tehuti.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520
  1. /*
  2. * Tehuti Networks(R) Network Driver
  3. * ethtool interface implementation
  4. * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. /*
  12. * RX HW/SW interaction overview
  13. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  14. * There are 2 types of RX communication channels betwean driver and NIC.
  15. * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  16. * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  17. * info about buffer's location, size and ID. An ID field is used to identify a
  18. * buffer when it's returned with data via RXD Fifo (see below)
  19. * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  20. * filled by HW and is readen by SW. Each descriptor holds status and ID.
  21. * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  22. * via dma moves it into host memory, builds new RXD descriptor with same ID,
  23. * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  24. *
  25. * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  26. * One holds 1.5K packets and another - 26K packets. Depending on incoming
  27. * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  28. * filled with data, HW builds new RXD descriptor for it and push it into single
  29. * RXD Fifo.
  30. *
  31. * RX SW Data Structures
  32. * ~~~~~~~~~~~~~~~~~~~~~
  33. * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  34. * For RX case, ownership lasts from allocating new empty skb for RXF until
  35. * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  36. * skb db. Implemented as array with bitmask.
  37. * fifo - keeps info about fifo's size and location, relevant HW registers,
  38. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  39. * Implemented as simple struct.
  40. *
  41. * RX SW Execution Flow
  42. * ~~~~~~~~~~~~~~~~~~~~
  43. * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  44. * relevant registers. At the end of init phase, driver enables interrupts.
  45. * NIC sees that there is no RXF buffers and raises
  46. * RD_INTR interrupt, isr fills skbs and Rx begins.
  47. * Driver has two receive operation modes:
  48. * NAPI - interrupt-driven mixed with polling
  49. * interrupt-driven only
  50. *
  51. * Interrupt-driven only flow is following. When buffer is ready, HW raises
  52. * interrupt and isr is called. isr collects all available packets
  53. * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  54. * Rx buffer allocation note
  55. * ~~~~~~~~~~~~~~~~~~~~~~~~~
  56. * Driver cares to feed such amount of RxF descriptors that respective amount of
  57. * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  58. * overflow check in Bordeaux for RxD fifo free/used size.
  59. * FIXME: this is NOT fully implemented, more work should be done
  60. *
  61. */
  62. #include "tehuti.h"
  63. #include "tehuti_fw.h"
  64. static struct pci_device_id __devinitdata bdx_pci_tbl[] = {
  65. {0x1FC9, 0x3009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  66. {0x1FC9, 0x3010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  67. {0x1FC9, 0x3014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  68. {0}
  69. };
  70. MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  71. /* Definitions needed by ISR or NAPI functions */
  72. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  73. static void bdx_tx_cleanup(struct bdx_priv *priv);
  74. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  75. /* Definitions needed by FW loading */
  76. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  77. /* Definitions needed by hw_start */
  78. static int bdx_tx_init(struct bdx_priv *priv);
  79. static int bdx_rx_init(struct bdx_priv *priv);
  80. /* Definitions needed by bdx_close */
  81. static void bdx_rx_free(struct bdx_priv *priv);
  82. static void bdx_tx_free(struct bdx_priv *priv);
  83. /* Definitions needed by bdx_probe */
  84. static void bdx_ethtool_ops(struct net_device *netdev);
  85. /*************************************************************************
  86. * Print Info *
  87. *************************************************************************/
  88. static void print_hw_id(struct pci_dev *pdev)
  89. {
  90. struct pci_nic *nic = pci_get_drvdata(pdev);
  91. u16 pci_link_status = 0;
  92. u16 pci_ctrl = 0;
  93. pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
  94. pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
  95. printk(KERN_INFO "tehuti: %s%s\n", BDX_NIC_NAME,
  96. nic->port_num == 1 ? "" : ", 2-Port");
  97. printk(KERN_INFO
  98. "tehuti: srom 0x%x fpga %d build %u lane# %d"
  99. " max_pl 0x%x mrrs 0x%x\n",
  100. readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
  101. readl(nic->regs + FPGA_SEED),
  102. GET_LINK_STATUS_LANES(pci_link_status),
  103. GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
  104. }
  105. static void print_fw_id(struct pci_nic *nic)
  106. {
  107. printk(KERN_INFO "tehuti: fw 0x%x\n", readl(nic->regs + FW_VER));
  108. }
  109. static void print_eth_id(struct net_device *ndev)
  110. {
  111. printk(KERN_INFO "%s: %s, Port %c\n", ndev->name, BDX_NIC_NAME,
  112. (ndev->if_port == 0) ? 'A' : 'B');
  113. }
  114. /*************************************************************************
  115. * Code *
  116. *************************************************************************/
  117. #define bdx_enable_interrupts(priv) \
  118. do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
  119. #define bdx_disable_interrupts(priv) \
  120. do { WRITE_REG(priv, regIMR, 0); } while (0)
  121. /* bdx_fifo_init
  122. * create TX/RX descriptor fifo for host-NIC communication.
  123. * 1K extra space is allocated at the end of the fifo to simplify
  124. * processing of descriptors that wraps around fifo's end
  125. * @priv - NIC private structure
  126. * @f - fifo to initialize
  127. * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
  128. * @reg_XXX - offsets of registers relative to base address
  129. *
  130. * Returns 0 on success, negative value on failure
  131. *
  132. */
  133. static int
  134. bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
  135. u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
  136. {
  137. u16 memsz = FIFO_SIZE * (1 << fsz_type);
  138. memset(f, 0, sizeof(struct fifo));
  139. /* pci_alloc_consistent gives us 4k-aligned memory */
  140. f->va = pci_alloc_consistent(priv->pdev,
  141. memsz + FIFO_EXTRA_SPACE, &f->da);
  142. if (!f->va) {
  143. ERR("pci_alloc_consistent failed\n");
  144. RET(-ENOMEM);
  145. }
  146. f->reg_CFG0 = reg_CFG0;
  147. f->reg_CFG1 = reg_CFG1;
  148. f->reg_RPTR = reg_RPTR;
  149. f->reg_WPTR = reg_WPTR;
  150. f->rptr = 0;
  151. f->wptr = 0;
  152. f->memsz = memsz;
  153. f->size_mask = memsz - 1;
  154. WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
  155. WRITE_REG(priv, reg_CFG1, H32_64(f->da));
  156. RET(0);
  157. }
  158. /* bdx_fifo_free - free all resources used by fifo
  159. * @priv - NIC private structure
  160. * @f - fifo to release
  161. */
  162. static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
  163. {
  164. ENTER;
  165. if (f->va) {
  166. pci_free_consistent(priv->pdev,
  167. f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
  168. f->va = NULL;
  169. }
  170. RET();
  171. }
  172. /*
  173. * bdx_link_changed - notifies OS about hw link state.
  174. * @bdx_priv - hw adapter structure
  175. */
  176. static void bdx_link_changed(struct bdx_priv *priv)
  177. {
  178. u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
  179. if (!link) {
  180. if (netif_carrier_ok(priv->ndev)) {
  181. netif_stop_queue(priv->ndev);
  182. netif_carrier_off(priv->ndev);
  183. ERR("%s: Link Down\n", priv->ndev->name);
  184. }
  185. } else {
  186. if (!netif_carrier_ok(priv->ndev)) {
  187. netif_wake_queue(priv->ndev);
  188. netif_carrier_on(priv->ndev);
  189. ERR("%s: Link Up\n", priv->ndev->name);
  190. }
  191. }
  192. }
  193. static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
  194. {
  195. if (isr & IR_RX_FREE_0) {
  196. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  197. DBG("RX_FREE_0\n");
  198. }
  199. if (isr & IR_LNKCHG0)
  200. bdx_link_changed(priv);
  201. if (isr & IR_PCIE_LINK)
  202. ERR("%s: PCI-E Link Fault\n", priv->ndev->name);
  203. if (isr & IR_PCIE_TOUT)
  204. ERR("%s: PCI-E Time Out\n", priv->ndev->name);
  205. }
  206. /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
  207. * @irq - interrupt number
  208. * @ndev - network device
  209. * @regs - CPU registers
  210. *
  211. * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
  212. *
  213. * It reads ISR register to know interrupt reasons, and proceed them one by one.
  214. * Reasons of interest are:
  215. * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
  216. * RX_FREE - number of free Rx buffers in RXF fifo gets low
  217. * TX_FREE - packet was transmited and RXF fifo holds its descriptor
  218. */
  219. static irqreturn_t bdx_isr_napi(int irq, void *dev)
  220. {
  221. struct net_device *ndev = dev;
  222. struct bdx_priv *priv = ndev->priv;
  223. u32 isr;
  224. ENTER;
  225. isr = (READ_REG(priv, regISR) & IR_RUN);
  226. if (unlikely(!isr)) {
  227. bdx_enable_interrupts(priv);
  228. return IRQ_NONE; /* Not our interrupt */
  229. }
  230. if (isr & IR_EXTRA)
  231. bdx_isr_extra(priv, isr);
  232. if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
  233. if (likely(netif_rx_schedule_prep(ndev, &priv->napi))) {
  234. __netif_rx_schedule(ndev, &priv->napi);
  235. RET(IRQ_HANDLED);
  236. } else {
  237. /* NOTE: we get here if intr has slipped into window
  238. * between these lines in bdx_poll:
  239. * bdx_enable_interrupts(priv);
  240. * return 0;
  241. * currently intrs are disabled (since we read ISR),
  242. * and we have failed to register next poll.
  243. * so we read the regs to trigger chip
  244. * and allow further interupts. */
  245. READ_REG(priv, regTXF_WPTR_0);
  246. READ_REG(priv, regRXD_WPTR_0);
  247. }
  248. }
  249. bdx_enable_interrupts(priv);
  250. RET(IRQ_HANDLED);
  251. }
  252. static int bdx_poll(struct napi_struct *napi, int budget)
  253. {
  254. struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
  255. struct net_device *dev = priv->ndev;
  256. int work_done;
  257. ENTER;
  258. bdx_tx_cleanup(priv);
  259. work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
  260. if ((work_done < budget) ||
  261. (priv->napi_stop++ >= 30)) {
  262. DBG("rx poll is done. backing to isr-driven\n");
  263. /* from time to time we exit to let NAPI layer release
  264. * device lock and allow waiting tasks (eg rmmod) to advance) */
  265. priv->napi_stop = 0;
  266. netif_rx_complete(dev, napi);
  267. bdx_enable_interrupts(priv);
  268. }
  269. return work_done;
  270. }
  271. /* bdx_fw_load - loads firmware to NIC
  272. * @priv - NIC private structure
  273. * Firmware is loaded via TXD fifo, so it must be initialized first.
