rt2400pci.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2400pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2400pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2400pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2400pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  160. static void rt2400pci_read_csr(struct rt2x00_dev *rt2x00dev,
  161. const unsigned int word, u32 *data)
  162. {
  163. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  164. }
  165. static void rt2400pci_write_csr(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, u32 data)
  167. {
  168. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  169. }
  170. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  171. .owner = THIS_MODULE,
  172. .csr = {
  173. .read = rt2400pci_read_csr,
  174. .write = rt2400pci_write_csr,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_size = sizeof(u16),
  182. .word_count = EEPROM_SIZE / sizeof(u16),
  183. },
  184. .bbp = {
  185. .read = rt2400pci_bbp_read,
  186. .write = rt2400pci_bbp_write,
  187. .word_size = sizeof(u8),
  188. .word_count = BBP_SIZE / sizeof(u8),
  189. },
  190. .rf = {
  191. .read = rt2x00_rf_read,
  192. .write = rt2400pci_rf_write,
  193. .word_size = sizeof(u32),
  194. .word_count = RF_SIZE / sizeof(u32),
  195. },
  196. };
  197. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  198. #ifdef CONFIG_RT2X00_LIB_RFKILL
  199. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  200. {
  201. u32 reg;
  202. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  203. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  204. }
  205. #else
  206. #define rt2400pci_rfkill_poll NULL
  207. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  208. #ifdef CONFIG_RT2X00_LIB_LEDS
  209. static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
  210. enum led_brightness brightness)
  211. {
  212. struct rt2x00_led *led =
  213. container_of(led_cdev, struct rt2x00_led, led_dev);
  214. unsigned int enabled = brightness != LED_OFF;
  215. u32 reg;
  216. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  217. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  218. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  219. else if (led->type == LED_TYPE_ACTIVITY)
  220. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  221. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  222. }
  223. static int rt2400pci_blink_set(struct led_classdev *led_cdev,
  224. unsigned long *delay_on,
  225. unsigned long *delay_off)
  226. {
  227. struct rt2x00_led *led =
  228. container_of(led_cdev, struct rt2x00_led, led_dev);
  229. u32 reg;
  230. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  231. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  232. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  233. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  234. return 0;
  235. }
  236. static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
  237. struct rt2x00_led *led,
  238. enum led_type type)
  239. {
  240. led->rt2x00dev = rt2x00dev;
  241. led->type = type;
  242. led->led_dev.brightness_set = rt2400pci_brightness_set;
  243. led->led_dev.blink_set = rt2400pci_blink_set;
  244. led->flags = LED_INITIALIZED;
  245. }
  246. #endif /* CONFIG_RT2X00_LIB_LEDS */
  247. /*
  248. * Configuration handlers.
  249. */
  250. static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
  251. const unsigned int filter_flags)
  252. {
  253. u32 reg;
  254. /*
  255. * Start configuration steps.
  256. * Note that the version error will always be dropped
  257. * since there is no filter for it at this time.
  258. */
  259. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  260. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  261. !(filter_flags & FIF_FCSFAIL));
  262. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  263. !(filter_flags & FIF_PLCPFAIL));
  264. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  265. !(filter_flags & FIF_CONTROL));
  266. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  267. !(filter_flags & FIF_PROMISC_IN_BSS));
  268. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  269. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  270. !rt2x00dev->intf_ap_count);
  271. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  272. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  273. }
  274. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  275. struct rt2x00_intf *intf,
  276. struct rt2x00intf_conf *conf,
  277. const unsigned int flags)
  278. {
  279. unsigned int bcn_preload;
  280. u32 reg;
  281. if (flags & CONFIG_UPDATE_TYPE) {
  282. /*
  283. * Enable beacon config
  284. */
  285. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  286. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  287. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  288. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  289. /*
  290. * Enable synchronisation.
