crypto.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. /*
  2. * Ultra Wide Band
  3. * AES-128 CCM Encryption
  4. *
  5. * Copyright (C) 2007 Intel Corporation
  6. * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License version
  10. * 2 as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20. * 02110-1301, USA.
  21. *
  22. *
  23. * We don't do any encryption here; we use the Linux Kernel's AES-128
  24. * crypto modules to construct keys and payload blocks in a way
  25. * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
  26. * there.
  27. *
  28. * Thanks a zillion to John Keys for his help and clarifications over
  29. * the designed-by-a-committee text.
  30. *
  31. * So the idea is that there is this basic Pseudo-Random-Function
  32. * defined in WUSB1.0[6.5] which is the core of everything. It works
  33. * by tweaking some blocks, AES crypting them and then xoring
  34. * something else with them (this seems to be called CBC(AES) -- can
  35. * you tell I know jack about crypto?). So we just funnel it into the
  36. * Linux Crypto API.
  37. *
  38. * We leave a crypto test module so we can verify that vectors match,
  39. * every now and then.
  40. *
  41. * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
  42. * am learning a lot...
  43. *
  44. * Conveniently, some data structures that need to be
  45. * funneled through AES are...16 bytes in size!
  46. */
  47. #include <linux/crypto.h>
  48. #include <linux/module.h>
  49. #include <linux/err.h>
  50. #include <linux/uwb.h>
  51. #include <linux/usb/wusb.h>
  52. #include <linux/scatterlist.h>
  53. #define D_LOCAL 0
  54. #include <linux/uwb/debug.h>
  55. /*
  56. * Block of data, as understood by AES-CCM
  57. *
  58. * The code assumes this structure is nothing but a 16 byte array
  59. * (packed in a struct to avoid common mess ups that I usually do with
  60. * arrays and enforcing type checking).
  61. */
  62. struct aes_ccm_block {
  63. u8 data[16];
  64. } __attribute__((packed));
  65. /*
  66. * Counter-mode Blocks (WUSB1.0[6.4])
  67. *
  68. * According to CCM (or so it seems), for the purpose of calculating
  69. * the MIC, the message is broken in N counter-mode blocks, B0, B1,
  70. * ... BN.
  71. *
  72. * B0 contains flags, the CCM nonce and l(m).
  73. *
  74. * B1 contains l(a), the MAC header, the encryption offset and padding.
  75. *
  76. * If EO is nonzero, additional blocks are built from payload bytes
  77. * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
  78. * padding is not xmitted.
  79. */
  80. /* WUSB1.0[T6.4] */
  81. struct aes_ccm_b0 {
  82. u8 flags; /* 0x59, per CCM spec */
  83. struct aes_ccm_nonce ccm_nonce;
  84. __be16 lm;
  85. } __attribute__((packed));
  86. /* WUSB1.0[T6.5] */
  87. struct aes_ccm_b1 {
  88. __be16 la;
  89. u8 mac_header[10];
  90. __le16 eo;
  91. u8 security_reserved; /* This is always zero */
  92. u8 padding; /* 0 */
  93. } __attribute__((packed));
  94. /*
  95. * Encryption Blocks (WUSB1.0[6.4.4])
  96. *
  97. * CCM uses Ax blocks to generate a keystream with which the MIC and
  98. * the message's payload are encoded. A0 always encrypts/decrypts the
  99. * MIC. Ax (x>0) are used for the sucesive payload blocks.
  100. *
  101. * The x is the counter, and is increased for each block.
  102. */
  103. struct aes_ccm_a {
  104. u8 flags; /* 0x01, per CCM spec */
  105. struct aes_ccm_nonce ccm_nonce;
  106. __be16 counter; /* Value of x */
  107. } __attribute__((packed));
  108. static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
  109. size_t size)
  110. {
  111. u8 *bo = _bo;
  112. const u8 *bi1 = _bi1, *bi2 = _bi2;
  113. size_t itr;
  114. for (itr = 0; itr < size; itr++)
  115. bo[itr] = bi1[itr] ^ bi2[itr];
  116. }
  117. /*
  118. * CC-MAC function WUSB1.0[6.5]
  119. *
  120. * Take a data string and produce the encrypted CBC Counter-mode MIC
  121. *
  122. * Note the names for most function arguments are made to (more or
  123. * less) match those used in the pseudo-function definition given in
  124. * WUSB1.0[6.5].
