. end = bp->b_file_offset + bp->b_buffer_length;
  329. page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
  330. error = _xfs_buf_get_pages(bp, page_count, flags);
  331. if (unlikely(error))
  332. return error;
  333. bp->b_flags |= _XBF_PAGE_CACHE;
  334. offset = bp->b_offset;
  335. first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
  336. for (i = 0; i < bp->b_page_count; i++) {
  337. struct page *page;
  338. uint retries = 0;
  339. retry:
  340. page = find_or_create_page(mapping, first + i, gfp_mask);
  341. if (unlikely(page == NULL)) {
  342. if (flags & XBF_READ_AHEAD) {
  343. bp->b_page_count = i;
  344. for (i = 0; i < bp->b_page_count; i++)
  345. unlock_page(bp->b_pages[i]);
  346. return -ENOMEM;
  347. }
  348. /*
  349. * This could deadlock.
  350. *
  351. * But until all the XFS lowlevel code is revamped to
  352. * handle buffer allocation failures we can't do much.
  353. */
  354. if (!(++retries % 100))
  355. printk(KERN_ERR
  356. "XFS: possible memory allocation "
  357. "deadlock in %s (mode:0x%x)\n",
  358. __func__, gfp_mask);
  359. XFS_STATS_INC(xb_page_retries);
  360. xfsbufd_wakeup(0, gfp_mask);
  361. congestion_wait(WRITE, HZ/50);
  362. goto retry;
  363. }
  364. XFS_STATS_INC(xb_page_found);
  365. nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
  366. size -= nbytes;
  367. ASSERT(!PagePrivate(page));
  368. if (!PageUptodate(page)) {
  369. page_count--;
  370. if (blocksize >= PAGE_CACHE_SIZE) {
  371. if (flags & XBF_READ)
  372. bp->b_flags |= _XBF_PAGE_LOCKED;
  373. } else if (!PagePrivate(page)) {
  374. if (test_page_region(page, offset, nbytes))
  375. page_count++;
  376. }
  377. }
  378. bp->b_pages[i] = page;
  379. offset = 0;
  380. }
  381. if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
  382. for (i = 0; i < bp->b_page_count; i++)
  383. unlock_page(bp->b_pages[i]);
  384. }
  385. if (page_count == bp->b_page_count)
  386. bp->b_flags |= XBF_DONE;
  387. XB_TRACE(bp, "lookup_pages", (long)page_count);
  388. return error;
  389. }
  390. /*
  391. * Map buffer into kernel address-space if nessecary.
  392. */
  393. STATIC int
  394. _xfs_buf_map_pages(
  395. xfs_buf_t *bp,
  396. uint flags)
  397. {
  398. /* A single page buffer is always mappable */
  399. if (bp->b_page_count == 1) {
  400. bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
  401. bp->b_flags |= XBF_MAPPED;
  402. } else if (flags & XBF_MAPPED) {
  403. if (as_list_len > 64)
  404. purge_addresses();
  405. bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
  406. VM_MAP, PAGE_KERNEL);
  407. if (unlikely(bp->b_addr == NULL))
  408. return -ENOMEM;
  409. bp->b_addr += bp->b_offset;
  410. bp->b_flags |= XBF_MAPPED;
  411. }
  412. return 0;
  413. }
  414. /*
  415. * Finding and Reading Buffers
  416. */
  417. /*
  418. * Look up, and creates if absent, a lockable buffer for
  419. * a given range of an inode. The buffer is returned
  420. * locked. If other overlapping buffers exist, they are
  421. * released before the new buffer is created and locked,
  422. * which may imply that this call will block until those buffers
  423. * are unlocked. No I/O is implied by this call.
  424. */
  425. xfs_buf_t *
  426. _xfs_buf_find(
  427. xfs_buftarg_t *btp, /* block device target */
  428. xfs_off_t ioff, /* starting offset of range */
  429. size_t isize, /* length of range */
  430. xfs_buf_flags_t flags,
  431. xfs_buf_t *new_bp)
  432. {
  433. xfs_off_t range_base;
  434. size_t range_length;
  435. xfs_bufhash_t *hash;
  436. xfs_buf_t *bp, *n;
  437. range_base = (ioff << BBSHIFT);
  438. range_length = (isize << BBSHIFT);
  439. /* Check for IOs smaller than the sector size / not sector aligned */
  440. ASSERT(!(range_length < (1 << btp->bt_sshift)));
  441. ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
  442. hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
  443. spin_lock(&hash->bh_lock);
  444. list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
  445. ASSERT(btp == bp->b_target);
  446. if (bp->b_file_offset == range_base &&
  447. bp->b_buffer_length == range_length) {
  448. /*
  449. * If we look at something, bring it to the
  450. * front of the list for next time.
  451. */
  452. atomic_inc(&bp->b_hold);
  453. list_move(&bp->b_hash_list, &hash->bh_list);
  454. goto found;
  455. }
  456. }
  457. /* No match found */
  458. if (new_bp) {
  459. _xfs_buf_initialize(new_bp, btp, range_base,
  460. range_length, flags);
  461. new_bp->b_hash = hash;
  462. list_add(&new_bp->b_hash_list, &hash->bh_list);
  463. } else {
  464. XFS_STATS_INC(xb_miss_locked);
  465. }
  466. spin_unlock(&hash->bh_lock);
  467. return new_bp;
  468. found:
  469. spin_unlock(&hash->bh_lock);
  470. /* Attempt to get the semaphore without sleeping,
  471. * if this does not work then we need to drop the
  472. * spinlock and do a hard attempt on the semaphore.
  473. */
  474. if (down_trylock(&bp->b_sema)) {
  475. if (!(flags & XBF_TRYLOCK)) {
  476. /* wait for buffer ownership */
  477. XB_TRACE(bp, "get_lock", 0);
  478. xfs_buf_lock(bp);
  479. XFS_STATS_INC(xb_get_locked_waited);
  480. } else {
  481. /* We asked for a trylock and failed, no need
  482. * to look at file offset and length here, we
  483. * know that this buffer at least overlaps our
  484. * buffer and is locked, therefore our buffer
  485. * either does not exist, or is this buffer.