  291. */
  292. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  293. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  294. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  295. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  296. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  297. }
  298. if (flags & CONFIG_UPDATE_MAC)
  299. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  300. conf->mac, sizeof(conf->mac));
  301. if (flags & CONFIG_UPDATE_BSSID)
  302. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  303. conf->bssid, sizeof(conf->bssid));
  304. }
  305. static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  306. struct rt2x00lib_erp *erp)
  307. {
  308. int preamble_mask;
  309. u32 reg;
  310. /*
  311. * When short preamble is enabled, we should set bit 0x08
  312. */
  313. preamble_mask = erp->short_preamble << 3;
  314. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  315. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  316. erp->ack_timeout);
  317. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  318. erp->ack_consume_time);
  319. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  320. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  321. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  322. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  323. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  324. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  325. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  326. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  327. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  328. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  329. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  330. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  331. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  332. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  333. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  334. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  335. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  336. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  337. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  338. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  339. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  340. }
  341. static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  342. const int basic_rate_mask)
  343. {
  344. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  345. }
  346. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  347. struct rf_channel *rf)
  348. {
  349. /*
  350. * Switch on tuning bits.
  351. */
  352. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  353. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  354. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  355. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  356. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  357. /*
  358. * RF2420 chipset don't need any additional actions.
  359. */
  360. if (rt2x00_rf(&rt2x00dev->chip, RF2420))
  361. return;
  362. /*
  363. * For the RT2421 chipsets we need to write an invalid
  364. * reference clock rate to activate auto_tune.
  365. * After that we set the value back to the correct channel.
  366. */
  367. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  368. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  369. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  370. msleep(1);
  371. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  372. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  373. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  374. msleep(1);
  375. /*
  376. * Switch off tuning bits.
  377. */
  378. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  379. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  380. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  381. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  382. /*
  383. * Clear false CRC during channel switch.
  384. */
  385. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  386. }
  387. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  388. {
  389. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  390. }
  391. static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  392. struct antenna_setup *ant)
  393. {
  394. u8 r1;
  395. u8 r4;
  396. /*
  397. * We should never come here because rt2x00lib is supposed
  398. * to catch this and send us the correct antenna explicitely.
  399. */
  400. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  401. ant->tx == ANTENNA_SW_DIVERSITY);
  402. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  403. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  404. /*
  405. * Configure the TX antenna.
  406. */
  407. switch (ant->tx) {
  408. case ANTENNA_HW_DIVERSITY:
  409. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  410. break;
  411. case ANTENNA_A:
  412. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  413. break;
  414. case ANTENNA_B:
  415. default:
  416. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  417. break;
  418. }
  419. /*
  420. * Configure the RX antenna.
  421. */
  422. switch (ant->rx) {
  423. case ANTENNA_HW_DIVERSITY:
  424. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  425. break;
  426. case ANTENNA_A:
  427. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  428. break;
  429. case ANTENNA_B:
  430. default:
  431. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  432. break;
  433. }
  434. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  435. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  436. }
  437. static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
  438. struct rt2x00lib_conf *libconf)
  439. {
  440. u32 reg;
  441. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  442. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  443. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  444. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  445. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  446. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  447. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  448. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  449. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  450. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  451. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  452. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  453. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  454. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  455. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  456. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  457. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  458. libconf->conf->beacon_int * 16);
  459. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  460. libconf->conf->beacon_int * 16);
  461. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  462. }
  463. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  464. struct rt2x00lib_conf *libconf,
  465. const unsigned int flags)
  466. {
  467. if (flags & CONFIG_UPDATE_PHYMODE)
  468. rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
  469. if (flags & CONFIG_UPDATE_CHANNEL)
  470. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  471. if (flags & CONFIG_UPDATE_TXPOWER)
  472. rt2400pci_config_txpower(rt2x00dev,
  473. libconf->conf->power_level);
  474. if (flags & CONFIG_UPDATE_ANTENNA)
  475. rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
  476. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  477. rt2400pci_config_duration(rt2x00dev, libconf);
  478. }
  479. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  480. const int cw_min, const int cw_max)
  481. {
  482. u32 reg;
  483. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  484. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  485. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  486. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  487. }
  488. /*
  489. * Link tuning
  490. */
  491. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  492. struct link_qual *qual)
  493. {
  494. u32 reg;
  495. u8 bbp;
  496. /*
  497. * Update FCS error count from register.
  498. */
  499. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  500. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  501. /*
  502. * Update False CCA count from register.
  503. */
  504. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  505. qual->false_cca = bbp;
  506. }
  507. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  508. {
  509. rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
  510. rt2x00dev->link.vgc_level = 0x08;
  511. }
  512. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  513. {
  514. u8 reg;
  515. /*
  516. * The link tuner should not run longer then 60 seconds,
  517. * and should run once every 2 seconds.
