t3_hw.c 111 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759
  1. /*
  2. * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. /**
  37. * t3_wait_op_done_val - wait until an operation is completed
  38. * @adapter: the adapter performing the operation
  39. * @reg: the register to check for completion
  40. * @mask: a single-bit field within @reg that indicates completion
  41. * @polarity: the value of the field when the operation is completed
  42. * @attempts: number of check iterations
  43. * @delay: delay in usecs between iterations
  44. * @valp: where to store the value of the register at completion time
  45. *
  46. * Wait until an operation is completed by checking a bit in a register
  47. * up to @attempts times. If @valp is not NULL the value of the register
  48. * at the time it indicated completion is stored there. Returns 0 if the
  49. * operation completes and -EAGAIN otherwise.
  50. */
  51. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  52. int polarity, int attempts, int delay, u32 *valp)
  53. {
  54. while (1) {
  55. u32 val = t3_read_reg(adapter, reg);
  56. if (!!(val & mask) == polarity) {
  57. if (valp)
  58. *valp = val;
  59. return 0;
  60. }
  61. if (--attempts == 0)
  62. return -EAGAIN;
  63. if (delay)
  64. udelay(delay);
  65. }
  66. }
  67. /**
  68. * t3_write_regs - write a bunch of registers
  69. * @adapter: the adapter to program
  70. * @p: an array of register address/register value pairs
  71. * @n: the number of address/value pairs
  72. * @offset: register address offset
  73. *
  74. * Takes an array of register address/register value pairs and writes each
  75. * value to the corresponding register. Register addresses are adjusted
  76. * by the supplied offset.
  77. */
  78. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  79. int n, unsigned int offset)
  80. {
  81. while (n--) {
  82. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  83. p++;
  84. }
  85. }
  86. /**
  87. * t3_set_reg_field - set a register field to a value
  88. * @adapter: the adapter to program
  89. * @addr: the register address
  90. * @mask: specifies the portion of the register to modify
  91. * @val: the new value for the register field
  92. *
  93. * Sets a register field specified by the supplied mask to the
  94. * given value.
  95. */
  96. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  97. u32 val)
  98. {
  99. u32 v = t3_read_reg(adapter, addr) & ~mask;
  100. t3_write_reg(adapter, addr, v | val);
  101. t3_read_reg(adapter, addr); /* flush */
  102. }
  103. /**
  104. * t3_read_indirect - read indirectly addressed registers
  105. * @adap: the adapter
  106. * @addr_reg: register holding the indirect address
  107. * @data_reg: register holding the value of the indirect register
  108. * @vals: where the read register values are stored
  109. * @start_idx: index of first indirect register to read
  110. * @nregs: how many indirect registers to read
  111. *
  112. * Reads registers that are accessed indirectly through an address/data
  113. * register pair.
  114. */
  115. static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  116. unsigned int data_reg, u32 *vals,
  117. unsigned int nregs, unsigned int start_idx)
  118. {
  119. while (nregs--) {
  120. t3_write_reg(adap, addr_reg, start_idx);
  121. *vals++ = t3_read_reg(adap, data_reg);
  122. start_idx++;
  123. }
  124. }
  125. /**
  126. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  127. * @mc7: identifies MC7 to read from
  128. * @start: index of first 64-bit word to read
  129. * @n: number of 64-bit words to read
  130. * @buf: where to store the read result
  131. *
  132. * Read n 64-bit words from MC7 starting at word start, using backdoor
  133. * accesses.
  134. */
  135. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  136. u64 *buf)
  137. {
  138. static const int shift[] = { 0, 0, 16, 24 };
  139. static const int step[] = { 0, 32, 16, 8 };
  140. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  141. struct adapter *adap = mc7->adapter;
  142. if (start >= size64 || start + n > size64)
  143. return -EINVAL;
  144. start *= (8 << mc7->width);
  145. while (n--) {
  146. int i;
  147. u64 val64 = 0;
  148. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  149. int attempts = 10;
  150. u32 val;
  151. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  153. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  154. while ((val & F_BUSY) && attempts--)
  155. val = t3_read_reg(adap,
  156. mc7->offset + A_MC7_BD_OP);
  157. if (val & F_BUSY)
  158. return -EIO;
  159. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  160. if (mc7->width == 0) {
  161. val64 = t3_read_reg(adap,
  162. mc7->offset +
  163. A_MC7_BD_DATA0);
  164. val64 |= (u64) val << 32;
  165. } else {
  166. if (mc7->width > 1)
  167. val >>= shift[mc7->width];
  168. val64 |= (u64) val << (step[mc7->width] * i);
  169. }
  170. start += 8;
  171. }
  172. *buf++ = val64;
  173. }
  174. return 0;
  175. }
  176. /*
  177. * Initialize MI1.
  178. */
  179. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  180. {
  181. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  182. u32 val = F_PREEN | V_CLKDIV(clkdiv);
  183. t3_write_reg(adap, A_MI1_CFG, val);
  184. }
  185. #define MDIO_ATTEMPTS 20
  186. /*
  187. * MI1 read/write operations for clause 22 PHYs.
  188. */
  189. static int t3_mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  190. int reg_addr, unsigned int *valp)
  191. {
  192. int ret;
  193. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  194. if (mmd_addr)
  195. return -EINVAL;
  196. mutex_lock(&adapter->mdio_lock);
  197. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  198. t3_write_reg(adapter, A_MI1_ADDR, addr);
  199. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  200. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  201. if (!ret)
  202. *valp = t3_read_reg(adapter, A_MI1_DATA);
  203. mutex_unlock(&adapter->mdio_lock);
  204. return ret;
  205. }
  206. static int t3_mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  207. int reg_addr, unsigned int val)
  208. {
  209. int ret;
  210. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  211. if (mmd_addr)
  212. return -EINVAL;
  213. mutex_lock(&adapter->mdio_lock);
  214. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  215. t3_write_reg(adapter, A_MI1_ADDR, addr);
  216. t3_write_reg(adapter, A_MI1_DATA, val);
  217. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  218. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  219. mutex_unlock(&adapter->mdio_lock);
  220. return ret;
  221. }
  222. static const struct mdio_ops mi1_mdio_ops = {
  223. t3_mi1_read,
  224. t3_mi1_write
  225. };
  226. /*
  227. * Performs the address cycle for clause 45 PHYs.
  228. * Must be called with the MDIO_LOCK held.
  229. */
  230. static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
  231. int reg_addr)
  232. {
  233. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  234. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
  235. t3_write_reg(adapter, A_MI1_ADDR, addr);
  236. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  237. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  238. return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  239. MDIO_ATTEMPTS, 10);
  240. }
  241. /*
  242. * MI1 read/write operations for indirect-addressed PHYs.
  243. */
  244. static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  245. int reg_addr, unsigned int *valp)
  246. {
  247. int ret;
  248. mutex_lock(&adapter->mdio_lock);
  249. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  250. if (!ret) {
  251. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  252. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  253. MDIO_ATTEMPTS, 10);
  254. if (!ret)
  255. *valp = t3_read_reg(adapter, A_MI1_DATA);
  256. }
  257. mutex_unlock(&adapter->mdio_lock);
  258. return ret;
  259. }
  260. static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  261. int reg_addr, unsigned int val)
  262. {
  263. int ret;
  264. mutex_lock(&adapter->mdio_lock);
  265. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  266. if (!ret) {
  267. t3_write_reg(adapter, A_MI1_DATA, val);
  268. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  269. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  270. MDIO_ATTEMPTS, 10);
  271. }
  272. mutex_unlock(&adapter->mdio_lock);
  273. return ret;
  274. }
  275. static const struct mdio_ops mi1_mdio_ext_ops = {
  276. mi1_ext_read,
  277. mi1_ext_write
  278. };
  279. /**
  280. * t3_mdio_change_bits - modify the value of a PHY register
  281. * @phy: the PHY to operate on
  282. * @mmd: the device address
  283. * @reg: the register address
  284. * @clear: what part of the register value to mask off
  285. * @set: what part of the register value to set
  286. *
  287. * Changes the value of a PHY register by applying a mask to its current
  288. * value and ORing the result with a new value.