  486. */
  487. xfs_buf_rele(bp);
  488. XFS_STATS_INC(xb_busy_locked);
  489. return NULL;
  490. }
  491. } else {
  492. /* trylock worked */
  493. XB_SET_OWNER(bp);
  494. }
  495. if (bp->b_flags & XBF_STALE) {
  496. ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
  497. bp->b_flags &= XBF_MAPPED;
  498. }
  499. XB_TRACE(bp, "got_lock", 0);
  500. XFS_STATS_INC(xb_get_locked);
  501. return bp;
  502. }
  503. /*
  504. * Assembles a buffer covering the specified range.
  505. * Storage in memory for all portions of the buffer will be allocated,
  506. * although backing storage may not be.
  507. */
  508. xfs_buf_t *
  509. xfs_buf_get_flags(
  510. xfs_buftarg_t *target,/* target for buffer */
  511. xfs_off_t ioff, /* starting offset of range */
  512. size_t isize, /* length of range */
  513. xfs_buf_flags_t flags)
  514. {
  515. xfs_buf_t *bp, *new_bp;
  516. int error = 0, i;
  517. new_bp = xfs_buf_allocate(flags);
  518. if (unlikely(!new_bp))
  519. return NULL;
  520. bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
  521. if (bp == new_bp) {
  522. error = _xfs_buf_lookup_pages(bp, flags);
  523. if (error)
  524. goto no_buffer;
  525. } else {
  526. xfs_buf_deallocate(new_bp);
  527. if (unlikely(bp == NULL))
  528. return NULL;
  529. }
  530. for (i = 0; i < bp->b_page_count; i++)
  531. mark_page_accessed(bp->b_pages[i]);
  532. if (!(bp->b_flags & XBF_MAPPED)) {
  533. error = _xfs_buf_map_pages(bp, flags);
  534. if (unlikely(error)) {
  535. printk(KERN_WARNING "%s: failed to map pages\n",
  536. __func__);
  537. goto no_buffer;
  538. }
  539. }
  540. XFS_STATS_INC(xb_get);
  541. /*
  542. * Always fill in the block number now, the mapped cases can do
  543. * their own overlay of this later.
  544. */
  545. bp->b_bn = ioff;
  546. bp->b_count_desired = bp->b_buffer_length;
  547. XB_TRACE(bp, "get", (unsigned long)flags);
  548. return bp;
  549. no_buffer:
  550. if (flags & (XBF_LOCK | XBF_TRYLOCK))
  551. xfs_buf_unlock(bp);
  552. xfs_buf_rele(bp);
  553. return NULL;
  554. }
  555. xfs_buf_t *
  556. xfs_buf_read_flags(
  557. xfs_buftarg_t *target,
  558. xfs_off_t ioff,
  559. size_t isize,
  560. xfs_buf_flags_t flags)
  561. {
  562. xfs_buf_t *bp;
  563. flags |= XBF_READ;
  564. bp = xfs_buf_get_flags(target, ioff, isize, flags);
  565. if (bp) {
  566. if (!XFS_BUF_ISDONE(bp)) {
  567. XB_TRACE(bp, "read", (unsigned long)flags);
  568. XFS_STATS_INC(xb_get_read);
  569. xfs_buf_iostart(bp, flags);
  570. } else if (flags & XBF_ASYNC) {
  571. XB_TRACE(bp, "read_async", (unsigned long)flags);
  572. /*
  573. * Read ahead call which is already satisfied,
  574. * drop the buffer
  575. */
  576. goto no_buffer;
  577. } else {
  578. XB_TRACE(bp, "read_done", (unsigned long)flags);
  579. /* We do not want read in the flags */
  580. bp->b_flags &= ~XBF_READ;
  581. }
  582. }
  583. return bp;
  584. no_buffer:
  585. if (flags & (XBF_LOCK | XBF_TRYLOCK))
  586. xfs_buf_unlock(bp);
  587. xfs_buf_rele(bp);
  588. return NULL;
  589. }
  590. /*
  591. * If we are not low on memory then do the readahead in a deadlock
  592. * safe manner.
  593. */
  594. void
  595. xfs_buf_readahead(
  596. xfs_buftarg_t *target,
  597. xfs_off_t ioff,
  598. size_t isize,
  599. xfs_buf_flags_t flags)
  600. {
  601. struct backing_dev_info *bdi;
  602. bdi = target->bt_mapping->backing_dev_info;
  603. if (bdi_read_congested(bdi))
  604. return;
  605. flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
  606. xfs_buf_read_flags(target, ioff, isize, flags);
  607. }
  608. xfs_buf_t *
  609. xfs_buf_get_empty(
  610. size_t len,
  611. xfs_buftarg_t *target)
  612. {
  613. xfs_buf_t *bp;
  614. bp = xfs_buf_allocate(0);
  615. if (bp)
  616. _xfs_buf_initialize(bp, target, 0, len, 0);
  617. return bp;
  618. }
  619. static inline struct page *
  620. mem_to_page(
  621. void *addr)
  622. {
  623. if ((!is_vmalloc_addr(addr))) {
  624. return virt_to_page(addr);
  625. } else {
  626. return vmalloc_to_page(addr);
  627. }
  628. }
  629. int
  630. xfs_buf_associate_memory(
  631. xfs_buf_t *bp,
  632. void *mem,
  633. size_t len)
  634. {
  635. int rval;
  636. int i = 0;
  637. unsigned long pageaddr;
  638. unsigned long offset;
  639. size_t buflen;
  640. int page_count;
  641. pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
  642. offset = (unsigned long)mem - pageaddr;
  643. buflen = PAGE_CACHE_ALIGN(len + offset);
  644. page_count = buflen >> PAGE_CACHE_SHIFT;
  645. /* Free any previous set of page pointers */
  646. if (bp->b_pages)
  647. _xfs_buf_free_pages(bp);
  648. bp->b_pages = NULL;
  649. bp->b_addr = mem;
  650. rval = _xfs_buf_get_pages(bp, page_count, 0);
  651. if (rval)
  652. return rval;
  653. bp->b_offset = offset;