  518. */
  519. if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
  520. return;
  521. /*
  522. * Base r13 link tuning on the false cca count.
  523. */
  524. rt2400pci_bbp_read(rt2x00dev, 13, &reg);
  525. if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
  526. rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
  527. rt2x00dev->link.vgc_level = reg;
  528. } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
  529. rt2400pci_bbp_write(rt2x00dev, 13, --reg);
  530. rt2x00dev->link.vgc_level = reg;
  531. }
  532. }
  533. /*
  534. * Initialization functions.
  535. */
  536. static void rt2400pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  537. struct queue_entry *entry)
  538. {
  539. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  540. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  541. u32 word;
  542. rt2x00_desc_read(entry_priv->desc, 2, &word);
  543. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
  544. rt2x00_desc_write(entry_priv->desc, 2, word);
  545. rt2x00_desc_read(entry_priv->desc, 1, &word);
  546. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  547. rt2x00_desc_write(entry_priv->desc, 1, word);
  548. rt2x00_desc_read(entry_priv->desc, 0, &word);
  549. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  550. rt2x00_desc_write(entry_priv->desc, 0, word);
  551. }
  552. static void rt2400pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  553. struct queue_entry *entry)
  554. {
  555. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  556. u32 word;
  557. rt2x00_desc_read(entry_priv->desc, 0, &word);
  558. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  559. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  560. rt2x00_desc_write(entry_priv->desc, 0, word);
  561. }
  562. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  563. {
  564. struct queue_entry_priv_pci *entry_priv;
  565. u32 reg;
  566. /*
  567. * Initialize registers.
  568. */
  569. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  570. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  571. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  572. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  573. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  574. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  575. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  576. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  577. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  578. entry_priv->desc_dma);
  579. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  580. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  581. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  582. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  583. entry_priv->desc_dma);
  584. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  585. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  586. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  587. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  588. entry_priv->desc_dma);
  589. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  590. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  591. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  592. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  593. entry_priv->desc_dma);
  594. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  595. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  596. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  597. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  598. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  599. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  600. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  601. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  602. entry_priv->desc_dma);
  603. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  604. return 0;
  605. }
  606. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  607. {
  608. u32 reg;
  609. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  610. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  611. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  612. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  613. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  614. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  615. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  616. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  617. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  618. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  619. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  620. (rt2x00dev->rx->data_size / 128));
  621. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  622. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  623. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  624. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  625. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  626. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  627. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  628. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  629. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  630. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  631. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  632. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  633. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  634. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  635. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  636. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  637. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  638. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  639. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  640. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  641. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  642. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  643. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  644. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  645. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  646. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  647. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  648. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  649. return -EBUSY;
  650. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  651. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  652. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  653. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  654. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  655. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  656. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  657. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  658. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  659. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  660. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  661. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  662. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  663. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  664. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  665. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  666. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  667. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  668. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  669. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  670. /*
  671. * We must clear the FCS and FIFO error count.
  672. * These registers are cleared on read,
  673. * so we may pass a useless variable to store the value.
  674. */
  675. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  676. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  677. return 0;
  678. }
  679. static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  680. {
  681. unsigned int i;
  682. u8 value;
  683. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  684. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  685. if ((value != 0xff) && (value != 0x00))
  686. return 0;
  687. udelay(REGISTER_BUSY_DELAY);
  688. }
  689. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  690. return -EACCES;
  691. }
  692. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  693. {
  694. unsigned int i;
  695. u16 eeprom;
  696. u8 reg_id;
  697. u8 value;
  698. if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
  699. return -EACCES;
  700. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  701. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  702. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  703. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  704. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  705. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  706. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  707. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  708. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  709. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  710. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  711. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  712. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  713. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  714. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  715. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  716. if (eeprom != 0xffff && eeprom != 0x0000) {
  717. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  718. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  719. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  720. }
  721. }
  722. return 0;
  723. }
  724. /*
  725. * Device state switch handlers.
  726. */
  727. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  728. enum dev_state state)
  729. {
  730. u32 reg;
  731. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  732. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  733. (state == STATE_RADIO_RX_OFF) ||
  734. (state == STATE_RADIO_RX_OFF_LINK));
  735. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  736. }
  737. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  738. enum dev_state state)
  739. {
  740. int mask = (state == STATE_RADIO_IRQ_OFF);
  741. u32 reg;
  742. /*
  743. * When interrupts are being enabled, the interrupt registers
  744. * should clear the register to assure a clean state.
