skge.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/in.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/ip.h>
  35. #include <linux/delay.h>
  36. #include <linux/crc32.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/debugfs.h>
  39. #include <linux/seq_file.h>
  40. #include <linux/mii.h>
  41. #include <asm/irq.h>
  42. #include "skge.h"
  43. #define DRV_NAME "skge"
  44. #define DRV_VERSION "1.13"
  45. #define PFX DRV_NAME " "
  46. #define DEFAULT_TX_RING_SIZE 128
  47. #define DEFAULT_RX_RING_SIZE 512
  48. #define MAX_TX_RING_SIZE 1024
  49. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  50. #define MAX_RX_RING_SIZE 4096
  51. #define RX_COPY_THRESHOLD 128
  52. #define RX_BUF_SIZE 1536
  53. #define PHY_RETRIES 1000
  54. #define ETH_JUMBO_MTU 9000
  55. #define TX_WATCHDOG (5 * HZ)
  56. #define NAPI_WEIGHT 64
  57. #define BLINK_MS 250
  58. #define LINK_HZ HZ
  59. #define SKGE_EEPROM_MAGIC 0x9933aabb
  60. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  61. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  62. MODULE_LICENSE("GPL");
  63. MODULE_VERSION(DRV_VERSION);
  64. static const u32 default_msg
  65. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  66. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  67. static int debug = -1; /* defaults above */
  68. module_param(debug, int, 0);
  69. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  70. static const struct pci_device_id skge_id_table[] = {
  71. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  77. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  78. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  79. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  80. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  81. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  82. { 0 }
  83. };
  84. MODULE_DEVICE_TABLE(pci, skge_id_table);
  85. static int skge_up(struct net_device *dev);
  86. static int skge_down(struct net_device *dev);
  87. static void skge_phy_reset(struct skge_port *skge);
  88. static void skge_tx_clean(struct net_device *dev);
  89. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  90. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  91. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  92. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  93. static void yukon_init(struct skge_hw *hw, int port);
  94. static void genesis_mac_init(struct skge_hw *hw, int port);
  95. static void genesis_link_up(struct skge_port *skge);
  96. /* Avoid conditionals by using array */
  97. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  98. static const int rxqaddr[] = { Q_R1, Q_R2 };
  99. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  100. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  101. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  102. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  103. static int skge_get_regs_len(struct net_device *dev)
  104. {
  105. return 0x4000;
  106. }
  107. /*
  108. * Returns copy of whole control register region
  109. * Note: skip RAM address register because accessing it will
  110. * cause bus hangs!
  111. */
  112. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  113. void *p)
  114. {
  115. const struct skge_port *skge = netdev_priv(dev);
  116. const void __iomem *io = skge->hw->regs;
  117. regs->version = 1;
  118. memset(p, 0, regs->len);
  119. memcpy_fromio(p, io, B3_RAM_ADDR);
  120. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  121. regs->len - B3_RI_WTO_R1);
  122. }
  123. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  124. static u32 wol_supported(const struct skge_hw *hw)
  125. {
  126. if (hw->chip_id == CHIP_ID_GENESIS)
  127. return 0;
  128. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  129. return 0;
  130. return WAKE_MAGIC | WAKE_PHY;
  131. }
  132. static u32 pci_wake_enabled(struct pci_dev *dev)
  133. {
  134. int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
  135. u16 value;
  136. /* If device doesn't support PM Capabilities, but request is to disable
  137. * wake events, it's a nop; otherwise fail */
  138. if (!pm)
  139. return 0;
  140. pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
  141. value &= PCI_PM_CAP_PME_MASK;
  142. value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
  143. return value != 0;
  144. }
  145. static void skge_wol_init(struct skge_port *skge)
  146. {
  147. struct skge_hw *hw = skge->hw;
  148. int port = skge->port;
  149. u16 ctrl;
  150. skge_write16(hw, B0_CTST, CS_RST_CLR);
  151. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  152. /* Turn on Vaux */
  153. skge_write8(hw, B0_POWER_CTRL,
  154. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  155. /* WA code for COMA mode -- clear PHY reset */
  156. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  157. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  158. u32 reg = skge_read32(hw, B2_GP_IO);
  159. reg |= GP_DIR_9;
  160. reg &= ~GP_IO_9;
  161. skge_write32(hw, B2_GP_IO, reg);
  162. }
  163. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  164. GPC_DIS_SLEEP |
  165. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  166. GPC_ANEG_1 | GPC_RST_SET);
  167. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  168. GPC_DIS_SLEEP |
  169. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  170. GPC_ANEG_1 | GPC_RST_CLR);
  171. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  172. /* Force to 10/100 skge_reset will re-enable on resume */
  173. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  174. PHY_AN_100FULL | PHY_AN_100HALF |
  175. PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
  176. /* no 1000 HD/FD */
  177. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  178. gm_phy_write(hw, port, PHY_MARV_CTRL,
  179. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  180. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  181. /* Set GMAC to no flow control and auto update for speed/duplex */
  182. gma_write16(hw, port, GM_GP_CTRL,
  183. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  184. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  185. /* Set WOL address */
  186. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  187. skge->netdev->dev_addr, ETH_ALEN);
  188. /* Turn on appropriate WOL control bits */
  189. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  190. ctrl = 0;
  191. if (skge->wol & WAKE_PHY)
  192. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  193. else
  194. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  195. if (skge->wol & WAKE_MAGIC)
  196. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  197. else
  198. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
  199. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  200. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  201. /* block receiver */
  202. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  203. }
  204. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  205. {
  206. struct skge_port *skge = netdev_priv(dev);
  207. wol->supported = wol_supported(skge->hw);
  208. wol->wolopts = skge->wol;
  209. }
  210. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  211. {
  212. struct skge_port *skge = netdev_priv(dev);
  213. struct skge_hw *hw = skge->hw;
  214. if (wol->wolopts & ~wol_supported(hw))
  215. return -EOPNOTSUPP;
  216. skge->wol = wol->wolopts;
  217. return 0;
  218. }
  219. /* Determine supported/advertised modes based on hardware.
  220. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  221. */
  222. static u32 skge_supported_modes(const struct skge_hw *hw)
  223. {
  224. u32 supported;
  225. if (hw->copper) {
  226. supported = SUPPORTED_10baseT_Half
  227. | SUPPORTED_10baseT_Full
  228. | SUPPORTED_100baseT_Half
  229. | SUPPORTED_100baseT_Full
  230. | SUPPORTED_1000baseT_Half
  231. | SUPPORTED_1000baseT_Full
  232. | SUPPORTED_Autoneg| SUPPORTED_TP;
  233. if (hw->chip_id == CHIP_ID_GENESIS)
  234. supported &= ~(SUPPORTED_10baseT_Half
  235. | SUPPORTED_10baseT_Full
  236. | SUPPORTED_100baseT_Half
  237. | SUPPORTED_100baseT_Full);
  238. else if (hw->chip_id == CHIP_ID_YUKON)
  239. supported &= ~SUPPORTED_1000baseT_Half;
  240. } else
  241. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  242. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  243. return supported;
  244. }
  245. static int skge_get_settings(struct net_device *dev,
  246. struct ethtool_cmd *ecmd)
  247. {
  248. struct skge_port *skge = netdev_priv(dev);
  249. struct skge_hw *hw = skge->hw;
  250. ecmd->transceiver = XCVR_INTERNAL;
  251. ecmd->supported = skge_supported_modes(hw);
  252. if (hw->copper) {
  253. ecmd->port = PORT_TP;
  254. ecmd->phy_address = hw->phy_addr;
  255. } else
  256. ecmd->port = PORT_FIBRE;
  257. ecmd->advertising = skge->advertising;
  258. ecmd->autoneg = skge->autoneg;
  259. ecmd->speed = skge->speed;
  260. ecmd->duplex = skge->duplex;
  261. return 0;
  262. }
  263. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  264. {
  265. struct skge_port *skge = netdev_priv(dev);
  266. const struct skge_hw *hw = skge->hw;
  267. u32 supported = skge_supported_modes(hw);
  268. int err = 0;
  269. if (ecmd->autoneg == AUTONEG_ENABLE) {
  270. ecmd->advertising = supported;
  271. skge->duplex = -1;
  272. skge->speed = -1;
  273. } else {
  274. u32 setting;
  275. switch (ecmd->speed) {
  276. case SPEED_1000:
  277. if (ecmd->duplex == DUPLEX_FULL)
  278. setting = SUPPORTED_1000baseT_Full;
  279. else if (ecmd->duplex == DUPLEX_HALF)
  280. setting = SUPPORTED_1000baseT_Half;
  281. else
  282. return -EINVAL;
  283. break;
  284. case SPEED_100:
  285. if (ecmd->duplex == DUPLEX_FULL)
  286. setting = SUPPORTED_100baseT_Full;
  287. else if (ecmd->duplex == DUPLEX_HALF)
  288. setting = SUPPORTED_100baseT_Half;
  289. else
  290. return -EINVAL;
  291. break;
  292. case SPEED_10:
  293. if (ecmd->duplex == DUPLEX_FULL)
  294. setting = SUPPORTED_10baseT_Full;
  295. else if (ecmd->duplex == DUPLEX_HALF)
  296. setting = SUPPORTED_10baseT_Half;
  297. else
  298. return -EINVAL;
  299. break;
  300. default:
  301. return -EINVAL;
  302. }
  303. if ((setting & supported) == 0)
  304. return -EINVAL;
  305. skge->speed = ecmd->speed;
  306. skge->duplex = ecmd->duplex;
  307. }
  308. skge->autoneg = ecmd->autoneg;
  309. skge->advertising = ecmd->advertising;
  310. if (netif_running(dev)) {
  311. skge_down(dev);
  312. err = skge_up(dev);
  313. if (err) {
  314. dev_close(dev);
  315. return err;
  316. }
  317. }
  318. return (0);
  319. }
  320. static void skge_get_drvinfo(struct net_device *dev,
  321. struct ethtool_drvinfo *info)
  322. {
  323. struct skge_port *skge = netdev_priv(dev);
  324. strcpy(info->driver, DRV_NAME);
  325. strcpy(info->version, DRV_VERSION);
  326. strcpy(info->fw_version, "N/A");
  327. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  328. }
  329. static const struct skge_stat {
  330. char name[ETH_GSTRING_LEN];
  331. u16 xmac_offset;
  332. u16 gma_offset;
  333. } skge_stats[] = {
  334. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  335. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  336. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  337. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  338. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  339. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  340. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  341. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  342. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  343. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  344. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  345. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  346. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  347. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  348. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  349. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  350. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  351. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  352. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  353. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  354. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  355. };
  356. static int skge_get_sset_count(struct net_device *dev, int sset)
  357. {
  358. switch (sset) {
  359. case ETH_SS_STATS:
  360. return ARRAY_SIZE(skge_stats);
  361. default:
  362. return -EOPNOTSUPP;
  363. }
  364. }
  365. static void skge_get_ethtool_stats(struct net_device *dev,
  366. struct ethtool_stats *stats, u64 *data)
  367. {
  368. struct skge_port *skge = netdev_priv(dev);
  369. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  370. genesis_get_stats(skge, data);
  371. else
  372. yukon_get_stats(skge, data);
  373. }
  374. /* Use hardware MIB variables for critical path statistics and
  375. * transmit feedback not reported at interrupt.
  376. * Other errors are accounted for in interrupt handler.
