iwl-calib.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2008 Intel Corporation. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22. * USA
  23. *
  24. * The full GNU General Public License is included in this distribution
  25. * in the file called LICENSE.GPL.
  26. *
  27. * Contact Information:
  28. * Tomas Winkler <tomas.winkler@intel.com>
  29. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30. *
  31. * BSD LICENSE
  32. *
  33. * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
  34. * All rights reserved.
  35. *
  36. * Redistribution and use in source and binary forms, with or without
  37. * modification, are permitted provided that the following conditions
  38. * are met:
  39. *
  40. * * Redistributions of source code must retain the above copyright
  41. * notice, this list of conditions and the following disclaimer.
  42. * * Redistributions in binary form must reproduce the above copyright
  43. * notice, this list of conditions and the following disclaimer in
  44. * the documentation and/or other materials provided with the
  45. * distribution.
  46. * * Neither the name Intel Corporation nor the names of its
  47. * contributors may be used to endorse or promote products derived
  48. * from this software without specific prior written permission.
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61. *****************************************************************************/
  62. #include <net/mac80211.h>
  63. #include "iwl-dev.h"
  64. #include "iwl-core.h"
  65. #include "iwl-calib.h"
  66. /*****************************************************************************
  67. * INIT calibrations framework
  68. *****************************************************************************/
  69. int iwl_send_calib_results(struct iwl_priv *priv)
  70. {
  71. int ret = 0;
  72. int i = 0;
  73. struct iwl_host_cmd hcmd = {
  74. .id = REPLY_PHY_CALIBRATION_CMD,
  75. .meta.flags = CMD_SIZE_HUGE,
  76. };
  77. for (i = 0; i < IWL_CALIB_MAX; i++)
  78. if (priv->calib_results[i].buf) {
  79. hcmd.len = priv->calib_results[i].buf_len;
  80. hcmd.data = priv->calib_results[i].buf;
  81. ret = iwl_send_cmd_sync(priv, &hcmd);
  82. if (ret)
  83. goto err;
  84. }
  85. return 0;
  86. err:
  87. IWL_ERROR("Error %d iteration %d\n", ret, i);
  88. return ret;
  89. }
  90. EXPORT_SYMBOL(iwl_send_calib_results);
  91. int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
  92. {
  93. if (res->buf_len != len) {
  94. kfree(res->buf);
  95. res->buf = kzalloc(len, GFP_ATOMIC);
  96. }
  97. if (unlikely(res->buf == NULL))
  98. return -ENOMEM;
  99. res->buf_len = len;
  100. memcpy(res->buf, buf, len);
  101. return 0;
  102. }
  103. EXPORT_SYMBOL(iwl_calib_set);
  104. void iwl_calib_free_results(struct iwl_priv *priv)
  105. {
  106. int i;
  107. for (i = 0; i < IWL_CALIB_MAX; i++) {
  108. kfree(priv->calib_results[i].buf);
  109. priv->calib_results[i].buf = NULL;
  110. priv->calib_results[i].buf_len = 0;
  111. }
  112. }
  113. /*****************************************************************************
  114. * RUNTIME calibrations framework
  115. *****************************************************************************/
  116. /* "false alarms" are signals that our DSP tries to lock onto,
  117. * but then determines that they are either noise, or transmissions
  118. * from a distant wireless network (also "noise", really) that get
  119. * "stepped on" by stronger transmissions within our own network.
  120. * This algorithm attempts to set a sensitivity level that is high
  121. * enough to receive all of our own network traffic, but not so
  122. * high that our DSP gets too busy trying to lock onto non-network
  123. * activity/noise. */
  124. static int iwl_sens_energy_cck(struct iwl_priv *priv,
  125. u32 norm_fa,
  126. u32 rx_enable_time,
  127. struct statistics_general_data *rx_info)
  128. {
  129. u32 max_nrg_cck = 0;
  130. int i = 0;
  131. u8 max_silence_rssi = 0;
  132. u32 silence_ref = 0;
  133. u8 silence_rssi_a = 0;
  134. u8 silence_rssi_b = 0;
  135. u8 silence_rssi_c = 0;
  136. u32 val;
  137. /* "false_alarms" values below are cross-multiplications to assess the
  138. * numbers of false alarms within the measured period of actual Rx
  139. * (Rx is off when we're txing), vs the min/max expected false alarms
  140. * (some should be expected if rx is sensitive enough) in a
  141. * hypothetical listening period of 200 time units (TU), 204.8 msec:
  142. *
  143. * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
  144. *
  145. * */
  146. u32 false_alarms = norm_fa * 200 * 1024;
  147. u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
  148. u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
  149. struct iwl_sensitivity_data *data = NULL;
  150. const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
  151. data = &(priv->sensitivity_data);
  152. data->nrg_auto_corr_silence_diff = 0;
  153. /* Find max silence rssi among all 3 receivers.