  654. for (i = 0; i < bp->b_page_count; i++) {
  655. bp->b_pages[i] = mem_to_page((void *)pageaddr);
  656. pageaddr += PAGE_CACHE_SIZE;
  657. }
  658. bp->b_count_desired = len;
  659. bp->b_buffer_length = buflen;
  660. bp->b_flags |= XBF_MAPPED;
  661. bp->b_flags &= ~_XBF_PAGE_LOCKED;
  662. return 0;
  663. }
  664. xfs_buf_t *
  665. xfs_buf_get_noaddr(
  666. size_t len,
  667. xfs_buftarg_t *target)
  668. {
  669. unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
  670. int error, i;
  671. xfs_buf_t *bp;
  672. bp = xfs_buf_allocate(0);
  673. if (unlikely(bp == NULL))
  674. goto fail;
  675. _xfs_buf_initialize(bp, target, 0, len, 0);
  676. error = _xfs_buf_get_pages(bp, page_count, 0);
  677. if (error)
  678. goto fail_free_buf;
  679. for (i = 0; i < page_count; i++) {
  680. bp->b_pages[i] = alloc_page(GFP_KERNEL);
  681. if (!bp->b_pages[i])
  682. goto fail_free_mem;
  683. }
  684. bp->b_flags |= _XBF_PAGES;
  685. error = _xfs_buf_map_pages(bp, XBF_MAPPED);
  686. if (unlikely(error)) {
  687. printk(KERN_WARNING "%s: failed to map pages\n",
  688. __func__);
  689. goto fail_free_mem;
  690. }
  691. xfs_buf_unlock(bp);
  692. XB_TRACE(bp, "no_daddr", len);
  693. return bp;
  694. fail_free_mem:
  695. while (--i >= 0)
  696. __free_page(bp->b_pages[i]);
  697. _xfs_buf_free_pages(bp);
  698. fail_free_buf:
  699. xfs_buf_deallocate(bp);
  700. fail:
  701. return NULL;
  702. }
  703. /*
  704. * Increment reference count on buffer, to hold the buffer concurrently
  705. * with another thread which may release (free) the buffer asynchronously.
  706. * Must hold the buffer already to call this function.
  707. */
  708. void
  709. xfs_buf_hold(
  710. xfs_buf_t *bp)
  711. {
  712. atomic_inc(&bp->b_hold);
  713. XB_TRACE(bp, "hold", 0);
  714. }
  715. /*
  716. * Releases a hold on the specified buffer. If the
  717. * the hold count is 1, calls xfs_buf_free.
  718. */
  719. void
  720. xfs_buf_rele(
  721. xfs_buf_t *bp)
  722. {
  723. xfs_bufhash_t *hash = bp->b_hash;
  724. XB_TRACE(bp, "rele", bp->b_relse);
  725. if (unlikely(!hash)) {
  726. ASSERT(!bp->b_relse);
  727. if (atomic_dec_and_test(&bp->b_hold))
  728. xfs_buf_free(bp);
  729. return;
  730. }
  731. ASSERT(atomic_read(&bp->b_hold) > 0);
  732. if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
  733. if (bp->b_relse) {
  734. atomic_inc(&bp->b_hold);
  735. spin_unlock(&hash->bh_lock);
  736. (*(bp->b_relse)) (bp);
  737. } else if (bp->b_flags & XBF_FS_MANAGED) {
  738. spin_unlock(&hash->bh_lock);
  739. } else {
  740. ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
  741. list_del_init(&bp->b_hash_list);
  742. spin_unlock(&hash->bh_lock);
  743. xfs_buf_free(bp);
  744. }
  745. }
  746. }
  747. /*
  748. * Mutual exclusion on buffers. Locking model:
  749. *
  750. * Buffers associated with inodes for which buffer locking
  751. * is not enabled are not protected by semaphores, and are
  752. * assumed to be exclusively owned by the caller. There is a
  753. * spinlock in the buffer, used by the caller when concurrent
  754. * access is possible.
  755. */
  756. /*
  757. * Locks a buffer object, if it is not already locked.
  758. * Note that this in no way locks the underlying pages, so it is only
  759. * useful for synchronizing concurrent use of buffer objects, not for
  760. * synchronizing independent access to the underlying pages.
  761. */
  762. int
  763. xfs_buf_cond_lock(
  764. xfs_buf_t *bp)
  765. {
  766. int locked;
  767. locked = down_trylock(&bp->b_sema) == 0;
  768. if (locked) {
  769. XB_SET_OWNER(bp);
  770. }
  771. XB_TRACE(bp, "cond_lock", (long)locked);
  772. return locked ? 0 : -EBUSY;
  773. }
  774. #if defined(DEBUG) || defined(XFS_BLI_TRACE)
  775. int
  776. xfs_buf_lock_value(
  777. xfs_buf_t *bp)
  778. {
  779. return bp->b_sema.count;
  780. }
  781. #endif
  782. /*
  783. * Locks a buffer object.
  784. * Note that this in no way locks the underlying pages, so it is only
  785. * useful for synchronizing concurrent use of buffer objects, not for
  786. * synchronizing independent access to the underlying pages.
  787. */
  788. void
  789. xfs_buf_lock(
  790. xfs_buf_t *bp)
  791. {
  792. XB_TRACE(bp, "lock", 0);
  793. if (atomic_read(&bp->b_io_remaining))
  794. blk_run_address_space(bp->b_target->bt_mapping);
  795. down(&bp->b_sema);
  796. XB_SET_OWNER(bp);
  797. XB_TRACE(bp, "locked", 0);
  798. }
  799. /*
  800. * Releases the lock on the buffer object.
  801. * If the buffer is marked delwri but is not queued, do so before we
  802. * unlock the buffer as we need to set flags correctly. We also need to
  803. * take a reference for the delwri queue because the unlocker is going to
  804. * drop their's and they don't know we just queued it.