  274. * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
  275. * can have few of them). So all drivers use semaphore register to choose one
  276. * that will actually load FW to NIC.
  277. */
  278. static int bdx_fw_load(struct bdx_priv *priv)
  279. {
  280. int master, i;
  281. ENTER;
  282. master = READ_REG(priv, regINIT_SEMAPHORE);
  283. if (!READ_REG(priv, regINIT_STATUS) && master) {
  284. bdx_tx_push_desc_safe(priv, s_firmLoad, sizeof(s_firmLoad));
  285. mdelay(100);
  286. }
  287. for (i = 0; i < 200; i++) {
  288. if (READ_REG(priv, regINIT_STATUS))
  289. break;
  290. mdelay(2);
  291. }
  292. if (master)
  293. WRITE_REG(priv, regINIT_SEMAPHORE, 1);
  294. if (i == 200) {
  295. ERR("%s: firmware loading failed\n", priv->ndev->name);
  296. DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
  297. READ_REG(priv, regVPC),
  298. READ_REG(priv, regVIC), READ_REG(priv, regINIT_STATUS), i);
  299. RET(-EIO);
  300. } else {
  301. DBG("%s: firmware loading success\n", priv->ndev->name);
  302. RET(0);
  303. }
  304. }
  305. static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
  306. {
  307. u32 val;
  308. ENTER;
  309. DBG("mac0=%x mac1=%x mac2=%x\n",
  310. READ_REG(priv, regUNC_MAC0_A),
  311. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  312. val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
  313. WRITE_REG(priv, regUNC_MAC2_A, val);
  314. val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
  315. WRITE_REG(priv, regUNC_MAC1_A, val);
  316. val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
  317. WRITE_REG(priv, regUNC_MAC0_A, val);
  318. DBG("mac0=%x mac1=%x mac2=%x\n",
  319. READ_REG(priv, regUNC_MAC0_A),
  320. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  321. RET();
  322. }
  323. /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
  324. * @priv - NIC private structure
  325. */
  326. static int bdx_hw_start(struct bdx_priv *priv)
  327. {
  328. int rc = -EIO;
  329. struct net_device *ndev = priv->ndev;
  330. ENTER;
  331. bdx_link_changed(priv);
  332. /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
  333. WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
  334. WRITE_REG(priv, regPAUSE_QUANT, 0x96);
  335. WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
  336. WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
  337. WRITE_REG(priv, regRX_FULLNESS, 0);
  338. WRITE_REG(priv, regTX_FULLNESS, 0);
  339. WRITE_REG(priv, regCTRLST,
  340. regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
  341. WRITE_REG(priv, regVGLB, 0);
  342. WRITE_REG(priv, regMAX_FRAME_A,
  343. priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
  344. DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
  345. WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
  346. WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
  347. DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
  348. WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
  349. /* Enable timer interrupt once in 2 secs. */
  350. /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
  351. bdx_restore_mac(priv->ndev, priv);
  352. WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
  353. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
  354. #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI)?0:IRQF_SHARED)
  355. if ((rc = request_irq(priv->pdev->irq, &bdx_isr_napi, BDX_IRQ_TYPE,
  356. ndev->name, ndev)))
  357. goto err_irq;
  358. bdx_enable_interrupts(priv);
  359. RET(0);
  360. err_irq:
  361. RET(rc);
  362. }
  363. static void bdx_hw_stop(struct bdx_priv *priv)
  364. {
  365. ENTER;
  366. bdx_disable_interrupts(priv);
  367. free_irq(priv->pdev->irq, priv->ndev);
  368. netif_carrier_off(priv->ndev);
  369. netif_stop_queue(priv->ndev);
  370. RET();
  371. }
  372. static int bdx_hw_reset_direct(void __iomem *regs)
  373. {
  374. u32 val, i;
  375. ENTER;
  376. /* reset sequences: read, write 1, read, write 0 */
  377. val = readl(regs + regCLKPLL);
  378. writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
  379. udelay(50);
  380. val = readl(regs + regCLKPLL);
  381. writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
  382. /* check that the PLLs are locked and reset ended */
  383. for (i = 0; i < 70; i++, mdelay(10))
  384. if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  385. /* do any PCI-E read transaction */
  386. readl(regs + regRXD_CFG0_0);
  387. return 0;
  388. }
  389. ERR("tehuti: HW reset failed\n");
  390. return 1; /* failure */
  391. }
  392. static int bdx_hw_reset(struct bdx_priv *priv)
  393. {
  394. u32 val, i;
  395. ENTER;
  396. if (priv->port == 0) {
  397. /* reset sequences: read, write 1, read, write 0 */
  398. val = READ_REG(priv, regCLKPLL);
  399. WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
  400. udelay(50);
  401. val = READ_REG(priv, regCLKPLL);
  402. WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
  403. }
  404. /* check that the PLLs are locked and reset ended */
  405. for (i = 0; i < 70; i++, mdelay(10))
  406. if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  407. /* do any PCI-E read transaction */
  408. READ_REG(priv, regRXD_CFG0_0);
  409. return 0;
  410. }
  411. ERR("tehuti: HW reset failed\n");
  412. return 1; /* failure */
  413. }
  414. static int bdx_sw_reset(struct bdx_priv *priv)
  415. {
  416. int i;
  417. ENTER;
  418. /* 1. load MAC (obsolete) */
  419. /* 2. disable Rx (and Tx) */
  420. WRITE_REG(priv, regGMAC_RXF_A, 0);
  421. mdelay(100);
  422. /* 3. disable port */
  423. WRITE_REG(priv, regDIS_PORT, 1);
  424. /* 4. disable queue */
  425. WRITE_REG(priv, regDIS_QU, 1);
  426. /* 5. wait until hw is disabled */
  427. for (i = 0; i < 50; i++) {
  428. if (READ_REG(priv, regRST_PORT) & 1)
  429. break;
  430. mdelay(10);
  431. }
  432. if (i == 50)
  433. ERR("%s: SW reset timeout. continuing anyway\n",
  434. priv->ndev->name);
  435. /* 6. disable intrs */
  436. WRITE_REG(priv, regRDINTCM0, 0);
  437. WRITE_REG(priv, regTDINTCM0, 0);
  438. WRITE_REG(priv, regIMR, 0);
  439. READ_REG(priv, regISR);
  440. /* 7. reset queue */
  441. WRITE_REG(priv, regRST_QU, 1);
  442. /* 8. reset port */
  443. WRITE_REG(priv, regRST_PORT, 1);
  444. /* 9. zero all read and write pointers */
  445. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  446. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  447. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  448. WRITE_REG(priv, i, 0);
  449. /* 10. unseet port disable */
  450. WRITE_REG(priv, regDIS_PORT, 0);
  451. /* 11. unset queue disable */
  452. WRITE_REG(priv, regDIS_QU, 0);
  453. /* 12. unset queue reset */
  454. WRITE_REG(priv, regRST_QU, 0);
  455. /* 13. unset port reset */
  456. WRITE_REG(priv, regRST_PORT, 0);
  457. /* 14. enable Rx */
  458. /* skiped. will be done later */
  459. /* 15. save MAC (obsolete) */
  460. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  461. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  462. RET(0);
  463. }
  464. /* bdx_reset - performs right type of reset depending on hw type */
  465. static int bdx_reset(struct bdx_priv *priv)
  466. {
  467. ENTER;
  468. RET((priv->pdev->device == 0x3009)
  469. ? bdx_hw_reset(priv)
  470. : bdx_sw_reset(priv));
  471. }
  472. /**
  473. * bdx_close - Disables a network interface
  474. * @netdev: network interface device structure
  475. *
  476. * Returns 0, this is not allowed to fail
  477. *
  478. * The close entry point is called when an interface is de-activated
  479. * by the OS. The hardware is still under the drivers control, but
  480. * needs to be disabled. A global MAC reset is issued to stop the
  481. * hardware, and all transmit and receive resources are freed.
  482. **/
  483. static int bdx_close(struct net_device *ndev)
  484. {
  485. struct bdx_priv *priv = NULL;
  486. ENTER;
  487. priv = ndev->priv;
  488. napi_disable(&priv->napi);
  489. bdx_reset(priv);
  490. bdx_hw_stop(priv);
  491. bdx_rx_free(priv);
  492. bdx_tx_free(priv);
  493. RET(0);
  494. }
  495. /**
  496. * bdx_open - Called when a network interface is made active
  497. * @netdev: network interface device structure
  498. *
  499. * Returns 0 on success, negative value on failure
  500. *
  501. * The open entry point is called when a network interface is made
  502. * active by the system (IFF_UP). At this point all resources needed
  503. * for transmit and receive operations are allocated, the interrupt
  504. * handler is registered with the OS, the watchdog timer is started,
  505. * and the stack is notified that the interface is ready.