  289. */
  290. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  291. unsigned int set)
  292. {
  293. int ret;
  294. unsigned int val;
  295. ret = mdio_read(phy, mmd, reg, &val);
  296. if (!ret) {
  297. val &= ~clear;
  298. ret = mdio_write(phy, mmd, reg, val | set);
  299. }
  300. return ret;
  301. }
  302. /**
  303. * t3_phy_reset - reset a PHY block
  304. * @phy: the PHY to operate on
  305. * @mmd: the device address of the PHY block to reset
  306. * @wait: how long to wait for the reset to complete in 1ms increments
  307. *
  308. * Resets a PHY block and optionally waits for the reset to complete.
  309. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  310. * for 10G PHYs.
  311. */
  312. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  313. {
  314. int err;
  315. unsigned int ctl;
  316. err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
  317. if (err || !wait)
  318. return err;
  319. do {
  320. err = mdio_read(phy, mmd, MII_BMCR, &ctl);
  321. if (err)
  322. return err;
  323. ctl &= BMCR_RESET;
  324. if (ctl)
  325. msleep(1);
  326. } while (ctl && --wait);
  327. return ctl ? -1 : 0;
  328. }
  329. /**
  330. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  331. * @phy: the PHY to operate on
  332. * @advert: bitmap of capabilities the PHY should advertise
  333. *
  334. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  335. * requested capabilities.
  336. */
  337. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  338. {
  339. int err;
  340. unsigned int val = 0;
  341. err = mdio_read(phy, 0, MII_CTRL1000, &val);
  342. if (err)
  343. return err;
  344. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  345. if (advert & ADVERTISED_1000baseT_Half)
  346. val |= ADVERTISE_1000HALF;
  347. if (advert & ADVERTISED_1000baseT_Full)
  348. val |= ADVERTISE_1000FULL;
  349. err = mdio_write(phy, 0, MII_CTRL1000, val);
  350. if (err)
  351. return err;
  352. val = 1;
  353. if (advert & ADVERTISED_10baseT_Half)
  354. val |= ADVERTISE_10HALF;
  355. if (advert & ADVERTISED_10baseT_Full)
  356. val |= ADVERTISE_10FULL;
  357. if (advert & ADVERTISED_100baseT_Half)
  358. val |= ADVERTISE_100HALF;
  359. if (advert & ADVERTISED_100baseT_Full)
  360. val |= ADVERTISE_100FULL;
  361. if (advert & ADVERTISED_Pause)
  362. val |= ADVERTISE_PAUSE_CAP;
  363. if (advert & ADVERTISED_Asym_Pause)
  364. val |= ADVERTISE_PAUSE_ASYM;
  365. return mdio_write(phy, 0, MII_ADVERTISE, val);
  366. }
  367. /**
  368. * t3_phy_advertise_fiber - set fiber PHY advertisement register
  369. * @phy: the PHY to operate on
  370. * @advert: bitmap of capabilities the PHY should advertise
  371. *
  372. * Sets a fiber PHY's advertisement register to advertise the
  373. * requested capabilities.
  374. */
  375. int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
  376. {
  377. unsigned int val = 0;
  378. if (advert & ADVERTISED_1000baseT_Half)
  379. val |= ADVERTISE_1000XHALF;
  380. if (advert & ADVERTISED_1000baseT_Full)
  381. val |= ADVERTISE_1000XFULL;
  382. if (advert & ADVERTISED_Pause)
  383. val |= ADVERTISE_1000XPAUSE;
  384. if (advert & ADVERTISED_Asym_Pause)
  385. val |= ADVERTISE_1000XPSE_ASYM;
  386. return mdio_write(phy, 0, MII_ADVERTISE, val);
  387. }
  388. /**
  389. * t3_set_phy_speed_duplex - force PHY speed and duplex
  390. * @phy: the PHY to operate on
  391. * @speed: requested PHY speed
  392. * @duplex: requested PHY duplex
  393. *
  394. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  395. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  396. */
  397. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  398. {
  399. int err;
  400. unsigned int ctl;
  401. err = mdio_read(phy, 0, MII_BMCR, &ctl);
  402. if (err)
  403. return err;
  404. if (speed >= 0) {
  405. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  406. if (speed == SPEED_100)
  407. ctl |= BMCR_SPEED100;
  408. else if (speed == SPEED_1000)
  409. ctl |= BMCR_SPEED1000;
  410. }
  411. if (duplex >= 0) {
  412. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  413. if (duplex == DUPLEX_FULL)
  414. ctl |= BMCR_FULLDPLX;
  415. }
  416. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  417. ctl |= BMCR_ANENABLE;
  418. return mdio_write(phy, 0, MII_BMCR, ctl);
  419. }
  420. int t3_phy_lasi_intr_enable(struct cphy *phy)
  421. {
  422. return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 1);
  423. }
  424. int t3_phy_lasi_intr_disable(struct cphy *phy)
  425. {
  426. return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 0);
  427. }
  428. int t3_phy_lasi_intr_clear(struct cphy *phy)
  429. {
  430. u32 val;
  431. return mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &val);
  432. }
  433. int t3_phy_lasi_intr_handler(struct cphy *phy)
  434. {
  435. unsigned int status;
  436. int err = mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &status);
  437. if (err)
  438. return err;
  439. return (status & 1) ? cphy_cause_link_change : 0;
  440. }
  441. static const struct adapter_info t3_adap_info[] = {
  442. {2, 0,
  443. F_GPIO2_OEN | F_GPIO4_OEN |
  444. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  445. &mi1_mdio_ops, "Chelsio PE9000"},
  446. {2, 0,
  447. F_GPIO2_OEN | F_GPIO4_OEN |
  448. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  449. &mi1_mdio_ops, "Chelsio T302"},
  450. {1, 0,
  451. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  452. F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  453. { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  454. &mi1_mdio_ext_ops, "Chelsio T310"},
  455. {2, 0,
  456. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  457. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  458. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  459. { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  460. &mi1_mdio_ext_ops, "Chelsio T320"},
  461. };
  462. /*
  463. * Return the adapter_info structure with a given index. Out-of-range indices
  464. * return NULL.
  465. */
  466. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  467. {
  468. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  469. }
  470. struct port_type_info {
  471. int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
  472. int phy_addr, const struct mdio_ops *ops);
  473. };
  474. static const struct port_type_info port_types[] = {
  475. { NULL },
  476. { t3_ael1002_phy_prep },
  477. { t3_vsc8211_phy_prep },
  478. { NULL},
  479. { t3_xaui_direct_phy_prep },
  480. { t3_ael2005_phy_prep },
  481. { t3_qt2045_phy_prep },
  482. { t3_ael1006_phy_prep },
  483. { NULL },
  484. };
  485. #define VPD_ENTRY(name, len) \
  486. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  487. /*
  488. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  489. * VPD-R sections.
  490. */
  491. struct t3_vpd {
  492. u8 id_tag;
  493. u8 id_len[2];
  494. u8 id_data[16];
  495. u8 vpdr_tag;
  496. u8 vpdr_len[2];
  497. VPD_ENTRY(pn, 16); /* part number */
  498. VPD_ENTRY(ec, 16); /* EC level */
  499. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  500. VPD_ENTRY(na, 12); /* MAC address base */
  501. VPD_ENTRY(cclk, 6); /* core clock */
  502. VPD_ENTRY(mclk, 6); /* mem clock */
  503. VPD_ENTRY(uclk, 6); /* uP clk */
  504. VPD_ENTRY(mdc, 6); /* MDIO clk */
  505. VPD_ENTRY(mt, 2); /* mem timing */
  506. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  507. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  508. VPD_ENTRY(port0, 2); /* PHY0 complex */
  509. VPD_ENTRY(port1, 2); /* PHY1 complex */
  510. VPD_ENTRY(port2, 2); /* PHY2 complex */
  511. VPD_ENTRY(port3, 2); /* PHY3 complex */
  512. VPD_ENTRY(rv, 1); /* csum */
  513. u32 pad; /* for multiple-of-4 sizing and alignment */
  514. };
  515. #define EEPROM_MAX_POLL 40
  516. #define EEPROM_STAT_ADDR 0x4000
  517. #define VPD_BASE 0xc00
  518. /**
  519. * t3_seeprom_read - read a VPD EEPROM location
  520. * @adapter: adapter to read
  521. * @addr: EEPROM address
  522. * @data: where to store the read data
  523. *
  524. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  525. * VPD ROM capability. A zero is written to the flag bit when the
  526. * addres is written to the control register. The hardware device will
  527. * set the flag to 1 when 4 bytes have been read into the data register.