  745. */
  746. if (state == STATE_RADIO_IRQ_ON) {
  747. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  748. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  749. }
  750. /*
  751. * Only toggle the interrupts bits we are going to use.
  752. * Non-checked interrupt bits are disabled by default.
  753. */
  754. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  755. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  756. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  757. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  758. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  759. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  760. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  761. }
  762. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  763. {
  764. /*
  765. * Initialize all registers.
  766. */
  767. if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
  768. rt2400pci_init_registers(rt2x00dev) ||
  769. rt2400pci_init_bbp(rt2x00dev)))
  770. return -EIO;
  771. return 0;
  772. }
  773. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  774. {
  775. u32 reg;
  776. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  777. /*
  778. * Disable synchronisation.
  779. */
  780. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  781. /*
  782. * Cancel RX and TX.
  783. */
  784. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  785. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  786. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  787. }
  788. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  789. enum dev_state state)
  790. {
  791. u32 reg;
  792. unsigned int i;
  793. char put_to_sleep;
  794. char bbp_state;
  795. char rf_state;
  796. put_to_sleep = (state != STATE_AWAKE);
  797. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  798. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  799. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  800. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  801. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  802. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  803. /*
  804. * Device is not guaranteed to be in the requested state yet.
  805. * We must wait until the register indicates that the
  806. * device has entered the correct state.
  807. */
  808. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  809. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  810. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  811. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  812. if (bbp_state == state && rf_state == state)
  813. return 0;
  814. msleep(10);
  815. }
  816. return -EBUSY;
  817. }
  818. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  819. enum dev_state state)
  820. {
  821. int retval = 0;
  822. switch (state) {
  823. case STATE_RADIO_ON:
  824. retval = rt2400pci_enable_radio(rt2x00dev);
  825. break;
  826. case STATE_RADIO_OFF:
  827. rt2400pci_disable_radio(rt2x00dev);
  828. break;
  829. case STATE_RADIO_RX_ON:
  830. case STATE_RADIO_RX_ON_LINK:
  831. case STATE_RADIO_RX_OFF:
  832. case STATE_RADIO_RX_OFF_LINK:
  833. rt2400pci_toggle_rx(rt2x00dev, state);
  834. break;
  835. case STATE_RADIO_IRQ_ON:
  836. case STATE_RADIO_IRQ_OFF:
  837. rt2400pci_toggle_irq(rt2x00dev, state);
  838. break;
  839. case STATE_DEEP_SLEEP:
  840. case STATE_SLEEP:
  841. case STATE_STANDBY:
  842. case STATE_AWAKE:
  843. retval = rt2400pci_set_state(rt2x00dev, state);
  844. break;
  845. default:
  846. retval = -ENOTSUPP;
  847. break;
  848. }
  849. if (unlikely(retval))
  850. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  851. state, retval);
  852. return retval;
  853. }
  854. /*
  855. * TX descriptor initialization
  856. */
  857. static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  858. struct sk_buff *skb,
  859. struct txentry_desc *txdesc)
  860. {
  861. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  862. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  863. __le32 *txd = skbdesc->desc;
  864. u32 word;
  865. /*
  866. * Start writing the descriptor words.
  867. */
  868. rt2x00_desc_read(entry_priv->desc, 1, &word);
  869. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  870. rt2x00_desc_write(entry_priv->desc, 1, word);
  871. rt2x00_desc_read(txd, 2, &word);
  872. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
  873. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
  874. rt2x00_desc_write(txd, 2, word);
  875. rt2x00_desc_read(txd, 3, &word);
  876. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  877. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  878. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  879. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  880. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  881. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  882. rt2x00_desc_write(txd, 3, word);
  883. rt2x00_desc_read(txd, 4, &word);
  884. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
  885. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  886. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  887. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
  888. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  889. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  890. rt2x00_desc_write(txd, 4, word);
  891. rt2x00_desc_read(txd, 0, &word);
  892. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  893. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  894. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  895. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  896. rt2x00_set_field32(&word, TXD_W0_ACK,
  897. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  898. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  899. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  900. rt2x00_set_field32(&word, TXD_W0_RTS,
  901. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  902. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  903. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  904. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  905. rt2x00_desc_write(txd, 0, word);
  906. }
  907. /*
  908. * TX data initialization
  909. */
  910. static void rt2400pci_write_beacon(struct queue_entry *entry)
  911. {
  912. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  913. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  914. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  915. u32 word;
  916. u32 reg;
  917. /*
  918. * Disable beaconing while we are reloading the beacon data,
  919. * otherwise we might be sending out invalid data.