  506. **/
  507. static int bdx_open(struct net_device *ndev)
  508. {
  509. struct bdx_priv *priv;
  510. int rc;
  511. ENTER;
  512. priv = ndev->priv;
  513. bdx_reset(priv);
  514. if (netif_running(ndev))
  515. netif_stop_queue(priv->ndev);
  516. if ((rc = bdx_tx_init(priv)))
  517. goto err;
  518. if ((rc = bdx_rx_init(priv)))
  519. goto err;
  520. if ((rc = bdx_fw_load(priv)))
  521. goto err;
  522. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  523. if ((rc = bdx_hw_start(priv)))
  524. goto err;
  525. napi_enable(&priv->napi);
  526. print_fw_id(priv->nic);
  527. RET(0);
  528. err:
  529. bdx_close(ndev);
  530. RET(rc);
  531. }
  532. static void __init bdx_firmware_endianess(void)
  533. {
  534. int i;
  535. for (i = 0; i < ARRAY_SIZE(s_firmLoad); i++)
  536. s_firmLoad[i] = CPU_CHIP_SWAP32(s_firmLoad[i]);
  537. }
  538. static int bdx_range_check(struct bdx_priv *priv, u32 offset)
  539. {
  540. return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
  541. -EINVAL : 0;
  542. }
  543. static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
  544. {
  545. struct bdx_priv *priv = ndev->priv;
  546. u32 data[3];
  547. int error;
  548. ENTER;
  549. DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
  550. if (cmd != SIOCDEVPRIVATE) {
  551. error = copy_from_user(data, ifr->ifr_data, sizeof(data));
  552. if (error) {
  553. ERR("cant copy from user\n");
  554. RET(error);
  555. }
  556. DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
  557. }
  558. if (!capable(CAP_SYS_RAWIO))
  559. return -EPERM;
  560. switch (data[0]) {
  561. case BDX_OP_READ:
  562. error = bdx_range_check(priv, data[1]);
  563. if (error < 0)
  564. return error;
  565. data[2] = READ_REG(priv, data[1]);
  566. DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
  567. data[2]);
  568. error = copy_to_user(ifr->ifr_data, data, sizeof(data));
  569. if (error)
  570. RET(error);
  571. break;
  572. case BDX_OP_WRITE:
  573. error = bdx_range_check(priv, data[1]);
  574. if (error < 0)
  575. return error;
  576. WRITE_REG(priv, data[1], data[2]);
  577. DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
  578. break;
  579. default:
  580. RET(-EOPNOTSUPP);
  581. }
  582. return 0;
  583. }
  584. static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
  585. {
  586. ENTER;
  587. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
  588. RET(bdx_ioctl_priv(ndev, ifr, cmd));
  589. else
  590. RET(-EOPNOTSUPP);
  591. }
  592. /*
  593. * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
  594. * by passing VLAN filter table to hardware
  595. * @ndev network device
  596. * @vid VLAN vid
  597. * @op add or kill operation
  598. */
  599. static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
  600. {
  601. struct bdx_priv *priv = ndev->priv;
  602. u32 reg, bit, val;
  603. ENTER;
  604. DBG2("vid=%d value=%d\n", (int)vid, enable);
  605. if (unlikely(vid >= 4096)) {
  606. ERR("tehuti: invalid VID: %u (> 4096)\n", vid);
  607. RET();
  608. }
  609. reg = regVLAN_0 + (vid / 32) * 4;
  610. bit = 1 << vid % 32;
  611. val = READ_REG(priv, reg);
  612. DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
  613. if (enable)
  614. val |= bit;
  615. else
  616. val &= ~bit;
  617. DBG2("new val %x\n", val);
  618. WRITE_REG(priv, reg, val);
  619. RET();
  620. }
  621. /*
  622. * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
  623. * @ndev network device
  624. * @vid VLAN vid to add
  625. */
  626. static void bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
  627. {
  628. __bdx_vlan_rx_vid(ndev, vid, 1);
  629. }
  630. /*
  631. * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
  632. * @ndev network device
  633. * @vid VLAN vid to kill
  634. */
  635. static void bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  636. {
  637. __bdx_vlan_rx_vid(ndev, vid, 0);
  638. }
  639. /*
  640. * bdx_vlan_rx_register - kernel hook for adding VLAN group
  641. * @ndev network device
  642. * @grp VLAN group
  643. */
  644. static void
  645. bdx_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  646. {
  647. struct bdx_priv *priv = ndev->priv;
  648. ENTER;
  649. DBG("device='%s', group='%p'\n", ndev->name, grp);
  650. priv->vlgrp = grp;
  651. RET();
  652. }
  653. /**
  654. * bdx_change_mtu - Change the Maximum Transfer Unit
  655. * @netdev: network interface device structure
  656. * @new_mtu: new value for maximum frame size
  657. *
  658. * Returns 0 on success, negative on failure
  659. */
  660. static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
  661. {
  662. ENTER;
  663. if (new_mtu == ndev->mtu)
  664. RET(0);
  665. /* enforce minimum frame size */
  666. if (new_mtu < ETH_ZLEN) {
  667. ERR("%s: %s mtu %d is less then minimal %d\n",
  668. BDX_DRV_NAME, ndev->name, new_mtu, ETH_ZLEN);
  669. RET(-EINVAL);
  670. }
  671. ndev->mtu = new_mtu;
  672. if (netif_running(ndev)) {
  673. bdx_close(ndev);
  674. bdx_open(ndev);
  675. }
  676. RET(0);
  677. }
  678. static void bdx_setmulti(struct net_device *ndev)
  679. {
  680. struct bdx_priv *priv = ndev->priv;
  681. u32 rxf_val =
  682. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
  683. int i;
  684. ENTER;
  685. /* IMF - imperfect (hash) rx multicat filter */
  686. /* PMF - perfect rx multicat filter */
  687. /* FIXME: RXE(OFF) */
  688. if (ndev->flags & IFF_PROMISC) {
  689. rxf_val |= GMAC_RX_FILTER_PRM;
  690. } else if (ndev->flags & IFF_ALLMULTI) {
  691. /* set IMF to accept all multicast frmaes */
  692. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  693. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
  694. } else if (ndev->mc_count) {
  695. u8 hash;
  696. struct dev_mc_list *mclist;
  697. u32 reg, val;
  698. /* set IMF to deny all multicast frames */
  699. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  700. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
  701. /* set PMF to deny all multicast frames */
  702. for (i = 0; i < MAC_MCST_NUM; i++) {
  703. WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
  704. WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
  705. }
  706. /* use PMF to accept first MAC_MCST_NUM (15) addresses */
  707. /* TBD: sort addreses and write them in ascending order
  708. * into RX_MAC_MCST regs. we skip this phase now and accept ALL
  709. * multicast frames throu IMF */
  710. mclist = ndev->mc_list;
  711. /* accept the rest of addresses throu IMF */
  712. for (; mclist; mclist = mclist->next) {
  713. hash = 0;
  714. for (i = 0; i < ETH_ALEN; i++)
  715. hash ^= mclist->dmi_addr[i];
  716. reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
  717. val = READ_REG(priv, reg);
  718. val |= (1 << (hash % 32));
  719. WRITE_REG(priv, reg, val);
  720. }
  721. } else {
  722. DBG("only own mac %d\n", ndev->mc_count);
  723. rxf_val |= GMAC_RX_FILTER_AB;
  724. }
  725. WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
  726. /* enable RX */
  727. /* FIXME: RXE(ON) */
  728. RET();
  729. }
  730. static int bdx_set_mac(struct net_device *ndev, void *p)
  731. {
  732. struct bdx_priv *priv = ndev->priv;
  733. struct sockaddr *addr = p;
  734. ENTER;
  735. /*
  736. if (netif_running(dev))
  737. return -EBUSY
  738. */
  739. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  740. bdx_restore_mac(ndev, priv);
  741. RET(0);
  742. }
  743. static int bdx_read_mac(struct bdx_priv *priv)
  744. {
  745. u16 macAddress[3], i;
  746. ENTER;
  747. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  748. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  749. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  750. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  751. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  752. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  753. for (i = 0; i < 3; i++) {
  754. priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
  755. priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
  756. }
  757. RET(0);
  758. }
  759. static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
  760. {
  761. u64 val;
  762. val = READ_REG(priv, reg);
  763. val |= ((u64) READ_REG(priv, reg + 8)) << 32;
  764. return val;
  765. }
  766. /*Do the statistics-update work*/
  767. static void bdx_update_stats(struct bdx_priv *priv)
  768. {
  769. struct bdx_stats *stats = &priv->hw_stats;
  770. u64 *stats_vector = (u64 *) stats;
  771. int i;
  772. int addr;
  773. /*Fill HW structure */
  774. addr = 0x7200;
  775. /*First 12 statistics - 0x7200 - 0x72B0 */
  776. for (i = 0; i < 12; i++) {
  777. stats_vector[i] = bdx_read_l2stat(priv, addr);
  778. addr += 0x10;
  779. }
  780. BDX_ASSERT(addr != 0x72C0);
  781. /* 0x72C0-0x72E0 RSRV */
  782. addr = 0x72F0;
  783. for (; i < 16; i++) {
  784. stats_vector[i] = bdx_read_l2stat(priv, addr);
  785. addr += 0x10;
  786. }
  787. BDX_ASSERT(addr != 0x7330);
  788. /* 0x7330-0x7360 RSRV */
  789. addr = 0x7370;
  790. for (; i < 19; i++) {
  791. stats_vector[i] = bdx_read_l2stat(priv, addr);
  792. addr += 0x10;
  793. }
  794. BDX_ASSERT(addr != 0x73A0);
  795. /* 0x73A0-0x73B0 RSRV */
  796. addr = 0x73C0;
  797. for (; i < 23; i++) {
  798. stats_vector[i] = bdx_read_l2stat(priv, addr);
  799. addr += 0x10;
  800. }
  801. BDX_ASSERT(addr != 0x7400);
  802. BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
  803. }
  804. static struct net_device_stats *bdx_get_stats(struct net_device *ndev)
  805. {
  806. struct bdx_priv *priv = ndev->priv;
  807. struct net_device_stats *net_stat = &priv->net_stats;
  808. return net_stat;
  809. }
  810. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  811. u16 rxd_vlan);
  812. static void print_rxfd(struct rxf_desc *rxfd);
  813. /*************************************************************************
  814. * Rx DB *
  815. *************************************************************************/
  816. static void bdx_rxdb_destroy(struct rxdb *db)
  817. {
  818. if (db)
  819. vfree(db);
  820. }
  821. static struct rxdb *bdx_rxdb_create(int nelem)
  822. {
  823. struct rxdb *db;
  824. int i;
  825. db = vmalloc(sizeof(struct rxdb)
  826. + (nelem * sizeof(int))
  827. + (nelem * sizeof(struct rx_map)));
  828. if (likely(db != NULL)) {
  829. db->stack = (int *)(db + 1);
  830. db->elems = (void *)(db->stack + nelem);
  831. db->nelem = nelem;
  832. db->top = nelem;
  833. for (i = 0; i < nelem; i++)
  834. db->stack[i] = nelem - i - 1; /* to make first allocs
  835. close to db struct*/
  836. }
  837. return db;
  838. }
  839. static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
  840. {
  841. BDX_ASSERT(db->top <= 0);
  842. return db->stack[--(db->top)];
  843. }
  844. static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
  845. {
  846. BDX_ASSERT((n < 0) || (n >= db->nelem));
  847. return db->elems + n;
  848. }
  849. static inline int bdx_rxdb_available(struct rxdb *db)
  850. {
  851. return db->top;
  852. }
  853. static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
  854. {
  855. BDX_ASSERT((n >= db->nelem) || (n < 0));
  856. db->stack[(db->top)++] = n;
  857. }
  858. /*************************************************************************
  859. * Rx Init *
  860. *************************************************************************/
  861. /* bdx_rx_init - initialize RX all related HW and SW resources
  862. * @priv - NIC private structure
  863. *
  864. * Returns 0 on success, negative value on failure
  865. *
  866. * It creates rxf and rxd fifos, update relevant HW registers, preallocate
  867. * skb for rx. It assumes that Rx is desabled in HW
  868. * funcs are grouped for better cache usage
  869. *
  870. * RxD fifo is smaller then RxF fifo by design. Upon high load, RxD will be
  871. * filled and packets will be dropped by nic without getting into host or
  872. * cousing interrupt. Anyway, in that condition, host has no chance to proccess
  873. * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
  874. */
  875. /* TBD: ensure proper packet size */
  876. static int bdx_rx_init(struct bdx_priv *priv)
  877. {
  878. ENTER;
  879. if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
  880. regRXD_CFG0_0, regRXD_CFG1_0,
  881. regRXD_RPTR_0, regRXD_WPTR_0))
  882. goto err_mem;
  883. if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
  884. regRXF_CFG0_0, regRXF_CFG1_0,
  885. regRXF_RPTR_0, regRXF_WPTR_0))
  886. goto err_mem;
  887. if (!