  377. */
  378. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  379. {
  380. struct skge_port *skge = netdev_priv(dev);
  381. u64 data[ARRAY_SIZE(skge_stats)];
  382. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  383. genesis_get_stats(skge, data);
  384. else
  385. yukon_get_stats(skge, data);
  386. dev->stats.tx_bytes = data[0];
  387. dev->stats.rx_bytes = data[1];
  388. dev->stats.tx_packets = data[2] + data[4] + data[6];
  389. dev->stats.rx_packets = data[3] + data[5] + data[7];
  390. dev->stats.multicast = data[3] + data[5];
  391. dev->stats.collisions = data[10];
  392. dev->stats.tx_aborted_errors = data[12];
  393. return &dev->stats;
  394. }
  395. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  396. {
  397. int i;
  398. switch (stringset) {
  399. case ETH_SS_STATS:
  400. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  401. memcpy(data + i * ETH_GSTRING_LEN,
  402. skge_stats[i].name, ETH_GSTRING_LEN);
  403. break;
  404. }
  405. }
  406. static void skge_get_ring_param(struct net_device *dev,
  407. struct ethtool_ringparam *p)
  408. {
  409. struct skge_port *skge = netdev_priv(dev);
  410. p->rx_max_pending = MAX_RX_RING_SIZE;
  411. p->tx_max_pending = MAX_TX_RING_SIZE;
  412. p->rx_mini_max_pending = 0;
  413. p->rx_jumbo_max_pending = 0;
  414. p->rx_pending = skge->rx_ring.count;
  415. p->tx_pending = skge->tx_ring.count;
  416. p->rx_mini_pending = 0;
  417. p->rx_jumbo_pending = 0;
  418. }
  419. static int skge_set_ring_param(struct net_device *dev,
  420. struct ethtool_ringparam *p)
  421. {
  422. struct skge_port *skge = netdev_priv(dev);
  423. int err = 0;
  424. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  425. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  426. return -EINVAL;
  427. skge->rx_ring.count = p->rx_pending;
  428. skge->tx_ring.count = p->tx_pending;
  429. if (netif_running(dev)) {
  430. skge_down(dev);
  431. err = skge_up(dev);
  432. if (err)
  433. dev_close(dev);
  434. }
  435. return err;
  436. }
  437. static u32 skge_get_msglevel(struct net_device *netdev)
  438. {
  439. struct skge_port *skge = netdev_priv(netdev);
  440. return skge->msg_enable;
  441. }
  442. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  443. {
  444. struct skge_port *skge = netdev_priv(netdev);
  445. skge->msg_enable = value;
  446. }
  447. static int skge_nway_reset(struct net_device *dev)
  448. {
  449. struct skge_port *skge = netdev_priv(dev);
  450. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  451. return -EINVAL;
  452. skge_phy_reset(skge);
  453. return 0;
  454. }
  455. static int skge_set_sg(struct net_device *dev, u32 data)
  456. {
  457. struct skge_port *skge = netdev_priv(dev);
  458. struct skge_hw *hw = skge->hw;
  459. if (hw->chip_id == CHIP_ID_GENESIS && data)
  460. return -EOPNOTSUPP;
  461. return ethtool_op_set_sg(dev, data);
  462. }
  463. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  464. {
  465. struct skge_port *skge = netdev_priv(dev);
  466. struct skge_hw *hw = skge->hw;
  467. if (hw->chip_id == CHIP_ID_GENESIS && data)
  468. return -EOPNOTSUPP;
  469. return ethtool_op_set_tx_csum(dev, data);
  470. }
  471. static u32 skge_get_rx_csum(struct net_device *dev)
  472. {
  473. struct skge_port *skge = netdev_priv(dev);
  474. return skge->rx_csum;
  475. }
  476. /* Only Yukon supports checksum offload. */
  477. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  478. {
  479. struct skge_port *skge = netdev_priv(dev);
  480. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  481. return -EOPNOTSUPP;
  482. skge->rx_csum = data;
  483. return 0;
  484. }
  485. static void skge_get_pauseparam(struct net_device *dev,
  486. struct ethtool_pauseparam *ecmd)
  487. {
  488. struct skge_port *skge = netdev_priv(dev);
  489. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
  490. || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
  491. ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
  492. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  493. }
  494. static int skge_set_pauseparam(struct net_device *dev,
  495. struct ethtool_pauseparam *ecmd)
  496. {
  497. struct skge_port *skge = netdev_priv(dev);
  498. struct ethtool_pauseparam old;
  499. int err = 0;
  500. skge_get_pauseparam(dev, &old);
  501. if (ecmd->autoneg != old.autoneg)
  502. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  503. else {
  504. if (ecmd->rx_pause && ecmd->tx_pause)
  505. skge->flow_control = FLOW_MODE_SYMMETRIC;
  506. else if (ecmd->rx_pause && !ecmd->tx_pause)
  507. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  508. else if (!ecmd->rx_pause && ecmd->tx_pause)
  509. skge->flow_control = FLOW_MODE_LOC_SEND;
  510. else
  511. skge->flow_control = FLOW_MODE_NONE;
  512. }
  513. if (netif_running(dev)) {
  514. skge_down(dev);
  515. err = skge_up(dev);
  516. if (err) {
  517. dev_close(dev);
  518. return err;
  519. }
  520. }
  521. return 0;
  522. }
  523. /* Chip internal frequency for clock calculations */
  524. static inline u32 hwkhz(const struct skge_hw *hw)
  525. {
  526. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  527. }
  528. /* Chip HZ to microseconds */
  529. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  530. {
  531. return (ticks * 1000) / hwkhz(hw);
  532. }
  533. /* Microseconds to chip HZ */
  534. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  535. {
  536. return hwkhz(hw) * usec / 1000;
  537. }
  538. static int skge_get_coalesce(struct net_device *dev,
  539. struct ethtool_coalesce *ecmd)
  540. {
  541. struct skge_port *skge = netdev_priv(dev);
  542. struct skge_hw *hw = skge->hw;
  543. int port = skge->port;
  544. ecmd->rx_coalesce_usecs = 0;
  545. ecmd->tx_coalesce_usecs = 0;
  546. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  547. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  548. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  549. if (msk & rxirqmask[port])
  550. ecmd->rx_coalesce_usecs = delay;
  551. if (msk & txirqmask[port])
  552. ecmd->tx_coalesce_usecs = delay;
  553. }
  554. return 0;
  555. }
  556. /* Note: interrupt timer is per board, but can turn on/off per port */
  557. static int skge_set_coalesce(struct net_device *dev,
  558. struct ethtool_coalesce *ecmd)
  559. {
  560. struct skge_port *skge = netdev_priv(dev);
  561. struct skge_hw *hw = skge->hw;
  562. int port = skge->port;
  563. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  564. u32 delay = 25;
  565. if (ecmd->rx_coalesce_usecs == 0)
  566. msk &= ~rxirqmask[port];
  567. else if (ecmd->rx_coalesce_usecs < 25 ||
  568. ecmd->rx_coalesce_usecs > 33333)
  569. return -EINVAL;
  570. else {
  571. msk |= rxirqmask[port];
  572. delay = ecmd->rx_coalesce_usecs;
  573. }
  574. if (ecmd->tx_coalesce_usecs == 0)
  575. msk &= ~txirqmask[port];
  576. else if (ecmd->tx_coalesce_usecs < 25 ||
  577. ecmd->tx_coalesce_usecs > 33333)
  578. return -EINVAL;
  579. else {
  580. msk |= txirqmask[port];
  581. delay = min(delay, ecmd->rx_coalesce_usecs);
  582. }
  583. skge_write32(hw, B2_IRQM_MSK, msk);
  584. if (msk == 0)
  585. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  586. else {
  587. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  588. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  589. }
  590. return 0;
  591. }
  592. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  593. static void skge_led(struct skge_port *skge, enum led_mode mode)
  594. {
  595. struct skge_hw *hw = skge->hw;
  596. int port = skge->port;
  597. spin_lock_bh(&hw->phy_lock);
  598. if (hw->chip_id == CHIP_ID_GENESIS) {
  599. switch (mode) {
  600. case LED_MODE_OFF:
  601. if (hw->phy_type == SK_PHY_BCOM)
  602. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  603. else {
  604. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  605. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  606. }
  607. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  608. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  609. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  610. break;
  611. case LED_MODE_ON:
  612. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  613. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  614. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  615. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  616. break;
  617. case LED_MODE_TST:
  618. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  619. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  620. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  621. if (hw->phy_type == SK_PHY_BCOM)
  622. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  623. else {
  624. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  625. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  626. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  627. }
  628. }
  629. } else {
  630. switch (mode) {
  631. case LED_MODE_OFF:
  632. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  633. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  634. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  635. PHY_M_LED_MO_10(MO_LED_OFF) |
  636. PHY_M_LED_MO_100(MO_LED_OFF) |
  637. PHY_M_LED_MO_1000(MO_LED_OFF) |
  638. PHY_M_LED_MO_RX(MO_LED_OFF));
  639. break;
  640. case LED_MODE_ON:
  641. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  642. PHY_M_LED_PULS_DUR(PULS_170MS) |
  643. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  644. PHY_M_LEDC_TX_CTRL |
  645. PHY_M_LEDC_DP_CTRL);
  646. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  647. PHY_M_LED_MO_RX(MO_LED_OFF) |
  648. (skge->speed == SPEED_100 ?
  649. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  650. break;
  651. case LED_MODE_TST:
  652. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  653. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  654. PHY_M_LED_MO_DUP(MO_LED_ON) |
  655. PHY_M_LED_MO_10(MO_LED_ON) |
  656. PHY_M_LED_MO_100(MO_LED_ON) |
  657. PHY_M_LED_MO_1000(MO_LED_ON) |
  658. PHY_M_LED_MO_RX(MO_LED_ON));
  659. }
  660. }
  661. spin_unlock_bh(&hw->phy_lock);
  662. }
  663. /* blink LED's for finding board */
  664. static int skge_phys_id(struct net_device *dev, u32 data)
  665. {
  666. struct skge_port *skge = netdev_priv(dev);
  667. unsigned long ms;
  668. enum led_mode mode = LED_MODE_TST;
  669. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  670. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  671. else
  672. ms = data * 1000;
  673. while (ms > 0) {
  674. skge_led(skge, mode);
  675. mode ^= LED_MODE_TST;
  676. if (msleep_interruptible(BLINK_MS))
  677. break;
  678. ms -= BLINK_MS;
  679. }
  680. /* back to regular LED state */
  681. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  682. return 0;
  683. }
  684. static int skge_get_eeprom_len(struct net_device *dev)
  685. {
  686. struct skge_port *skge = netdev_priv(dev);
  687. u32 reg2;
  688. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  689. return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  690. }
  691. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  692. {
  693. u32 val;
  694. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  695. do {
  696. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  697. } while (!(offset & PCI_VPD_ADDR_F));
  698. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  699. return val;
  700. }
  701. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  702. {
  703. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  704. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  705. offset | PCI_VPD_ADDR_F);
  706. do {
  707. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  708. } while (offset & PCI_VPD_ADDR_F);
  709. }
  710. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  711. u8 *data)
  712. {
  713. struct skge_port *skge = netdev_priv(dev);
  714. struct pci_dev *pdev = skge->hw->pdev;
  715. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  716. int length = eeprom->len;
  717. u16 offset = eeprom->offset;
  718. if (!cap)
  719. return -EINVAL;
  720. eeprom->magic = SKGE_EEPROM_MAGIC;
  721. while (length > 0) {
  722. u32 val = skge_vpd_read(pdev, cap, offset);
  723. int n = min_t(int, length, sizeof(val));
  724. memcpy(data, &val, n);
  725. length -= n;
  726. data += n;
  727. offset += n;
  728. }
  729. return 0;
  730. }
  731. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  732. u8 *data)
  733. {
  734. struct skge_port *skge = netdev_priv(dev);
  735. struct pci_dev *pdev = skge->hw->pdev;
  736. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  737. int length = eeprom->len;
  738. u16 offset = eeprom->offset;
  739. if (!cap)
  740. return -EINVAL;
  741. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  742. return -EINVAL;
  743. while (length > 0) {
  744. u32 val;
  745. int n = min_t(int, length, sizeof(val));
  746. if (n < sizeof(val))
  747. val = skge_vpd_read(pdev, cap, offset);
  748. memcpy(&val, data, n);
  749. skge_vpd_write(pdev, cap, offset, val);
  750. length -= n;
  751. data += n;
  752. offset += n;
  753. }
  754. return 0;
  755. }
  756. static const struct ethtool_ops skge_ethtool_ops = {
  757. .get_settings = skge_get_settings,
  758. .set_settings = skge_set_settings,
  759. .get_drvinfo = skge_get_drvinfo,
  760. .get_regs_len = skge_get_regs_len,
  761. .get_regs = skge_get_regs,
  762. .get_wol = skge_get_wol,
  763. .set_wol = skge_set_wol,
  764. .get_msglevel = skge_get_msglevel,
  765. .set_msglevel = skge_set_msglevel,
  766. .nway_reset = skge_nway_reset,
  767. .get_link = ethtool_op_get_link,
  768. .get_eeprom_len = skge_get_eeprom_len,
  769. .get_eeprom = skge_get_eeprom,
  770. .set_eeprom = skge_set_eeprom,
  771. .get_ringparam = skge_get_ring_param,
  772. .set_ringparam = skge_set_ring_param,
  773. .get_pauseparam = skge_get_pauseparam,
  774. .set_pauseparam = skge_set_pauseparam,
  775. .get_coalesce = skge_get_coalesce,
  776. .set_coalesce = skge_set_coalesce,
  777. .set_sg = skge_set_sg,
  778. .set_tx_csum = skge_set_tx_csum,
  779. .get_rx_csum = skge_get_rx_csum,
  780. .set_rx_csum = skge_set_rx_csum,
  781. .get_strings = skge_get_strings,
  782. .phys_id = skge_phys_id,
  783. .get_sset_count = skge_get_sset_count,
  784. .get_ethtool_stats = skge_get_ethtool_stats,
  785. };
  786. /*
  787. * Allocate ring elements and chain them together
  788. * One-to-one association of board descriptors with ring elements
  789. */
  790. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  791. {
  792. struct skge_tx_desc *d;
  793. struct skge_element *e;
  794. int i;
  795. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  796. if (!ring->start)
  797. return -ENOMEM;
  798. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  799. e->desc = d;
  800. if (i == ring->count - 1) {
  801. e->next = ring->start;
  802. d->next_offset = base;
  803. } else {
  804. e->next = e + 1;
  805. d->next_offset = base + (i+1) * sizeof(*d);
  806. }
  807. }
  808. ring->to_use = ring->to_clean = ring->start;
  809. return 0;
  810. }
  811. /* Allocate and setup a new buffer for receiving */
  812. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  813. struct sk_buff *skb, unsigned int bufsize)
  814. {
  815. struct skge_rx_desc *rd = e->desc;
  816. u64 map;
  817. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  818. PCI_DMA_FROMDEVICE);
  819. rd->dma_lo = map;
  820. rd->dma_hi = map >> 32;
  821. e->skb = skb;
  822. rd->csum1_start = ETH_HLEN;
  823. rd->csum2_start = ETH_HLEN;
  824. rd->csum1 = 0;
  825. rd->csum2 = 0;
  826. wmb();
  827. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  828. pci_unmap_addr_set(e, mapaddr, map);
  829. pci_unmap_len_set(e, maplen, bufsize);
  830. }
  831. /* Resume receiving using existing skb,
  832. * Note: DMA address is not changed by chip.
  833. * MTU not changed while receiver active.
  834. */
  835. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  836. {
  837. struct skge_rx_desc *rd = e->desc;
  838. rd->csum2 = 0;
  839. rd->csum2_start = ETH_HLEN;
  840. wmb();
  841. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  842. }
  843. /* Free all buffers in receive ring, assumes receiver stopped */
  844. static void skge_rx_clean(struct skge_port *skge)
  845. {
  846. struct skge_hw *hw = skge->hw;
  847. struct skge_ring *ring = &skge->rx_ring;
  848. struct skge_element *e;
  849. e = ring->start;
  850. do {
  851. struct skge_rx_desc *rd = e->desc;
  852. rd->control = 0;
  853. if (e->skb) {
  854. pci_unmap_single(hw->pdev,
  855. pci_unmap_addr(e, mapaddr),
  856. pci_unmap_len(e, maplen),
  857. PCI_DMA_FROMDEVICE);
  858. dev_kfree_skb(e->skb);
  859. e->skb = NULL;
  860. }
  861. } while ((e = e->next) != ring->start);
  862. }
  863. /* Allocate buffers for receive ring
  864. * For receive: to_clean is next received frame.