  920. */
  921. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  922. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  923. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  924. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  925. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  926. /*
  927. * Replace rt2x00lib allocated descriptor with the
  928. * pointer to the _real_ hardware descriptor.
  929. * After that, map the beacon to DMA and update the
  930. * descriptor.
  931. */
  932. memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
  933. skbdesc->desc = entry_priv->desc;
  934. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  935. rt2x00_desc_read(entry_priv->desc, 1, &word);
  936. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  937. rt2x00_desc_write(entry_priv->desc, 1, word);
  938. }
  939. static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  940. const enum data_queue_qid queue)
  941. {
  942. u32 reg;
  943. if (queue == QID_BEACON) {
  944. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  945. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  946. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  947. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  948. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  949. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  950. }
  951. return;
  952. }
  953. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  954. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  955. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  956. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  957. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  958. }
  959. /*
  960. * RX control handlers
  961. */
  962. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  963. struct rxdone_entry_desc *rxdesc)
  964. {
  965. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  966. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  967. u32 word0;
  968. u32 word2;
  969. u32 word3;
  970. u32 word4;
  971. u64 tsf;
  972. u32 rx_low;
  973. u32 rx_high;
  974. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  975. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  976. rt2x00_desc_read(entry_priv->desc, 3, &word3);
  977. rt2x00_desc_read(entry_priv->desc, 4, &word4);
  978. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  979. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  980. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  981. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  982. /*
  983. * We only get the lower 32bits from the timestamp,
  984. * to get the full 64bits we must complement it with
  985. * the timestamp from get_tsf().
  986. * Note that when a wraparound of the lower 32bits
  987. * has occurred between the frame arrival and the get_tsf()
  988. * call, we must decrease the higher 32bits with 1 to get
  989. * to correct value.
  990. */
  991. tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
  992. rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
  993. rx_high = upper_32_bits(tsf);
  994. if ((u32)tsf <= rx_low)
  995. rx_high--;
  996. /*
  997. * Obtain the status about this packet.
  998. * The signal is the PLCP value, and needs to be stripped
  999. * of the preamble bit (0x08).
  1000. */
  1001. rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
  1002. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  1003. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
  1004. entry->queue->rt2x00dev->rssi_offset;
  1005. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1006. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1007. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1008. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1009. }
  1010. /*
  1011. * Interrupt functions.
  1012. */
  1013. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  1014. const enum data_queue_qid queue_idx)
  1015. {
  1016. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1017. struct queue_entry_priv_pci *entry_priv;
  1018. struct queue_entry *entry;
  1019. struct txdone_entry_desc txdesc;
  1020. u32 word;
  1021. while (!rt2x00queue_empty(queue)) {
  1022. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1023. entry_priv = entry->priv_data;
  1024. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1025. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1026. !rt2x00_get_field32(word, TXD_W0_VALID))
  1027. break;
  1028. /*
  1029. * Obtain the status about this packet.
  1030. */
  1031. txdesc.flags = 0;
  1032. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1033. case 0: /* Success */
  1034. case 1: /* Success with retry */
  1035. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1036. break;
  1037. case 2: /* Failure, excessive retries */
  1038. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1039. /* Don't break, this is a failed frame! */
  1040. default: /* Failure */
  1041. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1042. }
  1043. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1044. rt2x00lib_txdone(entry, &txdesc);
  1045. }
  1046. }
  1047. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  1048. {
  1049. struct rt2x00_dev *rt2x00dev = dev_instance;
  1050. u32 reg;
  1051. /*
  1052. * Get the interrupt sources & saved to local variable.
  1053. * Write register value back to clear pending interrupts.
  1054. */
  1055. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1056. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1057. if (!reg)
  1058. return IRQ_NONE;
  1059. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1060. return IRQ_HANDLED;
  1061. /*
  1062. * Handle interrupts, walk through all bits
  1063. * and run the tasks, the bits are checked in order of
  1064. * priority.