  888. (priv->rxdb =
  889. bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
  890. sizeof(struct rxf_desc))))
  891. goto err_mem;
  892. priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
  893. return 0;
  894. err_mem:
  895. ERR("%s: %s: Rx init failed\n", BDX_DRV_NAME, priv->ndev->name);
  896. return -ENOMEM;
  897. }
  898. /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
  899. * @priv - NIC private structure
  900. * @f - RXF fifo
  901. */
  902. static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  903. {
  904. struct rx_map *dm;
  905. struct rxdb *db = priv->rxdb;
  906. u16 i;
  907. ENTER;
  908. DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
  909. db->nelem - bdx_rxdb_available(db));
  910. while (bdx_rxdb_available(db) > 0) {
  911. i = bdx_rxdb_alloc_elem(db);
  912. dm = bdx_rxdb_addr_elem(db, i);
  913. dm->dma = 0;
  914. }
  915. for (i = 0; i < db->nelem; i++) {
  916. dm = bdx_rxdb_addr_elem(db, i);
  917. if (dm->dma) {
  918. pci_unmap_single(priv->pdev,
  919. dm->dma, f->m.pktsz,
  920. PCI_DMA_FROMDEVICE);
  921. dev_kfree_skb(dm->skb);
  922. }
  923. }
  924. }
  925. /* bdx_rx_free - release all Rx resources
  926. * @priv - NIC private structure
  927. * It assumes that Rx is desabled in HW
  928. */
  929. static void bdx_rx_free(struct bdx_priv *priv)
  930. {
  931. ENTER;
  932. if (priv->rxdb) {
  933. bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
  934. bdx_rxdb_destroy(priv->rxdb);
  935. priv->rxdb = NULL;
  936. }
  937. bdx_fifo_free(priv, &priv->rxf_fifo0.m);
  938. bdx_fifo_free(priv, &priv->rxd_fifo0.m);
  939. RET();
  940. }
  941. /*************************************************************************
  942. * Rx Engine *
  943. *************************************************************************/
  944. /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
  945. * @priv - nic's private structure
  946. * @f - RXF fifo that needs skbs
  947. * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
  948. * skb's virtual and physical addresses are stored in skb db.
  949. * To calculate free space, func uses cached values of RPTR and WPTR
  950. * When needed, it also updates RPTR and WPTR.
  951. */
  952. /* TBD: do not update WPTR if no desc were written */
  953. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  954. {
  955. struct sk_buff *skb;
  956. struct rxf_desc *rxfd;
  957. struct rx_map *dm;
  958. int dno, delta, idx;
  959. struct rxdb *db = priv->rxdb;
  960. ENTER;
  961. dno = bdx_rxdb_available(db) - 1;
  962. while (dno > 0) {
  963. if (!(skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN))) {
  964. ERR("NO MEM: dev_alloc_skb failed\n");
  965. break;
  966. }
  967. skb->dev = priv->ndev;
  968. skb_reserve(skb, NET_IP_ALIGN);
  969. idx = bdx_rxdb_alloc_elem(db);
  970. dm = bdx_rxdb_addr_elem(db, idx);
  971. dm->dma = pci_map_single(priv->pdev,
  972. skb->data, f->m.pktsz,
  973. PCI_DMA_FROMDEVICE);
  974. dm->skb = skb;
  975. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  976. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  977. rxfd->va_lo = idx;
  978. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  979. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  980. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  981. print_rxfd(rxfd);
  982. f->m.wptr += sizeof(struct rxf_desc);
  983. delta = f->m.wptr - f->m.memsz;
  984. if (unlikely(delta >= 0)) {
  985. f->m.wptr = delta;
  986. if (delta > 0) {
  987. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  988. DBG("wrapped descriptor\n");
  989. }
  990. }
  991. dno--;
  992. }
  993. /*TBD: to do - delayed rxf wptr like in txd */
  994. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  995. RET();
  996. }
  997. static inline void
  998. NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
  999. struct sk_buff *skb)
  1000. {
  1001. ENTER;
  1002. DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1),
  1003. priv->vlgrp);
  1004. if (priv->vlgrp && GET_RXD_VTAG(rxd_val1)) {
  1005. DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
  1006. priv->ndev->name,
  1007. GET_RXD_VLAN_ID(rxd_vlan),
  1008. GET_RXD_VTAG(rxd_val1),
  1009. vlan_group_get_device(priv->vlgrp,
  1010. GET_RXD_VLAN_ID(rxd_vlan))->name);
  1011. /* NAPI variant of receive functions */
  1012. vlan_hwaccel_receive_skb(skb, priv->vlgrp,
  1013. GET_RXD_VLAN_TCI(rxd_vlan));
  1014. } else {
  1015. netif_receive_skb(skb);
  1016. }
  1017. }
  1018. static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
  1019. {
  1020. struct rxf_desc *rxfd;
  1021. struct rx_map *dm;
  1022. struct rxf_fifo *f;
  1023. struct rxdb *db;
  1024. struct sk_buff *skb;
  1025. int delta;
  1026. ENTER;
  1027. DBG("priv=%p rxdd=%p\n", priv, rxdd);
  1028. f = &priv->rxf_fifo0;
  1029. db = priv->rxdb;
  1030. DBG("db=%p f=%p\n", db, f);
  1031. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1032. DBG("dm=%p\n", dm);
  1033. skb = dm->skb;
  1034. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  1035. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  1036. rxfd->va_lo = rxdd->va_lo;
  1037. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  1038. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  1039. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  1040. print_rxfd(rxfd);
  1041. f->m.wptr += sizeof(struct rxf_desc);
  1042. delta = f->m.wptr - f->m.memsz;
  1043. if (unlikely(delta >= 0)) {
  1044. f->m.wptr = delta;
  1045. if (delta > 0) {
  1046. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  1047. DBG("wrapped descriptor\n");
  1048. }
  1049. }
  1050. RET();
  1051. }
  1052. /* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
  1053. * NOTE: a special treatment is given to non-continous descriptors
  1054. * that start near the end, wraps around and continue at the beginning. a second
  1055. * part is copied right after the first, and then descriptor is interpreted as
  1056. * normal. fifo has an extra space to allow such operations
  1057. * @priv - nic's private structure
  1058. * @f - RXF fifo that needs skbs
  1059. */
  1060. /* TBD: replace memcpy func call by explicite inline asm */
  1061. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
  1062. {
  1063. struct sk_buff *skb, *skb2;
  1064. struct rxd_desc *rxdd;
  1065. struct rx_map *dm;
  1066. struct rxf_fifo *rxf_fifo;
  1067. int tmp_len, size;
  1068. int done = 0;
  1069. int max_done = BDX_MAX_RX_DONE;
  1070. struct rxdb *db = NULL;
  1071. /* Unmarshalled descriptor - copy of descriptor in host order */
  1072. u32 rxd_val1;
  1073. u16 len;
  1074. u16 rxd_vlan;
  1075. ENTER;
  1076. max_done = budget;
  1077. priv->ndev->last_rx = jiffies;
  1078. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
  1079. size = f->m.wptr - f->m.rptr;
  1080. if (size < 0)
  1081. size = f->m.memsz + size; /* size is negative :-) */
  1082. while (size > 0) {
  1083. rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
  1084. rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
  1085. len = CPU_CHIP_SWAP16(rxdd->len);
  1086. rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
  1087. print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
  1088. tmp_len = GET_RXD_BC(rxd_val1) << 3;
  1089. BDX_ASSERT(tmp_len <= 0);
  1090. size -= tmp_len;
  1091. if (size < 0) /* test for partially arrived descriptor */
  1092. break;
  1093. f->m.rptr += tmp_len;
  1094. tmp_len = f->m.rptr - f->m.memsz;
  1095. if (unlikely(tmp_len >= 0)) {
  1096. f->m.rptr = tmp_len;
  1097. if (tmp_len > 0) {
  1098. DBG("wrapped desc rptr=%d tmp_len=%d\n",
  1099. f->m.rptr, tmp_len);
  1100. memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
  1101. }
  1102. }
  1103. if (unlikely(GET_RXD_ERR(rxd_val1))) {
  1104. DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
  1105. priv->net_stats.rx_errors++;
  1106. bdx_recycle_skb(priv, rxdd);
  1107. continue;
  1108. }
  1109. rxf_fifo = &priv->rxf_fifo0;
  1110. db = priv->rxdb;
  1111. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1112. skb = dm->skb;
  1113. if (len < BDX_COPYBREAK &&
  1114. (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
  1115. skb_reserve(skb2, NET_IP_ALIGN);
  1116. /*skb_put(skb2, len); */
  1117. pci_dma_sync_single_for_cpu(priv->pdev,
  1118. dm->dma, rxf_fifo->m.pktsz,
  1119. PCI_DMA_FROMDEVICE);
  1120. memcpy(skb2->data, skb->data, len);
  1121. bdx_recycle_skb(priv, rxdd);
  1122. skb = skb2;
  1123. } else {
  1124. pci_unmap_single(priv->pdev,
  1125. dm->dma, rxf_fifo->m.pktsz,
  1126. PCI_DMA_FROMDEVICE);
  1127. bdx_rxdb_free_elem(db, rxdd->va_lo);
  1128. }
  1129. priv->net_stats.rx_bytes += len;
  1130. skb_put(skb, len);
  1131. skb->dev = priv->ndev;
  1132. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1133. skb->protocol = eth_type_trans(skb, priv->ndev);
  1134. /* Non-IP packets aren't checksum-offloaded */
  1135. if (GET_RXD_PKT_ID(rxd_val1) == 0)
  1136. skb->ip_summed = CHECKSUM_NONE;
  1137. NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
  1138. if (++done >= max_done)
  1139. break;
  1140. }
  1141. priv->net_stats.rx_packets += done;
  1142. /* FIXME: do smth to minimize pci accesses */
  1143. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1144. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  1145. RET(done);
  1146. }
  1147. /*************************************************************************
  1148. * Debug / Temprorary Code *
  1149. *************************************************************************/
  1150. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  1151. u16 rxd_vlan)
  1152. {
  1153. DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d "
  1154. "pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d "
  1155. "va_lo %d va_hi %d\n",
  1156. GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
  1157. GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
  1158. GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
  1159. GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
  1160. GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
  1161. rxdd->va_hi);
  1162. }
  1163. static void print_rxfd(struct rxf_desc *rxfd)
  1164. {
  1165. DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
  1166. "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
  1167. rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
  1168. }
  1169. /*
  1170. * TX HW/SW interaction overview
  1171. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1172. * There are 2 types of TX communication channels betwean driver and NIC.