  805. */
  806. void
  807. xfs_buf_unlock(
  808. xfs_buf_t *bp)
  809. {
  810. if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
  811. atomic_inc(&bp->b_hold);
  812. bp->b_flags |= XBF_ASYNC;
  813. xfs_buf_delwri_queue(bp, 0);
  814. }
  815. XB_CLEAR_OWNER(bp);
  816. up(&bp->b_sema);
  817. XB_TRACE(bp, "unlock", 0);
  818. }
  819. /*
  820. * Pinning Buffer Storage in Memory
  821. * Ensure that no attempt to force a buffer to disk will succeed.
  822. */
  823. void
  824. xfs_buf_pin(
  825. xfs_buf_t *bp)
  826. {
  827. atomic_inc(&bp->b_pin_count);
  828. XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
  829. }
  830. void
  831. xfs_buf_unpin(
  832. xfs_buf_t *bp)
  833. {
  834. if (atomic_dec_and_test(&bp->b_pin_count))
  835. wake_up_all(&bp->b_waiters);
  836. XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
  837. }
  838. int
  839. xfs_buf_ispin(
  840. xfs_buf_t *bp)
  841. {
  842. return atomic_read(&bp->b_pin_count);
  843. }
  844. STATIC void
  845. xfs_buf_wait_unpin(
  846. xfs_buf_t *bp)
  847. {
  848. DECLARE_WAITQUEUE (wait, current);
  849. if (atomic_read(&bp->b_pin_count) == 0)
  850. return;
  851. add_wait_queue(&bp->b_waiters, &wait);
  852. for (;;) {
  853. set_current_state(TASK_UNINTERRUPTIBLE);
  854. if (atomic_read(&bp->b_pin_count) == 0)
  855. break;
  856. if (atomic_read(&bp->b_io_remaining))
  857. blk_run_address_space(bp->b_target->bt_mapping);
  858. schedule();
  859. }
  860. remove_wait_queue(&bp->b_waiters, &wait);
  861. set_current_state(TASK_RUNNING);
  862. }
  863. /*
  864. * Buffer Utility Routines
  865. */
  866. STATIC void
  867. xfs_buf_iodone_work(
  868. struct work_struct *work)
  869. {
  870. xfs_buf_t *bp =
  871. container_of(work, xfs_buf_t, b_iodone_work);
  872. /*
  873. * We can get an EOPNOTSUPP to ordered writes. Here we clear the
  874. * ordered flag and reissue them. Because we can't tell the higher
  875. * layers directly that they should not issue ordered I/O anymore, they
  876. * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
  877. */
  878. if ((bp->b_error == EOPNOTSUPP) &&
  879. (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
  880. XB_TRACE(bp, "ordered_retry", bp->b_iodone);
  881. bp->b_flags &= ~XBF_ORDERED;
  882. bp->b_flags |= _XFS_BARRIER_FAILED;
  883. xfs_buf_iorequest(bp);
  884. } else if (bp->b_iodone)
  885. (*(bp->b_iodone))(bp);
  886. else if (bp->b_flags & XBF_ASYNC)
  887. xfs_buf_relse(bp);
  888. }
  889. void
  890. xfs_buf_ioend(
  891. xfs_buf_t *bp,
  892. int schedule)
  893. {
  894. bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
  895. if (bp->b_error == 0)
  896. bp->b_flags |= XBF_DONE;
  897. XB_TRACE(bp, "iodone", bp->b_iodone);
  898. if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
  899. if (schedule) {
  900. INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
  901. queue_work(xfslogd_workqueue, &bp->b_iodone_work);
  902. } else {
  903. xfs_buf_iodone_work(&bp->b_iodone_work);
  904. }
  905. } else {
  906. complete(&bp->b_iowait);
  907. }
  908. }
  909. void
  910. xfs_buf_ioerror(
  911. xfs_buf_t *bp,
  912. int error)
  913. {
  914. ASSERT(error >= 0 && error <= 0xffff);
  915. bp->b_error = (unsigned short)error;
  916. XB_TRACE(bp, "ioerror", (unsigned long)error);
  917. }
  918. /*
  919. * Initiate I/O on a buffer, based on the flags supplied.
  920. * The b_iodone routine in the buffer supplied will only be called
  921. * when all of the subsidiary I/O requests, if any, have been completed.
  922. */
  923. int
  924. xfs_buf_iostart(
  925. xfs_buf_t *bp,
  926. xfs_buf_flags_t flags)
  927. {
  928. int status = 0;
  929. XB_TRACE(bp, "iostart", (unsigned long)flags);
  930. if (flags & XBF_DELWRI) {
  931. bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
  932. bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
  933. xfs_buf_delwri_queue(bp, 1);
  934. return 0;
  935. }
  936. bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
  937. XBF_READ_AHEAD | _XBF_RUN_QUEUES);
  938. bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
  939. XBF_READ_AHEAD | _XBF_RUN_QUEUES);
  940. BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
  941. /* For writes allow an alternate strategy routine to precede
  942. * the actual I/O request (which may not be issued at all in
  943. * a shutdown situation, for example).
  944. */
  945. status = (flags & XBF_WRITE) ?
  946. xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
  947. /* Wait for I/O if we are not an async request.
  948. * Note: async I/O request completion will release the buffer,
  949. * and that can already be done by this point. So using the
  950. * buffer pointer from here on, after async I/O, is invalid.