  528. */
  529. int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
  530. {
  531. u16 val;
  532. int attempts = EEPROM_MAX_POLL;
  533. u32 v;
  534. unsigned int base = adapter->params.pci.vpd_cap_addr;
  535. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  536. return -EINVAL;
  537. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  538. do {
  539. udelay(10);
  540. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  541. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  542. if (!(val & PCI_VPD_ADDR_F)) {
  543. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  544. return -EIO;
  545. }
  546. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
  547. *data = cpu_to_le32(v);
  548. return 0;
  549. }
  550. /**
  551. * t3_seeprom_write - write a VPD EEPROM location
  552. * @adapter: adapter to write
  553. * @addr: EEPROM address
  554. * @data: value to write
  555. *
  556. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  557. * VPD ROM capability.
  558. */
  559. int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
  560. {
  561. u16 val;
  562. int attempts = EEPROM_MAX_POLL;
  563. unsigned int base = adapter->params.pci.vpd_cap_addr;
  564. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  565. return -EINVAL;
  566. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  567. le32_to_cpu(data));
  568. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  569. addr | PCI_VPD_ADDR_F);
  570. do {
  571. msleep(1);
  572. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  573. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  574. if (val & PCI_VPD_ADDR_F) {
  575. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  576. return -EIO;
  577. }
  578. return 0;
  579. }
  580. /**
  581. * t3_seeprom_wp - enable/disable EEPROM write protection
  582. * @adapter: the adapter
  583. * @enable: 1 to enable write protection, 0 to disable it
  584. *
  585. * Enables or disables write protection on the serial EEPROM.
  586. */
  587. int t3_seeprom_wp(struct adapter *adapter, int enable)
  588. {
  589. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  590. }
  591. /*
  592. * Convert a character holding a hex digit to a number.
  593. */
  594. static unsigned int hex2int(unsigned char c)
  595. {
  596. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  597. }
  598. /**
  599. * get_vpd_params - read VPD parameters from VPD EEPROM
  600. * @adapter: adapter to read
  601. * @p: where to store the parameters
  602. *
  603. * Reads card parameters stored in VPD EEPROM.
  604. */
  605. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  606. {
  607. int i, addr, ret;
  608. struct t3_vpd vpd;
  609. /*
  610. * Card information is normally at VPD_BASE but some early cards had
  611. * it at 0.
  612. */
  613. ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
  614. if (ret)
  615. return ret;
  616. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  617. for (i = 0; i < sizeof(vpd); i += 4) {
  618. ret = t3_seeprom_read(adapter, addr + i,
  619. (__le32 *)((u8 *)&vpd + i));
  620. if (ret)
  621. return ret;
  622. }
  623. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  624. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  625. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  626. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  627. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  628. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  629. /* Old eeproms didn't have port information */
  630. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  631. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  632. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  633. } else {
  634. p->port_type[0] = hex2int(vpd.port0_data[0]);
  635. p->port_type[1] = hex2int(vpd.port1_data[0]);
  636. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  637. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  638. }
  639. for (i = 0; i < 6; i++)
  640. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  641. hex2int(vpd.na_data[2 * i + 1]);
  642. return 0;
  643. }
  644. /* serial flash and firmware constants */
  645. enum {
  646. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  647. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  648. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  649. /* flash command opcodes */
  650. SF_PROG_PAGE = 2, /* program page */
  651. SF_WR_DISABLE = 4, /* disable writes */
  652. SF_RD_STATUS = 5, /* read status register */
  653. SF_WR_ENABLE = 6, /* enable writes */
  654. SF_RD_DATA_FAST = 0xb, /* read flash */
  655. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  656. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  657. FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
  658. FW_MIN_SIZE = 8 /* at least version and csum */
  659. };
  660. /**
  661. * sf1_read - read data from the serial flash
  662. * @adapter: the adapter
  663. * @byte_cnt: number of bytes to read
  664. * @cont: whether another operation will be chained
  665. * @valp: where to store the read data
  666. *
  667. * Reads up to 4 bytes of data from the serial flash. The location of
  668. * the read needs to be specified prior to calling this by issuing the
  669. * appropriate commands to the serial flash.
  670. */
  671. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  672. u32 *valp)
  673. {
  674. int ret;
  675. if (!byte_cnt || byte_cnt > 4)
  676. return -EINVAL;
  677. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  678. return -EBUSY;
  679. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  680. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  681. if (!ret)
  682. *valp = t3_read_reg(adapter, A_SF_DATA);
  683. return ret;
  684. }
  685. /**
  686. * sf1_write - write data to the serial flash
  687. * @adapter: the adapter
  688. * @byte_cnt: number of bytes to write
  689. * @cont: whether another operation will be chained
  690. * @val: value to write
  691. *
  692. * Writes up to 4 bytes of data to the serial flash. The location of
  693. * the write needs to be specified prior to calling this by issuing the
  694. * appropriate commands to the serial flash.
  695. */
  696. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  697. u32 val)
  698. {
  699. if (!byte_cnt || byte_cnt > 4)
  700. return -EINVAL;
  701. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  702. return -EBUSY;
  703. t3_write_reg(adapter, A_SF_DATA, val);
  704. t3_write_reg(adapter, A_SF_OP,
  705. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  706. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  707. }
  708. /**
  709. * flash_wait_op - wait for a flash operation to complete
  710. * @adapter: the adapter
  711. * @attempts: max number of polls of the status register
  712. * @delay: delay between polls in ms
  713. *
  714. * Wait for a flash operation to complete by polling the status register.
  715. */
  716. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  717. {
  718. int ret;
  719. u32 status;
  720. while (1) {
  721. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  722. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  723. return ret;
  724. if (!(status & 1))
  725. return 0;
  726. if (--attempts == 0)
  727. return -EAGAIN;
  728. if (delay)
  729. msleep(delay);
  730. }
  731. }
  732. /**
  733. * t3_read_flash - read words from serial flash
  734. * @adapter: the adapter
  735. * @addr: the start address for the read
  736. * @nwords: how many 32-bit words to read
  737. * @data: where to store the read data
  738. * @byte_oriented: whether to store data as bytes or as words
  739. *
  740. * Read the specified number of 32-bit words from the serial flash.
  741. * If @byte_oriented is set the read data is stored as a byte array
  742. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  743. * natural endianess.
  744. */
  745. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  746. unsigned int nwords, u32 *data, int byte_oriented)
  747. {
  748. int ret;
  749. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  750. return -EINVAL;
  751. addr = swab32(addr) | SF_RD_DATA_FAST;
  752. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  753. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  754. return ret;
  755. for (; nwords; nwords--, data++) {
  756. ret = sf1_read(adapter, 4, nwords > 1, data);
  757. if (ret)
  758. return ret;
  759. if (byte_oriented)
  760. *data = htonl(*data);
  761. }
  762. return 0;
  763. }
  764. /**
  765. * t3_write_flash - write up to a page of data to the serial flash
  766. * @adapter: the adapter
  767. * @addr: the start address to write
  768. * @n: length of data to write
  769. * @data: the data to write
  770. *
  771. * Writes up to a page of data (256 bytes) to the serial flash starting
  772. * at the given address.
  773. */
  774. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  775. unsigned int n, const u8 *data)
  776. {
  777. int ret;
  778. u32 buf[64];
  779. unsigned int i, c, left, val, offset = addr & 0xff;
  780. if (addr + n > SF_SIZE || offset + n > 256)
  781. return -EINVAL;
  782. val = swab32(addr) | SF_PROG_PAGE;
  783. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  784. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  785. return ret;
  786. for (left = n; left; left -= c) {
  787. c = min(left, 4U);
  788. for (val = 0, i = 0; i < c; ++i)
  789. val = (val << 8) + *data++;
  790. ret = sf1_write(adapter, c, c != left, val);
  791. if (ret)
  792. return ret;
  793. }
  794. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  795. return ret;
  796. /* Read the page to verify the write succeeded */
  797. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  798. if (ret)
  799. return ret;
  800. if (memcmp(data - n, (u8 *) buf + offset, n))
  801. return -EIO;
  802. return 0;
  803. }
  804. /**
  805. * t3_get_tp_version - read the tp sram version
  806. * @adapter: the adapter
  807. * @vers: where to place the version
  808. *
  809. * Reads the protocol sram version from sram.