  154. * This is background noise, which may include transmissions from other
  155. * networks, measured during silence before our network's beacon */
  156. silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
  157. ALL_BAND_FILTER) >> 8);
  158. silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
  159. ALL_BAND_FILTER) >> 8);
  160. silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
  161. ALL_BAND_FILTER) >> 8);
  162. val = max(silence_rssi_b, silence_rssi_c);
  163. max_silence_rssi = max(silence_rssi_a, (u8) val);
  164. /* Store silence rssi in 20-beacon history table */
  165. data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
  166. data->nrg_silence_idx++;
  167. if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
  168. data->nrg_silence_idx = 0;
  169. /* Find max silence rssi across 20 beacon history */
  170. for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
  171. val = data->nrg_silence_rssi[i];
  172. silence_ref = max(silence_ref, val);
  173. }
  174. IWL_DEBUG_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n",
  175. silence_rssi_a, silence_rssi_b, silence_rssi_c,
  176. silence_ref);
  177. /* Find max rx energy (min value!) among all 3 receivers,
  178. * measured during beacon frame.
  179. * Save it in 10-beacon history table. */
  180. i = data->nrg_energy_idx;
  181. val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
  182. data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
  183. data->nrg_energy_idx++;
  184. if (data->nrg_energy_idx >= 10)
  185. data->nrg_energy_idx = 0;
  186. /* Find min rx energy (max value) across 10 beacon history.
  187. * This is the minimum signal level that we want to receive well.
  188. * Add backoff (margin so we don't miss slightly lower energy frames).
  189. * This establishes an upper bound (min value) for energy threshold. */
  190. max_nrg_cck = data->nrg_value[0];
  191. for (i = 1; i < 10; i++)
  192. max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
  193. max_nrg_cck += 6;
  194. IWL_DEBUG_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
  195. rx_info->beacon_energy_a, rx_info->beacon_energy_b,
  196. rx_info->beacon_energy_c, max_nrg_cck - 6);
  197. /* Count number of consecutive beacons with fewer-than-desired
  198. * false alarms. */
  199. if (false_alarms < min_false_alarms)
  200. data->num_in_cck_no_fa++;
  201. else
  202. data->num_in_cck_no_fa = 0;
  203. IWL_DEBUG_CALIB("consecutive bcns with few false alarms = %u\n",
  204. data->num_in_cck_no_fa);
  205. /* If we got too many false alarms this time, reduce sensitivity */
  206. if ((false_alarms > max_false_alarms) &&
  207. (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
  208. IWL_DEBUG_CALIB("norm FA %u > max FA %u\n",
  209. false_alarms, max_false_alarms);
  210. IWL_DEBUG_CALIB("... reducing sensitivity\n");
  211. data->nrg_curr_state = IWL_FA_TOO_MANY;
  212. /* Store for "fewer than desired" on later beacon */
  213. data->nrg_silence_ref = silence_ref;
  214. /* increase energy threshold (reduce nrg value)
  215. * to decrease sensitivity */
  216. if (data->nrg_th_cck >
  217. (ranges->max_nrg_cck + NRG_STEP_CCK))
  218. data->nrg_th_cck = data->nrg_th_cck
  219. - NRG_STEP_CCK;
  220. else
  221. data->nrg_th_cck = ranges->max_nrg_cck;
  222. /* Else if we got fewer than desired, increase sensitivity */
  223. } else if (false_alarms < min_false_alarms) {
  224. data->nrg_curr_state = IWL_FA_TOO_FEW;
  225. /* Compare silence level with silence level for most recent
  226. * healthy number or too many false alarms */
  227. data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
  228. (s32)silence_ref;
  229. IWL_DEBUG_CALIB("norm FA %u < min FA %u, silence diff %d\n",
  230. false_alarms, min_false_alarms,
  231. data->nrg_auto_corr_silence_diff);
  232. /* Increase value to increase sensitivity, but only if:
  233. * 1a) previous beacon did *not* have *too many* false alarms
  234. * 1b) AND there's a significant difference in Rx levels
  235. * from a previous beacon with too many, or healthy # FAs
  236. * OR 2) We've seen a lot of beacons (100) with too few
  237. * false alarms */
  238. if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
  239. ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
  240. (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
  241. IWL_DEBUG_CALIB("... increasing sensitivity\n");