  1065. */
  1066. /*
  1067. * 1 - Beacon timer expired interrupt.
  1068. */
  1069. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1070. rt2x00lib_beacondone(rt2x00dev);
  1071. /*
  1072. * 2 - Rx ring done interrupt.
  1073. */
  1074. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1075. rt2x00pci_rxdone(rt2x00dev);
  1076. /*
  1077. * 3 - Atim ring transmit done interrupt.
  1078. */
  1079. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1080. rt2400pci_txdone(rt2x00dev, QID_ATIM);
  1081. /*
  1082. * 4 - Priority ring transmit done interrupt.
  1083. */
  1084. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1085. rt2400pci_txdone(rt2x00dev, QID_AC_BE);
  1086. /*
  1087. * 5 - Tx ring transmit done interrupt.
  1088. */
  1089. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1090. rt2400pci_txdone(rt2x00dev, QID_AC_BK);
  1091. return IRQ_HANDLED;
  1092. }
  1093. /*
  1094. * Device probe functions.
  1095. */
  1096. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1097. {
  1098. struct eeprom_93cx6 eeprom;
  1099. u32 reg;
  1100. u16 word;
  1101. u8 *mac;
  1102. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1103. eeprom.data = rt2x00dev;
  1104. eeprom.register_read = rt2400pci_eepromregister_read;
  1105. eeprom.register_write = rt2400pci_eepromregister_write;
  1106. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1107. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1108. eeprom.reg_data_in = 0;
  1109. eeprom.reg_data_out = 0;
  1110. eeprom.reg_data_clock = 0;
  1111. eeprom.reg_chip_select = 0;
  1112. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1113. EEPROM_SIZE / sizeof(u16));
  1114. /*
  1115. * Start validation of the data that has been read.
  1116. */
  1117. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1118. if (!is_valid_ether_addr(mac)) {
  1119. DECLARE_MAC_BUF(macbuf);
  1120. random_ether_addr(mac);
  1121. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1122. }
  1123. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1124. if (word == 0xffff) {
  1125. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1126. return -EINVAL;
  1127. }
  1128. return 0;
  1129. }
  1130. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1131. {
  1132. u32 reg;
  1133. u16 value;
  1134. u16 eeprom;
  1135. /*
  1136. * Read EEPROM word for configuration.
  1137. */
  1138. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1139. /*
  1140. * Identify RF chipset.
  1141. */
  1142. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1143. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1144. rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
  1145. if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
  1146. !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
  1147. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1148. return -ENODEV;
  1149. }
  1150. /*
  1151. * Identify default antenna configuration.
  1152. */
  1153. rt2x00dev->default_ant.tx =
  1154. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1155. rt2x00dev->default_ant.rx =
  1156. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1157. /*
  1158. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1159. * I am not 100% sure about this, but the legacy drivers do not
  1160. * indicate antenna swapping in software is required when
  1161. * diversity is enabled.
  1162. */
  1163. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1164. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1165. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1166. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1167. /*
  1168. * Store led mode, for correct led behaviour.
  1169. */
  1170. #ifdef CONFIG_RT2X00_LIB_LEDS
  1171. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1172. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1173. if (value == LED_MODE_TXRX_ACTIVITY)
  1174. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1175. LED_TYPE_ACTIVITY);
  1176. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1177. /*
  1178. * Detect if this device has an hardware controlled radio.
  1179. */
  1180. #ifdef CONFIG_RT2X00_LIB_RFKILL
  1181. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1182. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1183. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  1184. /*
  1185. * Check if the BBP tuning should be enabled.
  1186. */
  1187. if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1188. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1189. return 0;
  1190. }
  1191. /*
  1192. * RF value list for RF2420 & RF2421
  1193. * Supports: 2.4 GHz
  1194. */
  1195. static const struct rf_channel rf_vals_b[] = {
  1196. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1197. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1198. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1199. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1200. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1201. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1202. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1203. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1204. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1205. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1206. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1207. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1208. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1209. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1210. };
  1211. static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1212. {
  1213. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1214. struct channel_info *info;
  1215. char *tx_power;
  1216. unsigned int i;
  1217. /*
  1218. * Initialize all hw fields.