  1173. * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
  1174. * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
  1175. *
  1176. * Currently NIC supports TSO, checksuming and gather DMA
  1177. * UFO and IP fragmentation is on the way
  1178. *
  1179. * RX SW Data Structures
  1180. * ~~~~~~~~~~~~~~~~~~~~~
  1181. * txdb - used to keep track of all skbs owned by SW and their dma addresses.
  1182. * For TX case, ownership lasts from geting packet via hard_xmit and until HW
  1183. * acknowledges sent by TXF descriptors.
  1184. * Implemented as cyclic buffer.
  1185. * fifo - keeps info about fifo's size and location, relevant HW registers,
  1186. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  1187. * Implemented as simple struct.
  1188. *
  1189. * TX SW Execution Flow
  1190. * ~~~~~~~~~~~~~~~~~~~~
  1191. * OS calls driver's hard_xmit method with packet to sent.
  1192. * Driver creates DMA mappings, builds TXD descriptors and kicks HW
  1193. * by updating TXD WPTR.
  1194. * When packet is sent, HW write us TXF descriptor and SW frees original skb.
  1195. * To prevent TXD fifo overflow without reading HW registers every time,
  1196. * SW deploys "tx level" technique.
  1197. * Upon strart up, tx level is initialized to TXD fifo length.
  1198. * For every sent packet, SW gets its TXD descriptor sizei
  1199. * (from precalculated array) and substructs it from tx level.
  1200. * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
  1201. * original TXD descriptor from txdb and adds it to tx level.
  1202. * When Tx level drops under some predefined treshhold, the driver
  1203. * stops the TX queue. When TX level rises above that level,
  1204. * the tx queue is enabled again.
  1205. *
  1206. * This technique avoids eccessive reading of RPTR and WPTR registers.
  1207. * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
  1208. */
  1209. /*************************************************************************
  1210. * Tx DB *
  1211. *************************************************************************/
  1212. static inline int bdx_tx_db_size(struct txdb *db)
  1213. {
  1214. int taken = db->wptr - db->rptr;
  1215. if (taken < 0)
  1216. taken = db->size + 1 + taken; /* (size + 1) equals memsz */
  1217. return db->size - taken;
  1218. }
  1219. /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
  1220. * @d - tx data base
  1221. * @ptr - read or write pointer
  1222. */
  1223. static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
  1224. {
  1225. BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
  1226. BDX_ASSERT(*pptr != db->rptr && /* expect either read */
  1227. *pptr != db->wptr); /* or write pointer */
  1228. BDX_ASSERT(*pptr < db->start || /* pointer has to be */
  1229. *pptr >= db->end); /* in range */
  1230. ++*pptr;
  1231. if (unlikely(*pptr == db->end))
  1232. *pptr = db->start;
  1233. }
  1234. /* bdx_tx_db_inc_rptr - increment read pointer
  1235. * @d - tx data base
  1236. */
  1237. static inline void bdx_tx_db_inc_rptr(struct txdb *db)
  1238. {
  1239. BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
  1240. __bdx_tx_db_ptr_next(db, &db->rptr);
  1241. }
  1242. /* bdx_tx_db_inc_rptr - increment write pointer
  1243. * @d - tx data base
  1244. */
  1245. static inline void bdx_tx_db_inc_wptr(struct txdb *db)
  1246. {
  1247. __bdx_tx_db_ptr_next(db, &db->wptr);
  1248. BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
  1249. a result of write */
  1250. }
  1251. /* bdx_tx_db_init - creates and initializes tx db
  1252. * @d - tx data base
  1253. * @sz_type - size of tx fifo
  1254. * Returns 0 on success, error code otherwise
  1255. */
  1256. static int bdx_tx_db_init(struct txdb *d, int sz_type)
  1257. {
  1258. int memsz = FIFO_SIZE * (1 << (sz_type + 1));
  1259. d->start = vmalloc(memsz);
  1260. if (!d->start)
  1261. return -ENOMEM;
  1262. /*
  1263. * In order to differentiate between db is empty and db is full
  1264. * states at least one element should always be empty in order to
  1265. * avoid rptr == wptr which means db is empty
  1266. */
  1267. d->size = memsz / sizeof(struct tx_map) - 1;
  1268. d->end = d->start + d->size + 1; /* just after last element */
  1269. /* all dbs are created equally empty */
  1270. d->rptr = d->start;
  1271. d->wptr = d->start;
  1272. return 0;
  1273. }
  1274. /* bdx_tx_db_close - closes tx db and frees all memory
  1275. * @d - tx data base
  1276. */
  1277. static void bdx_tx_db_close(struct txdb *d)
  1278. {
  1279. BDX_ASSERT(d == NULL);
  1280. if (d->start) {
  1281. vfree(d->start);
  1282. d->start = NULL;
  1283. }
  1284. }
  1285. /*************************************************************************
  1286. * Tx Engine *
  1287. *************************************************************************/
  1288. /* sizes of tx desc (including padding if needed) as function
  1289. * of skb's frag number */
  1290. static struct {
  1291. u16 bytes;
  1292. u16 qwords; /* qword = 64 bit */
  1293. } txd_sizes[MAX_SKB_FRAGS + 1];
  1294. /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
  1295. * @priv - NIC private structure
  1296. * @skb - socket buffer to map
  1297. *
  1298. * It makes dma mappings for skb's data blocks and writes them to PBL of
  1299. * new tx descriptor. It also stores them in the tx db, so they could be
  1300. * unmaped after data was sent. It is reponsibility of a caller to make
  1301. * sure that there is enough space in the tx db. Last element holds pointer
  1302. * to skb itself and marked with zero length
  1303. */
  1304. static inline void
  1305. bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
  1306. struct txd_desc *txdd)
  1307. {
  1308. struct txdb *db = &priv->txdb;
  1309. struct pbl *pbl = &txdd->pbl[0];
  1310. int nr_frags = skb_shinfo(skb)->nr_frags;
  1311. int i;
  1312. db->wptr->len = skb->len - skb->data_len;
  1313. db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
  1314. db->wptr->len, PCI_DMA_TODEVICE);
  1315. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1316. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1317. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1318. DBG("=== pbl len: 0x%x ================\n", pbl->len);
  1319. DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
  1320. DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
  1321. bdx_tx_db_inc_wptr(db);
  1322. for (i = 0; i < nr_frags; i++) {
  1323. struct skb_frag_struct *frag;
  1324. frag = &skb_shinfo(skb)->frags[i];
  1325. db->wptr->len = frag->size;
  1326. db->wptr->addr.dma =
  1327. pci_map_page(priv->pdev, frag->page, frag->page_offset,
  1328. frag->size, PCI_DMA_TODEVICE);
  1329. pbl++;
  1330. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1331. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1332. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1333. bdx_tx_db_inc_wptr(db);
  1334. }
  1335. /* add skb clean up info. */
  1336. db->wptr->len = -txd_sizes[nr_frags].bytes;
  1337. db->wptr->addr.skb = skb;
  1338. bdx_tx_db_inc_wptr(db);
  1339. }
  1340. /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
  1341. * number of frags is used as index to fetch correct descriptors size,
  1342. * instead of calculating it each time */
  1343. static void __init init_txd_sizes(void)
  1344. {
  1345. int i, lwords;
  1346. /* 7 - is number of lwords in txd with one phys buffer
  1347. * 3 - is number of lwords used for every additional phys buffer */
  1348. for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
  1349. lwords = 7 + (i * 3);
  1350. if (lwords & 1)
  1351. lwords++; /* pad it with 1 lword */
  1352. txd_sizes[i].qwords = lwords >> 1;
  1353. txd_sizes[i].bytes = lwords << 2;
  1354. }
  1355. }
  1356. /* bdx_tx_init - initialize all Tx related stuff.
  1357. * Namely, TXD and TXF fifos, database etc */
  1358. static int bdx_tx_init(struct bdx_priv *priv)
  1359. {
  1360. if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
  1361. regTXD_CFG0_0,
  1362. regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
  1363. goto err_mem;
  1364. if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
  1365. regTXF_CFG0_0,
  1366. regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
  1367. goto err_mem;
  1368. /* The TX db has to keep mappings for all packets sent (on TxD)
  1369. * and not yet reclaimed (on TxF) */
  1370. if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
  1371. goto err_mem;
  1372. priv->tx_level = BDX_MAX_TX_LEVEL;
  1373. #ifdef BDX_DELAY_WPTR
  1374. priv->tx_update_mark = priv->tx_level - 1024;
  1375. #endif
  1376. return 0;
  1377. err_mem:
  1378. ERR("tehuti: %s: Tx init failed\n", priv->ndev->name);
  1379. return -ENOMEM;
  1380. }
  1381. /*
  1382. * bdx_tx_space - calculates avalable space in TX fifo
  1383. * @priv - NIC private structure
  1384. * Returns avaliable space in TX fifo in bytes
  1385. */
  1386. static inline int bdx_tx_space(struct bdx_priv *priv)
  1387. {
  1388. struct txd_fifo *f = &priv->txd_fifo0;
  1389. int fsize;
  1390. f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
  1391. fsize = f->m.rptr - f->m.wptr;
  1392. if (fsize <= 0)
  1393. fsize = f->m.memsz + fsize;
  1394. return (fsize);
  1395. }
  1396. /* bdx_tx_transmit - send packet to NIC
  1397. * @skb - packet to send
  1398. * ndev - network device assigned to NIC
  1399. * Return codes:
  1400. * o NETDEV_TX_OK everything ok.