  242. /* Increase nrg value to increase sensitivity */
  243. val = data->nrg_th_cck + NRG_STEP_CCK;
  244. data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
  245. } else {
  246. IWL_DEBUG_CALIB("... but not changing sensitivity\n");
  247. }
  248. /* Else we got a healthy number of false alarms, keep status quo */
  249. } else {
  250. IWL_DEBUG_CALIB(" FA in safe zone\n");
  251. data->nrg_curr_state = IWL_FA_GOOD_RANGE;
  252. /* Store for use in "fewer than desired" with later beacon */
  253. data->nrg_silence_ref = silence_ref;
  254. /* If previous beacon had too many false alarms,
  255. * give it some extra margin by reducing sensitivity again
  256. * (but don't go below measured energy of desired Rx) */
  257. if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
  258. IWL_DEBUG_CALIB("... increasing margin\n");
  259. if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
  260. data->nrg_th_cck -= NRG_MARGIN;
  261. else
  262. data->nrg_th_cck = max_nrg_cck;
  263. }
  264. }
  265. /* Make sure the energy threshold does not go above the measured
  266. * energy of the desired Rx signals (reduced by backoff margin),
  267. * or else we might start missing Rx frames.
  268. * Lower value is higher energy, so we use max()!
  269. */
  270. data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
  271. IWL_DEBUG_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
  272. data->nrg_prev_state = data->nrg_curr_state;
  273. /* Auto-correlation CCK algorithm */
  274. if (false_alarms > min_false_alarms) {
  275. /* increase auto_corr values to decrease sensitivity
  276. * so the DSP won't be disturbed by the noise
  277. */
  278. if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
  279. data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
  280. else {
  281. val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
  282. data->auto_corr_cck =
  283. min((u32)ranges->auto_corr_max_cck, val);
  284. }
  285. val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
  286. data->auto_corr_cck_mrc =
  287. min((u32)ranges->auto_corr_max_cck_mrc, val);
  288. } else if ((false_alarms < min_false_alarms) &&
  289. ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
  290. (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
  291. /* Decrease auto_corr values to increase sensitivity */
  292. val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
  293. data->auto_corr_cck =
  294. max((u32)ranges->auto_corr_min_cck, val);
  295. val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
  296. data->auto_corr_cck_mrc =
  297. max((u32)ranges->auto_corr_min_cck_mrc, val);
  298. }
  299. return 0;
  300. }
  301. static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
  302. u32 norm_fa,
  303. u32 rx_enable_time)
  304. {
  305. u32 val;
  306. u32 false_alarms = norm_fa * 200 * 1024;
  307. u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
  308. u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
  309. struct iwl_sensitivity_data *data = NULL;
  310. const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
  311. data = &(priv->sensitivity_data);
  312. /* If we got too many false alarms this time, reduce sensitivity */
  313. if (false_alarms > max_false_alarms) {
  314. IWL_DEBUG_CALIB("norm FA %u > max FA %u)\n",
  315. false_alarms, max_false_alarms);
  316. val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
  317. data->auto_corr_ofdm =
  318. min((u32)ranges->auto_corr_max_ofdm, val);
  319. val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
  320. data->auto_corr_ofdm_mrc =
  321. min((u32)ranges->auto_corr_max_ofdm_mrc, val);
  322. val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
  323. data->auto_corr_ofdm_x1 =
  324. min((u32)ranges->auto_corr_max_ofdm_x1, val);
  325. val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
  326. data->auto_corr_ofdm_mrc_x1 =
  327. min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
  328. }
  329. /* Else if we got fewer than desired, increase sensitivity */
  330. else if (false_alarms < min_false_alarms) {
  331. IWL_DEBUG_CALIB("norm FA %u < min FA %u\n",
  332. false_alarms, min_false_alarms);
  333. val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
  334. data->auto_corr_ofdm =
  335. max((u32)ranges->auto_corr_min_ofdm, val);
  336. val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