  1219. */
  1220. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1221. IEEE80211_HW_SIGNAL_DBM;
  1222. rt2x00dev->hw->extra_tx_headroom = 0;
  1223. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1224. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1225. rt2x00_eeprom_addr(rt2x00dev,
  1226. EEPROM_MAC_ADDR_0));
  1227. /*
  1228. * Initialize hw_mode information.
  1229. */
  1230. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1231. spec->supported_rates = SUPPORT_RATE_CCK;
  1232. spec->num_channels = ARRAY_SIZE(rf_vals_b);
  1233. spec->channels = rf_vals_b;
  1234. /*
  1235. * Create channel information array
  1236. */
  1237. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1238. if (!info)
  1239. return -ENOMEM;
  1240. spec->channels_info = info;
  1241. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1242. for (i = 0; i < 14; i++)
  1243. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1244. return 0;
  1245. }
  1246. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1247. {
  1248. int retval;
  1249. /*
  1250. * Allocate eeprom data.
  1251. */
  1252. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1253. if (retval)
  1254. return retval;
  1255. retval = rt2400pci_init_eeprom(rt2x00dev);
  1256. if (retval)
  1257. return retval;
  1258. /*
  1259. * Initialize hw specifications.
  1260. */
  1261. retval = rt2400pci_probe_hw_mode(rt2x00dev);
  1262. if (retval)
  1263. return retval;
  1264. /*
  1265. * This device requires the atim queue and DMA-mapped skbs.
  1266. */
  1267. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1268. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1269. /*
  1270. * Set the rssi offset.
  1271. */
  1272. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1273. return 0;
  1274. }
  1275. /*
  1276. * IEEE80211 stack callback functions.
  1277. */
  1278. static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
  1279. u32 short_retry, u32 long_retry)
  1280. {
  1281. struct rt2x00_dev *rt2x00dev = hw->priv;
  1282. u32 reg;
  1283. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1284. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1285. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1286. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1287. return 0;
  1288. }
  1289. static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
  1290. const struct ieee80211_tx_queue_params *params)
  1291. {
  1292. struct rt2x00_dev *rt2x00dev = hw->priv;
  1293. /*
  1294. * We don't support variating cw_min and cw_max variables
  1295. * per queue. So by default we only configure the TX queue,
  1296. * and ignore all other configurations.
  1297. */
  1298. if (queue != 0)
  1299. return -EINVAL;
  1300. if (rt2x00mac_conf_tx(hw, queue, params))
  1301. return -EINVAL;
  1302. /*
  1303. * Write configuration to register.
  1304. */
  1305. rt2400pci_config_cw(rt2x00dev,
  1306. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1307. return 0;
  1308. }
  1309. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1310. {
  1311. struct rt2x00_dev *rt2x00dev = hw->priv;
  1312. u64 tsf;
  1313. u32 reg;
  1314. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1315. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1316. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1317. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1318. return tsf;
  1319. }
  1320. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1321. {
  1322. struct rt2x00_dev *rt2x00dev = hw->priv;
  1323. u32 reg;
  1324. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1325. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1326. }
  1327. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1328. .tx = rt2x00mac_tx,
  1329. .start = rt2x00mac_start,
  1330. .stop = rt2x00mac_stop,
  1331. .add_interface = rt2x00mac_add_interface,
  1332. .remove_interface = rt2x00mac_remove_interface,
  1333. .config = rt2x00mac_config,
  1334. .config_interface = rt2x00mac_config_interface,
  1335. .configure_filter = rt2x00mac_configure_filter,