  810. */
  811. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  812. {
  813. int ret;
  814. /* Get version loaded in SRAM */
  815. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  816. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  817. 1, 1, 5, 1);
  818. if (ret)
  819. return ret;
  820. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  821. return 0;
  822. }
  823. /**
  824. * t3_check_tpsram_version - read the tp sram version
  825. * @adapter: the adapter
  826. * @must_load: set to 1 if loading a new microcode image is required
  827. *
  828. * Reads the protocol sram version from flash.
  829. */
  830. int t3_check_tpsram_version(struct adapter *adapter, int *must_load)
  831. {
  832. int ret;
  833. u32 vers;
  834. unsigned int major, minor;
  835. if (adapter->params.rev == T3_REV_A)
  836. return 0;
  837. *must_load = 1;
  838. ret = t3_get_tp_version(adapter, &vers);
  839. if (ret)
  840. return ret;
  841. major = G_TP_VERSION_MAJOR(vers);
  842. minor = G_TP_VERSION_MINOR(vers);
  843. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  844. return 0;
  845. if (major != TP_VERSION_MAJOR)
  846. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  847. "driver needs version %d.%d\n", major, minor,
  848. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  849. else {
  850. *must_load = 0;
  851. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  852. "driver compiled for version %d.%d\n", major, minor,
  853. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  854. }
  855. return -EINVAL;
  856. }
  857. /**
  858. * t3_check_tpsram - check if provided protocol SRAM
  859. * is compatible with this driver
  860. * @adapter: the adapter
  861. * @tp_sram: the firmware image to write
  862. * @size: image size
  863. *
  864. * Checks if an adapter's tp sram is compatible with the driver.
  865. * Returns 0 if the versions are compatible, a negative error otherwise.
  866. */
  867. int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
  868. unsigned int size)
  869. {
  870. u32 csum;
  871. unsigned int i;
  872. const __be32 *p = (const __be32 *)tp_sram;
  873. /* Verify checksum */
  874. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  875. csum += ntohl(p[i]);
  876. if (csum != 0xffffffff) {
  877. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  878. csum);
  879. return -EINVAL;
  880. }
  881. return 0;
  882. }
  883. enum fw_version_type {
  884. FW_VERSION_N3,
  885. FW_VERSION_T3
  886. };
  887. /**
  888. * t3_get_fw_version - read the firmware version
  889. * @adapter: the adapter
  890. * @vers: where to place the version
  891. *
  892. * Reads the FW version from flash.
  893. */
  894. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  895. {
  896. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  897. }
  898. /**
  899. * t3_check_fw_version - check if the FW is compatible with this driver
  900. * @adapter: the adapter
  901. * @must_load: set to 1 if loading a new FW image is required
  902. * Checks if an adapter's FW is compatible with the driver. Returns 0
  903. * if the versions are compatible, a negative error otherwise.
  904. */
  905. int t3_check_fw_version(struct adapter *adapter, int *must_load)
  906. {
  907. int ret;
  908. u32 vers;
  909. unsigned int type, major, minor;
  910. *must_load = 1;
  911. ret = t3_get_fw_version(adapter, &vers);
  912. if (ret)
  913. return ret;
  914. type = G_FW_VERSION_TYPE(vers);
  915. major = G_FW_VERSION_MAJOR(vers);
  916. minor = G_FW_VERSION_MINOR(vers);
  917. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  918. minor == FW_VERSION_MINOR)
  919. return 0;
  920. if (major != FW_VERSION_MAJOR)
  921. CH_ERR(adapter, "found wrong FW version(%u.%u), "
  922. "driver needs version %u.%u\n", major, minor,
  923. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  924. else if (minor < FW_VERSION_MINOR) {
  925. *must_load = 0;
  926. CH_WARN(adapter, "found old FW minor version(%u.%u), "
  927. "driver compiled for version %u.%u\n", major, minor,
  928. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  929. } else {
  930. CH_WARN(adapter, "found newer FW version(%u.%u), "
  931. "driver compiled for version %u.%u\n", major, minor,
  932. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  933. return 0;
  934. }
  935. return -EINVAL;
  936. }
  937. /**
  938. * t3_flash_erase_sectors - erase a range of flash sectors
  939. * @adapter: the adapter
  940. * @start: the first sector to erase
  941. * @end: the last sector to erase
  942. *
  943. * Erases the sectors in the given range.
  944. */
  945. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  946. {
  947. while (start <= end) {
  948. int ret;
  949. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  950. (ret = sf1_write(adapter, 4, 0,
  951. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  952. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  953. return ret;
  954. start++;
  955. }
  956. return 0;
  957. }
  958. /*
  959. * t3_load_fw - download firmware
  960. * @adapter: the adapter
  961. * @fw_data: the firmware image to write
  962. * @size: image size
  963. *
  964. * Write the supplied firmware image to the card's serial flash.
  965. * The FW image has the following sections: @size - 8 bytes of code and
  966. * data, followed by 4 bytes of FW version, followed by the 32-bit
  967. * 1's complement checksum of the whole image.
  968. */
  969. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  970. {
  971. u32 csum;
  972. unsigned int i;
  973. const __be32 *p = (const __be32 *)fw_data;
  974. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  975. if ((size & 3) || size < FW_MIN_SIZE)
  976. return -EINVAL;
  977. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  978. return -EFBIG;
  979. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  980. csum += ntohl(p[i]);
  981. if (csum != 0xffffffff) {
  982. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  983. csum);
  984. return -EINVAL;
  985. }
  986. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  987. if (ret)
  988. goto out;
  989. size -= 8; /* trim off version and checksum */
  990. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  991. unsigned int chunk_size = min(size, 256U);
  992. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  993. if (ret)
  994. goto out;
  995. addr += chunk_size;
  996. fw_data += chunk_size;
  997. size -= chunk_size;
  998. }
  999. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  1000. out:
  1001. if (ret)
  1002. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  1003. return ret;
  1004. }
  1005. #define CIM_CTL_BASE 0x2000
  1006. /**
  1007. * t3_cim_ctl_blk_read - read a block from CIM control region
  1008. *
  1009. * @adap: the adapter
  1010. * @addr: the start address within the CIM control region
  1011. * @n: number of words to read
  1012. * @valp: where to store the result
  1013. *
  1014. * Reads a block of 4-byte words from the CIM control region.
  1015. */
  1016. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  1017. unsigned int n, unsigned int *valp)
  1018. {
  1019. int ret = 0;
  1020. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  1021. return -EBUSY;
  1022. for ( ; !ret && n--; addr += 4) {
  1023. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  1024. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  1025. 0, 5, 2);
  1026. if (!ret)
  1027. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  1028. }
  1029. return ret;
  1030. }
  1031. /**
  1032. * t3_link_changed - handle interface link changes
  1033. * @adapter: the adapter
  1034. * @port_id: the port index that changed link state
  1035. *
  1036. * Called when a port's link settings change to propagate the new values
  1037. * to the associated PHY and MAC. After performing the common tasks it
  1038. * invokes an OS-specific handler.
  1039. */
  1040. void t3_link_changed(struct adapter *adapter, int port_id)
  1041. {
  1042. int link_ok, speed, duplex, fc;
  1043. struct port_info *pi = adap2pinfo(adapter, port_id);
  1044. struct cphy *phy = &pi->phy;
  1045. struct cmac *mac = &pi->mac;
  1046. struct link_config *lc = &pi->link_config;
  1047. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1048. if (lc->requested_fc & PAUSE_AUTONEG)
  1049. fc &= lc->requested_fc;
  1050. else
  1051. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1052. if (link_ok == lc->link_ok && speed == lc->speed &&
  1053. duplex == lc->duplex && fc == lc->fc)
  1054. return; /* nothing changed */
  1055. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1056. uses_xaui(adapter)) {
  1057. if (link_ok)
  1058. t3b_pcs_reset(mac);
  1059. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1060. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1061. }
  1062. lc->link_ok = link_ok;
  1063. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1064. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1065. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1066. /* Set MAC speed, duplex, and flow control to match PHY. */
  1067. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1068. lc->fc = fc;
  1069. }
  1070. t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
  1071. }
  1072. /**
  1073. * t3_link_start - apply link configuration to MAC/PHY
  1074. * @phy: the PHY to setup
  1075. * @mac: the MAC to setup
  1076. * @lc: the requested link configuration
  1077. *
  1078. * Set up a port's MAC and PHY according to a desired link configuration.