  337. data->auto_corr_ofdm_mrc =
  338. max((u32)ranges->auto_corr_min_ofdm_mrc, val);
  339. val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
  340. data->auto_corr_ofdm_x1 =
  341. max((u32)ranges->auto_corr_min_ofdm_x1, val);
  342. val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
  343. data->auto_corr_ofdm_mrc_x1 =
  344. max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
  345. } else {
  346. IWL_DEBUG_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
  347. min_false_alarms, false_alarms, max_false_alarms);
  348. }
  349. return 0;
  350. }
  351. /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
  352. static int iwl_sensitivity_write(struct iwl_priv *priv)
  353. {
  354. int ret = 0;
  355. struct iwl_sensitivity_cmd cmd ;
  356. struct iwl_sensitivity_data *data = NULL;
  357. struct iwl_host_cmd cmd_out = {
  358. .id = SENSITIVITY_CMD,
  359. .len = sizeof(struct iwl_sensitivity_cmd),
  360. .meta.flags = CMD_ASYNC,
  361. .data = &cmd,
  362. };
  363. data = &(priv->sensitivity_data);
  364. memset(&cmd, 0, sizeof(cmd));
  365. cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
  366. cpu_to_le16((u16)data->auto_corr_ofdm);
  367. cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
  368. cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
  369. cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
  370. cpu_to_le16((u16)data->auto_corr_ofdm_x1);
  371. cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
  372. cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
  373. cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
  374. cpu_to_le16((u16)data->auto_corr_cck);
  375. cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
  376. cpu_to_le16((u16)data->auto_corr_cck_mrc);
  377. cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
  378. cpu_to_le16((u16)data->nrg_th_cck);
  379. cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
  380. cpu_to_le16((u16)data->nrg_th_ofdm);
  381. cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
  382. __constant_cpu_to_le16(190);
  383. cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
  384. __constant_cpu_to_le16(390);
  385. cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
  386. __constant_cpu_to_le16(62);
  387. IWL_DEBUG_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
  388. data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
  389. data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
  390. data->nrg_th_ofdm);
  391. IWL_DEBUG_CALIB("cck: ac %u mrc %u thresh %u\n",
  392. data->auto_corr_cck, data->auto_corr_cck_mrc,
  393. data->nrg_th_cck);
  394. /* Update uCode's "work" table, and copy it to DSP */
  395. cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
  396. /* Don't send command to uCode if nothing has changed */
  397. if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
  398. sizeof(u16)*HD_TABLE_SIZE)) {
  399. IWL_DEBUG_CALIB("No change in SENSITIVITY_CMD\n");
  400. return 0;
  401. }
  402. /* Copy table for comparison next time */
  403. memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
  404. sizeof(u16)*HD_TABLE_SIZE);
  405. ret = iwl_send_cmd(priv, &cmd_out);
  406. if (ret)
  407. IWL_ERROR("SENSITIVITY_CMD failed\n");
  408. return ret;
  409. }
  410. void iwl_init_sensitivity(struct iwl_priv *priv)
  411. {
  412. int ret = 0;
  413. int i;
  414. struct iwl_sensitivity_data *data = NULL;
  415. const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
  416. if (priv->disable_sens_cal)
  417. return;
  418. IWL_DEBUG_CALIB("Start iwl_init_sensitivity\n");
  419. /* Clear driver's sensitivity algo data */
  420. data = &(priv->sensitivity_data);
  421. if (ranges == NULL)
  422. return;
  423. memset(data, 0, sizeof(struct iwl_sensitivity_data));
  424. data->num_in_cck_no_fa = 0;
  425. data->nrg_curr_state = IWL_FA_TOO_MANY;
  426. data->nrg_prev_state = IWL_FA_TOO_MANY;
  427. data->nrg_silence_ref = 0;
  428. data->nrg_silence_idx = 0;
  429. data->nrg_energy_idx = 0;
  430. for (i = 0; i < 10; i++)
  431. data->nrg_value[i] = 0;
  432. for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
  433. data->nrg_silence_rssi[i] = 0;
  434. data->auto_corr_ofdm = 90;
  435. data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
  436. data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
  437. data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