  865. */
  866. static int skge_rx_fill(struct net_device *dev)
  867. {
  868. struct skge_port *skge = netdev_priv(dev);
  869. struct skge_ring *ring = &skge->rx_ring;
  870. struct skge_element *e;
  871. e = ring->start;
  872. do {
  873. struct sk_buff *skb;
  874. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  875. GFP_KERNEL);
  876. if (!skb)
  877. return -ENOMEM;
  878. skb_reserve(skb, NET_IP_ALIGN);
  879. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  880. } while ( (e = e->next) != ring->start);
  881. ring->to_clean = ring->start;
  882. return 0;
  883. }
  884. static const char *skge_pause(enum pause_status status)
  885. {
  886. switch(status) {
  887. case FLOW_STAT_NONE:
  888. return "none";
  889. case FLOW_STAT_REM_SEND:
  890. return "rx only";
  891. case FLOW_STAT_LOC_SEND:
  892. return "tx_only";
  893. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  894. return "both";
  895. default:
  896. return "indeterminated";
  897. }
  898. }
  899. static void skge_link_up(struct skge_port *skge)
  900. {
  901. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  902. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  903. netif_carrier_on(skge->netdev);
  904. netif_wake_queue(skge->netdev);
  905. if (netif_msg_link(skge)) {
  906. printk(KERN_INFO PFX
  907. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  908. skge->netdev->name, skge->speed,
  909. skge->duplex == DUPLEX_FULL ? "full" : "half",
  910. skge_pause(skge->flow_status));
  911. }
  912. }
  913. static void skge_link_down(struct skge_port *skge)
  914. {
  915. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  916. netif_carrier_off(skge->netdev);
  917. netif_stop_queue(skge->netdev);
  918. if (netif_msg_link(skge))
  919. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  920. }
  921. static void xm_link_down(struct skge_hw *hw, int port)
  922. {
  923. struct net_device *dev = hw->dev[port];
  924. struct skge_port *skge = netdev_priv(dev);
  925. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  926. if (netif_carrier_ok(dev))
  927. skge_link_down(skge);
  928. }
  929. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  930. {
  931. int i;
  932. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  933. *val = xm_read16(hw, port, XM_PHY_DATA);
  934. if (hw->phy_type == SK_PHY_XMAC)
  935. goto ready;
  936. for (i = 0; i < PHY_RETRIES; i++) {
  937. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  938. goto ready;
  939. udelay(1);
  940. }
  941. return -ETIMEDOUT;
  942. ready:
  943. *val = xm_read16(hw, port, XM_PHY_DATA);
  944. return 0;
  945. }
  946. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  947. {
  948. u16 v = 0;
  949. if (__xm_phy_read(hw, port, reg, &v))
  950. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  951. hw->dev[port]->name);
  952. return v;
  953. }
  954. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  955. {
  956. int i;
  957. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  958. for (i = 0; i < PHY_RETRIES; i++) {
  959. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  960. goto ready;
  961. udelay(1);
  962. }
  963. return -EIO;
  964. ready:
  965. xm_write16(hw, port, XM_PHY_DATA, val);
  966. for (i = 0; i < PHY_RETRIES; i++) {
  967. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  968. return 0;
  969. udelay(1);
  970. }
  971. return -ETIMEDOUT;
  972. }
  973. static void genesis_init(struct skge_hw *hw)
  974. {
  975. /* set blink source counter */
  976. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  977. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  978. /* configure mac arbiter */
  979. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  980. /* configure mac arbiter timeout values */
  981. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  982. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  983. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  984. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  985. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  986. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  987. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  988. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  989. /* configure packet arbiter timeout */
  990. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  991. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  992. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  993. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  994. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  995. }
  996. static void genesis_reset(struct skge_hw *hw, int port)
  997. {
  998. const u8 zero[8] = { 0 };
  999. u32 reg;
  1000. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1001. /* reset the statistics module */
  1002. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  1003. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  1004. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  1005. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  1006. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  1007. /* disable Broadcom PHY IRQ */
  1008. if (hw->phy_type == SK_PHY_BCOM)
  1009. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  1010. xm_outhash(hw, port, XM_HSM, zero);
  1011. /* Flush TX and RX fifo */
  1012. reg = xm_read32(hw, port, XM_MODE);
  1013. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  1014. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  1015. }
  1016. /* Convert mode to MII values */
  1017. static const u16 phy_pause_map[] = {
  1018. [FLOW_MODE_NONE] = 0,
  1019. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  1020. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  1021. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  1022. };
  1023. /* special defines for FIBER (88E1011S only) */
  1024. static const u16 fiber_pause_map[] = {
  1025. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  1026. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  1027. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  1028. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  1029. };
  1030. /* Check status of Broadcom phy link */
  1031. static void bcom_check_link(struct skge_hw *hw, int port)
  1032. {
  1033. struct net_device *dev = hw->dev[port];
  1034. struct skge_port *skge = netdev_priv(dev);
  1035. u16 status;
  1036. /* read twice because of latch */
  1037. xm_phy_read(hw, port, PHY_BCOM_STAT);
  1038. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1039. if ((status & PHY_ST_LSYNC) == 0) {
  1040. xm_link_down(hw, port);
  1041. return;
  1042. }
  1043. if (skge->autoneg == AUTONEG_ENABLE) {
  1044. u16 lpa, aux;
  1045. if (!(status & PHY_ST_AN_OVER))
  1046. return;
  1047. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1048. if (lpa & PHY_B_AN_RF) {
  1049. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1050. dev->name);
  1051. return;
  1052. }
  1053. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1054. /* Check Duplex mismatch */
  1055. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1056. case PHY_B_RES_1000FD:
  1057. skge->duplex = DUPLEX_FULL;
  1058. break;
  1059. case PHY_B_RES_1000HD:
  1060. skge->duplex = DUPLEX_HALF;
  1061. break;
  1062. default:
  1063. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1064. dev->name);
  1065. return;
  1066. }
  1067. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1068. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1069. case PHY_B_AS_PAUSE_MSK:
  1070. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1071. break;
  1072. case PHY_B_AS_PRR:
  1073. skge->flow_status = FLOW_STAT_REM_SEND;
  1074. break;
  1075. case PHY_B_AS_PRT:
  1076. skge->flow_status = FLOW_STAT_LOC_SEND;
  1077. break;
  1078. default:
  1079. skge->flow_status = FLOW_STAT_NONE;
  1080. }
  1081. skge->speed = SPEED_1000;
  1082. }
  1083. if (!netif_carrier_ok(dev))
  1084. genesis_link_up(skge);
  1085. }
  1086. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1087. * Phy on for 100 or 10Mbit operation
  1088. */
  1089. static void bcom_phy_init(struct skge_port *skge)
  1090. {
  1091. struct skge_hw *hw = skge->hw;
  1092. int port = skge->port;
  1093. int i;
  1094. u16 id1, r, ext, ctl;
  1095. /* magic workaround patterns for Broadcom */
  1096. static const struct {
  1097. u16 reg;
  1098. u16 val;
  1099. } A1hack[] = {
  1100. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1101. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1102. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1103. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1104. }, C0hack[] = {
  1105. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1106. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1107. };
  1108. /* read Id from external PHY (all have the same address) */
  1109. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1110. /* Optimize MDIO transfer by suppressing preamble. */
  1111. r = xm_read16(hw, port, XM_MMU_CMD);
  1112. r |= XM_MMU_NO_PRE;
  1113. xm_write16(hw, port, XM_MMU_CMD,r);
  1114. switch (id1) {
  1115. case PHY_BCOM_ID1_C0:
  1116. /*
  1117. * Workaround BCOM Errata for the C0 type.
  1118. * Write magic patterns to reserved registers.
  1119. */
  1120. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1121. xm_phy_write(hw, port,
  1122. C0hack[i].reg, C0hack[i].val);
  1123. break;
  1124. case PHY_BCOM_ID1_A1:
  1125. /*
  1126. * Workaround BCOM Errata for the A1 type.
  1127. * Write magic patterns to reserved registers.
  1128. */
  1129. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1130. xm_phy_write(hw, port,
  1131. A1hack[i].reg, A1hack[i].val);
  1132. break;
  1133. }
  1134. /*
  1135. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1136. * Disable Power Management after reset.
  1137. */
  1138. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1139. r |= PHY_B_AC_DIS_PM;
  1140. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1141. /* Dummy read */
  1142. xm_read16(hw, port, XM_ISRC);
  1143. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1144. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1145. if (skge->autoneg == AUTONEG_ENABLE) {
  1146. /*
  1147. * Workaround BCOM Errata #1 for the C5 type.
  1148. * 1000Base-T Link Acquisition Failure in Slave Mode
  1149. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1150. */
  1151. u16 adv = PHY_B_1000C_RD;
  1152. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1153. adv |= PHY_B_1000C_AHD;
  1154. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1155. adv |= PHY_B_1000C_AFD;
  1156. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1157. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1158. } else {
  1159. if (skge->duplex == DUPLEX_FULL)
  1160. ctl |= PHY_CT_DUP_MD;
  1161. /* Force to slave */
  1162. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1163. }
  1164. /* Set autonegotiation pause parameters */
  1165. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1166. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1167. /* Handle Jumbo frames */
  1168. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1169. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1170. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1171. ext |= PHY_B_PEC_HIGH_LA;
  1172. }
  1173. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1174. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1175. /* Use link status change interrupt */
  1176. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1177. }
  1178. static void xm_phy_init(struct skge_port *skge)
  1179. {
  1180. struct skge_hw *hw = skge->hw;
  1181. int port = skge->port;
  1182. u16 ctrl = 0;
  1183. if (skge->autoneg == AUTONEG_ENABLE) {
  1184. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1185. ctrl |= PHY_X_AN_HD;
  1186. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1187. ctrl |= PHY_X_AN_FD;
  1188. ctrl |= fiber_pause_map[skge->flow_control];
  1189. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1190. /* Restart Auto-negotiation */
  1191. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1192. } else {
  1193. /* Set DuplexMode in Config register */
  1194. if (skge->duplex == DUPLEX_FULL)
  1195. ctrl |= PHY_CT_DUP_MD;
  1196. /*
  1197. * Do NOT enable Auto-negotiation here. This would hold
  1198. * the link down because no IDLEs are transmitted
  1199. */
  1200. }
  1201. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1202. /* Poll PHY for status changes */
  1203. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1204. }
  1205. static int xm_check_link(struct net_device *dev)
  1206. {
  1207. struct skge_port *skge = netdev_priv(dev);
  1208. struct skge_hw *hw = skge->hw;
  1209. int port = skge->port;
  1210. u16 status;
  1211. /* read twice because of latch */
  1212. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1213. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1214. if ((status & PHY_ST_LSYNC) == 0) {
  1215. xm_link_down(hw, port);
  1216. return 0;
  1217. }
  1218. if (skge->autoneg == AUTONEG_ENABLE) {
  1219. u16 lpa, res;
  1220. if (!(status & PHY_ST_AN_OVER))
  1221. return 0;
  1222. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1223. if (lpa & PHY_B_AN_RF) {
  1224. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1225. dev->name);
  1226. return 0;
  1227. }
  1228. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1229. /* Check Duplex mismatch */
  1230. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1231. case PHY_X_RS_FD:
  1232. skge->duplex = DUPLEX_FULL;
  1233. break;
  1234. case PHY_X_RS_HD:
  1235. skge->duplex = DUPLEX_HALF;
  1236. break;
  1237. default:
  1238. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1239. dev->name);
  1240. return 0;
  1241. }
  1242. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1243. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1244. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1245. (lpa & PHY_X_P_SYM_MD))
  1246. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1247. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1248. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1249. /* Enable PAUSE receive, disable PAUSE transmit */
  1250. skge->flow_status = FLOW_STAT_REM_SEND;
  1251. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1252. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1253. /* Disable PAUSE receive, enable PAUSE transmit */
  1254. skge->flow_status = FLOW_STAT_LOC_SEND;
  1255. else
  1256. skge->flow_status = FLOW_STAT_NONE;
  1257. skge->speed = SPEED_1000;
  1258. }
  1259. if (!netif_carrier_ok(dev))
  1260. genesis_link_up(skge);
  1261. return 1;
  1262. }
  1263. /* Poll to check for link coming up.
  1264. *
  1265. * Since internal PHY is wired to a level triggered pin, can't
  1266. * get an interrupt when carrier is detected, need to poll for
  1267. * link coming up.
  1268. */
  1269. static void xm_link_timer(unsigned long arg)
  1270. {
  1271. struct skge_port *skge = (struct skge_port *) arg;
  1272. struct net_device *dev = skge->netdev;
  1273. struct skge_hw *hw = skge->hw;
  1274. int port = skge->port;
  1275. int i;
  1276. unsigned long flags;
  1277. if (!netif_running(dev))
  1278. return;
  1279. spin_lock_irqsave(&hw->phy_lock, flags);
  1280. /*
  1281. * Verify that the link by checking GPIO register three times.
  1282. * This pin has the signal from the link_sync pin connected to it.
  1283. */
  1284. for (i = 0; i < 3; i++) {
  1285. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1286. goto link_down;
  1287. }
  1288. /* Re-enable interrupt to detect link down */
  1289. if (xm_check_link(dev)) {
  1290. u16 msk = xm_read16(hw, port, XM_IMSK);
  1291. msk &= ~XM_IS_INP_ASS;
  1292. xm_write16(hw, port, XM_IMSK, msk);
  1293. xm_read16(hw, port, XM_ISRC);
  1294. } else {
  1295. link_down:
  1296. mod_timer(&skge->link_timer,
  1297. round_jiffies(jiffies + LINK_HZ));
  1298. }
  1299. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1300. }
  1301. static void genesis_mac_init(struct skge_hw *hw, int port)
  1302. {
  1303. struct net_device *dev = hw->dev[port];
  1304. struct skge_port *skge = netdev_priv(dev);
  1305. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1306. int i;
  1307. u32 r;
  1308. const u8 zero[6] = { 0 };
  1309. for (i = 0; i < 10; i++) {
  1310. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1311. MFF_SET_MAC_RST);
  1312. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1313. goto reset_ok;
  1314. udelay(1);
  1315. }
  1316. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1317. reset_ok:
  1318. /* Unreset the XMAC. */
  1319. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1320. /*
  1321. * Perform additional initialization for external PHYs,
  1322. * namely for the 1000baseTX cards that use the XMAC's
  1323. * GMII mode.