  1079. * - If the PHY can auto-negotiate first decide what to advertise, then
  1080. * enable/disable auto-negotiation as desired, and reset.
  1081. * - If the PHY does not auto-negotiate just reset it.
  1082. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1083. * otherwise do it later based on the outcome of auto-negotiation.
  1084. */
  1085. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1086. {
  1087. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1088. lc->link_ok = 0;
  1089. if (lc->supported & SUPPORTED_Autoneg) {
  1090. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1091. if (fc) {
  1092. lc->advertising |= ADVERTISED_Asym_Pause;
  1093. if (fc & PAUSE_RX)
  1094. lc->advertising |= ADVERTISED_Pause;
  1095. }
  1096. phy->ops->advertise(phy, lc->advertising);
  1097. if (lc->autoneg == AUTONEG_DISABLE) {
  1098. lc->speed = lc->requested_speed;
  1099. lc->duplex = lc->requested_duplex;
  1100. lc->fc = (unsigned char)fc;
  1101. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1102. fc);
  1103. /* Also disables autoneg */
  1104. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1105. } else
  1106. phy->ops->autoneg_enable(phy);
  1107. } else {
  1108. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1109. lc->fc = (unsigned char)fc;
  1110. phy->ops->reset(phy, 0);
  1111. }
  1112. return 0;
  1113. }
  1114. /**
  1115. * t3_set_vlan_accel - control HW VLAN extraction
  1116. * @adapter: the adapter
  1117. * @ports: bitmap of adapter ports to operate on
  1118. * @on: enable (1) or disable (0) HW VLAN extraction
  1119. *
  1120. * Enables or disables HW extraction of VLAN tags for the given port.
  1121. */
  1122. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1123. {
  1124. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1125. ports << S_VLANEXTRACTIONENABLE,
  1126. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1127. }
  1128. struct intr_info {
  1129. unsigned int mask; /* bits to check in interrupt status */
  1130. const char *msg; /* message to print or NULL */
  1131. short stat_idx; /* stat counter to increment or -1 */
  1132. unsigned short fatal; /* whether the condition reported is fatal */
  1133. };
  1134. /**
  1135. * t3_handle_intr_status - table driven interrupt handler
  1136. * @adapter: the adapter that generated the interrupt
  1137. * @reg: the interrupt status register to process
  1138. * @mask: a mask to apply to the interrupt status
  1139. * @acts: table of interrupt actions
  1140. * @stats: statistics counters tracking interrupt occurences
  1141. *
  1142. * A table driven interrupt handler that applies a set of masks to an
  1143. * interrupt status word and performs the corresponding actions if the
  1144. * interrupts described by the mask have occured. The actions include
  1145. * optionally printing a warning or alert message, and optionally
  1146. * incrementing a stat counter. The table is terminated by an entry
  1147. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1148. */
  1149. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1150. unsigned int mask,
  1151. const struct intr_info *acts,
  1152. unsigned long *stats)
  1153. {
  1154. int fatal = 0;
  1155. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1156. for (; acts->mask; ++acts) {
  1157. if (!(status & acts->mask))
  1158. continue;
  1159. if (acts->fatal) {
  1160. fatal++;
  1161. CH_ALERT(adapter, "%s (0x%x)\n",
  1162. acts->msg, status & acts->mask);
  1163. } else if (acts->msg)
  1164. CH_WARN(adapter, "%s (0x%x)\n",
  1165. acts->msg, status & acts->mask);
  1166. if (acts->stat_idx >= 0)
  1167. stats[acts->stat_idx]++;
  1168. }
  1169. if (status) /* clear processed interrupts */
  1170. t3_write_reg(adapter, reg, status);
  1171. return fatal;
  1172. }
  1173. #define SGE_INTR_MASK (F_RSPQDISABLED | \
  1174. F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
  1175. F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
  1176. F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
  1177. V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
  1178. F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
  1179. F_HIRCQPARITYERROR)
  1180. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1181. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1182. F_NFASRCHFAIL)
  1183. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1184. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1185. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1186. F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
  1187. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1188. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1189. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1190. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1191. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1192. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1193. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1194. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1195. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1196. F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
  1197. F_TXPARERR | V_BISTERR(M_BISTERR))
  1198. #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
  1199. F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
  1200. F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
  1201. #define ULPTX_INTR_MASK 0xfc
  1202. #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
  1203. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1204. F_ZERO_SWITCH_ERROR)
  1205. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1206. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1207. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1208. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
  1209. F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
  1210. F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
  1211. F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
  1212. F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
  1213. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1214. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1215. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1216. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1217. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1218. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1219. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1220. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1221. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1222. V_MCAPARERRENB(M_MCAPARERRENB))
  1223. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1224. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1225. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1226. F_MPS0 | F_CPL_SWITCH)
  1227. /*
  1228. * Interrupt handler for the PCIX1 module.
  1229. */
  1230. static void pci_intr_handler(struct adapter *adapter)
  1231. {
  1232. static const struct intr_info pcix1_intr_info[] = {
  1233. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1234. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1235. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1236. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1237. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1238. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1239. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1240. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1241. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1242. 1},
  1243. {F_DETCORECCERR, "PCI correctable ECC error",
  1244. STAT_PCI_CORR_ECC, 0},
  1245. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1246. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1247. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1248. 1},
  1249. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1250. 1},
  1251. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1252. 1},
  1253. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1254. "error", -1, 1},
  1255. {0}
  1256. };
  1257. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1258. pcix1_intr_info, adapter->irq_stats))
  1259. t3_fatal_err(adapter);
  1260. }
  1261. /*
  1262. * Interrupt handler for the PCIE module.
  1263. */
  1264. static void pcie_intr_handler(struct adapter *adapter)
  1265. {
  1266. static const struct intr_info pcie_intr_info[] = {
  1267. {F_PEXERR, "PCI PEX error", -1, 1},
  1268. {F_UNXSPLCPLERRR,
  1269. "PCI unexpected split completion DMA read error", -1, 1},
  1270. {F_UNXSPLCPLERRC,
  1271. "PCI unexpected split completion DMA command error", -1, 1},
  1272. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1273. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1274. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1275. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1276. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1277. "PCI MSI-X table/PBA parity error", -1, 1},
  1278. {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
  1279. {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
  1280. {F_RXPARERR, "PCI Rx parity error", -1, 1},
  1281. {F_TXPARERR, "PCI Tx parity error", -1, 1},
  1282. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1283. {0}
  1284. };
  1285. if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
  1286. CH_ALERT(adapter, "PEX error code 0x%x\n",
  1287. t3_read_reg(adapter, A_PCIE_PEX_ERR));
  1288. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1289. pcie_intr_info, adapter->irq_stats))
  1290. t3_fatal_err(adapter);
  1291. }
  1292. /*
  1293. * TP interrupt handler.
  1294. */
  1295. static void tp_intr_handler(struct adapter *adapter)
  1296. {
  1297. static const struct intr_info tp_intr_info[] = {
  1298. {0xffffff, "TP parity error", -1, 1},
  1299. {0x1000000, "TP out of Rx pages", -1, 1},
  1300. {0x2000000, "TP out of Tx pages", -1, 1},
  1301. {0}
  1302. };
  1303. static struct intr_info tp_intr_info_t3c[] = {
  1304. {0x1fffffff, "TP parity error", -1, 1},
  1305. {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
  1306. {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
  1307. {0}
  1308. };
  1309. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1310. adapter->params.rev < T3_REV_C ?
  1311. tp_intr_info : tp_intr_info_t3c, NULL))
  1312. t3_fatal_err(adapter);
  1313. }
  1314. /*
  1315. * CIM interrupt handler.
  1316. */
  1317. static void cim_intr_handler(struct adapter *adapter)
  1318. {
  1319. static const struct intr_info cim_intr_info[] = {
  1320. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1321. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1322. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1323. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1324. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1325. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1326. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1327. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1328. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1329. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1330. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1331. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1332. {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
  1333. {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
  1334. {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
  1335. {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
  1336. {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
  1337. {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
  1338. {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
  1339. {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
  1340. {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
  1341. {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
  1342. {F_ITAGPARERR, "CIM itag parity error", -1, 1},
  1343. {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
  1344. {0}
  1345. };
  1346. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1347. cim_intr_info, NULL))
  1348. t3_fatal_err(adapter);
  1349. }
  1350. /*
  1351. * ULP RX interrupt handler.