  438. data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
  439. data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
  440. data->nrg_th_cck = ranges->nrg_th_cck;
  441. data->nrg_th_ofdm = ranges->nrg_th_ofdm;
  442. data->last_bad_plcp_cnt_ofdm = 0;
  443. data->last_fa_cnt_ofdm = 0;
  444. data->last_bad_plcp_cnt_cck = 0;
  445. data->last_fa_cnt_cck = 0;
  446. ret |= iwl_sensitivity_write(priv);
  447. IWL_DEBUG_CALIB("<<return 0x%X\n", ret);
  448. }
  449. EXPORT_SYMBOL(iwl_init_sensitivity);
  450. void iwl_sensitivity_calibration(struct iwl_priv *priv,
  451. struct iwl_notif_statistics *resp)
  452. {
  453. u32 rx_enable_time;
  454. u32 fa_cck;
  455. u32 fa_ofdm;
  456. u32 bad_plcp_cck;
  457. u32 bad_plcp_ofdm;
  458. u32 norm_fa_ofdm;
  459. u32 norm_fa_cck;
  460. struct iwl_sensitivity_data *data = NULL;
  461. struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
  462. struct statistics_rx *statistics = &(resp->rx);
  463. unsigned long flags;
  464. struct statistics_general_data statis;
  465. if (priv->disable_sens_cal)
  466. return;
  467. data = &(priv->sensitivity_data);
  468. if (!iwl_is_associated(priv)) {
  469. IWL_DEBUG_CALIB("<< - not associated\n");
  470. return;
  471. }
  472. spin_lock_irqsave(&priv->lock, flags);
  473. if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
  474. IWL_DEBUG_CALIB("<< invalid data.\n");
  475. spin_unlock_irqrestore(&priv->lock, flags);
  476. return;
  477. }
  478. /* Extract Statistics: */
  479. rx_enable_time = le32_to_cpu(rx_info->channel_load);
  480. fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
  481. fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
  482. bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
  483. bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);
  484. statis.beacon_silence_rssi_a =
  485. le32_to_cpu(statistics->general.beacon_silence_rssi_a);
  486. statis.beacon_silence_rssi_b =
  487. le32_to_cpu(statistics->general.beacon_silence_rssi_b);
  488. statis.beacon_silence_rssi_c =
  489. le32_to_cpu(statistics->general.beacon_silence_rssi_c);
  490. statis.beacon_energy_a =
  491. le32_to_cpu(statistics->general.beacon_energy_a);
  492. statis.beacon_energy_b =
  493. le32_to_cpu(statistics->general.beacon_energy_b);
  494. statis.beacon_energy_c =
  495. le32_to_cpu(statistics->general.beacon_energy_c);
  496. spin_unlock_irqrestore(&priv->lock, flags);
  497. IWL_DEBUG_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
  498. if (!rx_enable_time) {
  499. IWL_DEBUG_CALIB("<< RX Enable Time == 0! \n");
  500. return;
  501. }
  502. /* These statistics increase monotonically, and do not reset
  503. * at each beacon. Calculate difference from last value, or just
  504. * use the new statistics value if it has reset or wrapped around. */
  505. if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
  506. data->last_bad_plcp_cnt_cck = bad_plcp_cck;
  507. else {
  508. bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
  509. data->last_bad_plcp_cnt_cck += bad_plcp_cck;
  510. }
  511. if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
  512. data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
  513. else {
  514. bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
  515. data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
  516. }
  517. if (data->last_fa_cnt_ofdm > fa_ofdm)
  518. data->last_fa_cnt_ofdm = fa_ofdm;
  519. else {
  520. fa_ofdm -= data->last_fa_cnt_ofdm;
  521. data->last_fa_cnt_ofdm += fa_ofdm;
  522. }
  523. if (data->last_fa_cnt_cck > fa_cck)
  524. data->last_fa_cnt_cck = fa_cck;
  525. else {
  526. fa_cck -= data->last_fa_cnt_cck;
  527. data->last_fa_cnt_cck += fa_cck;
  528. }
  529. /* Total aborted signal locks */
  530. norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
  531. norm_fa_cck = fa_cck + bad_plcp_cck;
  532. IWL_DEBUG_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
  533. bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
  534. iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
  535. iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
  536. iwl_sensitivity_write(priv);
  537. return;
  538. }
  539. EXPORT_SYMBOL(iwl_sensitivity_calibration);
  540. /*
  541. * Accumulate 20 beacons of signal and noise statistics for each of
  542. * 3 receivers/antennas/rx-chains, then figure out:
  543. * 1) Which antennas are connected.