  1324. */
  1325. if (hw->phy_type != SK_PHY_XMAC) {
  1326. /* Take external Phy out of reset */
  1327. r = skge_read32(hw, B2_GP_IO);
  1328. if (port == 0)
  1329. r |= GP_DIR_0|GP_IO_0;
  1330. else
  1331. r |= GP_DIR_2|GP_IO_2;
  1332. skge_write32(hw, B2_GP_IO, r);
  1333. /* Enable GMII interface */
  1334. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1335. }
  1336. switch(hw->phy_type) {
  1337. case SK_PHY_XMAC:
  1338. xm_phy_init(skge);
  1339. break;
  1340. case SK_PHY_BCOM:
  1341. bcom_phy_init(skge);
  1342. bcom_check_link(hw, port);
  1343. }
  1344. /* Set Station Address */
  1345. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1346. /* We don't use match addresses so clear */
  1347. for (i = 1; i < 16; i++)
  1348. xm_outaddr(hw, port, XM_EXM(i), zero);
  1349. /* Clear MIB counters */
  1350. xm_write16(hw, port, XM_STAT_CMD,
  1351. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1352. /* Clear two times according to Errata #3 */
  1353. xm_write16(hw, port, XM_STAT_CMD,
  1354. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1355. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1356. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1357. /* We don't need the FCS appended to the packet. */
  1358. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1359. if (jumbo)
  1360. r |= XM_RX_BIG_PK_OK;
  1361. if (skge->duplex == DUPLEX_HALF) {
  1362. /*
  1363. * If in manual half duplex mode the other side might be in
  1364. * full duplex mode, so ignore if a carrier extension is not seen
  1365. * on frames received
  1366. */
  1367. r |= XM_RX_DIS_CEXT;
  1368. }
  1369. xm_write16(hw, port, XM_RX_CMD, r);
  1370. /* We want short frames padded to 60 bytes. */
  1371. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1372. /* Increase threshold for jumbo frames on dual port */
  1373. if (hw->ports > 1 && jumbo)
  1374. xm_write16(hw, port, XM_TX_THR, 1020);
  1375. else
  1376. xm_write16(hw, port, XM_TX_THR, 512);
  1377. /*
  1378. * Enable the reception of all error frames. This is is
  1379. * a necessary evil due to the design of the XMAC. The
  1380. * XMAC's receive FIFO is only 8K in size, however jumbo
  1381. * frames can be up to 9000 bytes in length. When bad
  1382. * frame filtering is enabled, the XMAC's RX FIFO operates
  1383. * in 'store and forward' mode. For this to work, the
  1384. * entire frame has to fit into the FIFO, but that means
  1385. * that jumbo frames larger than 8192 bytes will be
  1386. * truncated. Disabling all bad frame filtering causes
  1387. * the RX FIFO to operate in streaming mode, in which
  1388. * case the XMAC will start transferring frames out of the
  1389. * RX FIFO as soon as the FIFO threshold is reached.
  1390. */
  1391. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1392. /*
  1393. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1394. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1395. * and 'Octets Rx OK Hi Cnt Ov'.
  1396. */
  1397. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1398. /*
  1399. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1400. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1401. * and 'Octets Tx OK Hi Cnt Ov'.
  1402. */
  1403. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1404. /* Configure MAC arbiter */
  1405. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1406. /* configure timeout values */
  1407. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1408. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1409. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1410. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1411. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1412. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1413. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1414. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1415. /* Configure Rx MAC FIFO */
  1416. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1417. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1418. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1419. /* Configure Tx MAC FIFO */
  1420. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1421. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1422. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1423. if (jumbo) {
  1424. /* Enable frame flushing if jumbo frames used */
  1425. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1426. } else {
  1427. /* enable timeout timers if normal frames */
  1428. skge_write16(hw, B3_PA_CTRL,
  1429. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1430. }
  1431. }
  1432. static void genesis_stop(struct skge_port *skge)
  1433. {
  1434. struct skge_hw *hw = skge->hw;
  1435. int port = skge->port;
  1436. unsigned retries = 1000;
  1437. u16 cmd;
  1438. /* Disable Tx and Rx */
  1439. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1440. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1441. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1442. genesis_reset(hw, port);
  1443. /* Clear Tx packet arbiter timeout IRQ */
  1444. skge_write16(hw, B3_PA_CTRL,
  1445. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1446. /* Reset the MAC */
  1447. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1448. do {
  1449. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1450. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  1451. break;
  1452. } while (--retries > 0);
  1453. /* For external PHYs there must be special handling */
  1454. if (hw->phy_type != SK_PHY_XMAC) {
  1455. u32 reg = skge_read32(hw, B2_GP_IO);
  1456. if (port == 0) {
  1457. reg |= GP_DIR_0;
  1458. reg &= ~GP_IO_0;
  1459. } else {
  1460. reg |= GP_DIR_2;
  1461. reg &= ~GP_IO_2;
  1462. }
  1463. skge_write32(hw, B2_GP_IO, reg);
  1464. skge_read32(hw, B2_GP_IO);
  1465. }
  1466. xm_write16(hw, port, XM_MMU_CMD,
  1467. xm_read16(hw, port, XM_MMU_CMD)
  1468. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1469. xm_read16(hw, port, XM_MMU_CMD);
  1470. }
  1471. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1472. {
  1473. struct skge_hw *hw = skge->hw;
  1474. int port = skge->port;
  1475. int i;
  1476. unsigned long timeout = jiffies + HZ;
  1477. xm_write16(hw, port,
  1478. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1479. /* wait for update to complete */
  1480. while (xm_read16(hw, port, XM_STAT_CMD)
  1481. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1482. if (time_after(jiffies, timeout))
  1483. break;
  1484. udelay(10);
  1485. }
  1486. /* special case for 64 bit octet counter */
  1487. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1488. | xm_read32(hw, port, XM_TXO_OK_LO);
  1489. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1490. | xm_read32(hw, port, XM_RXO_OK_LO);
  1491. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1492. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1493. }
  1494. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1495. {
  1496. struct net_device *dev = hw->dev[port];
  1497. struct skge_port *skge = netdev_priv(dev);
  1498. u16 status = xm_read16(hw, port, XM_ISRC);
  1499. if (netif_msg_intr(skge))
  1500. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1501. dev->name, status);
  1502. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1503. xm_link_down(hw, port);
  1504. mod_timer(&skge->link_timer, jiffies + 1);
  1505. }
  1506. if (status & XM_IS_TXF_UR) {
  1507. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1508. ++dev->stats.tx_fifo_errors;
  1509. }
  1510. }
  1511. static void genesis_link_up(struct skge_port *skge)
  1512. {
  1513. struct skge_hw *hw = skge->hw;
  1514. int port = skge->port;
  1515. u16 cmd, msk;
  1516. u32 mode;
  1517. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1518. /*
  1519. * enabling pause frame reception is required for 1000BT
  1520. * because the XMAC is not reset if the link is going down
  1521. */
  1522. if (skge->flow_status == FLOW_STAT_NONE ||
  1523. skge->flow_status == FLOW_STAT_LOC_SEND)
  1524. /* Disable Pause Frame Reception */
  1525. cmd |= XM_MMU_IGN_PF;
  1526. else
  1527. /* Enable Pause Frame Reception */
  1528. cmd &= ~XM_MMU_IGN_PF;
  1529. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1530. mode = xm_read32(hw, port, XM_MODE);
  1531. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  1532. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1533. /*
  1534. * Configure Pause Frame Generation
  1535. * Use internal and external Pause Frame Generation.
  1536. * Sending pause frames is edge triggered.
  1537. * Send a Pause frame with the maximum pause time if
  1538. * internal oder external FIFO full condition occurs.
  1539. * Send a zero pause time frame to re-start transmission.
  1540. */
  1541. /* XM_PAUSE_DA = '010000C28001' (default) */
  1542. /* XM_MAC_PTIME = 0xffff (maximum) */
  1543. /* remember this value is defined in big endian (!) */
  1544. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1545. mode |= XM_PAUSE_MODE;
  1546. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1547. } else {
  1548. /*
  1549. * disable pause frame generation is required for 1000BT
  1550. * because the XMAC is not reset if the link is going down
  1551. */
  1552. /* Disable Pause Mode in Mode Register */
  1553. mode &= ~XM_PAUSE_MODE;
  1554. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1555. }
  1556. xm_write32(hw, port, XM_MODE, mode);
  1557. /* Turn on detection of Tx underrun */
  1558. msk = xm_read16(hw, port, XM_IMSK);
  1559. msk &= ~XM_IS_TXF_UR;
  1560. xm_write16(hw, port, XM_IMSK, msk);
  1561. xm_read16(hw, port, XM_ISRC);
  1562. /* get MMU Command Reg. */
  1563. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1564. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1565. cmd |= XM_MMU_GMII_FD;
  1566. /*
  1567. * Workaround BCOM Errata (#10523) for all BCom Phys
  1568. * Enable Power Management after link up
  1569. */
  1570. if (hw->phy_type == SK_PHY_BCOM) {
  1571. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1572. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1573. & ~PHY_B_AC_DIS_PM);
  1574. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1575. }
  1576. /* enable Rx/Tx */
  1577. xm_write16(hw, port, XM_MMU_CMD,
  1578. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1579. skge_link_up(skge);
  1580. }
  1581. static inline void bcom_phy_intr(struct skge_port *skge)
  1582. {
  1583. struct skge_hw *hw = skge->hw;
  1584. int port = skge->port;
  1585. u16 isrc;
  1586. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1587. if (netif_msg_intr(skge))
  1588. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1589. skge->netdev->name, isrc);
  1590. if (isrc & PHY_B_IS_PSE)
  1591. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1592. hw->dev[port]->name);
  1593. /* Workaround BCom Errata:
  1594. * enable and disable loopback mode if "NO HCD" occurs.
  1595. */
  1596. if (isrc & PHY_B_IS_NO_HDCL) {
  1597. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1598. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1599. ctrl | PHY_CT_LOOP);
  1600. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1601. ctrl & ~PHY_CT_LOOP);
  1602. }
  1603. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1604. bcom_check_link(hw, port);
  1605. }
  1606. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1607. {
  1608. int i;
  1609. gma_write16(hw, port, GM_SMI_DATA, val);
  1610. gma_write16(hw, port, GM_SMI_CTRL,
  1611. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1612. for (i = 0; i < PHY_RETRIES; i++) {
  1613. udelay(1);
  1614. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1615. return 0;
  1616. }
  1617. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1618. hw->dev[port]->name);
  1619. return -EIO;
  1620. }
  1621. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1622. {
  1623. int i;
  1624. gma_write16(hw, port, GM_SMI_CTRL,
  1625. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1626. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1627. for (i = 0; i < PHY_RETRIES; i++) {
  1628. udelay(1);
  1629. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1630. goto ready;
  1631. }
  1632. return -ETIMEDOUT;
  1633. ready:
  1634. *val = gma_read16(hw, port, GM_SMI_DATA);
  1635. return 0;
  1636. }
  1637. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1638. {
  1639. u16 v = 0;
  1640. if (__gm_phy_read(hw, port, reg, &v))
  1641. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1642. hw->dev[port]->name);
  1643. return v;
  1644. }
  1645. /* Marvell Phy Initialization */
  1646. static void yukon_init(struct skge_hw *hw, int port)
  1647. {
  1648. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1649. u16 ctrl, ct1000, adv;
  1650. if (skge->autoneg == AUTONEG_ENABLE) {
  1651. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1652. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1653. PHY_M_EC_MAC_S_MSK);
  1654. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1655. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1656. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1657. }
  1658. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1659. if (skge->autoneg == AUTONEG_DISABLE)
  1660. ctrl &= ~PHY_CT_ANE;
  1661. ctrl |= PHY_CT_RESET;
  1662. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1663. ctrl = 0;
  1664. ct1000 = 0;
  1665. adv = PHY_AN_CSMA;
  1666. if (skge->autoneg == AUTONEG_ENABLE) {
  1667. if (hw->copper) {
  1668. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1669. ct1000 |= PHY_M_1000C_AFD;
  1670. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1671. ct1000 |= PHY_M_1000C_AHD;
  1672. if (skge->advertising & ADVERTISED_100baseT_Full)
  1673. adv |= PHY_M_AN_100_FD;
  1674. if (skge->advertising & ADVERTISED_100baseT_Half)
  1675. adv |= PHY_M_AN_100_HD;
  1676. if (skge->advertising & ADVERTISED_10baseT_Full)
  1677. adv |= PHY_M_AN_10_FD;
  1678. if (skge->advertising & ADVERTISED_10baseT_Half)
  1679. adv |= PHY_M_AN_10_HD;
  1680. /* Set Flow-control capabilities */
  1681. adv |= phy_pause_map[skge->flow_control];
  1682. } else {
  1683. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1684. adv |= PHY_M_AN_1000X_AFD;
  1685. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1686. adv |= PHY_M_AN_1000X_AHD;
  1687. adv |= fiber_pause_map[skge->flow_control];
  1688. }
  1689. /* Restart Auto-negotiation */
  1690. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1691. } else {
  1692. /* forced speed/duplex settings */
  1693. ct1000 = PHY_M_1000C_MSE;
  1694. if (skge->duplex == DUPLEX_FULL)
  1695. ctrl |= PHY_CT_DUP_MD;
  1696. switch (skge->speed) {
  1697. case SPEED_1000:
  1698. ctrl |= PHY_CT_SP1000;
  1699. break;
  1700. case SPEED_100:
  1701. ctrl |= PHY_CT_SP100;
  1702. break;
  1703. }
  1704. ctrl |= PHY_CT_RESET;
  1705. }
  1706. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1707. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1708. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1709. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1710. if (skge->autoneg == AUTONEG_ENABLE)
  1711. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1712. else
  1713. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1714. }
  1715. static void yukon_reset(struct skge_hw *hw, int port)
  1716. {
  1717. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1718. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1719. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1720. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1721. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1722. gma_write16(hw, port, GM_RX_CTRL,
  1723. gma_read16(hw, port, GM_RX_CTRL)
  1724. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1725. }
  1726. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1727. static int is_yukon_lite_a0(struct skge_hw *hw)
  1728. {
  1729. u32 reg;
  1730. int ret;
  1731. if (hw->chip_id != CHIP_ID_YUKON)
  1732. return 0;
  1733. reg = skge_read32(hw, B2_FAR);
  1734. skge_write8(hw, B2_FAR + 3, 0xff);
  1735. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1736. skge_write32(hw, B2_FAR, reg);
  1737. return ret;
  1738. }
  1739. static void yukon_mac_init(struct skge_hw *hw, int port)
  1740. {
  1741. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1742. int i;
  1743. u32 reg;
  1744. const u8 *addr = hw->dev[port]->dev_addr;
  1745. /* WA code for COMA mode -- set PHY reset */
  1746. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1747. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1748. reg = skge_read32(hw, B2_GP_IO);
  1749. reg |= GP_DIR_9 | GP_IO_9;
  1750. skge_write32(hw, B2_GP_IO, reg);
  1751. }
  1752. /* hard reset */
  1753. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1754. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1755. /* WA code for COMA mode -- clear PHY reset */
  1756. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1757. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1758. reg = skge_read32(hw, B2_GP_IO);
  1759. reg |= GP_DIR_9;
  1760. reg &= ~GP_IO_9;
  1761. skge_write32(hw, B2_GP_IO, reg);
  1762. }
  1763. /* Set hardware config mode */
  1764. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1765. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1766. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1767. /* Clear GMC reset */
  1768. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1769. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1770. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1771. if (skge->autoneg == AUTONEG_DISABLE) {
  1772. reg = GM_GPCR_AU_ALL_DIS;
  1773. gma_write16(hw, port, GM_GP_CTRL,
  1774. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1775. switch (skge->speed) {
  1776. case SPEED_1000:
  1777. reg &= ~GM_GPCR_SPEED_100;
  1778. reg |= GM_GPCR_SPEED_1000;
  1779. break;
  1780. case SPEED_100:
  1781. reg &= ~GM_GPCR_SPEED_1000;
  1782. reg |= GM_GPCR_SPEED_100;
  1783. break;
  1784. case SPEED_10:
  1785. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1786. break;
  1787. }
  1788. if (skge->duplex == DUPLEX_FULL)
  1789. reg |= GM_GPCR_DUP_FULL;
  1790. } else
  1791. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1792. switch (skge->flow_control) {
  1793. case FLOW_MODE_NONE:
  1794. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1795. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1796. break;
  1797. case FLOW_MODE_LOC_SEND:
  1798. /* disable Rx flow-control */
  1799. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1800. break;
  1801. case FLOW_MODE_SYMMETRIC:
  1802. case FLOW_MODE_SYM_OR_REM:
  1803. /* enable Tx & Rx flow-control */
  1804. break;
  1805. }
  1806. gma_write16(hw, port, GM_GP_CTRL, reg);