  1401. * o NETDEV_TX_BUSY Cannot transmit packet, try later
  1402. * Usually a bug, means queue start/stop flow control is broken in
  1403. * the driver. Note: the driver must NOT put the skb in its DMA ring.
  1404. * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
  1405. */
  1406. static int bdx_tx_transmit(struct sk_buff *skb, struct net_device *ndev)
  1407. {
  1408. struct bdx_priv *priv = ndev->priv;
  1409. struct txd_fifo *f = &priv->txd_fifo0;
  1410. int txd_checksum = 7; /* full checksum */
  1411. int txd_lgsnd = 0;
  1412. int txd_vlan_id = 0;
  1413. int txd_vtag = 0;
  1414. int txd_mss = 0;
  1415. int nr_frags = skb_shinfo(skb)->nr_frags;
  1416. struct txd_desc *txdd;
  1417. int len;
  1418. unsigned long flags;
  1419. ENTER;
  1420. local_irq_save(flags);
  1421. if (!spin_trylock(&priv->tx_lock)) {
  1422. local_irq_restore(flags);
  1423. DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
  1424. BDX_DRV_NAME, ndev->name);
  1425. return NETDEV_TX_LOCKED;
  1426. }
  1427. /* build tx descriptor */
  1428. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
  1429. txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
  1430. if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
  1431. txd_checksum = 0;
  1432. if (skb_shinfo(skb)->gso_size) {
  1433. txd_mss = skb_shinfo(skb)->gso_size;
  1434. txd_lgsnd = 1;
  1435. DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
  1436. txd_mss);
  1437. }
  1438. if (vlan_tx_tag_present(skb)) {
  1439. /*Cut VLAN ID to 12 bits */
  1440. txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
  1441. txd_vtag = 1;
  1442. }
  1443. txdd->length = CPU_CHIP_SWAP16(skb->len);
  1444. txdd->mss = CPU_CHIP_SWAP16(txd_mss);
  1445. txdd->txd_val1 =
  1446. CPU_CHIP_SWAP32(TXD_W1_VAL
  1447. (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
  1448. txd_lgsnd, txd_vlan_id));
  1449. DBG("=== TxD desc =====================\n");
  1450. DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
  1451. DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
  1452. bdx_tx_map_skb(priv, skb, txdd);
  1453. /* increment TXD write pointer. In case of
  1454. fifo wrapping copy reminder of the descriptor
  1455. to the beginning */
  1456. f->m.wptr += txd_sizes[nr_frags].bytes;
  1457. len = f->m.wptr - f->m.memsz;
  1458. if (unlikely(len >= 0)) {
  1459. f->m.wptr = len;
  1460. if (len > 0) {
  1461. BDX_ASSERT(len > f->m.memsz);
  1462. memcpy(f->m.va, f->m.va + f->m.memsz, len);
  1463. }
  1464. }
  1465. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
  1466. priv->tx_level -= txd_sizes[nr_frags].bytes;
  1467. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1468. #ifdef BDX_DELAY_WPTR
  1469. if (priv->tx_level > priv->tx_update_mark) {
  1470. /* Force memory writes to complete before letting h/w
  1471. know there are new descriptors to fetch.
  1472. (might be needed on platforms like IA64)
  1473. wmb(); */
  1474. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1475. } else {
  1476. if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
  1477. priv->tx_noupd = 0;
  1478. WRITE_REG(priv, f->m.reg_WPTR,
  1479. f->m.wptr & TXF_WPTR_WR_PTR);
  1480. }
  1481. }
  1482. #else
  1483. /* Force memory writes to complete before letting h/w
  1484. know there are new descriptors to fetch.
  1485. (might be needed on platforms like IA64)
  1486. wmb(); */
  1487. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1488. #endif
  1489. ndev->trans_start = jiffies;
  1490. priv->net_stats.tx_packets++;
  1491. priv->net_stats.tx_bytes += skb->len;
  1492. if (priv->tx_level < BDX_MIN_TX_LEVEL) {
  1493. DBG("%s: %s: TX Q STOP level %d\n",
  1494. BDX_DRV_NAME, ndev->name, priv->tx_level);
  1495. netif_stop_queue(ndev);
  1496. }
  1497. spin_unlock_irqrestore(&priv->tx_lock, flags);
  1498. return NETDEV_TX_OK;
  1499. }
  1500. /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
  1501. * @priv - bdx adapter
  1502. * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
  1503. * that those packets were sent
  1504. */
  1505. static void bdx_tx_cleanup(struct bdx_priv *priv)
  1506. {
  1507. struct txf_fifo *f = &priv->txf_fifo0;
  1508. struct txdb *db = &priv->txdb;
  1509. int tx_level = 0;
  1510. ENTER;
  1511. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
  1512. BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
  1513. while (f->m.wptr != f->m.rptr) {
  1514. f->m.rptr += BDX_TXF_DESC_SZ;
  1515. f->m.rptr &= f->m.size_mask;
  1516. /* unmap all the fragments */
  1517. /* first has to come tx_maps containing dma */
  1518. BDX_ASSERT(db->rptr->len == 0);
  1519. do {
  1520. BDX_ASSERT(db->rptr->addr.dma == 0);
  1521. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1522. db->rptr->len, PCI_DMA_TODEVICE);
  1523. bdx_tx_db_inc_rptr(db);
  1524. } while (db->rptr->len > 0);
  1525. tx_level -= db->rptr->len; /* '-' koz len is negative */
  1526. /* now should come skb pointer - free it */
  1527. dev_kfree_skb_irq(db->rptr->addr.skb);
  1528. bdx_tx_db_inc_rptr(db);
  1529. }
  1530. /* let h/w know which TXF descriptors were cleaned */
  1531. BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
  1532. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1533. /* We reclaimed resources, so in case the Q is stopped by xmit callback,
  1534. * we resume the transmition and use tx_lock to synchronize with xmit.*/
  1535. spin_lock(&priv->tx_lock);
  1536. priv->tx_level += tx_level;
  1537. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1538. #ifdef BDX_DELAY_WPTR
  1539. if (priv->tx_noupd) {
  1540. priv->tx_noupd = 0;
  1541. WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
  1542. priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
  1543. }
  1544. #endif
  1545. if (unlikely(netif_queue_stopped(priv->ndev)
  1546. && netif_carrier_ok(priv->ndev)
  1547. && (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
  1548. DBG("%s: %s: TX Q WAKE level %d\n",
  1549. BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
  1550. netif_wake_queue(priv->ndev);
  1551. }
  1552. spin_unlock(&priv->tx_lock);
  1553. }
  1554. /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
  1555. * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
  1556. */
  1557. static void bdx_tx_free_skbs(struct bdx_priv *priv)
  1558. {
  1559. struct txdb *db = &priv->txdb;
  1560. ENTER;
  1561. while (db->rptr != db->wptr) {
  1562. if (likely(db->rptr->len))
  1563. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1564. db->rptr->len, PCI_DMA_TODEVICE);
  1565. else
  1566. dev_kfree_skb(db->rptr->addr.skb);
  1567. bdx_tx_db_inc_rptr(db);
  1568. }
  1569. RET();
  1570. }
  1571. /* bdx_tx_free - frees all Tx resources */
  1572. static void bdx_tx_free(struct bdx_priv *priv)
  1573. {
  1574. ENTER;
  1575. bdx_tx_free_skbs(priv);
  1576. bdx_fifo_free(priv, &priv->txd_fifo0.m);
  1577. bdx_fifo_free(priv, &priv->txf_fifo0.m);
  1578. bdx_tx_db_close(&priv->txdb);
  1579. }
  1580. /* bdx_tx_push_desc - push descriptor to TxD fifo
  1581. * @priv - NIC private structure
  1582. * @data - desc's data
  1583. * @size - desc's size
  1584. *
  1585. * Pushes desc to TxD fifo and overlaps it if needed.
  1586. * NOTE: this func does not check for available space. this is responsibility
  1587. * of the caller. Neither does it check that data size is smaller then
  1588. * fifo size.
  1589. */
  1590. static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
  1591. {
  1592. struct txd_fifo *f = &priv->txd_fifo0;
  1593. int i = f->m.memsz - f->m.wptr;
  1594. if (size == 0)
  1595. return;
  1596. if (i > size) {
  1597. memcpy(f->m.va + f->m.wptr, data, size);
  1598. f->m.wptr += size;
  1599. } else {
  1600. memcpy(f->m.va + f->m.wptr, data, i);
  1601. f->m.wptr = size - i;
  1602. memcpy(f->m.va, data + i, f->m.wptr);
  1603. }
  1604. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1605. }
  1606. /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
  1607. * @priv - NIC private structure
  1608. * @data - desc's data
  1609. * @size - desc's size
  1610. *
  1611. * NOTE: this func does check for available space and, if neccessary, waits for
  1612. * NIC to read existing data before writing new one.
  1613. */
  1614. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
  1615. {
  1616. int timer = 0;
  1617. ENTER;
  1618. while (size > 0) {
  1619. /* we substruct 8 because when fifo is full rptr == wptr
  1620. which also means that fifo is empty, we can understand
  1621. the difference, but could hw do the same ??? :) */
  1622. int avail = bdx_tx_space(priv) - 8;
  1623. if (avail <= 0) {
  1624. if (timer++ > 300) { /* prevent endless loop */
  1625. DBG("timeout while writing desc to TxD fifo\n");
  1626. break;
  1627. }
  1628. udelay(50); /* give hw a chance to clean fifo */
  1629. continue;
  1630. }
  1631. avail = MIN(avail, size);
  1632. DBG("about to push %d bytes starting %p size %d\n", avail,
  1633. data, size);
  1634. bdx_tx_push_desc(priv, data, avail);
  1635. size -= avail;
  1636. data += avail;
  1637. }
  1638. RET();
  1639. }
  1640. /**
  1641. * bdx_probe - Device Initialization Routine
  1642. * @pdev: PCI device information struct
  1643. * @ent: entry in bdx_pci_tbl
  1644. *
  1645. * Returns 0 on success, negative on failure
  1646. *
  1647. * bdx_probe initializes an adapter identified by a pci_dev structure.