  125. *
  126. * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
  127. *
  128. * @tfm_aes: AES cipher handle (initialized)
  129. *
  130. * @mic: buffer for placing the computed MIC (Message Integrity
  131. * Code). This is exactly 8 bytes, and we expect the buffer to
  132. * be at least eight bytes in length.
  133. *
  134. * @key: 128 bit symmetric key
  135. *
  136. * @n: CCM nonce
  137. *
  138. * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
  139. * we use exactly 14 bytes).
  140. *
  141. * @b: data stream to be processed; cannot be a global or const local
  142. * (will confuse the scatterlists)
  143. *
  144. * @blen: size of b...
  145. *
  146. * Still not very clear how this is done, but looks like this: we
  147. * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
  148. * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
  149. * take the payload and divide it in blocks (16 bytes), xor them with
  150. * the previous crypto result (16 bytes) and crypt it, repeat the next
  151. * block with the output of the previous one, rinse wash (I guess this
  152. * is what AES CBC mode means...but I truly have no idea). So we use
  153. * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
  154. * Vector) is 16 bytes and is set to zero, so
  155. *
  156. * See rfc3610. Linux crypto has a CBC implementation, but the
  157. * documentation is scarce, to say the least, and the example code is
  158. * so intricated that is difficult to understand how things work. Most
  159. * of this is guess work -- bite me.
  160. *
  161. * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
  162. * using the 14 bytes of @a to fill up
  163. * b1.{mac_header,e0,security_reserved,padding}.
  164. *
  165. * NOTE: The definiton of l(a) in WUSB1.0[6.5] vs the definition of
  166. * l(m) is orthogonal, they bear no relationship, so it is not
  167. * in conflict with the parameter's relation that
  168. * WUSB1.0[6.4.2]) defines.
  169. *
  170. * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
  171. * first errata released on 2005/07.
  172. *
  173. * NOTE: we need to clean IV to zero at each invocation to make sure
  174. * we start with a fresh empty Initial Vector, so that the CBC
  175. * works ok.
  176. *
  177. * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
  178. * what sg[4] is for. Maybe there is a smarter way to do this.
  179. */
  180. static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
  181. struct crypto_cipher *tfm_aes, void *mic,
  182. const struct aes_ccm_nonce *n,
  183. const struct aes_ccm_label *a, const void *b,
  184. size_t blen)
  185. {
  186. int result = 0;
  187. struct blkcipher_desc desc;
  188. struct aes_ccm_b0 b0;
  189. struct aes_ccm_b1 b1;
  190. struct aes_ccm_a ax;
  191. struct scatterlist sg[4], sg_dst;
  192. void *iv, *dst_buf;
  193. size_t ivsize, dst_size;
  194. const u8 bzero[16] = { 0 };
  195. size_t zero_padding;
  196. d_fnstart(3, NULL, "(tfm_cbc %p, tfm_aes %p, mic %p, "
  197. "n %p, a %p, b %p, blen %zu)\n",
  198. tfm_cbc, tfm_aes, mic, n, a, b, blen);
  199. /*
  200. * These checks should be compile time optimized out
  201. * ensure @a fills b1's mac_header and following fields
  202. */
  203. WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
  204. WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
  205. WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
  206. WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
  207. result = -ENOMEM;
  208. zero_padding = sizeof(struct aes_ccm_block)
  209. - blen % sizeof(struct aes_ccm_block);
  210. zero_padding = blen % sizeof(struct aes_ccm_block);
  211. if (zero_padding)
  212. zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
  213. dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
  214. dst_buf = kzalloc(dst_size, GFP_KERNEL);
  215. if (dst_buf == NULL) {
  216. printk(KERN_ERR "E: can't alloc destination buffer\n");
  217. goto error_dst_buf;
  218. }
  219. iv = crypto_blkcipher_crt(tfm_cbc)->iv;
  220. ivsize = crypto_blkcipher_ivsize(tfm_cbc);
  221. memset(iv, 0, ivsize);
  222. /* Setup B0 */
  223. b0.flags = 0x59; /* Format B0 */
  224. b0.ccm_nonce = *n;
  225. b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
  226. /* Setup B1
  227. *
  228. * The WUSB spec is anything but clear! WUSB1.0[6.5]
  229. * says that to initialize B1 from A with 'l(a) = blen +
  230. * 14'--after clarification, it means to use A's contents
  231. * for MAC Header, EO, sec reserved and padding.