  1807. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1808. yukon_init(hw, port);
  1809. /* MIB clear */
  1810. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1811. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1812. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1813. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1814. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1815. /* transmit control */
  1816. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1817. /* receive control reg: unicast + multicast + no FCS */
  1818. gma_write16(hw, port, GM_RX_CTRL,
  1819. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1820. /* transmit flow control */
  1821. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1822. /* transmit parameter */
  1823. gma_write16(hw, port, GM_TX_PARAM,
  1824. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1825. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1826. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1827. /* configure the Serial Mode Register */
  1828. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1829. | GM_SMOD_VLAN_ENA
  1830. | IPG_DATA_VAL(IPG_DATA_DEF);
  1831. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1832. reg |= GM_SMOD_JUMBO_ENA;
  1833. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1834. /* physical address: used for pause frames */
  1835. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1836. /* virtual address for data */
  1837. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1838. /* enable interrupt mask for counter overflows */
  1839. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1840. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1841. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1842. /* Initialize Mac Fifo */
  1843. /* Configure Rx MAC FIFO */
  1844. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1845. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1846. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1847. if (is_yukon_lite_a0(hw))
  1848. reg &= ~GMF_RX_F_FL_ON;
  1849. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1850. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1851. /*
  1852. * because Pause Packet Truncation in GMAC is not working
  1853. * we have to increase the Flush Threshold to 64 bytes
  1854. * in order to flush pause packets in Rx FIFO on Yukon-1
  1855. */
  1856. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1857. /* Configure Tx MAC FIFO */
  1858. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1859. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1860. }
  1861. /* Go into power down mode */
  1862. static void yukon_suspend(struct skge_hw *hw, int port)
  1863. {
  1864. u16 ctrl;
  1865. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1866. ctrl |= PHY_M_PC_POL_R_DIS;
  1867. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1868. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1869. ctrl |= PHY_CT_RESET;
  1870. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1871. /* switch IEEE compatible power down mode on */
  1872. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1873. ctrl |= PHY_CT_PDOWN;
  1874. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1875. }
  1876. static void yukon_stop(struct skge_port *skge)
  1877. {
  1878. struct skge_hw *hw = skge->hw;
  1879. int port = skge->port;
  1880. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1881. yukon_reset(hw, port);
  1882. gma_write16(hw, port, GM_GP_CTRL,
  1883. gma_read16(hw, port, GM_GP_CTRL)
  1884. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1885. gma_read16(hw, port, GM_GP_CTRL);
  1886. yukon_suspend(hw, port);
  1887. /* set GPHY Control reset */
  1888. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1889. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1890. }
  1891. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1892. {
  1893. struct skge_hw *hw = skge->hw;
  1894. int port = skge->port;
  1895. int i;
  1896. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1897. | gma_read32(hw, port, GM_TXO_OK_LO);
  1898. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1899. | gma_read32(hw, port, GM_RXO_OK_LO);
  1900. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1901. data[i] = gma_read32(hw, port,
  1902. skge_stats[i].gma_offset);
  1903. }
  1904. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1905. {
  1906. struct net_device *dev = hw->dev[port];
  1907. struct skge_port *skge = netdev_priv(dev);
  1908. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1909. if (netif_msg_intr(skge))
  1910. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1911. dev->name, status);
  1912. if (status & GM_IS_RX_FF_OR) {
  1913. ++dev->stats.rx_fifo_errors;
  1914. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1915. }
  1916. if (status & GM_IS_TX_FF_UR) {
  1917. ++dev->stats.tx_fifo_errors;
  1918. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1919. }
  1920. }
  1921. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1922. {
  1923. switch (aux & PHY_M_PS_SPEED_MSK) {
  1924. case PHY_M_PS_SPEED_1000:
  1925. return SPEED_1000;
  1926. case PHY_M_PS_SPEED_100:
  1927. return SPEED_100;
  1928. default:
  1929. return SPEED_10;
  1930. }
  1931. }
  1932. static void yukon_link_up(struct skge_port *skge)
  1933. {
  1934. struct skge_hw *hw = skge->hw;
  1935. int port = skge->port;
  1936. u16 reg;
  1937. /* Enable Transmit FIFO Underrun */
  1938. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1939. reg = gma_read16(hw, port, GM_GP_CTRL);
  1940. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1941. reg |= GM_GPCR_DUP_FULL;
  1942. /* enable Rx/Tx */
  1943. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1944. gma_write16(hw, port, GM_GP_CTRL, reg);
  1945. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1946. skge_link_up(skge);
  1947. }
  1948. static void yukon_link_down(struct skge_port *skge)
  1949. {
  1950. struct skge_hw *hw = skge->hw;
  1951. int port = skge->port;
  1952. u16 ctrl;
  1953. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1954. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1955. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1956. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1957. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1958. ctrl |= PHY_M_AN_ASP;
  1959. /* restore Asymmetric Pause bit */
  1960. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1961. }
  1962. skge_link_down(skge);
  1963. yukon_init(hw, port);
  1964. }
  1965. static void yukon_phy_intr(struct skge_port *skge)
  1966. {
  1967. struct skge_hw *hw = skge->hw;
  1968. int port = skge->port;
  1969. const char *reason = NULL;
  1970. u16 istatus, phystat;
  1971. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1972. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1973. if (netif_msg_intr(skge))
  1974. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1975. skge->netdev->name, istatus, phystat);
  1976. if (istatus & PHY_M_IS_AN_COMPL) {
  1977. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1978. & PHY_M_AN_RF) {
  1979. reason = "remote fault";
  1980. goto failed;
  1981. }
  1982. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1983. reason = "master/slave fault";
  1984. goto failed;
  1985. }
  1986. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1987. reason = "speed/duplex";
  1988. goto failed;
  1989. }
  1990. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1991. ? DUPLEX_FULL : DUPLEX_HALF;
  1992. skge->speed = yukon_speed(hw, phystat);
  1993. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1994. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1995. case PHY_M_PS_PAUSE_MSK:
  1996. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1997. break;
  1998. case PHY_M_PS_RX_P_EN:
  1999. skge->flow_status = FLOW_STAT_REM_SEND;
  2000. break;
  2001. case PHY_M_PS_TX_P_EN:
  2002. skge->flow_status = FLOW_STAT_LOC_SEND;
  2003. break;
  2004. default:
  2005. skge->flow_status = FLOW_STAT_NONE;
  2006. }
  2007. if (skge->flow_status == FLOW_STAT_NONE ||
  2008. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  2009. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  2010. else
  2011. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  2012. yukon_link_up(skge);
  2013. return;
  2014. }
  2015. if (istatus & PHY_M_IS_LSP_CHANGE)
  2016. skge->speed = yukon_speed(hw, phystat);
  2017. if (istatus & PHY_M_IS_DUP_CHANGE)
  2018. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  2019. if (istatus & PHY_M_IS_LST_CHANGE) {
  2020. if (phystat & PHY_M_PS_LINK_UP)
  2021. yukon_link_up(skge);
  2022. else
  2023. yukon_link_down(skge);
  2024. }
  2025. return;
  2026. failed:
  2027. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  2028. skge->netdev->name, reason);
  2029. /* XXX restart autonegotiation? */
  2030. }
  2031. static void skge_phy_reset(struct skge_port *skge)
  2032. {
  2033. struct skge_hw *hw = skge->hw;
  2034. int port = skge->port;
  2035. struct net_device *dev = hw->dev[port];
  2036. netif_stop_queue(skge->netdev);
  2037. netif_carrier_off(skge->netdev);
  2038. spin_lock_bh(&hw->phy_lock);
  2039. if (hw->chip_id == CHIP_ID_GENESIS) {
  2040. genesis_reset(hw, port);
  2041. genesis_mac_init(hw, port);
  2042. } else {
  2043. yukon_reset(hw, port);
  2044. yukon_init(hw, port);
  2045. }
  2046. spin_unlock_bh(&hw->phy_lock);
  2047. dev->set_multicast_list(dev);
  2048. }
  2049. /* Basic MII support */
  2050. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2051. {
  2052. struct mii_ioctl_data *data = if_mii(ifr);
  2053. struct skge_port *skge = netdev_priv(dev);
  2054. struct skge_hw *hw = skge->hw;
  2055. int err = -EOPNOTSUPP;
  2056. if (!netif_running(dev))
  2057. return -ENODEV; /* Phy still in reset */
  2058. switch(cmd) {
  2059. case SIOCGMIIPHY:
  2060. data->phy_id = hw->phy_addr;
  2061. /* fallthru */
  2062. case SIOCGMIIREG: {
  2063. u16 val = 0;
  2064. spin_lock_bh(&hw->phy_lock);
  2065. if (hw->chip_id == CHIP_ID_GENESIS)
  2066. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2067. else
  2068. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2069. spin_unlock_bh(&hw->phy_lock);
  2070. data->val_out = val;
  2071. break;
  2072. }
  2073. case SIOCSMIIREG:
  2074. if (!capable(CAP_NET_ADMIN))
  2075. return -EPERM;
  2076. spin_lock_bh(&hw->phy_lock);
  2077. if (hw->chip_id == CHIP_ID_GENESIS)
  2078. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2079. data->val_in);
  2080. else
  2081. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2082. data->val_in);
  2083. spin_unlock_bh(&hw->phy_lock);
  2084. break;
  2085. }
  2086. return err;
  2087. }
  2088. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2089. {
  2090. u32 end;
  2091. start /= 8;
  2092. len /= 8;
  2093. end = start + len - 1;
  2094. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2095. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2096. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2097. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2098. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2099. if (q == Q_R1 || q == Q_R2) {
  2100. /* Set thresholds on receive queue's */
  2101. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2102. start + (2*len)/3);
  2103. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2104. start + (len/3));
  2105. } else {
  2106. /* Enable store & forward on Tx queue's because
  2107. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2108. */
  2109. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2110. }
  2111. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2112. }
  2113. /* Setup Bus Memory Interface */
  2114. static void skge_qset(struct skge_port *skge, u16 q,
  2115. const struct skge_element *e)
  2116. {
  2117. struct skge_hw *hw = skge->hw;
  2118. u32 watermark = 0x600;
  2119. u64 base = skge->dma + (e->desc - skge->mem);
  2120. /* optimization to reduce window on 32bit/33mhz */
  2121. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2122. watermark /= 2;
  2123. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2124. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2125. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2126. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2127. }
  2128. static int skge_up(struct net_device *dev)
  2129. {
  2130. struct skge_port *skge = netdev_priv(dev);
  2131. struct skge_hw *hw = skge->hw;
  2132. int port = skge->port;
  2133. u32 chunk, ram_addr;
  2134. size_t rx_size, tx_size;
  2135. int err;
  2136. if (!is_valid_ether_addr(dev->dev_addr))
  2137. return -EINVAL;
  2138. if (netif_msg_ifup(skge))
  2139. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  2140. if (dev->mtu > RX_BUF_SIZE)
  2141. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2142. else
  2143. skge->rx_buf_size = RX_BUF_SIZE;
  2144. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2145. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2146. skge->mem_size = tx_size + rx_size;
  2147. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2148. if (!skge->mem)
  2149. return -ENOMEM;
  2150. BUG_ON(skge->dma & 7);
  2151. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2152. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2153. err = -EINVAL;
  2154. goto free_pci_mem;
  2155. }
  2156. memset(skge->mem, 0, skge->mem_size);
  2157. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2158. if (err)
  2159. goto free_pci_mem;
  2160. err = skge_rx_fill(dev);
  2161. if (err)
  2162. goto free_rx_ring;
  2163. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2164. skge->dma + rx_size);
  2165. if (err)
  2166. goto free_rx_ring;
  2167. /* Initialize MAC */
  2168. spin_lock_bh(&hw->phy_lock);
  2169. if (hw->chip_id == CHIP_ID_GENESIS)
  2170. genesis_mac_init(hw, port);
  2171. else
  2172. yukon_mac_init(hw, port);
  2173. spin_unlock_bh(&hw->phy_lock);
  2174. /* Configure RAMbuffers - equally between ports and tx/rx */
  2175. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2176. ram_addr = hw->ram_offset + 2 * chunk * port;
  2177. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2178. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2179. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2180. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2181. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2182. /* Start receiver BMU */
  2183. wmb();
  2184. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2185. skge_led(skge, LED_MODE_ON);
  2186. spin_lock_irq(&hw->hw_lock);
  2187. hw->intr_mask |= portmask[port];
  2188. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2189. spin_unlock_irq(&hw->hw_lock);
  2190. napi_enable(&skge->napi);
  2191. return 0;
  2192. free_rx_ring:
  2193. skge_rx_clean(skge);
  2194. kfree(skge->rx_ring.start);
  2195. free_pci_mem:
  2196. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2197. skge->mem = NULL;
  2198. return err;
  2199. }
  2200. /* stop receiver */
  2201. static void skge_rx_stop(struct skge_hw *hw, int port)
  2202. {
  2203. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2204. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2205. RB_RST_SET|RB_DIS_OP_MD);
  2206. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2207. }
  2208. static int skge_down(struct net_device *dev)
  2209. {
  2210. struct skge_port *skge = netdev_priv(dev);
  2211. struct skge_hw *hw = skge->hw;
  2212. int port = skge->port;
  2213. if (skge->mem == NULL)
  2214. return 0;
  2215. if (netif_msg_ifdown(skge))
  2216. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2217. netif_stop_queue(dev);
  2218. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2219. del_timer_sync(&skge->link_timer);
  2220. napi_disable(&skge->napi);
  2221. netif_carrier_off(dev);
  2222. spin_lock_irq(&hw->hw_lock);
  2223. hw->intr_mask &= ~portmask[port];
  2224. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2225. spin_unlock_irq(&hw->hw_lock);
  2226. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2227. if (hw->chip_id == CHIP_ID_GENESIS)
  2228. genesis_stop(skge);
  2229. else
  2230. yukon_stop(skge);
  2231. /* Stop transmitter */
  2232. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2233. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2234. RB_RST_SET|RB_DIS_OP_MD);
  2235. /* Disable Force Sync bit and Enable Alloc bit */
  2236. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2237. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2238. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2239. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2240. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2241. /* Reset PCI FIFO */
  2242. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2243. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2244. /* Reset the RAM Buffer async Tx queue */
  2245. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2246. skge_rx_stop(hw, port);
  2247. if (hw->chip_id == CHIP_ID_GENESIS) {
  2248. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2249. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2250. } else {
  2251. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2252. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2253. }
  2254. skge_led(skge, LED_MODE_OFF);
  2255. netif_tx_lock_bh(dev);
  2256. skge_tx_clean(dev);
  2257. netif_tx_unlock_bh(dev);
  2258. skge_rx_clean(skge);
  2259. kfree(skge->rx_ring.start);
  2260. kfree(skge->tx_ring.start);
  2261. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2262. skge->mem = NULL;
  2263. return 0;
  2264. }
  2265. static inline int skge_avail(const struct skge_ring *ring)
  2266. {
  2267. smp_mb();
  2268. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2269. + (ring->to_clean - ring->to_use) - 1;
  2270. }
  2271. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2272. {
  2273. struct skge_port *skge = netdev_priv(dev);
  2274. struct skge_hw *hw = skge->hw;
  2275. struct skge_element *e;
  2276. struct skge_tx_desc *td;
  2277. int i;
  2278. u32 control, len;
  2279. u64 map;
  2280. if (skb_padto(skb, ETH_ZLEN))
  2281. return NETDEV_TX_OK;
  2282. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2283. return NETDEV_TX_BUSY;
  2284. e = skge->tx_ring.to_use;
  2285. td = e->desc;
  2286. BUG_ON(td->control & BMU_OWN);
  2287. e->skb = skb;
  2288. len = skb_headlen(skb);
  2289. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2290. pci_unmap_addr_set(e, mapaddr, map);
  2291. pci_unmap_len_set(e, maplen, len);
  2292. td->dma_lo = map;
  2293. td->dma_hi = map >> 32;
  2294. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2295. const int offset = skb_transport_offset(skb);
  2296. /* This seems backwards, but it is what the sk98lin
  2297. * does. Looks like hardware is wrong?