  951. */
  952. if (!status && !(flags & XBF_ASYNC))
  953. status = xfs_buf_iowait(bp);
  954. return status;
  955. }
  956. STATIC_INLINE void
  957. _xfs_buf_ioend(
  958. xfs_buf_t *bp,
  959. int schedule)
  960. {
  961. if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
  962. bp->b_flags &= ~_XBF_PAGE_LOCKED;
  963. xfs_buf_ioend(bp, schedule);
  964. }
  965. }
  966. STATIC void
  967. xfs_buf_bio_end_io(
  968. struct bio *bio,
  969. int error)
  970. {
  971. xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
  972. unsigned int blocksize = bp->b_target->bt_bsize;
  973. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  974. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  975. bp->b_error = EIO;
  976. do {
  977. struct page *page = bvec->bv_page;
  978. ASSERT(!PagePrivate(page));
  979. if (unlikely(bp->b_error)) {
  980. if (bp->b_flags & XBF_READ)
  981. ClearPageUptodate(page);
  982. } else if (blocksize >= PAGE_CACHE_SIZE) {
  983. SetPageUptodate(page);
  984. } else if (!PagePrivate(page) &&
  985. (bp->b_flags & _XBF_PAGE_CACHE)) {
  986. set_page_region(page, bvec->bv_offset, bvec->bv_len);
  987. }
  988. if (--bvec >= bio->bi_io_vec)
  989. prefetchw(&bvec->bv_page->flags);
  990. if (bp->b_flags & _XBF_PAGE_LOCKED)
  991. unlock_page(page);
  992. } while (bvec >= bio->bi_io_vec);
  993. _xfs_buf_ioend(bp, 1);
  994. bio_put(bio);
  995. }
  996. STATIC void
  997. _xfs_buf_ioapply(
  998. xfs_buf_t *bp)
  999. {
  1000. int rw, map_i, total_nr_pages, nr_pages;
  1001. struct bio *bio;
  1002. int offset = bp->b_offset;
  1003. int size = bp->b_count_desired;
  1004. sector_t sector = bp->b_bn;
  1005. unsigned int blocksize = bp->b_target->bt_bsize;
  1006. total_nr_pages = bp->b_page_count;
  1007. map_i = 0;
  1008. if (bp->b_flags & XBF_ORDERED) {
  1009. ASSERT(!(bp->b_flags & XBF_READ));
  1010. rw = WRITE_BARRIER;
  1011. } else if (bp->b_flags & _XBF_RUN_QUEUES) {
  1012. ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
  1013. bp->b_flags &= ~_XBF_RUN_QUEUES;
  1014. rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
  1015. } else {
  1016. rw = (bp->b_flags & XBF_WRITE) ? WRITE :
  1017. (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
  1018. }
  1019. /* Special code path for reading a sub page size buffer in --
  1020. * we populate up the whole page, and hence the other metadata
  1021. * in the same page. This optimization is only valid when the
  1022. * filesystem block size is not smaller than the page size.
  1023. */
  1024. if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
  1025. ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
  1026. (XBF_READ|_XBF_PAGE_LOCKED)) &&
  1027. (blocksize >= PAGE_CACHE_SIZE)) {
  1028. bio = bio_alloc(GFP_NOIO, 1);
  1029. bio->bi_bdev = bp->b_target->bt_bdev;
  1030. bio->bi_sector = sector - (offset >> BBSHIFT);
  1031. bio->bi_end_io = xfs_buf_bio_end_io;
  1032. bio->bi_private = bp;
  1033. bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
  1034. size = 0;
  1035. atomic_inc(&bp->b_io_remaining);
  1036. goto submit_io;
  1037. }
  1038. next_chunk:
  1039. atomic_inc(&bp->b_io_remaining);
  1040. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1041. if (nr_pages > total_nr_pages)
  1042. nr_pages = total_nr_pages;
  1043. bio = bio_alloc(GFP_NOIO, nr_pages);
  1044. bio->bi_bdev = bp->b_target->bt_bdev;
  1045. bio->bi_sector = sector;
  1046. bio->bi_end_io = xfs_buf_bio_end_io;
  1047. bio->bi_private = bp;
  1048. for (; size && nr_pages; nr_pages--, map_i++) {
  1049. int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
  1050. if (nbytes > size)
  1051. nbytes = size;
  1052. rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
  1053. if (rbytes < nbytes)
  1054. break;
  1055. offset = 0;
  1056. sector += nbytes >> BBSHIFT;
  1057. size -= nbytes;
  1058. total_nr_pages--;
  1059. }
  1060. submit_io:
  1061. if (likely(bio->bi_size)) {
  1062. submit_bio(rw, bio);
  1063. if (size)
  1064. goto next_chunk;
  1065. } else {
  1066. bio_put(bio);
  1067. xfs_buf_ioerror(bp, EIO);
  1068. }
  1069. }
  1070. int
  1071. xfs_buf_iorequest(
  1072. xfs_buf_t *bp)
  1073. {
  1074. XB_TRACE(bp, "iorequest", 0);
  1075. if (bp->b_flags & XBF_DELWRI) {
  1076. xfs_buf_delwri_queue(bp, 1);
  1077. return 0;
  1078. }
  1079. if (bp->b_flags & XBF_WRITE) {
  1080. xfs_buf_wait_unpin(bp);
  1081. }
  1082. xfs_buf_hold(bp);
  1083. /* Set the count to 1 initially, this will stop an I/O
  1084. * completion callout which happens before we have started
  1085. * all the I/O from calling xfs_buf_ioend too early.
  1086. */
  1087. atomic_set(&bp->b_io_remaining, 1);
  1088. _xfs_buf_ioapply(bp);
  1089. _xfs_buf_ioend(bp, 0);
  1090. xfs_buf_rele(bp);
  1091. return 0;
  1092. }
  1093. /*
  1094. * Waits for I/O to complete on the buffer supplied.
  1095. * It returns immediately if no I/O is pending.
  1096. * It returns the I/O error code, if any, or 0 if there was no error.
  1097. */
  1098. int
  1099. xfs_buf_iowait(
  1100. xfs_buf_t *bp)
  1101. {
  1102. XB_TRACE(bp, "iowait", 0);
  1103. if (atomic_read(&bp->b_io_remaining))
  1104. blk_run_address_space(bp->b_target->bt_mapping);
  1105. wait_for_completion(&bp->b_iowait);
  1106. XB_TRACE(bp, "iowaited", (long)bp->b_error);
  1107. return bp->b_error;
  1108. }
  1109. xfs_caddr_t
  1110. xfs_buf_offset(
  1111. xfs_buf_t *bp,
  1112. size_t offset)
  1113. {
  1114. struct page *page;
  1115. if (bp->b_flags & XBF_MAPPED)
  1116. return XFS_BUF_PTR(bp) + offset;
  1117. offset += bp->b_offset;
  1118. page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
  1119. return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
  1120. }
  1121. /*
  1122. * Move data into or out of a buffer.