  1336. .get_stats = rt2x00mac_get_stats,
  1337. .set_retry_limit = rt2400pci_set_retry_limit,
  1338. .bss_info_changed = rt2x00mac_bss_info_changed,
  1339. .conf_tx = rt2400pci_conf_tx,
  1340. .get_tx_stats = rt2x00mac_get_tx_stats,
  1341. .get_tsf = rt2400pci_get_tsf,
  1342. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1343. };
  1344. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1345. .irq_handler = rt2400pci_interrupt,
  1346. .probe_hw = rt2400pci_probe_hw,
  1347. .initialize = rt2x00pci_initialize,
  1348. .uninitialize = rt2x00pci_uninitialize,
  1349. .init_rxentry = rt2400pci_init_rxentry,
  1350. .init_txentry = rt2400pci_init_txentry,
  1351. .set_device_state = rt2400pci_set_device_state,
  1352. .rfkill_poll = rt2400pci_rfkill_poll,
  1353. .link_stats = rt2400pci_link_stats,
  1354. .reset_tuner = rt2400pci_reset_tuner,
  1355. .link_tuner = rt2400pci_link_tuner,
  1356. .write_tx_desc = rt2400pci_write_tx_desc,
  1357. .write_tx_data = rt2x00pci_write_tx_data,
  1358. .write_beacon = rt2400pci_write_beacon,
  1359. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1360. .fill_rxdone = rt2400pci_fill_rxdone,
  1361. .config_filter = rt2400pci_config_filter,
  1362. .config_intf = rt2400pci_config_intf,
  1363. .config_erp = rt2400pci_config_erp,
  1364. .config = rt2400pci_config,
  1365. };
  1366. static const struct data_queue_desc rt2400pci_queue_rx = {
  1367. .entry_num = RX_ENTRIES,
  1368. .data_size = DATA_FRAME_SIZE,
  1369. .desc_size = RXD_DESC_SIZE,
  1370. .priv_size = sizeof(struct queue_entry_priv_pci),
  1371. };
  1372. static const struct data_queue_desc rt2400pci_queue_tx = {
  1373. .entry_num = TX_ENTRIES,
  1374. .data_size = DATA_FRAME_SIZE,
  1375. .desc_size = TXD_DESC_SIZE,
  1376. .priv_size = sizeof(struct queue_entry_priv_pci),
  1377. };
  1378. static const struct data_queue_desc rt2400pci_queue_bcn = {
  1379. .entry_num = BEACON_ENTRIES,
  1380. .data_size = MGMT_FRAME_SIZE,
  1381. .desc_size = TXD_DESC_SIZE,
  1382. .priv_size = sizeof(struct queue_entry_priv_pci),
  1383. };
  1384. static const struct data_queue_desc rt2400pci_queue_atim = {
  1385. .entry_num = ATIM_ENTRIES,
  1386. .data_size = DATA_FRAME_SIZE,
  1387. .desc_size = TXD_DESC_SIZE,
  1388. .priv_size = sizeof(struct queue_entry_priv_pci),
  1389. };
  1390. static const struct rt2x00_ops rt2400pci_ops = {
  1391. .name = KBUILD_MODNAME,
  1392. .max_sta_intf = 1,
  1393. .max_ap_intf = 1,
  1394. .eeprom_size = EEPROM_SIZE,
  1395. .rf_size = RF_SIZE,
  1396. .tx_queues = NUM_TX_QUEUES,
  1397. .rx = &rt2400pci_queue_rx,
  1398. .tx = &rt2400pci_queue_tx,
  1399. .bcn = &rt2400pci_queue_bcn,
  1400. .atim = &rt2400pci_queue_atim,
  1401. .lib = &rt2400pci_rt2x00_ops,
  1402. .hw = &rt2400pci_mac80211_ops,
  1403. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1404. .debugfs = &rt2400pci_rt2x00debug,
  1405. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1406. };
  1407. /*
  1408. * RT2400pci module information.
  1409. */
  1410. static struct pci_device_id rt2400pci_device_table[] = {
  1411. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1412. { 0, }
  1413. };
  1414. MODULE_AUTHOR(DRV_PROJECT);
  1415. MODULE_VERSION(DRV_VERSION);
  1416. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1417. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1418. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1419. MODULE_LICENSE("GPL");
  1420. static struct pci_driver rt2400pci_driver = {
  1421. .name = KBUILD_MODNAME,
  1422. .id_table = rt2400pci_device_table,
  1423. .probe = rt2x00pci_probe,
  1424. .remove = __devexit_p(rt2x00pci_remove),
  1425. .suspend = rt2x00pci_suspend,
  1426. .resume = rt2x00pci_resume,
  1427. };
  1428. static int __init rt2400pci_init(void)
  1429. {
  1430. return pci_register_driver(&rt2400pci_driver);
  1431. }
  1432. static void __exit rt2400pci_exit(void)
  1433. {
  1434. pci_unregister_driver(&rt2400pci_driver);
  1435. }
  1436. module_init(rt2400pci_init);
  1437. module_exit(rt2400pci_exit);