  232. */
  233. b1.la = cpu_to_be16(blen + 14);
  234. memcpy(&b1.mac_header, a, sizeof(*a));
  235. d_printf(4, NULL, "I: B0 (%zu bytes)\n", sizeof(b0));
  236. d_dump(4, NULL, &b0, sizeof(b0));
  237. d_printf(4, NULL, "I: B1 (%zu bytes)\n", sizeof(b1));
  238. d_dump(4, NULL, &b1, sizeof(b1));
  239. d_printf(4, NULL, "I: B (%zu bytes)\n", blen);
  240. d_dump(4, NULL, b, blen);
  241. d_printf(4, NULL, "I: B 0-padding (%zu bytes)\n", zero_padding);
  242. d_printf(4, NULL, "D: IV before crypto (%zu)\n", ivsize);
  243. d_dump(4, NULL, iv, ivsize);
  244. sg_init_table(sg, ARRAY_SIZE(sg));
  245. sg_set_buf(&sg[0], &b0, sizeof(b0));
  246. sg_set_buf(&sg[1], &b1, sizeof(b1));
  247. sg_set_buf(&sg[2], b, blen);
  248. /* 0 if well behaved :) */
  249. sg_set_buf(&sg[3], bzero, zero_padding);
  250. sg_init_one(&sg_dst, dst_buf, dst_size);
  251. desc.tfm = tfm_cbc;
  252. desc.flags = 0;
  253. result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
  254. if (result < 0) {
  255. printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
  256. result);
  257. goto error_cbc_crypt;
  258. }
  259. d_printf(4, NULL, "D: MIC tag\n");
  260. d_dump(4, NULL, iv, ivsize);
  261. /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
  262. * The procedure is to AES crypt the A0 block and XOR the MIC
  263. * Tag agains it; we only do the first 8 bytes and place it
  264. * directly in the destination buffer.
  265. *
  266. * POS Crypto API: size is assumed to be AES's block size.