  1123. */
  1124. void
  1125. xfs_buf_iomove(
  1126. xfs_buf_t *bp, /* buffer to process */
  1127. size_t boff, /* starting buffer offset */
  1128. size_t bsize, /* length to copy */
  1129. caddr_t data, /* data address */
  1130. xfs_buf_rw_t mode) /* read/write/zero flag */
  1131. {
  1132. size_t bend, cpoff, csize;
  1133. struct page *page;
  1134. bend = boff + bsize;
  1135. while (boff < bend) {
  1136. page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
  1137. cpoff = xfs_buf_poff(boff + bp->b_offset);
  1138. csize = min_t(size_t,
  1139. PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
  1140. ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
  1141. switch (mode) {
  1142. case XBRW_ZERO:
  1143. memset(page_address(page) + cpoff, 0, csize);
  1144. break;
  1145. case XBRW_READ:
  1146. memcpy(data, page_address(page) + cpoff, csize);
  1147. break;
  1148. case XBRW_WRITE:
  1149. memcpy(page_address(page) + cpoff, data, csize);
  1150. }
  1151. boff += csize;
  1152. data += csize;
  1153. }
  1154. }
  1155. /*
  1156. * Handling of buffer targets (buftargs).
  1157. */
  1158. /*
  1159. * Wait for any bufs with callbacks that have been submitted but
  1160. * have not yet returned... walk the hash list for the target.
  1161. */
  1162. void
  1163. xfs_wait_buftarg(
  1164. xfs_buftarg_t *btp)
  1165. {
  1166. xfs_buf_t *bp, *n;
  1167. xfs_bufhash_t *hash;
  1168. uint i;
  1169. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1170. hash = &btp->bt_hash[i];
  1171. again:
  1172. spin_lock(&hash->bh_lock);
  1173. list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
  1174. ASSERT(btp == bp->b_target);
  1175. if (!(bp->b_flags & XBF_FS_MANAGED)) {
  1176. spin_unlock(&hash->bh_lock);
  1177. /*
  1178. * Catch superblock reference count leaks
  1179. * immediately
  1180. */
  1181. BUG_ON(bp->b_bn == 0);
  1182. delay(100);
  1183. goto again;
  1184. }
  1185. }
  1186. spin_unlock(&hash->bh_lock);
  1187. }
  1188. }
  1189. /*
  1190. * Allocate buffer hash table for a given target.
  1191. * For devices containing metadata (i.e. not the log/realtime devices)
  1192. * we need to allocate a much larger hash table.
  1193. */
  1194. STATIC void
  1195. xfs_alloc_bufhash(
  1196. xfs_buftarg_t *btp,
  1197. int external)
  1198. {
  1199. unsigned int i;
  1200. btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
  1201. btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
  1202. btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
  1203. sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
  1204. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1205. spin_lock_init(&btp->bt_hash[i].bh_lock);
  1206. INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
  1207. }
  1208. }
  1209. STATIC void
  1210. xfs_free_bufhash(
  1211. xfs_buftarg_t *btp)
  1212. {
  1213. kmem_free(btp->bt_hash);
  1214. btp->bt_hash = NULL;
  1215. }
  1216. /*
  1217. * buftarg list for delwrite queue processing
  1218. */
  1219. static LIST_HEAD(xfs_buftarg_list);
  1220. static DEFINE_SPINLOCK(xfs_buftarg_lock);
  1221. STATIC void
  1222. xfs_register_buftarg(
  1223. xfs_buftarg_t *btp)
  1224. {
  1225. spin_lock(&xfs_buftarg_lock);
  1226. list_add(&btp->bt_list, &xfs_buftarg_list);
  1227. spin_unlock(&xfs_buftarg_lock);
  1228. }
  1229. STATIC void
  1230. xfs_unregister_buftarg(
  1231. xfs_buftarg_t *btp)
  1232. {
  1233. spin_lock(&xfs_buftarg_lock);
  1234. list_del(&btp->bt_list);
  1235. spin_unlock(&xfs_buftarg_lock);
  1236. }
  1237. void
  1238. xfs_free_buftarg(
  1239. xfs_buftarg_t *btp)
  1240. {
  1241. xfs_flush_buftarg(btp, 1);
  1242. xfs_blkdev_issue_flush(btp);
  1243. xfs_free_bufhash(btp);
  1244. iput(btp->bt_mapping->host);
  1245. /* Unregister the buftarg first so that we don't get a
  1246. * wakeup finding a non-existent task
  1247. */
  1248. xfs_unregister_buftarg(btp);
  1249. kthread_stop(btp->bt_task);
  1250. kmem_free(btp);
  1251. }
  1252. STATIC int
  1253. xfs_setsize_buftarg_flags(
  1254. xfs_buftarg_t *btp,
  1255. unsigned int blocksize,
  1256. unsigned int sectorsize,
  1257. int verbose)
  1258. {
  1259. btp->bt_bsize = blocksize;
  1260. btp->bt_sshift = ffs(sectorsize) - 1;
  1261. btp->bt_smask = sectorsize - 1;
  1262. if (set_blocksize(btp->bt_bdev, sectorsize)) {
  1263. printk(KERN_WARNING
  1264. "XFS: Cannot set_blocksize to %u on device %s\n",
  1265. sectorsize, XFS_BUFTARG_NAME(btp));
  1266. return EINVAL;
  1267. }
  1268. if (verbose &&
  1269. (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
  1270. printk(KERN_WARNING
  1271. "XFS: %u byte sectors in use on device %s. "
  1272. "This is suboptimal; %u or greater is ideal.\n",
  1273. sectorsize, XFS_BUFTARG_NAME(btp),
  1274. (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
  1275. }
  1276. return 0;
  1277. }
  1278. /*
  1279. * When allocating the initial buffer target we have not yet
  1280. * read in the superblock, so don't know what sized sectors
  1281. * are being used is at this early stage. Play safe.