  2298. */
  2299. if (ipip_hdr(skb)->protocol == IPPROTO_UDP
  2300. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2301. control = BMU_TCP_CHECK;
  2302. else
  2303. control = BMU_UDP_CHECK;
  2304. td->csum_offs = 0;
  2305. td->csum_start = offset;
  2306. td->csum_write = offset + skb->csum_offset;
  2307. } else
  2308. control = BMU_CHECK;
  2309. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2310. control |= BMU_EOF| BMU_IRQ_EOF;
  2311. else {
  2312. struct skge_tx_desc *tf = td;
  2313. control |= BMU_STFWD;
  2314. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2315. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2316. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2317. frag->size, PCI_DMA_TODEVICE);
  2318. e = e->next;
  2319. e->skb = skb;
  2320. tf = e->desc;
  2321. BUG_ON(tf->control & BMU_OWN);
  2322. tf->dma_lo = map;
  2323. tf->dma_hi = (u64) map >> 32;
  2324. pci_unmap_addr_set(e, mapaddr, map);
  2325. pci_unmap_len_set(e, maplen, frag->size);
  2326. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2327. }
  2328. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2329. }
  2330. /* Make sure all the descriptors written */
  2331. wmb();
  2332. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2333. wmb();
  2334. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2335. if (unlikely(netif_msg_tx_queued(skge)))
  2336. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2337. dev->name, e - skge->tx_ring.start, skb->len);
  2338. skge->tx_ring.to_use = e->next;
  2339. smp_wmb();
  2340. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2341. pr_debug("%s: transmit queue full\n", dev->name);
  2342. netif_stop_queue(dev);
  2343. }
  2344. dev->trans_start = jiffies;
  2345. return NETDEV_TX_OK;
  2346. }
  2347. /* Free resources associated with this reing element */
  2348. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2349. u32 control)
  2350. {
  2351. struct pci_dev *pdev = skge->hw->pdev;
  2352. /* skb header vs. fragment */
  2353. if (control & BMU_STF)
  2354. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2355. pci_unmap_len(e, maplen),
  2356. PCI_DMA_TODEVICE);
  2357. else
  2358. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2359. pci_unmap_len(e, maplen),
  2360. PCI_DMA_TODEVICE);
  2361. if (control & BMU_EOF) {
  2362. if (unlikely(netif_msg_tx_done(skge)))
  2363. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2364. skge->netdev->name, e - skge->tx_ring.start);
  2365. dev_kfree_skb(e->skb);
  2366. }
  2367. }
  2368. /* Free all buffers in transmit ring */
  2369. static void skge_tx_clean(struct net_device *dev)
  2370. {
  2371. struct skge_port *skge = netdev_priv(dev);
  2372. struct skge_element *e;
  2373. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2374. struct skge_tx_desc *td = e->desc;
  2375. skge_tx_free(skge, e, td->control);
  2376. td->control = 0;
  2377. }
  2378. skge->tx_ring.to_clean = e;
  2379. netif_wake_queue(dev);
  2380. }
  2381. static void skge_tx_timeout(struct net_device *dev)
  2382. {
  2383. struct skge_port *skge = netdev_priv(dev);
  2384. if (netif_msg_timer(skge))
  2385. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2386. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2387. skge_tx_clean(dev);
  2388. }
  2389. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2390. {
  2391. int err;
  2392. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2393. return -EINVAL;
  2394. if (!netif_running(dev)) {
  2395. dev->mtu = new_mtu;
  2396. return 0;
  2397. }
  2398. skge_down(dev);
  2399. dev->mtu = new_mtu;
  2400. err = skge_up(dev);
  2401. if (err)
  2402. dev_close(dev);
  2403. return err;
  2404. }
  2405. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2406. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2407. {
  2408. u32 crc, bit;
  2409. crc = ether_crc_le(ETH_ALEN, addr);
  2410. bit = ~crc & 0x3f;
  2411. filter[bit/8] |= 1 << (bit%8);
  2412. }
  2413. static void genesis_set_multicast(struct net_device *dev)
  2414. {
  2415. struct skge_port *skge = netdev_priv(dev);
  2416. struct skge_hw *hw = skge->hw;
  2417. int port = skge->port;
  2418. int i, count = dev->mc_count;
  2419. struct dev_mc_list *list = dev->mc_list;
  2420. u32 mode;
  2421. u8 filter[8];
  2422. mode = xm_read32(hw, port, XM_MODE);
  2423. mode |= XM_MD_ENA_HASH;
  2424. if (dev->flags & IFF_PROMISC)
  2425. mode |= XM_MD_ENA_PROM;
  2426. else
  2427. mode &= ~XM_MD_ENA_PROM;
  2428. if (dev->flags & IFF_ALLMULTI)
  2429. memset(filter, 0xff, sizeof(filter));
  2430. else {
  2431. memset(filter, 0, sizeof(filter));
  2432. if (skge->flow_status == FLOW_STAT_REM_SEND
  2433. || skge->flow_status == FLOW_STAT_SYMMETRIC)
  2434. genesis_add_filter(filter, pause_mc_addr);
  2435. for (i = 0; list && i < count; i++, list = list->next)
  2436. genesis_add_filter(filter, list->dmi_addr);
  2437. }
  2438. xm_write32(hw, port, XM_MODE, mode);
  2439. xm_outhash(hw, port, XM_HSM, filter);
  2440. }
  2441. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2442. {
  2443. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2444. filter[bit/8] |= 1 << (bit%8);
  2445. }
  2446. static void yukon_set_multicast(struct net_device *dev)
  2447. {
  2448. struct skge_port *skge = netdev_priv(dev);
  2449. struct skge_hw *hw = skge->hw;
  2450. int port = skge->port;
  2451. struct dev_mc_list *list = dev->mc_list;
  2452. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
  2453. || skge->flow_status == FLOW_STAT_SYMMETRIC);
  2454. u16 reg;
  2455. u8 filter[8];
  2456. memset(filter, 0, sizeof(filter));
  2457. reg = gma_read16(hw, port, GM_RX_CTRL);
  2458. reg |= GM_RXCR_UCF_ENA;
  2459. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2460. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2461. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2462. memset(filter, 0xff, sizeof(filter));
  2463. else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
  2464. reg &= ~GM_RXCR_MCF_ENA;
  2465. else {
  2466. int i;
  2467. reg |= GM_RXCR_MCF_ENA;
  2468. if (rx_pause)
  2469. yukon_add_filter(filter, pause_mc_addr);
  2470. for (i = 0; list && i < dev->mc_count; i++, list = list->next)
  2471. yukon_add_filter(filter, list->dmi_addr);
  2472. }
  2473. gma_write16(hw, port, GM_MC_ADDR_H1,
  2474. (u16)filter[0] | ((u16)filter[1] << 8));
  2475. gma_write16(hw, port, GM_MC_ADDR_H2,
  2476. (u16)filter[2] | ((u16)filter[3] << 8));
  2477. gma_write16(hw, port, GM_MC_ADDR_H3,
  2478. (u16)filter[4] | ((u16)filter[5] << 8));
  2479. gma_write16(hw, port, GM_MC_ADDR_H4,
  2480. (u16)filter[6] | ((u16)filter[7] << 8));
  2481. gma_write16(hw, port, GM_RX_CTRL, reg);
  2482. }
  2483. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2484. {
  2485. if (hw->chip_id == CHIP_ID_GENESIS)
  2486. return status >> XMR_FS_LEN_SHIFT;
  2487. else
  2488. return status >> GMR_FS_LEN_SHIFT;
  2489. }
  2490. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2491. {
  2492. if (hw->chip_id == CHIP_ID_GENESIS)
  2493. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2494. else
  2495. return (status & GMR_FS_ANY_ERR) ||
  2496. (status & GMR_FS_RX_OK) == 0;
  2497. }
  2498. /* Get receive buffer from descriptor.
  2499. * Handles copy of small buffers and reallocation failures
  2500. */
  2501. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2502. struct skge_element *e,
  2503. u32 control, u32 status, u16 csum)
  2504. {
  2505. struct skge_port *skge = netdev_priv(dev);
  2506. struct sk_buff *skb;
  2507. u16 len = control & BMU_BBC;
  2508. if (unlikely(netif_msg_rx_status(skge)))
  2509. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2510. dev->name, e - skge->rx_ring.start,
  2511. status, len);
  2512. if (len > skge->rx_buf_size)
  2513. goto error;
  2514. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2515. goto error;
  2516. if (bad_phy_status(skge->hw, status))
  2517. goto error;
  2518. if (phy_length(skge->hw, status) != len)
  2519. goto error;
  2520. if (len < RX_COPY_THRESHOLD) {
  2521. skb = netdev_alloc_skb(dev, len + 2);
  2522. if (!skb)
  2523. goto resubmit;
  2524. skb_reserve(skb, 2);
  2525. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2526. pci_unmap_addr(e, mapaddr),
  2527. len, PCI_DMA_FROMDEVICE);
  2528. skb_copy_from_linear_data(e->skb, skb->data, len);
  2529. pci_dma_sync_single_for_device(skge->hw->pdev,
  2530. pci_unmap_addr(e, mapaddr),
  2531. len, PCI_DMA_FROMDEVICE);
  2532. skge_rx_reuse(e, skge->rx_buf_size);
  2533. } else {
  2534. struct sk_buff *nskb;
  2535. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2536. if (!nskb)
  2537. goto resubmit;
  2538. skb_reserve(nskb, NET_IP_ALIGN);
  2539. pci_unmap_single(skge->hw->pdev,
  2540. pci_unmap_addr(e, mapaddr),
  2541. pci_unmap_len(e, maplen),
  2542. PCI_DMA_FROMDEVICE);
  2543. skb = e->skb;
  2544. prefetch(skb->data);
  2545. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2546. }
  2547. skb_put(skb, len);
  2548. if (skge->rx_csum) {
  2549. skb->csum = csum;
  2550. skb->ip_summed = CHECKSUM_COMPLETE;
  2551. }
  2552. skb->protocol = eth_type_trans(skb, dev);
  2553. return skb;
  2554. error:
  2555. if (netif_msg_rx_err(skge))
  2556. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2557. dev->name, e - skge->rx_ring.start,
  2558. control, status);
  2559. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2560. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2561. dev->stats.rx_length_errors++;
  2562. if (status & XMR_FS_FRA_ERR)
  2563. dev->stats.rx_frame_errors++;
  2564. if (status & XMR_FS_FCS_ERR)
  2565. dev->stats.rx_crc_errors++;
  2566. } else {
  2567. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2568. dev->stats.rx_length_errors++;
  2569. if (status & GMR_FS_FRAGMENT)
  2570. dev->stats.rx_frame_errors++;
  2571. if (status & GMR_FS_CRC_ERR)
  2572. dev->stats.rx_crc_errors++;
  2573. }
  2574. resubmit:
  2575. skge_rx_reuse(e, skge->rx_buf_size);
  2576. return NULL;
  2577. }
  2578. /* Free all buffers in Tx ring which are no longer owned by device */
  2579. static void skge_tx_done(struct net_device *dev)
  2580. {
  2581. struct skge_port *skge = netdev_priv(dev);
  2582. struct skge_ring *ring = &skge->tx_ring;
  2583. struct skge_element *e;
  2584. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2585. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2586. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2587. if (control & BMU_OWN)
  2588. break;
  2589. skge_tx_free(skge, e, control);
  2590. }
  2591. skge->tx_ring.to_clean = e;
  2592. /* Can run lockless until we need to synchronize to restart queue. */
  2593. smp_mb();
  2594. if (unlikely(netif_queue_stopped(dev) &&
  2595. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2596. netif_tx_lock(dev);
  2597. if (unlikely(netif_queue_stopped(dev) &&
  2598. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2599. netif_wake_queue(dev);
  2600. }
  2601. netif_tx_unlock(dev);
  2602. }
  2603. }
  2604. static int skge_poll(struct napi_struct *napi, int to_do)
  2605. {
  2606. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2607. struct net_device *dev = skge->netdev;
  2608. struct skge_hw *hw = skge->hw;
  2609. struct skge_ring *ring = &skge->rx_ring;
  2610. struct skge_element *e;
  2611. int work_done = 0;
  2612. skge_tx_done(dev);
  2613. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2614. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2615. struct skge_rx_desc *rd = e->desc;
  2616. struct sk_buff *skb;
  2617. u32 control;
  2618. rmb();
  2619. control = rd->control;
  2620. if (control & BMU_OWN)
  2621. break;
  2622. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2623. if (likely(skb)) {
  2624. dev->last_rx = jiffies;
  2625. netif_receive_skb(skb);
  2626. ++work_done;
  2627. }
  2628. }
  2629. ring->to_clean = e;
  2630. /* restart receiver */
  2631. wmb();
  2632. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2633. if (work_done < to_do) {
  2634. unsigned long flags;
  2635. spin_lock_irqsave(&hw->hw_lock, flags);
  2636. __netif_rx_complete(dev, napi);
  2637. hw->intr_mask |= napimask[skge->port];
  2638. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2639. skge_read32(hw, B0_IMSK);
  2640. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2641. }
  2642. return work_done;
  2643. }
  2644. /* Parity errors seem to happen when Genesis is connected to a switch
  2645. * with no other ports present. Heartbeat error??