  267. * Thanks for documenting it -- tip taken from airo.c
  268. */
  269. ax.flags = 0x01; /* as per WUSB 1.0 spec */
  270. ax.ccm_nonce = *n;
  271. ax.counter = 0;
  272. crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
  273. bytewise_xor(mic, &ax, iv, 8);
  274. d_printf(4, NULL, "D: CTR[MIC]\n");
  275. d_dump(4, NULL, &ax, 8);
  276. d_printf(4, NULL, "D: CCM-MIC tag\n");
  277. d_dump(4, NULL, mic, 8);
  278. result = 8;
  279. error_cbc_crypt:
  280. kfree(dst_buf);
  281. error_dst_buf:
  282. d_fnend(3, NULL, "(tfm_cbc %p, tfm_aes %p, mic %p, "
  283. "n %p, a %p, b %p, blen %zu)\n",
  284. tfm_cbc, tfm_aes, mic, n, a, b, blen);
  285. return result;
  286. }
  287. /*
  288. * WUSB Pseudo Random Function (WUSB1.0[6.5])
  289. *
  290. * @b: buffer to the source data; cannot be a global or const local
  291. * (will confuse the scatterlists)
  292. */
  293. ssize_t wusb_prf(void *out, size_t out_size,
  294. const u8 key[16], const struct aes_ccm_nonce *_n,
  295. const struct aes_ccm_label *a,
  296. const void *b, size_t blen, size_t len)
  297. {
  298. ssize_t result, bytes = 0, bitr;
  299. struct aes_ccm_nonce n = *_n;
  300. struct crypto_blkcipher *tfm_cbc;
  301. struct crypto_cipher *tfm_aes;
  302. u64 sfn = 0;
  303. __le64 sfn_le;
  304. d_fnstart(3, NULL, "(out %p, out_size %zu, key %p, _n %p, "
  305. "a %p, b %p, blen %zu, len %zu)\n", out, out_size,
  306. key, _n, a, b, blen, len);
  307. tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
  308. if (IS_ERR(tfm_cbc)) {
  309. result = PTR_ERR(tfm_cbc);
  310. printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
  311. goto error_alloc_cbc;
  312. }
  313. result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
  314. if (result < 0) {
  315. printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
  316. goto error_setkey_cbc;
  317. }
  318. tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
  319. if (IS_ERR(tfm_aes)) {
  320. result = PTR_ERR(tfm_aes);
  321. printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
  322. goto error_alloc_aes;
  323. }
  324. result = crypto_cipher_setkey(tfm_aes, key, 16);
  325. if (result < 0) {
  326. printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
  327. goto error_setkey_aes;
  328. }
  329. for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
  330. sfn_le = cpu_to_le64(sfn++);
  331. memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
  332. result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
  333. &n, a, b, blen);
  334. if (result < 0)
  335. goto error_ccm_mac;
  336. bytes += result;
  337. }
  338. result = bytes;
  339. error_ccm_mac:
  340. error_setkey_aes:
  341. crypto_free_cipher(tfm_aes);
  342. error_alloc_aes:
  343. error_setkey_cbc:
  344. crypto_free_blkcipher(tfm_cbc);
  345. error_alloc_cbc:
  346. d_fnend(3, NULL, "(out %p, out_size %zu, key %p, _n %p, "
  347. "a %p, b %p, blen %zu, len %zu) = %d\n", out, out_size,
  348. key, _n, a, b, blen, len, (int)bytes);
  349. return result;
  350. }
  351. /* WUSB1.0[A.2] test vectors */
  352. static const u8 stv_hsmic_key[16] = {
  353. 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
  354. 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
  355. };
  356. static const struct aes_ccm_nonce stv_hsmic_n = {
  357. .sfn = { 0 },
  358. .tkid = { 0x76, 0x98, 0x01, },
  359. .dest_addr = { .data = { 0xbe, 0x00 } },
  360. .src_addr = { .data = { 0x76, 0x98 } },
  361. };
  362. /*
  363. * Out-of-band MIC Generation verification code
  364. *
  365. */
  366. static int wusb_oob_mic_verify(void)
  367. {
  368. int result;
  369. u8 mic[8];
  370. /* WUSB1.0[A.2] test vectors
  371. *
  372. * Need to keep it in the local stack as GCC 4.1.3something
  373. * messes up and generates noise.
  374. */
  375. struct usb_handshake stv_hsmic_hs = {
  376. .bMessageNumber = 2,
  377. .bStatus = 00,
  378. .tTKID = { 0x76, 0x98, 0x01 },
  379. .bReserved = 00,
  380. .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
  381. 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
  382. 0x3c, 0x3d, 0x3e, 0x3f },
  383. .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
  384. 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
  385. 0x2c, 0x2d, 0x2e, 0x2f },
  386. .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
  387. 0x14, 0x7b } ,
  388. };
  389. size_t hs_size;
  390. result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
  391. if (result < 0)
  392. printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
  393. else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
  394. printk(KERN_ERR "E: OOB MIC test: "
  395. "mismatch between MIC result and WUSB1.0[A2]\n");
  396. hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
  397. printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
  398. dump_bytes(NULL, &stv_hsmic_hs, hs_size);
  399. printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
  400. sizeof(stv_hsmic_n));
  401. dump_bytes(NULL, &stv_hsmic_n, sizeof(stv_hsmic_n));
  402. printk(KERN_ERR "E: MIC out:\n");
  403. dump_bytes(NULL, mic, sizeof(mic));
  404. printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
  405. dump_bytes(NULL, stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
  406. result = -EINVAL;
  407. } else
  408. result = 0;
  409. return result;
  410. }
  411. /*
  412. * Test vectors for Key derivation
  413. *
  414. * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
  415. * (errata corrected in 2005/07).