  1282. */
  1283. STATIC int
  1284. xfs_setsize_buftarg_early(
  1285. xfs_buftarg_t *btp,
  1286. struct block_device *bdev)
  1287. {
  1288. return xfs_setsize_buftarg_flags(btp,
  1289. PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
  1290. }
  1291. int
  1292. xfs_setsize_buftarg(
  1293. xfs_buftarg_t *btp,
  1294. unsigned int blocksize,
  1295. unsigned int sectorsize)
  1296. {
  1297. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1298. }
  1299. STATIC int
  1300. xfs_mapping_buftarg(
  1301. xfs_buftarg_t *btp,
  1302. struct block_device *bdev)
  1303. {
  1304. struct backing_dev_info *bdi;
  1305. struct inode *inode;
  1306. struct address_space *mapping;
  1307. static const struct address_space_operations mapping_aops = {
  1308. .sync_page = block_sync_page,
  1309. .migratepage = fail_migrate_page,
  1310. };
  1311. inode = new_inode(bdev->bd_inode->i_sb);
  1312. if (!inode) {
  1313. printk(KERN_WARNING
  1314. "XFS: Cannot allocate mapping inode for device %s\n",
  1315. XFS_BUFTARG_NAME(btp));
  1316. return ENOMEM;
  1317. }
  1318. inode->i_mode = S_IFBLK;
  1319. inode->i_bdev = bdev;
  1320. inode->i_rdev = bdev->bd_dev;
  1321. bdi = blk_get_backing_dev_info(bdev);
  1322. if (!bdi)
  1323. bdi = &default_backing_dev_info;
  1324. mapping = &inode->i_data;
  1325. mapping->a_ops = &mapping_aops;
  1326. mapping->backing_dev_info = bdi;
  1327. mapping_set_gfp_mask(mapping, GFP_NOFS);
  1328. btp->bt_mapping = mapping;
  1329. return 0;
  1330. }
  1331. STATIC int
  1332. xfs_alloc_delwrite_queue(
  1333. xfs_buftarg_t *btp)
  1334. {
  1335. int error = 0;
  1336. INIT_LIST_HEAD(&btp->bt_list);
  1337. INIT_LIST_HEAD(&btp->bt_delwrite_queue);
  1338. spin_lock_init(&btp->bt_delwrite_lock);
  1339. btp->bt_flags = 0;
  1340. btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
  1341. if (IS_ERR(btp->bt_task)) {
  1342. error = PTR_ERR(btp->bt_task);
  1343. goto out_error;
  1344. }
  1345. xfs_register_buftarg(btp);
  1346. out_error:
  1347. return error;
  1348. }
  1349. xfs_buftarg_t *
  1350. xfs_alloc_buftarg(
  1351. struct block_device *bdev,
  1352. int external)
  1353. {
  1354. xfs_buftarg_t *btp;
  1355. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1356. btp->bt_dev = bdev->bd_dev;
  1357. btp->bt_bdev = bdev;
  1358. if (xfs_setsize_buftarg_early(btp, bdev))
  1359. goto error;
  1360. if (xfs_mapping_buftarg(btp, bdev))
  1361. goto error;
  1362. if (xfs_alloc_delwrite_queue(btp))
  1363. goto error;
  1364. xfs_alloc_bufhash(btp, external);
  1365. return btp;
  1366. error:
  1367. kmem_free(btp);
  1368. return NULL;
  1369. }
  1370. /*
  1371. * Delayed write buffer handling
  1372. */
  1373. STATIC void
  1374. xfs_buf_delwri_queue(
  1375. xfs_buf_t *bp,
  1376. int unlock)
  1377. {
  1378. struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
  1379. spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
  1380. XB_TRACE(bp, "delwri_q", (long)unlock);
  1381. ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
  1382. spin_lock(dwlk);
  1383. /* If already in the queue, dequeue and place at tail */
  1384. if (!list_empty(&bp->b_list)) {
  1385. ASSERT(bp->b_flags & _XBF_DELWRI_Q);
  1386. if (unlock)
  1387. atomic_dec(&bp->b_hold);
  1388. list_del(&bp->b_list);
  1389. }
  1390. bp->b_flags |= _XBF_DELWRI_Q;
  1391. list_add_tail(&bp->b_list, dwq);
  1392. bp->b_queuetime = jiffies;
  1393. spin_unlock(dwlk);
  1394. if (unlock)
  1395. xfs_buf_unlock(bp);
  1396. }
  1397. void
  1398. xfs_buf_delwri_dequeue(
  1399. xfs_buf_t *bp)
  1400. {
  1401. spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
  1402. int dequeued = 0;
  1403. spin_lock(dwlk);
  1404. if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
  1405. ASSERT(bp->b_flags & _XBF_DELWRI_Q);
  1406. list_del_init(&bp->b_list);
  1407. dequeued = 1;
  1408. }
  1409. bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
  1410. spin_unlock(dwlk);
  1411. if (dequeued)
  1412. xfs_buf_rele(bp);
  1413. XB_TRACE(bp, "delwri_dq", (long)dequeued);
  1414. }
  1415. STATIC void
  1416. xfs_buf_runall_queues(
  1417. struct workqueue_struct *queue)
  1418. {
  1419. flush_workqueue(queue);
  1420. }
  1421. STATIC int
  1422. xfsbufd_wakeup(
  1423. int priority,
  1424. gfp_t mask)
  1425. {
  1426. xfs_buftarg_t *btp;
  1427. spin_lock(&xfs_buftarg_lock);
  1428. list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
  1429. if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
  1430. continue;
  1431. set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
  1432. wake_up_process(btp->bt_task);
  1433. }
  1434. spin_unlock(&xfs_buftarg_lock);
  1435. return 0;
  1436. }
  1437. /*
  1438. * Move as many buffers as specified to the supplied list
  1439. * idicating if we skipped any buffers to prevent deadlocks.