  1648. * The OS initialization, configuring of the adapter private structure,
  1649. * and a hardware reset occur.
  1650. *
  1651. * functions and their order used as explained in
  1652. * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
  1653. *
  1654. */
  1655. /* TBD: netif_msg should be checked and implemented. I disable it for now */
  1656. static int __devinit
  1657. bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1658. {
  1659. struct net_device *ndev;
  1660. struct bdx_priv *priv;
  1661. int err, pci_using_dac, port;
  1662. unsigned long pciaddr;
  1663. u32 regionSize;
  1664. struct pci_nic *nic;
  1665. ENTER;
  1666. nic = vmalloc(sizeof(*nic));
  1667. if (!nic)
  1668. RET(-ENOMEM);
  1669. /************** pci *****************/
  1670. if ((err = pci_enable_device(pdev))) /* it trigers interrupt, dunno why. */
  1671. goto err_pci; /* it's not a problem though */
  1672. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
  1673. !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
  1674. pci_using_dac = 1;
  1675. } else {
  1676. if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) ||
  1677. (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
  1678. printk(KERN_ERR "tehuti: No usable DMA configuration"
  1679. ", aborting\n");
  1680. goto err_dma;
  1681. }
  1682. pci_using_dac = 0;
  1683. }
  1684. if ((err = pci_request_regions(pdev, BDX_DRV_NAME)))
  1685. goto err_dma;
  1686. pci_set_master(pdev);
  1687. pciaddr = pci_resource_start(pdev, 0);
  1688. if (!pciaddr) {
  1689. err = -EIO;
  1690. ERR("tehuti: no MMIO resource\n");
  1691. goto err_out_res;
  1692. }
  1693. if ((regionSize = pci_resource_len(pdev, 0)) < BDX_REGS_SIZE) {
  1694. err = -EIO;
  1695. ERR("tehuti: MMIO resource (%x) too small\n", regionSize);
  1696. goto err_out_res;
  1697. }
  1698. nic->regs = ioremap(pciaddr, regionSize);
  1699. if (!nic->regs) {
  1700. err = -EIO;
  1701. ERR("tehuti: ioremap failed\n");
  1702. goto err_out_res;
  1703. }
  1704. if (pdev->irq < 2) {
  1705. err = -EIO;
  1706. ERR("tehuti: invalid irq (%d)\n", pdev->irq);
  1707. goto err_out_iomap;
  1708. }
  1709. pci_set_drvdata(pdev, nic);
  1710. if (pdev->device == 0x3014)
  1711. nic->port_num = 2;
  1712. else
  1713. nic->port_num = 1;
  1714. print_hw_id(pdev);
  1715. bdx_hw_reset_direct(nic->regs);
  1716. nic->irq_type = IRQ_INTX;
  1717. #ifdef BDX_MSI
  1718. if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
  1719. if ((err = pci_enable_msi(pdev)))
  1720. ERR("Tehuti: Can't eneble msi. error is %d\n", err);
  1721. else
  1722. nic->irq_type = IRQ_MSI;
  1723. } else
  1724. DBG("HW does not support MSI\n");
  1725. #endif
  1726. /************** netdev **************/
  1727. for (port = 0; port < nic->port_num; port++) {
  1728. if (!(ndev = alloc_etherdev(sizeof(struct bdx_priv)))) {
  1729. err = -ENOMEM;
  1730. printk(KERN_ERR "tehuti: alloc_etherdev failed\n");
  1731. goto err_out_iomap;
  1732. }
  1733. ndev->open = bdx_open;
  1734. ndev->stop = bdx_close;
  1735. ndev->hard_start_xmit = bdx_tx_transmit;
  1736. ndev->do_ioctl = bdx_ioctl;
  1737. ndev->set_multicast_list = bdx_setmulti;
  1738. ndev->get_stats = bdx_get_stats;
  1739. ndev->change_mtu = bdx_change_mtu;
  1740. ndev->set_mac_address = bdx_set_mac;
  1741. ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
  1742. ndev->vlan_rx_register = bdx_vlan_rx_register;
  1743. ndev->vlan_rx_add_vid = bdx_vlan_rx_add_vid;
  1744. ndev->vlan_rx_kill_vid = bdx_vlan_rx_kill_vid;
  1745. bdx_ethtool_ops(ndev); /* ethtool interface */
  1746. /* these fields are used for info purposes only
  1747. * so we can have them same for all ports of the board */
  1748. ndev->if_port = port;
  1749. ndev->base_addr = pciaddr;
  1750. ndev->mem_start = pciaddr;
  1751. ndev->mem_end = pciaddr + regionSize;
  1752. ndev->irq = pdev->irq;
  1753. ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
  1754. | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
  1755. NETIF_F_HW_VLAN_FILTER
  1756. /*| NETIF_F_FRAGLIST */
  1757. ;
  1758. if (pci_using_dac)
  1759. ndev->features |= NETIF_F_HIGHDMA;
  1760. /************** priv ****************/
  1761. priv = nic->priv[port] = ndev->priv;
  1762. memset(priv, 0, sizeof(struct bdx_priv));
  1763. priv->pBdxRegs = nic->regs + port * 0x8000;
  1764. priv->port = port;
  1765. priv->pdev = pdev;
  1766. priv->ndev = ndev;
  1767. priv->nic = nic;
  1768. priv->msg_enable = BDX_DEF_MSG_ENABLE;
  1769. netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
  1770. if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
  1771. DBG("HW statistics not supported\n");
  1772. priv->stats_flag = 0;
  1773. } else {
  1774. priv->stats_flag = 1;
  1775. }
  1776. /* Initialize fifo sizes. */
  1777. priv->txd_size = 2;
  1778. priv->txf_size = 2;
  1779. priv->rxd_size = 2;
  1780. priv->rxf_size = 3;
  1781. /* Initialize the initial coalescing registers. */
  1782. priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
  1783. priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
  1784. /* ndev->xmit_lock spinlock is not used.
  1785. * Private priv->tx_lock is used for synchronization
  1786. * between transmit and TX irq cleanup. In addition
  1787. * set multicast list callback has to use priv->tx_lock.
  1788. */
  1789. #ifdef BDX_LLTX
  1790. ndev->features |= NETIF_F_LLTX;
  1791. #endif
  1792. spin_lock_init(&priv->tx_lock);
  1793. /*bdx_hw_reset(priv); */
  1794. if (bdx_read_mac(priv)) {
  1795. printk(KERN_ERR "tehuti: load MAC address failed\n");
  1796. goto err_out_iomap;
  1797. }
  1798. SET_NETDEV_DEV(ndev, &pdev->dev);
  1799. if ((err = register_netdev(ndev))) {
  1800. printk(KERN_ERR "tehuti: register_netdev failed\n");
  1801. goto err_out_free;
  1802. }
  1803. netif_carrier_off(ndev);
  1804. netif_stop_queue(ndev);
  1805. print_eth_id(ndev);
  1806. }
  1807. RET(0);
  1808. err_out_free:
  1809. free_netdev(ndev);
  1810. err_out_iomap:
  1811. iounmap(nic->regs);
  1812. err_out_res:
  1813. pci_release_regions(pdev);
  1814. err_dma:
  1815. pci_disable_device(pdev);
  1816. err_pci:
  1817. vfree(nic);
  1818. RET(err);
  1819. }
  1820. /****************** Ethtool interface *********************/
  1821. /* get strings for tests */
  1822. static const char
  1823. bdx_test_names[][ETH_GSTRING_LEN] = {
  1824. "No tests defined"
  1825. };
  1826. /* get strings for statistics counters */
  1827. static const char
  1828. bdx_stat_names[][ETH_GSTRING_LEN] = {
  1829. "InUCast", /* 0x7200 */
  1830. "InMCast", /* 0x7210 */
  1831. "InBCast", /* 0x7220 */
  1832. "InPkts", /* 0x7230 */
  1833. "InErrors", /* 0x7240 */
  1834. "InDropped", /* 0x7250 */
  1835. "FrameTooLong", /* 0x7260 */
  1836. "FrameSequenceErrors", /* 0x7270 */
  1837. "InVLAN", /* 0x7280 */
  1838. "InDroppedDFE", /* 0x7290 */
  1839. "InDroppedIntFull", /* 0x72A0 */
  1840. "InFrameAlignErrors", /* 0x72B0 */
  1841. /* 0x72C0-0x72E0 RSRV */
  1842. "OutUCast", /* 0x72F0 */
  1843. "OutMCast", /* 0x7300 */
  1844. "OutBCast", /* 0x7310 */
  1845. "OutPkts", /* 0x7320 */
  1846. /* 0x7330-0x7360 RSRV */
  1847. "OutVLAN", /* 0x7370 */
  1848. "InUCastOctects", /* 0x7380 */
  1849. "OutUCastOctects", /* 0x7390 */
  1850. /* 0x73A0-0x73B0 RSRV */
  1851. "InBCastOctects", /* 0x73C0 */
  1852. "OutBCastOctects", /* 0x73D0 */
  1853. "InOctects", /* 0x73E0 */
  1854. "OutOctects", /* 0x73F0 */
  1855. };
  1856. /*
  1857. * bdx_get_settings - get device-specific settings
  1858. * @netdev
  1859. * @ecmd
  1860. */
  1861. static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  1862. {
  1863. u32 rdintcm;
  1864. u32 tdintcm;
  1865. struct bdx_priv *priv = netdev->priv;
  1866. rdintcm = priv->rdintcm;
  1867. tdintcm = priv->tdintcm;
  1868. ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  1869. ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
  1870. ecmd->speed = SPEED_10000;
  1871. ecmd->duplex = DUPLEX_FULL;
  1872. ecmd->port = PORT_FIBRE;
  1873. ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
  1874. ecmd->autoneg = AUTONEG_DISABLE;
  1875. /* PCK_TH measures in multiples of FIFO bytes
  1876. We translate to packets */
  1877. ecmd->maxtxpkt =
  1878. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1879. ecmd->maxrxpkt =
  1880. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1881. return 0;
  1882. }
  1883. /*
  1884. * bdx_get_drvinfo - report driver information
  1885. * @netdev
  1886. * @drvinfo
  1887. */
  1888. static void
  1889. bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
  1890. {
  1891. struct bdx_priv *priv = netdev->priv;
  1892. strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
  1893. strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
  1894. strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  1895. strlcat(drvinfo->bus_info, pci_name(priv->pdev),
  1896. sizeof(drvinfo->bus_info));
  1897. drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
  1898. drvinfo->testinfo_len = 0;
  1899. drvinfo->regdump_len = 0;
  1900. drvinfo->eedump_len = 0;
  1901. }
  1902. /*
  1903. * bdx_get_rx_csum - report whether receive checksums are turned on or off
  1904. * @netdev
  1905. */