  416. */
  417. static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
  418. 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
  419. 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
  420. };
  421. static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
  422. .sfn = { 0 },
  423. .tkid = { 0x76, 0x98, 0x01, },
  424. .dest_addr = { .data = { 0xbe, 0x00 } },
  425. .src_addr = { .data = { 0x76, 0x98 } },
  426. };
  427. static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
  428. .kck = {
  429. 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
  430. 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
  431. },
  432. .ptk = {
  433. 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
  434. 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
  435. }
  436. };
  437. /*
  438. * Performa a test to make sure we match the vectors defined in
  439. * WUSB1.0[A.1](Errata2006/12)
  440. */
  441. static int wusb_key_derive_verify(void)
  442. {
  443. int result = 0;
  444. struct wusb_keydvt_out keydvt_out;
  445. /* These come from WUSB1.0[A.1] + 2006/12 errata
  446. * NOTE: can't make this const or global -- somehow it seems
  447. * the scatterlists for crypto get confused and we get
  448. * bad data. There is no doc on this... */
  449. struct wusb_keydvt_in stv_keydvt_in_a1 = {
  450. .hnonce = {
  451. 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
  452. 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
  453. },
  454. .dnonce = {
  455. 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
  456. 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
  457. }
  458. };
  459. result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
  460. &stv_keydvt_in_a1);
  461. if (result < 0)
  462. printk(KERN_ERR "E: WUSB key derivation test: "
  463. "derivation failed: %d\n", result);
  464. if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
  465. printk(KERN_ERR "E: WUSB key derivation test: "
  466. "mismatch between key derivation result "
  467. "and WUSB1.0[A1] Errata 2006/12\n");
  468. printk(KERN_ERR "E: keydvt in: key (%zu bytes)\n",
  469. sizeof(stv_key_a1));
  470. dump_bytes(NULL, stv_key_a1, sizeof(stv_key_a1));
  471. printk(KERN_ERR "E: keydvt in: nonce (%zu bytes)\n",
  472. sizeof(stv_keydvt_n_a1));
  473. dump_bytes(NULL, &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
  474. printk(KERN_ERR "E: keydvt in: hnonce & dnonce (%zu bytes)\n",
  475. sizeof(stv_keydvt_in_a1));
  476. dump_bytes(NULL, &stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
  477. printk(KERN_ERR "E: keydvt out: KCK\n");
  478. dump_bytes(NULL, &keydvt_out.kck, sizeof(keydvt_out.kck));
  479. printk(KERN_ERR "E: keydvt out: PTK\n");
  480. dump_bytes(NULL, &keydvt_out.ptk, sizeof(keydvt_out.ptk));
  481. result = -EINVAL;
  482. } else
  483. result = 0;
  484. return result;
  485. }
  486. /*
  487. * Initialize crypto system
  488. *
  489. * FIXME: we do nothing now, other than verifying. Later on we'll
  490. * cache the encryption stuff, so that's why we have a separate init.
  491. */
  492. int wusb_crypto_init(void)
  493. {
  494. int result;
  495. result = wusb_key_derive_verify();
  496. if (result < 0)
  497. return result;
  498. return wusb_oob_mic_verify();
  499. }
  500. void wusb_crypto_exit(void)
  501. {
  502. /* FIXME: free cached crypto transforms */
  503. }