  1440. */
  1441. STATIC int
  1442. xfs_buf_delwri_split(
  1443. xfs_buftarg_t *target,
  1444. struct list_head *list,
  1445. unsigned long age)
  1446. {
  1447. xfs_buf_t *bp, *n;
  1448. struct list_head *dwq = &target->bt_delwrite_queue;
  1449. spinlock_t *dwlk = &target->bt_delwrite_lock;
  1450. int skipped = 0;
  1451. int force;
  1452. force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
  1453. INIT_LIST_HEAD(list);
  1454. spin_lock(dwlk);
  1455. list_for_each_entry_safe(bp, n, dwq, b_list) {
  1456. XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
  1457. ASSERT(bp->b_flags & XBF_DELWRI);
  1458. if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
  1459. if (!force &&
  1460. time_before(jiffies, bp->b_queuetime + age)) {
  1461. xfs_buf_unlock(bp);
  1462. break;
  1463. }
  1464. bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
  1465. _XBF_RUN_QUEUES);
  1466. bp->b_flags |= XBF_WRITE;
  1467. list_move_tail(&bp->b_list, list);
  1468. } else
  1469. skipped++;
  1470. }
  1471. spin_unlock(dwlk);
  1472. return skipped;
  1473. }
  1474. STATIC int
  1475. xfsbufd(
  1476. void *data)
  1477. {
  1478. struct list_head tmp;
  1479. xfs_buftarg_t *target = (xfs_buftarg_t *)data;
  1480. int count;
  1481. xfs_buf_t *bp;
  1482. current->flags |= PF_MEMALLOC;
  1483. set_freezable();
  1484. do {
  1485. if (unlikely(freezing(current))) {
  1486. set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
  1487. refrigerator();
  1488. } else {
  1489. clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
  1490. }
  1491. schedule_timeout_interruptible(
  1492. xfs_buf_timer_centisecs * msecs_to_jiffies(10));
  1493. xfs_buf_delwri_split(target, &tmp,
  1494. xfs_buf_age_centisecs * msecs_to_jiffies(10));
  1495. count = 0;
  1496. while (!list_empty(&tmp)) {
  1497. bp = list_entry(tmp.next, xfs_buf_t, b_list);
  1498. ASSERT(target == bp->b_target);
  1499. list_del_init(&bp->b_list);
  1500. xfs_buf_iostrategy(bp);
  1501. count++;
  1502. }
  1503. if (as_list_len > 0)
  1504. purge_addresses();
  1505. if (count)
  1506. blk_run_address_space(target->bt_mapping);
  1507. } while (!kthread_should_stop());
  1508. return 0;
  1509. }
  1510. /*
  1511. * Go through all incore buffers, and release buffers if they belong to
  1512. * the given device. This is used in filesystem error handling to
  1513. * preserve the consistency of its metadata.
  1514. */
  1515. int
  1516. xfs_flush_buftarg(
  1517. xfs_buftarg_t *target,
  1518. int wait)
  1519. {
  1520. struct list_head tmp;
  1521. xfs_buf_t *bp, *n;
  1522. int pincount = 0;
  1523. xfs_buf_runall_queues(xfsdatad_workqueue);
  1524. xfs_buf_runall_queues(xfslogd_workqueue);
  1525. set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
  1526. pincount = xfs_buf_delwri_split(target, &tmp, 0);
  1527. /*
  1528. * Dropped the delayed write list lock, now walk the temporary list
  1529. */
  1530. list_for_each_entry_safe(bp, n, &tmp, b_list) {
  1531. ASSERT(target == bp->b_target);
  1532. if (wait)
  1533. bp->b_flags &= ~XBF_ASYNC;
  1534. else
  1535. list_del_init(&bp->b_list);
  1536. xfs_buf_iostrategy(bp);
  1537. }
  1538. if (wait)
  1539. blk_run_address_space(target->bt_mapping);
  1540. /*
  1541. * Remaining list items must be flushed before returning
  1542. */
  1543. while (!list_empty(&tmp)) {
  1544. bp = list_entry(tmp.next, xfs_buf_t, b_list);
  1545. list_del_init(&bp->b_list);
  1546. xfs_iowait(bp);
  1547. xfs_buf_relse(bp);
  1548. }
  1549. return pincount;
  1550. }
  1551. int __init
  1552. xfs_buf_init(void)
  1553. {
  1554. #ifdef XFS_BUF_TRACE
  1555. xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_NOFS);
  1556. #endif
  1557. xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
  1558. KM_ZONE_HWALIGN, NULL);
  1559. if (!xfs_buf_zone)
  1560. goto out_free_trace_buf;
  1561. xfslogd_workqueue = create_workqueue("xfslogd");
  1562. if (!xfslogd_workqueue)
  1563. goto out_free_buf_zone;
  1564. xfsdatad_workqueue = create_workqueue("xfsdatad");
  1565. if (!xfsdatad_workqueue)
  1566. goto out_destroy_xfslogd_workqueue;
  1567. register_shrinker(&xfs_buf_shake);
  1568. return 0;
  1569. out_destroy_xfslogd_workqueue:
  1570. destroy_workqueue(xfslogd_workqueue);
  1571. out_free_buf_zone:
  1572. kmem_zone_destroy(xfs_buf_zone);
  1573. out_free_trace_buf:
  1574. #ifdef XFS_BUF_TRACE
  1575. ktrace_free(xfs_buf_trace_buf);
  1576. #endif
  1577. return -ENOMEM;
  1578. }
  1579. void
  1580. xfs_buf_terminate(void)
  1581. {
  1582. unregister_shrinker(&xfs_buf_shake);
  1583. destroy_workqueue(xfsdatad_workqueue);
  1584. destroy_workqueue(xfslogd_workqueue);
  1585. kmem_zone_destroy(xfs_buf_zone);
  1586. #ifdef XFS_BUF_TRACE
  1587. ktrace_free(xfs_buf_trace_buf);
  1588. #endif
  1589. }
  1590. #ifdef CONFIG_KDB_MODULES
  1591. struct list_head *
  1592. xfs_get_buftarg_list(void)
  1593. {
  1594. return &xfs_buftarg_list;
  1595. }
  1596. #endif