  544. * 2) Differential rx gain settings to balance the 3 receivers.
  545. */
  546. void iwl_chain_noise_calibration(struct iwl_priv *priv,
  547. struct iwl_notif_statistics *stat_resp)
  548. {
  549. struct iwl_chain_noise_data *data = NULL;
  550. u32 chain_noise_a;
  551. u32 chain_noise_b;
  552. u32 chain_noise_c;
  553. u32 chain_sig_a;
  554. u32 chain_sig_b;
  555. u32 chain_sig_c;
  556. u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
  557. u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
  558. u32 max_average_sig;
  559. u16 max_average_sig_antenna_i;
  560. u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
  561. u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
  562. u16 i = 0;
  563. u16 rxon_chnum = INITIALIZATION_VALUE;
  564. u16 stat_chnum = INITIALIZATION_VALUE;
  565. u8 rxon_band24;
  566. u8 stat_band24;
  567. u32 active_chains = 0;
  568. u8 num_tx_chains;
  569. unsigned long flags;
  570. struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
  571. if (priv->disable_chain_noise_cal)
  572. return;
  573. data = &(priv->chain_noise_data);
  574. /* Accumulate just the first 20 beacons after the first association,
  575. * then we're done forever. */
  576. if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
  577. if (data->state == IWL_CHAIN_NOISE_ALIVE)
  578. IWL_DEBUG_CALIB("Wait for noise calib reset\n");
  579. return;
  580. }
  581. spin_lock_irqsave(&priv->lock, flags);
  582. if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
  583. IWL_DEBUG_CALIB(" << Interference data unavailable\n");
  584. spin_unlock_irqrestore(&priv->lock, flags);
  585. return;
  586. }
  587. rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
  588. rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
  589. stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
  590. stat_chnum = le32_to_cpu(stat_resp->flag) >> 16;
  591. /* Make sure we accumulate data for just the associated channel
  592. * (even if scanning). */
  593. if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
  594. IWL_DEBUG_CALIB("Stats not from chan=%d, band24=%d\n",
  595. rxon_chnum, rxon_band24);
  596. spin_unlock_irqrestore(&priv->lock, flags);
  597. return;
  598. }
  599. /* Accumulate beacon statistics values across 20 beacons */
  600. chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
  601. IN_BAND_FILTER;
  602. chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
  603. IN_BAND_FILTER;
  604. chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
  605. IN_BAND_FILTER;
  606. chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
  607. chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
  608. chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
  609. spin_unlock_irqrestore(&priv->lock, flags);
  610. data->beacon_count++;
  611. data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
  612. data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
  613. data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
  614. data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
  615. data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
  616. data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
  617. IWL_DEBUG_CALIB("chan=%d, band24=%d, beacon=%d\n",
  618. rxon_chnum, rxon_band24, data->beacon_count);
  619. IWL_DEBUG_CALIB("chain_sig: a %d b %d c %d\n",
  620. chain_sig_a, chain_sig_b, chain_sig_c);
  621. IWL_DEBUG_CALIB("chain_noise: a %d b %d c %d\n",
  622. chain_noise_a, chain_noise_b, chain_noise_c);
  623. /* If this is the 20th beacon, determine:
  624. * 1) Disconnected antennas (using signal strengths)
  625. * 2) Differential gain (using silence noise) to balance receivers */
  626. if (data->beacon_count != CAL_NUM_OF_BEACONS)
  627. return;
  628. /* Analyze signal for disconnected antenna */
  629. average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS;
  630. average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS;
  631. average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS;
  632. if (average_sig[0] >= average_sig[1]) {
  633. max_average_sig = average_sig[0];
  634. max_average_sig_antenna_i = 0;