  2646. */
  2647. static void skge_mac_parity(struct skge_hw *hw, int port)
  2648. {
  2649. struct net_device *dev = hw->dev[port];
  2650. ++dev->stats.tx_heartbeat_errors;
  2651. if (hw->chip_id == CHIP_ID_GENESIS)
  2652. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2653. MFF_CLR_PERR);
  2654. else
  2655. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2656. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2657. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2658. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2659. }
  2660. static void skge_mac_intr(struct skge_hw *hw, int port)
  2661. {
  2662. if (hw->chip_id == CHIP_ID_GENESIS)
  2663. genesis_mac_intr(hw, port);
  2664. else
  2665. yukon_mac_intr(hw, port);
  2666. }
  2667. /* Handle device specific framing and timeout interrupts */
  2668. static void skge_error_irq(struct skge_hw *hw)
  2669. {
  2670. struct pci_dev *pdev = hw->pdev;
  2671. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2672. if (hw->chip_id == CHIP_ID_GENESIS) {
  2673. /* clear xmac errors */
  2674. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2675. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2676. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2677. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2678. } else {
  2679. /* Timestamp (unused) overflow */
  2680. if (hwstatus & IS_IRQ_TIST_OV)
  2681. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2682. }
  2683. if (hwstatus & IS_RAM_RD_PAR) {
  2684. dev_err(&pdev->dev, "Ram read data parity error\n");
  2685. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2686. }
  2687. if (hwstatus & IS_RAM_WR_PAR) {
  2688. dev_err(&pdev->dev, "Ram write data parity error\n");
  2689. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2690. }
  2691. if (hwstatus & IS_M1_PAR_ERR)
  2692. skge_mac_parity(hw, 0);
  2693. if (hwstatus & IS_M2_PAR_ERR)
  2694. skge_mac_parity(hw, 1);
  2695. if (hwstatus & IS_R1_PAR_ERR) {
  2696. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2697. hw->dev[0]->name);
  2698. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2699. }
  2700. if (hwstatus & IS_R2_PAR_ERR) {
  2701. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2702. hw->dev[1]->name);
  2703. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2704. }
  2705. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2706. u16 pci_status, pci_cmd;
  2707. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2708. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2709. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2710. pci_cmd, pci_status);
  2711. /* Write the error bits back to clear them. */
  2712. pci_status &= PCI_STATUS_ERROR_BITS;
  2713. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2714. pci_write_config_word(pdev, PCI_COMMAND,
  2715. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2716. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2717. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2718. /* if error still set then just ignore it */
  2719. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2720. if (hwstatus & IS_IRQ_STAT) {
  2721. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2722. hw->intr_mask &= ~IS_HW_ERR;
  2723. }
  2724. }
  2725. }
  2726. /*
  2727. * Interrupt from PHY are handled in tasklet (softirq)
  2728. * because accessing phy registers requires spin wait which might
  2729. * cause excess interrupt latency.
  2730. */
  2731. static void skge_extirq(unsigned long arg)
  2732. {
  2733. struct skge_hw *hw = (struct skge_hw *) arg;
  2734. int port;
  2735. for (port = 0; port < hw->ports; port++) {
  2736. struct net_device *dev = hw->dev[port];
  2737. if (netif_running(dev)) {
  2738. struct skge_port *skge = netdev_priv(dev);
  2739. spin_lock(&hw->phy_lock);
  2740. if (hw->chip_id != CHIP_ID_GENESIS)
  2741. yukon_phy_intr(skge);
  2742. else if (hw->phy_type == SK_PHY_BCOM)
  2743. bcom_phy_intr(skge);
  2744. spin_unlock(&hw->phy_lock);
  2745. }
  2746. }
  2747. spin_lock_irq(&hw->hw_lock);
  2748. hw->intr_mask |= IS_EXT_REG;
  2749. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2750. skge_read32(hw, B0_IMSK);
  2751. spin_unlock_irq(&hw->hw_lock);
  2752. }
  2753. static irqreturn_t skge_intr(int irq, void *dev_id)
  2754. {
  2755. struct skge_hw *hw = dev_id;
  2756. u32 status;
  2757. int handled = 0;
  2758. spin_lock(&hw->hw_lock);
  2759. /* Reading this register masks IRQ */
  2760. status = skge_read32(hw, B0_SP_ISRC);
  2761. if (status == 0 || status == ~0)
  2762. goto out;
  2763. handled = 1;
  2764. status &= hw->intr_mask;
  2765. if (status & IS_EXT_REG) {
  2766. hw->intr_mask &= ~IS_EXT_REG;
  2767. tasklet_schedule(&hw->phy_task);
  2768. }
  2769. if (status & (IS_XA1_F|IS_R1_F)) {
  2770. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2771. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2772. netif_rx_schedule(hw->dev[0], &skge->napi);
  2773. }
  2774. if (status & IS_PA_TO_TX1)
  2775. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2776. if (status & IS_PA_TO_RX1) {
  2777. ++hw->dev[0]->stats.rx_over_errors;
  2778. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2779. }
  2780. if (status & IS_MAC1)
  2781. skge_mac_intr(hw, 0);
  2782. if (hw->dev[1]) {
  2783. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2784. if (status & (IS_XA2_F|IS_R2_F)) {
  2785. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2786. netif_rx_schedule(hw->dev[1], &skge->napi);
  2787. }
  2788. if (status & IS_PA_TO_RX2) {
  2789. ++hw->dev[1]->stats.rx_over_errors;
  2790. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2791. }
  2792. if (status & IS_PA_TO_TX2)
  2793. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2794. if (status & IS_MAC2)
  2795. skge_mac_intr(hw, 1);
  2796. }
  2797. if (status & IS_HW_ERR)
  2798. skge_error_irq(hw);
  2799. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2800. skge_read32(hw, B0_IMSK);
  2801. out:
  2802. spin_unlock(&hw->hw_lock);
  2803. return IRQ_RETVAL(handled);
  2804. }
  2805. #ifdef CONFIG_NET_POLL_CONTROLLER
  2806. static void skge_netpoll(struct net_device *dev)
  2807. {
  2808. struct skge_port *skge = netdev_priv(dev);
  2809. disable_irq(dev->irq);
  2810. skge_intr(dev->irq, skge->hw);
  2811. enable_irq(dev->irq);
  2812. }
  2813. #endif
  2814. static int skge_set_mac_address(struct net_device *dev, void *p)
  2815. {
  2816. struct skge_port *skge = netdev_priv(dev);
  2817. struct skge_hw *hw = skge->hw;
  2818. unsigned port = skge->port;
  2819. const struct sockaddr *addr = p;
  2820. u16 ctrl;
  2821. if (!is_valid_ether_addr(addr->sa_data))
  2822. return -EADDRNOTAVAIL;
  2823. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2824. if (!netif_running(dev)) {
  2825. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2826. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2827. } else {
  2828. /* disable Rx */
  2829. spin_lock_bh(&hw->phy_lock);
  2830. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2831. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2832. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2833. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2834. if (hw->chip_id == CHIP_ID_GENESIS)
  2835. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2836. else {
  2837. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2838. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2839. }
  2840. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2841. spin_unlock_bh(&hw->phy_lock);
  2842. }
  2843. return 0;
  2844. }
  2845. static const struct {
  2846. u8 id;
  2847. const char *name;
  2848. } skge_chips[] = {
  2849. { CHIP_ID_GENESIS, "Genesis" },
  2850. { CHIP_ID_YUKON, "Yukon" },
  2851. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2852. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2853. };
  2854. static const char *skge_board_name(const struct skge_hw *hw)
  2855. {
  2856. int i;
  2857. static char buf[16];
  2858. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2859. if (skge_chips[i].id == hw->chip_id)
  2860. return skge_chips[i].name;
  2861. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2862. return buf;
  2863. }
  2864. /*
  2865. * Setup the board data structure, but don't bring up
  2866. * the port(s)
  2867. */
  2868. static int skge_reset(struct skge_hw *hw)
  2869. {
  2870. u32 reg;
  2871. u16 ctst, pci_status;
  2872. u8 t8, mac_cfg, pmd_type;
  2873. int i;
  2874. ctst = skge_read16(hw, B0_CTST);
  2875. /* do a SW reset */
  2876. skge_write8(hw, B0_CTST, CS_RST_SET);
  2877. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2878. /* clear PCI errors, if any */
  2879. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2880. skge_write8(hw, B2_TST_CTRL2, 0);
  2881. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2882. pci_write_config_word(hw->pdev, PCI_STATUS,
  2883. pci_status | PCI_STATUS_ERROR_BITS);
  2884. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2885. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2886. /* restore CLK_RUN bits (for Yukon-Lite) */
  2887. skge_write16(hw, B0_CTST,
  2888. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2889. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2890. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2891. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2892. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2893. switch (hw->chip_id) {
  2894. case CHIP_ID_GENESIS:
  2895. switch (hw->phy_type) {
  2896. case SK_PHY_XMAC:
  2897. hw->phy_addr = PHY_ADDR_XMAC;
  2898. break;
  2899. case SK_PHY_BCOM:
  2900. hw->phy_addr = PHY_ADDR_BCOM;
  2901. break;
  2902. default:
  2903. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2904. hw->phy_type);
  2905. return -EOPNOTSUPP;
  2906. }
  2907. break;
  2908. case CHIP_ID_YUKON:
  2909. case CHIP_ID_YUKON_LITE:
  2910. case CHIP_ID_YUKON_LP:
  2911. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2912. hw->copper = 1;
  2913. hw->phy_addr = PHY_ADDR_MARV;
  2914. break;
  2915. default:
  2916. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2917. hw->chip_id);
  2918. return -EOPNOTSUPP;
  2919. }
  2920. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2921. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2922. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2923. /* read the adapters RAM size */
  2924. t8 = skge_read8(hw, B2_E_0);
  2925. if (hw->chip_id == CHIP_ID_GENESIS) {
  2926. if (t8 == 3) {
  2927. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2928. hw->ram_size = 0x100000;
  2929. hw->ram_offset = 0x80000;
  2930. } else
  2931. hw->ram_size = t8 * 512;
  2932. }
  2933. else if (t8 == 0)
  2934. hw->ram_size = 0x20000;
  2935. else
  2936. hw->ram_size = t8 * 4096;
  2937. hw->intr_mask = IS_HW_ERR;
  2938. /* Use PHY IRQ for all but fiber based Genesis board */
  2939. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2940. hw->intr_mask |= IS_EXT_REG;
  2941. if (hw->chip_id == CHIP_ID_GENESIS)
  2942. genesis_init(hw);
  2943. else {
  2944. /* switch power to VCC (WA for VAUX problem) */
  2945. skge_write8(hw, B0_POWER_CTRL,
  2946. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2947. /* avoid boards with stuck Hardware error bits */
  2948. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2949. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2950. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2951. hw->intr_mask &= ~IS_HW_ERR;
  2952. }
  2953. /* Clear PHY COMA */
  2954. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2955. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2956. reg &= ~PCI_PHY_COMA;
  2957. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2958. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2959. for (i = 0; i < hw->ports; i++) {
  2960. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2961. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2962. }
  2963. }
  2964. /* turn off hardware timer (unused) */
  2965. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2966. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2967. skge_write8(hw, B0_LED, LED_STAT_ON);
  2968. /* enable the Tx Arbiters */
  2969. for (i = 0; i < hw->ports; i++)
  2970. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2971. /* Initialize ram interface */
  2972. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2973. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2974. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2975. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2976. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2977. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2978. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2979. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2980. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2981. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2982. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2983. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2984. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2985. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2986. /* Set interrupt moderation for Transmit only
  2987. * Receive interrupts avoided by NAPI
  2988. */
  2989. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2990. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2991. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2992. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2993. for (i = 0; i < hw->ports; i++) {
  2994. if (hw->chip_id == CHIP_ID_GENESIS)
  2995. genesis_reset(hw, i);
  2996. else
  2997. yukon_reset(hw, i);
  2998. }
  2999. return 0;
  3000. }
  3001. #ifdef CONFIG_SKGE_DEBUG