  1906. static u32 bdx_get_rx_csum(struct net_device *netdev)
  1907. {
  1908. return 1; /* always on */
  1909. }
  1910. /*
  1911. * bdx_get_tx_csum - report whether transmit checksums are turned on or off
  1912. * @netdev
  1913. */
  1914. static u32 bdx_get_tx_csum(struct net_device *netdev)
  1915. {
  1916. return (netdev->features & NETIF_F_IP_CSUM) != 0;
  1917. }
  1918. /*
  1919. * bdx_get_coalesce - get interrupt coalescing parameters
  1920. * @netdev
  1921. * @ecoal
  1922. */
  1923. static int
  1924. bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1925. {
  1926. u32 rdintcm;
  1927. u32 tdintcm;
  1928. struct bdx_priv *priv = netdev->priv;
  1929. rdintcm = priv->rdintcm;
  1930. tdintcm = priv->tdintcm;
  1931. /* PCK_TH measures in multiples of FIFO bytes
  1932. We translate to packets */
  1933. ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
  1934. ecoal->rx_max_coalesced_frames =
  1935. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1936. ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
  1937. ecoal->tx_max_coalesced_frames =
  1938. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1939. /* adaptive parameters ignored */
  1940. return 0;
  1941. }
  1942. /*
  1943. * bdx_set_coalesce - set interrupt coalescing parameters
  1944. * @netdev
  1945. * @ecoal
  1946. */
  1947. static int
  1948. bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1949. {
  1950. u32 rdintcm;
  1951. u32 tdintcm;
  1952. struct bdx_priv *priv = netdev->priv;
  1953. int rx_coal;
  1954. int tx_coal;
  1955. int rx_max_coal;
  1956. int tx_max_coal;
  1957. /* Check for valid input */
  1958. rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
  1959. tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
  1960. rx_max_coal = ecoal->rx_max_coalesced_frames;
  1961. tx_max_coal = ecoal->tx_max_coalesced_frames;
  1962. /* Translate from packets to multiples of FIFO bytes */
  1963. rx_max_coal =
  1964. (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
  1965. / PCK_TH_MULT);
  1966. tx_max_coal =
  1967. (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
  1968. / PCK_TH_MULT);
  1969. if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF)
  1970. || (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
  1971. return -EINVAL;
  1972. rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
  1973. GET_RXF_TH(priv->rdintcm), rx_max_coal);
  1974. tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
  1975. tx_max_coal);
  1976. priv->rdintcm = rdintcm;
  1977. priv->tdintcm = tdintcm;
  1978. WRITE_REG(priv, regRDINTCM0, rdintcm);
  1979. WRITE_REG(priv, regTDINTCM0, tdintcm);
  1980. return 0;
  1981. }
  1982. /* Convert RX fifo size to number of pending packets */
  1983. static inline int bdx_rx_fifo_size_to_packets(int rx_size)
  1984. {
  1985. return ((FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc));
  1986. }
  1987. /* Convert TX fifo size to number of pending packets */
  1988. static inline int bdx_tx_fifo_size_to_packets(int tx_size)
  1989. {
  1990. return ((FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ);
  1991. }
  1992. /*
  1993. * bdx_get_ringparam - report ring sizes
  1994. * @netdev
  1995. * @ring
  1996. */
  1997. static void
  1998. bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  1999. {
  2000. struct bdx_priv *priv = netdev->priv;
  2001. /*max_pending - the maximum-sized FIFO we allow */
  2002. ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
  2003. ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
  2004. ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
  2005. ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
  2006. }
  2007. /*
  2008. * bdx_set_ringparam - set ring sizes
  2009. * @netdev
  2010. * @ring
  2011. */
  2012. static int
  2013. bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  2014. {
  2015. struct bdx_priv *priv = netdev->priv;
  2016. int rx_size = 0;
  2017. int tx_size = 0;
  2018. for (; rx_size < 4; rx_size++) {
  2019. if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
  2020. break;
  2021. }
  2022. if (rx_size == 4)
  2023. rx_size = 3;
  2024. for (; tx_size < 4; tx_size++) {
  2025. if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
  2026. break;
  2027. }
  2028. if (tx_size == 4)
  2029. tx_size = 3;
  2030. /*Is there anything to do? */
  2031. if ((rx_size == priv->rxf_size)
  2032. && (tx_size == priv->txd_size))
  2033. return 0;
  2034. priv->rxf_size = rx_size;
  2035. if (rx_size > 1)
  2036. priv->rxd_size = rx_size - 1;
  2037. else
  2038. priv->rxd_size = rx_size;
  2039. priv->txf_size = priv->txd_size = tx_size;
  2040. if (netif_running(netdev)) {
  2041. bdx_close(netdev);
  2042. bdx_open(netdev);
  2043. }
  2044. return 0;
  2045. }
  2046. /*
  2047. * bdx_get_strings - return a set of strings that describe the requested objects
  2048. * @netdev
  2049. * @data
  2050. */
  2051. static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2052. {
  2053. switch (stringset) {
  2054. case ETH_SS_TEST:
  2055. memcpy(data, *bdx_test_names, sizeof(bdx_test_names));
  2056. break;
  2057. case ETH_SS_STATS:
  2058. memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
  2059. break;
  2060. }
  2061. }
  2062. /*
  2063. * bdx_get_stats_count - return number of 64bit statistics counters
  2064. * @netdev
  2065. */
  2066. static int bdx_get_stats_count(struct net_device *netdev)
  2067. {
  2068. struct bdx_priv *priv = netdev->priv;
  2069. BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
  2070. != sizeof(struct bdx_stats) / sizeof(u64));
  2071. return ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
  2072. }
  2073. /*
  2074. * bdx_get_ethtool_stats - return device's hardware L2 statistics
  2075. * @netdev
  2076. * @stats
  2077. * @data
  2078. */
  2079. static void bdx_get_ethtool_stats(struct net_device *netdev,
  2080. struct ethtool_stats *stats, u64 *data)
  2081. {
  2082. struct bdx_priv *priv = netdev->priv;
  2083. if (priv->stats_flag) {
  2084. /* Update stats from HW */
  2085. bdx_update_stats(priv);
  2086. /* Copy data to user buffer */
  2087. memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
  2088. }
  2089. }
  2090. /*
  2091. * bdx_ethtool_ops - ethtool interface implementation
  2092. * @netdev
  2093. */
  2094. static void bdx_ethtool_ops(struct net_device *netdev)
  2095. {
  2096. static struct ethtool_ops bdx_ethtool_ops = {
  2097. .get_settings = bdx_get_settings,
  2098. .get_drvinfo = bdx_get_drvinfo,
  2099. .get_link = ethtool_op_get_link,
  2100. .get_coalesce = bdx_get_coalesce,
  2101. .set_coalesce = bdx_set_coalesce,
  2102. .get_ringparam = bdx_get_ringparam,
  2103. .set_ringparam = bdx_set_ringparam,
  2104. .get_rx_csum = bdx_get_rx_csum,
  2105. .get_tx_csum = bdx_get_tx_csum,
  2106. .get_sg = ethtool_op_get_sg,
  2107. .get_tso = ethtool_op_get_tso,
  2108. .get_strings = bdx_get_strings,
  2109. .get_stats_count = bdx_get_stats_count,
  2110. .get_ethtool_stats = bdx_get_ethtool_stats,
  2111. };
  2112. SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
  2113. }
  2114. /**
  2115. * bdx_remove - Device Removal Routine
  2116. * @pdev: PCI device information struct
  2117. *
  2118. * bdx_remove is called by the PCI subsystem to alert the driver
  2119. * that it should release a PCI device. The could be caused by a
  2120. * Hot-Plug event, or because the driver is going to be removed from
  2121. * memory.
  2122. **/
  2123. static void __devexit bdx_remove(struct pci_dev *pdev)
  2124. {
  2125. struct pci_nic *nic = pci_get_drvdata(pdev);
  2126. struct net_device *ndev;
  2127. int port;
  2128. for (port = 0; port < nic->port_num; port++) {
  2129. ndev = nic->priv[port]->ndev;
  2130. unregister_netdev(ndev);
  2131. free_netdev(ndev);
  2132. }
  2133. /*bdx_hw_reset_direct(nic->regs); */
  2134. #ifdef BDX_MSI
  2135. if (nic->irq_type == IRQ_MSI)
  2136. pci_disable_msi(pdev);
  2137. #endif
  2138. iounmap(nic->regs);
  2139. pci_release_regions(pdev);
  2140. pci_disable_device(pdev);
  2141. pci_set_drvdata(pdev, NULL);
  2142. vfree(nic);
  2143. RET();
  2144. }
  2145. static struct pci_driver bdx_pci_driver = {
  2146. .name = BDX_DRV_NAME,
  2147. .id_table = bdx_pci_tbl,
  2148. .probe = bdx_probe,
  2149. .remove = __devexit_p(bdx_remove),
  2150. };
  2151. /*
  2152. * print_driver_id - print parameters of the driver build
  2153. */
  2154. static void __init print_driver_id(void)
  2155. {
  2156. printk(KERN_INFO "%s: %s, %s\n", BDX_DRV_NAME, BDX_DRV_DESC,
  2157. BDX_DRV_VERSION);
  2158. printk(KERN_INFO "%s: Options: hw_csum %s\n", BDX_DRV_NAME,
  2159. BDX_MSI_STRING);
  2160. }
  2161. static int __init bdx_module_init(void)
  2162. {
  2163. ENTER;
  2164. bdx_firmware_endianess();
  2165. init_txd_sizes();
  2166. print_driver_id();
  2167. RET(pci_register_driver(&bdx_pci_driver));
  2168. }
  2169. module_init(bdx_module_init);
  2170. static void __exit bdx_module_exit(void)
  2171. {
  2172. ENTER;
  2173. pci_unregister_driver(&bdx_pci_driver);
  2174. RET();
  2175. }
  2176. module_exit(bdx_module_exit);
  2177. MODULE_LICENSE("GPL");
  2178. MODULE_AUTHOR(DRIVER_AUTHOR);
  2179. MODULE_DESCRIPTION(BDX_DRV_DESC);