  635. active_chains = (1 << max_average_sig_antenna_i);
  636. } else {
  637. max_average_sig = average_sig[1];
  638. max_average_sig_antenna_i = 1;
  639. active_chains = (1 << max_average_sig_antenna_i);
  640. }
  641. if (average_sig[2] >= max_average_sig) {
  642. max_average_sig = average_sig[2];
  643. max_average_sig_antenna_i = 2;
  644. active_chains = (1 << max_average_sig_antenna_i);
  645. }
  646. IWL_DEBUG_CALIB("average_sig: a %d b %d c %d\n",
  647. average_sig[0], average_sig[1], average_sig[2]);
  648. IWL_DEBUG_CALIB("max_average_sig = %d, antenna %d\n",
  649. max_average_sig, max_average_sig_antenna_i);
  650. /* Compare signal strengths for all 3 receivers. */
  651. for (i = 0; i < NUM_RX_CHAINS; i++) {
  652. if (i != max_average_sig_antenna_i) {
  653. s32 rssi_delta = (max_average_sig - average_sig[i]);
  654. /* If signal is very weak, compared with
  655. * strongest, mark it as disconnected. */
  656. if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
  657. data->disconn_array[i] = 1;
  658. else
  659. active_chains |= (1 << i);
  660. IWL_DEBUG_CALIB("i = %d rssiDelta = %d "
  661. "disconn_array[i] = %d\n",
  662. i, rssi_delta, data->disconn_array[i]);
  663. }
  664. }
  665. num_tx_chains = 0;
  666. for (i = 0; i < NUM_RX_CHAINS; i++) {
  667. /* loops on all the bits of
  668. * priv->hw_setting.valid_tx_ant */
  669. u8 ant_msk = (1 << i);
  670. if (!(priv->hw_params.valid_tx_ant & ant_msk))
  671. continue;
  672. num_tx_chains++;
  673. if (data->disconn_array[i] == 0)
  674. /* there is a Tx antenna connected */
  675. break;
  676. if (num_tx_chains == priv->hw_params.tx_chains_num &&
  677. data->disconn_array[i]) {
  678. /* This is the last TX antenna and is also
  679. * disconnected connect it anyway */
  680. data->disconn_array[i] = 0;
  681. active_chains |= ant_msk;
  682. IWL_DEBUG_CALIB("All Tx chains are disconnected W/A - "
  683. "declare %d as connected\n", i);
  684. break;
  685. }
  686. }
  687. /* Save for use within RXON, TX, SCAN commands, etc. */
  688. priv->chain_noise_data.active_chains = active_chains;
  689. IWL_DEBUG_CALIB("active_chains (bitwise) = 0x%x\n",
  690. active_chains);
  691. /* Analyze noise for rx balance */
  692. average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS);
  693. average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS);
  694. average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS);
  695. for (i = 0; i < NUM_RX_CHAINS; i++) {
  696. if (!(data->disconn_array[i]) &&
  697. (average_noise[i] <= min_average_noise)) {
  698. /* This means that chain i is active and has
  699. * lower noise values so far: */
  700. min_average_noise = average_noise[i];
  701. min_average_noise_antenna_i = i;
  702. }
  703. }
  704. IWL_DEBUG_CALIB("average_noise: a %d b %d c %d\n",
  705. average_noise[0], average_noise[1],
  706. average_noise[2]);
  707. IWL_DEBUG_CALIB("min_average_noise = %d, antenna %d\n",
  708. min_average_noise, min_average_noise_antenna_i);
  709. priv->cfg->ops->utils->gain_computation(priv, average_noise,
  710. min_average_noise_antenna_i, min_average_noise);
  711. /* Some power changes may have been made during the calibration.
  712. * Update and commit the RXON
  713. */
  714. if (priv->cfg->ops->lib->update_chain_flags)
  715. priv->cfg->ops->lib->update_chain_flags(priv);
  716. data->state = IWL_CHAIN_NOISE_DONE;
  717. iwl_power_enable_management(priv);
  718. }
  719. EXPORT_SYMBOL(iwl_chain_noise_calibration);
  720. void iwl_reset_run_time_calib(struct iwl_priv *priv)
  721. {
  722. int i;
  723. memset(&(priv->sensitivity_data), 0,
  724. sizeof(struct iwl_sensitivity_data));
  725. memset(&(priv->chain_noise_data), 0,
  726. sizeof(struct iwl_chain_noise_data));
  727. for (i = 0; i < NUM_RX_CHAINS; i++)
  728. priv->chain_noise_data.delta_gain_code[i] =
  729. CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
  730. /* Ask for statistics now, the uCode will send notification
  731. * periodically after association */
  732. iwl_send_statistics_request(priv, CMD_ASYNC);
  733. }
  734. EXPORT_SYMBOL(iwl_reset_run_time_calib);