  3002. static struct dentry *skge_debug;
  3003. static int skge_debug_show(struct seq_file *seq, void *v)
  3004. {
  3005. struct net_device *dev = seq->private;
  3006. const struct skge_port *skge = netdev_priv(dev);
  3007. const struct skge_hw *hw = skge->hw;
  3008. const struct skge_element *e;
  3009. if (!netif_running(dev))
  3010. return -ENETDOWN;
  3011. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  3012. skge_read32(hw, B0_IMSK));
  3013. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  3014. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  3015. const struct skge_tx_desc *t = e->desc;
  3016. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  3017. t->control, t->dma_hi, t->dma_lo, t->status,
  3018. t->csum_offs, t->csum_write, t->csum_start);
  3019. }
  3020. seq_printf(seq, "\nRx Ring: \n");
  3021. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  3022. const struct skge_rx_desc *r = e->desc;
  3023. if (r->control & BMU_OWN)
  3024. break;
  3025. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  3026. r->control, r->dma_hi, r->dma_lo, r->status,
  3027. r->timestamp, r->csum1, r->csum1_start);
  3028. }
  3029. return 0;
  3030. }
  3031. static int skge_debug_open(struct inode *inode, struct file *file)
  3032. {
  3033. return single_open(file, skge_debug_show, inode->i_private);
  3034. }
  3035. static const struct file_operations skge_debug_fops = {
  3036. .owner = THIS_MODULE,
  3037. .open = skge_debug_open,
  3038. .read = seq_read,
  3039. .llseek = seq_lseek,
  3040. .release = single_release,
  3041. };
  3042. /*
  3043. * Use network device events to create/remove/rename
  3044. * debugfs file entries
  3045. */
  3046. static int skge_device_event(struct notifier_block *unused,
  3047. unsigned long event, void *ptr)
  3048. {
  3049. struct net_device *dev = ptr;
  3050. struct skge_port *skge;
  3051. struct dentry *d;
  3052. if (dev->open != &skge_up || !skge_debug)
  3053. goto done;
  3054. skge = netdev_priv(dev);
  3055. switch(event) {
  3056. case NETDEV_CHANGENAME:
  3057. if (skge->debugfs) {
  3058. d = debugfs_rename(skge_debug, skge->debugfs,
  3059. skge_debug, dev->name);
  3060. if (d)
  3061. skge->debugfs = d;
  3062. else {
  3063. pr_info(PFX "%s: rename failed\n", dev->name);
  3064. debugfs_remove(skge->debugfs);
  3065. }
  3066. }
  3067. break;
  3068. case NETDEV_GOING_DOWN:
  3069. if (skge->debugfs) {
  3070. debugfs_remove(skge->debugfs);
  3071. skge->debugfs = NULL;
  3072. }
  3073. break;
  3074. case NETDEV_UP:
  3075. d = debugfs_create_file(dev->name, S_IRUGO,
  3076. skge_debug, dev,
  3077. &skge_debug_fops);
  3078. if (!d || IS_ERR(d))
  3079. pr_info(PFX "%s: debugfs create failed\n",
  3080. dev->name);
  3081. else
  3082. skge->debugfs = d;
  3083. break;
  3084. }
  3085. done:
  3086. return NOTIFY_DONE;
  3087. }
  3088. static struct notifier_block skge_notifier = {
  3089. .notifier_call = skge_device_event,
  3090. };
  3091. static __init void skge_debug_init(void)
  3092. {
  3093. struct dentry *ent;
  3094. ent = debugfs_create_dir("skge", NULL);
  3095. if (!ent || IS_ERR(ent)) {
  3096. pr_info(PFX "debugfs create directory failed\n");
  3097. return;
  3098. }
  3099. skge_debug = ent;
  3100. register_netdevice_notifier(&skge_notifier);
  3101. }
  3102. static __exit void skge_debug_cleanup(void)
  3103. {
  3104. if (skge_debug) {
  3105. unregister_netdevice_notifier(&skge_notifier);
  3106. debugfs_remove(skge_debug);
  3107. skge_debug = NULL;
  3108. }
  3109. }
  3110. #else
  3111. #define skge_debug_init()
  3112. #define skge_debug_cleanup()
  3113. #endif
  3114. /* Initialize network device */
  3115. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3116. int highmem)
  3117. {
  3118. struct skge_port *skge;
  3119. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3120. if (!dev) {
  3121. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  3122. return NULL;
  3123. }
  3124. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3125. dev->open = skge_up;
  3126. dev->stop = skge_down;
  3127. dev->do_ioctl = skge_ioctl;
  3128. dev->hard_start_xmit = skge_xmit_frame;
  3129. dev->get_stats = skge_get_stats;
  3130. if (hw->chip_id == CHIP_ID_GENESIS)
  3131. dev->set_multicast_list = genesis_set_multicast;
  3132. else
  3133. dev->set_multicast_list = yukon_set_multicast;
  3134. dev->set_mac_address = skge_set_mac_address;
  3135. dev->change_mtu = skge_change_mtu;
  3136. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  3137. dev->tx_timeout = skge_tx_timeout;
  3138. dev->watchdog_timeo = TX_WATCHDOG;
  3139. #ifdef CONFIG_NET_POLL_CONTROLLER
  3140. dev->poll_controller = skge_netpoll;
  3141. #endif
  3142. dev->irq = hw->pdev->irq;
  3143. if (highmem)
  3144. dev->features |= NETIF_F_HIGHDMA;
  3145. skge = netdev_priv(dev);
  3146. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  3147. skge->netdev = dev;
  3148. skge->hw = hw;
  3149. skge->msg_enable = netif_msg_init(debug, default_msg);
  3150. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3151. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3152. /* Auto speed and flow control */
  3153. skge->autoneg = AUTONEG_ENABLE;
  3154. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3155. skge->duplex = -1;
  3156. skge->speed = -1;
  3157. skge->advertising = skge_supported_modes(hw);
  3158. if (pci_wake_enabled(hw->pdev))
  3159. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3160. hw->dev[port] = dev;
  3161. skge->port = port;
  3162. /* Only used for Genesis XMAC */
  3163. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  3164. if (hw->chip_id != CHIP_ID_GENESIS) {
  3165. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3166. skge->rx_csum = 1;
  3167. }
  3168. /* read the mac address */
  3169. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3170. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3171. /* device is off until link detection */
  3172. netif_carrier_off(dev);
  3173. netif_stop_queue(dev);
  3174. return dev;
  3175. }
  3176. static void __devinit skge_show_addr(struct net_device *dev)
  3177. {
  3178. const struct skge_port *skge = netdev_priv(dev);
  3179. DECLARE_MAC_BUF(mac);
  3180. if (netif_msg_probe(skge))
  3181. printk(KERN_INFO PFX "%s: addr %s\n",
  3182. dev->name, print_mac(mac, dev->dev_addr));
  3183. }
  3184. static int __devinit skge_probe(struct pci_dev *pdev,
  3185. const struct pci_device_id *ent)
  3186. {
  3187. struct net_device *dev, *dev1;
  3188. struct skge_hw *hw;
  3189. int err, using_dac = 0;
  3190. err = pci_enable_device(pdev);
  3191. if (err) {
  3192. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3193. goto err_out;
  3194. }
  3195. err = pci_request_regions(pdev, DRV_NAME);
  3196. if (err) {
  3197. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3198. goto err_out_disable_pdev;
  3199. }
  3200. pci_set_master(pdev);
  3201. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3202. using_dac = 1;
  3203. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3204. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3205. using_dac = 0;
  3206. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3207. }
  3208. if (err) {
  3209. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3210. goto err_out_free_regions;
  3211. }
  3212. #ifdef __BIG_ENDIAN
  3213. /* byte swap descriptors in hardware */
  3214. {
  3215. u32 reg;
  3216. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3217. reg |= PCI_REV_DESC;
  3218. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3219. }
  3220. #endif
  3221. err = -ENOMEM;
  3222. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  3223. if (!hw) {
  3224. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3225. goto err_out_free_regions;
  3226. }
  3227. hw->pdev = pdev;
  3228. spin_lock_init(&hw->hw_lock);
  3229. spin_lock_init(&hw->phy_lock);
  3230. tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
  3231. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3232. if (!hw->regs) {
  3233. dev_err(&pdev->dev, "cannot map device registers\n");
  3234. goto err_out_free_hw;
  3235. }
  3236. err = skge_reset(hw);
  3237. if (err)
  3238. goto err_out_iounmap;
  3239. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  3240. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3241. skge_board_name(hw), hw->chip_rev);
  3242. dev = skge_devinit(hw, 0, using_dac);
  3243. if (!dev)
  3244. goto err_out_led_off;
  3245. /* Some motherboards are broken and has zero in ROM. */
  3246. if (!is_valid_ether_addr(dev->dev_addr))
  3247. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3248. err = register_netdev(dev);
  3249. if (err) {
  3250. dev_err(&pdev->dev, "cannot register net device\n");
  3251. goto err_out_free_netdev;
  3252. }
  3253. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  3254. if (err) {
  3255. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3256. dev->name, pdev->irq);
  3257. goto err_out_unregister;
  3258. }
  3259. skge_show_addr(dev);
  3260. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  3261. if (register_netdev(dev1) == 0)
  3262. skge_show_addr(dev1);
  3263. else {
  3264. /* Failure to register second port need not be fatal */
  3265. dev_warn(&pdev->dev, "register of second port failed\n");
  3266. hw->dev[1] = NULL;
  3267. free_netdev(dev1);
  3268. }
  3269. }
  3270. pci_set_drvdata(pdev, hw);
  3271. return 0;
  3272. err_out_unregister:
  3273. unregister_netdev(dev);
  3274. err_out_free_netdev:
  3275. free_netdev(dev);
  3276. err_out_led_off:
  3277. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3278. err_out_iounmap:
  3279. iounmap(hw->regs);
  3280. err_out_free_hw:
  3281. kfree(hw);
  3282. err_out_free_regions:
  3283. pci_release_regions(pdev);
  3284. err_out_disable_pdev:
  3285. pci_disable_device(pdev);
  3286. pci_set_drvdata(pdev, NULL);
  3287. err_out:
  3288. return err;
  3289. }
  3290. static void __devexit skge_remove(struct pci_dev *pdev)
  3291. {
  3292. struct skge_hw *hw = pci_get_drvdata(pdev);
  3293. struct net_device *dev0, *dev1;
  3294. if (!hw)
  3295. return;
  3296. flush_scheduled_work();
  3297. if ((dev1 = hw->dev[1]))
  3298. unregister_netdev(dev1);
  3299. dev0 = hw->dev[0];
  3300. unregister_netdev(dev0);
  3301. tasklet_disable(&hw->phy_task);
  3302. spin_lock_irq(&hw->hw_lock);
  3303. hw->intr_mask = 0;
  3304. skge_write32(hw, B0_IMSK, 0);
  3305. skge_read32(hw, B0_IMSK);
  3306. spin_unlock_irq(&hw->hw_lock);
  3307. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3308. skge_write8(hw, B0_CTST, CS_RST_SET);
  3309. free_irq(pdev->irq, hw);
  3310. pci_release_regions(pdev);
  3311. pci_disable_device(pdev);
  3312. if (dev1)
  3313. free_netdev(dev1);
  3314. free_netdev(dev0);
  3315. iounmap(hw->regs);
  3316. kfree(hw);
  3317. pci_set_drvdata(pdev, NULL);
  3318. }
  3319. #ifdef CONFIG_PM
  3320. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3321. {
  3322. struct skge_hw *hw = pci_get_drvdata(pdev);
  3323. int i, err, wol = 0;
  3324. if (!hw)
  3325. return 0;
  3326. err = pci_save_state(pdev);
  3327. if (err)
  3328. return err;
  3329. for (i = 0; i < hw->ports; i++) {
  3330. struct net_device *dev = hw->dev[i];
  3331. struct skge_port *skge = netdev_priv(dev);
  3332. if (netif_running(dev))
  3333. skge_down(dev);
  3334. if (skge->wol)
  3335. skge_wol_init(skge);
  3336. wol |= skge->wol;
  3337. }
  3338. skge_write32(hw, B0_IMSK, 0);
  3339. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  3340. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3341. return 0;
  3342. }
  3343. static int skge_resume(struct pci_dev *pdev)
  3344. {
  3345. struct skge_hw *hw = pci_get_drvdata(pdev);
  3346. int i, err;
  3347. if (!hw)
  3348. return 0;
  3349. err = pci_set_power_state(pdev, PCI_D0);
  3350. if (err)
  3351. goto out;
  3352. err = pci_restore_state(pdev);
  3353. if (err)
  3354. goto out;
  3355. pci_enable_wake(pdev, PCI_D0, 0);
  3356. err = skge_reset(hw);
  3357. if (err)
  3358. goto out;
  3359. for (i = 0; i < hw->ports; i++) {
  3360. struct net_device *dev = hw->dev[i];
  3361. if (netif_running(dev)) {
  3362. err = skge_up(dev);
  3363. if (err) {
  3364. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3365. dev->name, err);
  3366. dev_close(dev);
  3367. goto out;
  3368. }
  3369. }
  3370. }
  3371. out:
  3372. return err;
  3373. }
  3374. #endif
  3375. static void skge_shutdown(struct pci_dev *pdev)
  3376. {
  3377. struct skge_hw *hw = pci_get_drvdata(pdev);
  3378. int i, wol = 0;
  3379. if (!hw)
  3380. return;
  3381. for (i = 0; i < hw->ports; i++) {
  3382. struct net_device *dev = hw->dev[i];
  3383. struct skge_port *skge = netdev_priv(dev);
  3384. if (skge->wol)
  3385. skge_wol_init(skge);
  3386. wol |= skge->wol;
  3387. }
  3388. pci_enable_wake(pdev, PCI_D3hot, wol);
  3389. pci_enable_wake(pdev, PCI_D3cold, wol);
  3390. pci_disable_device(pdev);
  3391. pci_set_power_state(pdev, PCI_D3hot);
  3392. }
  3393. static struct pci_driver skge_driver = {
  3394. .name = DRV_NAME,
  3395. .id_table = skge_id_table,
  3396. .probe = skge_probe,
  3397. .remove = __devexit_p(skge_remove),
  3398. #ifdef CONFIG_PM
  3399. .suspend = skge_suspend,
  3400. .resume = skge_resume,
  3401. #endif
  3402. .shutdown = skge_shutdown,
  3403. };
  3404. static int __init skge_init_module(void)
  3405. {
  3406. skge_debug_init();
  3407. return pci_register_driver(&skge_driver);
  3408. }
  3409. static void __exit skge_cleanup_module(void)
  3410. {
  3411. pci_unregister_driver(&skge_driver);
  3412. skge_debug_cleanup();
  3413. }
  3414. module_init(skge_init_module);
  3415. module_exit(skge_cleanup_module);