  1352. */
  1353. static void ulprx_intr_handler(struct adapter *adapter)
  1354. {
  1355. static const struct intr_info ulprx_intr_info[] = {
  1356. {F_PARERRDATA, "ULP RX data parity error", -1, 1},
  1357. {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
  1358. {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
  1359. {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
  1360. {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
  1361. {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
  1362. {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
  1363. {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
  1364. {0}
  1365. };
  1366. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1367. ulprx_intr_info, NULL))
  1368. t3_fatal_err(adapter);
  1369. }
  1370. /*
  1371. * ULP TX interrupt handler.
  1372. */
  1373. static void ulptx_intr_handler(struct adapter *adapter)
  1374. {
  1375. static const struct intr_info ulptx_intr_info[] = {
  1376. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1377. STAT_ULP_CH0_PBL_OOB, 0},
  1378. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1379. STAT_ULP_CH1_PBL_OOB, 0},
  1380. {0xfc, "ULP TX parity error", -1, 1},
  1381. {0}
  1382. };
  1383. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1384. ulptx_intr_info, adapter->irq_stats))
  1385. t3_fatal_err(adapter);
  1386. }
  1387. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1388. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1389. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1390. F_ICSPI1_TX_FRAMING_ERROR)
  1391. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1392. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1393. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1394. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1395. /*
  1396. * PM TX interrupt handler.
  1397. */
  1398. static void pmtx_intr_handler(struct adapter *adapter)
  1399. {
  1400. static const struct intr_info pmtx_intr_info[] = {
  1401. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1402. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1403. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1404. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1405. "PMTX ispi parity error", -1, 1},
  1406. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1407. "PMTX ospi parity error", -1, 1},
  1408. {0}
  1409. };
  1410. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1411. pmtx_intr_info, NULL))
  1412. t3_fatal_err(adapter);
  1413. }
  1414. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1415. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1416. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1417. F_IESPI1_TX_FRAMING_ERROR)
  1418. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1419. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1420. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1421. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1422. /*
  1423. * PM RX interrupt handler.
  1424. */
  1425. static void pmrx_intr_handler(struct adapter *adapter)
  1426. {
  1427. static const struct intr_info pmrx_intr_info[] = {
  1428. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1429. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1430. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1431. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1432. "PMRX ispi parity error", -1, 1},
  1433. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1434. "PMRX ospi parity error", -1, 1},
  1435. {0}
  1436. };
  1437. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1438. pmrx_intr_info, NULL))
  1439. t3_fatal_err(adapter);
  1440. }
  1441. /*
  1442. * CPL switch interrupt handler.
  1443. */
  1444. static void cplsw_intr_handler(struct adapter *adapter)
  1445. {
  1446. static const struct intr_info cplsw_intr_info[] = {
  1447. {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
  1448. {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
  1449. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1450. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1451. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1452. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1453. {0}
  1454. };
  1455. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1456. cplsw_intr_info, NULL))
  1457. t3_fatal_err(adapter);
  1458. }
  1459. /*
  1460. * MPS interrupt handler.
  1461. */
  1462. static void mps_intr_handler(struct adapter *adapter)
  1463. {
  1464. static const struct intr_info mps_intr_info[] = {
  1465. {0x1ff, "MPS parity error", -1, 1},
  1466. {0}
  1467. };
  1468. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1469. mps_intr_info, NULL))
  1470. t3_fatal_err(adapter);
  1471. }
  1472. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1473. /*
  1474. * MC7 interrupt handler.
  1475. */
  1476. static void mc7_intr_handler(struct mc7 *mc7)
  1477. {
  1478. struct adapter *adapter = mc7->adapter;
  1479. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1480. if (cause & F_CE) {
  1481. mc7->stats.corr_err++;
  1482. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1483. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1484. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1485. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1486. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1487. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1488. }
  1489. if (cause & F_UE) {
  1490. mc7->stats.uncorr_err++;
  1491. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1492. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1493. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1494. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1495. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1496. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1497. }
  1498. if (G_PE(cause)) {
  1499. mc7->stats.parity_err++;
  1500. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1501. mc7->name, G_PE(cause));
  1502. }
  1503. if (cause & F_AE) {
  1504. u32 addr = 0;
  1505. if (adapter->params.rev > 0)
  1506. addr = t3_read_reg(adapter,
  1507. mc7->offset + A_MC7_ERR_ADDR);
  1508. mc7->stats.addr_err++;
  1509. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1510. mc7->name, addr);
  1511. }
  1512. if (cause & MC7_INTR_FATAL)
  1513. t3_fatal_err(adapter);
  1514. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1515. }
  1516. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1517. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1518. /*
  1519. * XGMAC interrupt handler.
  1520. */
  1521. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1522. {
  1523. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1524. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
  1525. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1526. mac->stats.tx_fifo_parity_err++;
  1527. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1528. }
  1529. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1530. mac->stats.rx_fifo_parity_err++;
  1531. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1532. }
  1533. if (cause & F_TXFIFO_UNDERRUN)
  1534. mac->stats.tx_fifo_urun++;
  1535. if (cause & F_RXFIFO_OVERFLOW)
  1536. mac->stats.rx_fifo_ovfl++;
  1537. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1538. mac->stats.serdes_signal_loss++;
  1539. if (cause & F_XAUIPCSCTCERR)
  1540. mac->stats.xaui_pcs_ctc_err++;
  1541. if (cause & F_XAUIPCSALIGNCHANGE)
  1542. mac->stats.xaui_pcs_align_change++;
  1543. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1544. if (cause & XGM_INTR_FATAL)
  1545. t3_fatal_err(adap);
  1546. return cause != 0;
  1547. }
  1548. /*
  1549. * Interrupt handler for PHY events.
  1550. */
  1551. int t3_phy_intr_handler(struct adapter *adapter)
  1552. {
  1553. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1554. for_each_port(adapter, i) {
  1555. struct port_info *p = adap2pinfo(adapter, i);
  1556. if (!(p->phy.caps & SUPPORTED_IRQ))
  1557. continue;
  1558. if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
  1559. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1560. if (phy_cause & cphy_cause_link_change)
  1561. t3_link_changed(adapter, i);
  1562. if (phy_cause & cphy_cause_fifo_error)
  1563. p->phy.fifo_errors++;
  1564. if (phy_cause & cphy_cause_module_change)
  1565. t3_os_phymod_changed(adapter, i);
  1566. }
  1567. }
  1568. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1569. return 0;
  1570. }
  1571. /*
  1572. * T3 slow path (non-data) interrupt handler.
  1573. */
  1574. int t3_slow_intr_handler(struct adapter *adapter)
  1575. {
  1576. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1577. cause &= adapter->slow_intr_mask;
  1578. if (!cause)
  1579. return 0;
  1580. if (cause & F_PCIM0) {
  1581. if (is_pcie(adapter))
  1582. pcie_intr_handler(adapter);
  1583. else
  1584. pci_intr_handler(adapter);
  1585. }
  1586. if (cause & F_SGE3)
  1587. t3_sge_err_intr_handler(adapter);
  1588. if (cause & F_MC7_PMRX)
  1589. mc7_intr_handler(&adapter->pmrx);
  1590. if (cause & F_MC7_PMTX)
  1591. mc7_intr_handler(&adapter->pmtx);
  1592. if (cause & F_MC7_CM)
  1593. mc7_intr_handler(&adapter->cm);
  1594. if (cause & F_CIM)
  1595. cim_intr_handler(adapter);
  1596. if (cause & F_TP1)
  1597. tp_intr_handler(adapter);
  1598. if (cause & F_ULP2_RX)
  1599. ulprx_intr_handler(adapter);
  1600. if (cause & F_ULP2_TX)
  1601. ulptx_intr_handler(adapter);
  1602. if (cause & F_PM1_RX)
  1603. pmrx_intr_handler(adapter);
  1604. if (cause & F_PM1_TX)
  1605. pmtx_intr_handler(adapter);
  1606. if (cause & F_CPL_SWITCH)
  1607. cplsw_intr_handler(adapter);
  1608. if (cause & F_MPS0)
  1609. mps_intr_handler(adapter);
  1610. if (cause & F_MC5A)
  1611. t3_mc5_intr_handler(&adapter->mc5);
  1612. if (cause & F_XGMAC0_0)
  1613. mac_intr_handler(adapter, 0);
  1614. if (cause & F_XGMAC0_1)
  1615. mac_intr_handler(adapter, 1);
  1616. if (cause & F_T3DBG)
  1617. t3_os_ext_intr_handler(adapter);
  1618. /* Clear the interrupts just processed. */
  1619. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1620. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1621. return 1;
  1622. }
  1623. static unsigned int calc_gpio_intr(struct adapter *adap)
  1624. {
  1625. unsigned int i, gpi_intr = 0;
  1626. for_each_port(adap, i)
  1627. if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
  1628. adapter_info(adap)->gpio_intr[i])
  1629. gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
  1630. return gpi_intr;
  1631. }
  1632. /**
  1633. * t3_intr_enable - enable interrupts
  1634. * @adapter: the adapter whose interrupts should be enabled
  1635. *
  1636. * Enable interrupts by setting the interrupt enable registers of the
  1637. * various HW modules and then enabling the top-level interrupt
  1638. * concentrator.
  1639. */
  1640. void t3_intr_enable(struct adapter *adapter)
  1641. {
  1642. static const struct addr_val_pair intr_en_avp[] = {
  1643. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1644. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1645. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1646. MC7_INTR_MASK},
  1647. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1648. MC7_INTR_MASK},
  1649. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1650. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1651. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1652. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1653. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1654. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1655. };
  1656. adapter->slow_intr_mask = PL_INTR_MASK;
  1657. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1658. t3_write_reg(adapter, A_TP_INT_ENABLE,
  1659. adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
  1660. if (adapter->params.rev > 0) {
  1661. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1662. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1663. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1664. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1665. F_PBL_BOUND_ERR_CH1);
  1666. } else {
  1667. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1668. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1669. }
  1670. t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
  1671. if (is_pcie(adapter))
  1672. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1673. else
  1674. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1675. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1676. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1677. }
  1678. /**
  1679. * t3_intr_disable - disable a card's interrupts
  1680. * @adapter: the adapter whose interrupts should be disabled
  1681. *
  1682. * Disable interrupts. We only disable the top-level interrupt
  1683. * concentrator and the SGE data interrupts.
  1684. */
  1685. void t3_intr_disable(struct adapter *adapter)
  1686. {
  1687. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1688. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1689. adapter->slow_intr_mask = 0;
  1690. }
  1691. /**
  1692. * t3_intr_clear - clear all interrupts
  1693. * @adapter: the adapter whose interrupts should be cleared
  1694. *
  1695. * Clears all interrupts.
  1696. */
  1697. void t3_intr_clear(struct adapter *adapter)
  1698. {
  1699. static const unsigned int cause_reg_addr[] = {
  1700. A_SG_INT_CAUSE,
  1701. A_SG_RSPQ_FL_STATUS,
  1702. A_PCIX_INT_CAUSE,
  1703. A_MC7_INT_CAUSE,
  1704. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1705. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1706. A_CIM_HOST_INT_CAUSE,
  1707. A_TP_INT_CAUSE,
  1708. A_MC5_DB_INT_CAUSE,
  1709. A_ULPRX_INT_CAUSE,
  1710. A_ULPTX_INT_CAUSE,
  1711. A_CPL_INTR_CAUSE,
  1712. A_PM1_TX_INT_CAUSE,
  1713. A_PM1_RX_INT_CAUSE,
  1714. A_MPS_INT_CAUSE,
  1715. A_T3DBG_INT_CAUSE,
  1716. };
  1717. unsigned int i;
  1718. /* Clear PHY and MAC interrupts for each port. */
  1719. for_each_port(adapter, i)
  1720. t3_port_intr_clear(adapter, i);
  1721. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1722. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1723. if (is_pcie(adapter))
  1724. t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
  1725. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1726. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1727. }
  1728. /**
  1729. * t3_port_intr_enable - enable port-specific interrupts
  1730. * @adapter: associated adapter
  1731. * @idx: index of port whose interrupts should be enabled
  1732. *
  1733. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1734. * adapter port.
  1735. */
  1736. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1737. {
  1738. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1739. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1740. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1741. phy->ops->intr_enable(phy);
  1742. }
  1743. /**
  1744. * t3_port_intr_disable - disable port-specific interrupts
  1745. * @adapter: associated adapter
  1746. * @idx: index of port whose interrupts should be disabled
  1747. *
  1748. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1749. * adapter port.
  1750. */
  1751. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1752. {
  1753. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1754. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1755. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1756. phy->ops->intr_disable(phy);
  1757. }
  1758. /**
  1759. * t3_port_intr_clear - clear port-specific interrupts
  1760. * @adapter: associated adapter
  1761. * @idx: index of port whose interrupts to clear
  1762. *
  1763. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1764. * adapter port.
  1765. */
  1766. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1767. {
  1768. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1769. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1770. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1771. phy->ops->intr_clear(phy);
  1772. }
  1773. #define SG_CONTEXT_CMD_ATTEMPTS 100
  1774. /**
  1775. * t3_sge_write_context - write an SGE context
  1776. * @adapter: the adapter
  1777. * @id: the context id
  1778. * @type: the context type
  1779. *
  1780. * Program an SGE context with the values already loaded in the
  1781. * CONTEXT_DATA? registers.
  1782. */
  1783. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1784. unsigned int type)
  1785. {
  1786. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1787. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1788. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1789. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1790. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1791. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1792. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1793. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1794. }
  1795. static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
  1796. unsigned int type)
  1797. {
  1798. t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
  1799. t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
  1800. t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
  1801. t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
  1802. return t3_sge_write_context(adap, id, type);
  1803. }
  1804. /**
  1805. * t3_sge_init_ecntxt - initialize an SGE egress context
  1806. * @adapter: the adapter to configure
  1807. * @id: the context id
  1808. * @gts_enable: whether to enable GTS for the context
  1809. * @type: the egress context type
  1810. * @respq: associated response queue
  1811. * @base_addr: base address of queue
  1812. * @size: number of queue entries
  1813. * @token: uP token
  1814. * @gen: initial generation value for the context
  1815. * @cidx: consumer pointer
  1816. *
  1817. * Initialize an SGE egress context and make it ready for use. If the
  1818. * platform allows concurrent context operations, the caller is
  1819. * responsible for appropriate locking.
  1820. */
  1821. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1822. enum sge_context_type type, int respq, u64 base_addr,
  1823. unsigned int size, unsigned int token, int gen,
  1824. unsigned int cidx)
  1825. {
  1826. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1827. if (base_addr & 0xfff) /* must be 4K aligned */
  1828. return -EINVAL;
  1829. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1830. return -EBUSY;
  1831. base_addr >>= 12;
  1832. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1833. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1834. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1835. V_EC_BASE_LO(base_addr & 0xffff));
  1836. base_addr >>= 16;
  1837. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1838. base_addr >>= 32;
  1839. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1840. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1841. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1842. F_EC_VALID);
  1843. return t3_sge_write_context(adapter, id, F_EGRESS);
  1844. }
  1845. /**
  1846. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1847. * @adapter: the adapter to configure
  1848. * @id: the context id
  1849. * @gts_enable: whether to enable GTS for the context
  1850. * @base_addr: base address of queue
  1851. * @size: number of queue entries
  1852. * @bsize: size of each buffer for this queue
  1853. * @cong_thres: threshold to signal congestion to upstream producers
  1854. * @gen: initial generation value for the context
  1855. * @cidx: consumer pointer
  1856. *
  1857. * Initialize an SGE free list context and make it ready for use. The
  1858. * caller is responsible for ensuring only one context operation occurs
  1859. * at a time.
  1860. */
  1861. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  1862. int gts_enable, u64 base_addr, unsigned int size,
  1863. unsigned int bsize, unsigned int cong_thres, int gen,
  1864. unsigned int cidx)
  1865. {
  1866. if (base_addr & 0xfff) /* must be 4K aligned */
  1867. return -EINVAL;
  1868. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1869. return -EBUSY;
  1870. base_addr >>= 12;
  1871. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  1872. base_addr >>= 32;
  1873. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  1874. V_FL_BASE_HI((u32) base_addr) |
  1875. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  1876. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  1877. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  1878. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  1879. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1880. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  1881. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  1882. return t3_sge_write_context(adapter, id, F_FREELIST);
  1883. }
  1884. /**
  1885. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  1886. * @adapter: the adapter to configure
  1887. * @id: the context id
  1888. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  1889. * @base_addr: base address of queue
  1890. * @size: number of queue entries
  1891. * @fl_thres: threshold for selecting the normal or jumbo free list
  1892. * @gen: initial generation value for the context
  1893. * @cidx: consumer pointer
  1894. *
  1895. * Initialize an SGE response queue context and make it ready for use.
  1896. * The caller is responsible for ensuring only one context operation
  1897. * occurs at a time.
  1898. */
  1899. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  1900. int irq_vec_idx, u64 base_addr, unsigned int size,
  1901. unsigned int fl_thres, int gen, unsigned int cidx)
  1902. {
  1903. unsigned int intr = 0;
  1904. if (base_addr & 0xfff) /* must be 4K aligned */
  1905. return -EINVAL;
  1906. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1907. return -EBUSY;
  1908. base_addr >>= 12;
  1909. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  1910. V_CQ_INDEX(cidx));
  1911. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1912. base_addr >>= 32;
  1913. if (irq_vec_idx >= 0)
  1914. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  1915. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1916. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  1917. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  1918. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  1919. }
  1920. /**
  1921. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  1922. * @adapter: the adapter to configure
  1923. * @id: the context id
  1924. * @base_addr: base address of queue
  1925. * @size: number of queue entries
  1926. * @rspq: response queue for async notifications
  1927. * @ovfl_mode: CQ overflow mode
  1928. * @credits: completion queue credits
  1929. * @credit_thres: the credit threshold
  1930. *
  1931. * Initialize an SGE completion queue context and make it ready for use.
  1932. * The caller is responsible for ensuring only one context operation
  1933. * occurs at a time.
  1934. */
  1935. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  1936. unsigned int size, int rspq, int ovfl_mode,
  1937. unsigned int credits, unsigned int credit_thres)
  1938. {
  1939. if (base_addr & 0xfff) /* must be 4K aligned */
  1940. return -EINVAL;
  1941. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1942. return -EBUSY;
  1943. base_addr >>= 12;
  1944. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  1945. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1946. base_addr >>= 32;
  1947. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1948. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  1949. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
  1950. V_CQ_ERR(ovfl_mode));
  1951. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  1952. V_CQ_CREDIT_THRES(credit_thres));
  1953. return t3_sge_write_context(adapter, id, F_CQ);
  1954. }
  1955. /**
  1956. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  1957. * @adapter: the adapter
  1958. * @id: the egress context id
  1959. * @enable: enable (1) or disable (0) the context
  1960. *
  1961. * Enable or disable an SGE egress context. The caller is responsible for
  1962. * ensuring only one context operation occurs at a time.
  1963. */
  1964. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  1965. {
  1966. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1967. return -EBUSY;
  1968. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1969. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1970. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1971. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  1972. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  1973. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1974. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  1975. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1976. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1977. }
  1978. /**
  1979. * t3_sge_disable_fl - disable an SGE free-buffer list
  1980. * @adapter: the adapter
  1981. * @id: the free list context id
  1982. *
  1983. * Disable an SGE free-buffer list. The caller is responsible for
  1984. * ensuring only one context operation occurs at a time.
  1985. */
  1986. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  1987. {
  1988. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1989. return -EBUSY;
  1990. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1991. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1992. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  1993. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1994. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  1995. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1996. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  1997. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1998. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1999. }
  2000. /**
  2001. * t3_sge_disable_rspcntxt - disable an SGE response queue
  2002. * @adapter: the adapter
  2003. * @id: the response queue context id
  2004. *
  2005. * Disable an SGE response queue. The caller is responsible for
  2006. * ensuring only one context operation occurs at a time.
  2007. */
  2008. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  2009. {
  2010. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2011. return -EBUSY;
  2012. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2013. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2014. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2015. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2016. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2017. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2018. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  2019. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2020. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2021. }
  2022. /**
  2023. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  2024. * @adapter: the adapter
  2025. * @id: the completion queue context id
  2026. *
  2027. * Disable an SGE completion queue. The caller is responsible for
  2028. * ensuring only one context operation occurs at a time.
  2029. */
  2030. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  2031. {
  2032. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2033. return -EBUSY;
  2034. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2035. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2036. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2037. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2038. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2039. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2040. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  2041. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2042. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2043. }
  2044. /**
  2045. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  2046. * @adapter: the adapter
  2047. * @id: the context id
  2048. * @op: the operation to perform
  2049. *
  2050. * Perform the selected operation on an SGE completion queue context.
  2051. * The caller is responsible for ensuring only one context operation
  2052. * occurs at a time.
  2053. */
  2054. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  2055. unsigned int credits)
  2056. {
  2057. u32 val;
  2058. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2059. return -EBUSY;
  2060. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  2061. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  2062. V_CONTEXT(id) | F_CQ);
  2063. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2064. 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
  2065. return -EIO;
  2066. if (op >= 2 && op < 7) {
  2067. if (adapter->params.rev > 0)
  2068. return G_CQ_INDEX(val);
  2069. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2070. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  2071. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  2072. F_CONTEXT_CMD_BUSY, 0,
  2073. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2074. return -EIO;
  2075. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  2076. }
  2077. return 0;
  2078. }
  2079. /**
  2080. * t3_sge_read_context - read an SGE context
  2081. * @type: the context type
  2082. * @adapter: the adapter
  2083. * @id: the context id
  2084. * @data: holds the retrieved context
  2085. *
  2086. * Read an SGE egress context. The caller is responsible for ensuring
  2087. * only one context operation occurs at a time.
  2088. */
  2089. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  2090. unsigned int id, u32 data[4])
  2091. {
  2092. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2093. return -EBUSY;
  2094. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2095. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  2096. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  2097. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2098. return -EIO;
  2099. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  2100. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  2101. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  2102. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  2103. return 0;
  2104. }
  2105. /**
  2106. * t3_sge_read_ecntxt - read an SGE egress context
  2107. * @adapter: the adapter
  2108. * @id: the context id
  2109. * @data: holds the retrieved context
  2110. *
  2111. * Read an SGE egress context. The caller is responsible for ensuring
  2112. * only one context operation occurs at a time.
  2113. */
  2114. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  2115. {
  2116. if (id >= 65536)
  2117. return -EINVAL;
  2118. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  2119. }
  2120. /**
  2121. * t3_sge_read_cq - read an SGE CQ context
  2122. * @adapter: the adapter
  2123. * @id: the context id
  2124. * @data: holds the retrieved context
  2125. *
  2126. * Read an SGE CQ context. The caller is responsible for ensuring
  2127. * only one context operation occurs at a time.
  2128. */
  2129. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  2130. {
  2131. if (id >= 65536)
  2132. return -EINVAL;
  2133. return t3_sge_read_context(F_CQ, adapter, id, data);
  2134. }
  2135. /**
  2136. * t3_sge_read_fl - read an SGE free-list context
  2137. * @adapter: the adapter
  2138. * @id: the context id
  2139. * @data: holds the retrieved context
  2140. *
  2141. * Read an SGE free-list context. The caller is responsible for ensuring
  2142. * only one context operation occurs at a time.
  2143. */
  2144. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  2145. {
  2146. if (id >= SGE_QSETS * 2)
  2147. return -EINVAL;
  2148. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  2149. }
  2150. /**
  2151. * t3_sge_read_rspq - read an SGE response queue context
  2152. * @adapter: the adapter
  2153. * @id: the context id
  2154. * @data: holds the retrieved context
  2155. *
  2156. * Read an SGE response queue context. The caller is responsible for
  2157. * ensuring only one context operation occurs at a time.
  2158. */
  2159. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  2160. {
  2161. if (id >= SGE_QSETS)
  2162. return -EINVAL;
  2163. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  2164. }
  2165. /**
  2166. * t3_config_rss - configure Rx packet steering
  2167. * @adapter: the adapter
  2168. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2169. * @cpus: values for the CPU lookup table (0xff terminated)
  2170. * @rspq: values for the response queue lookup table (0xffff terminated)
  2171. *
  2172. * Programs the receive packet steering logic. @cpus and @rspq provide
  2173. * the values for the CPU and response queue lookup tables. If they
  2174. * provide fewer values than the size of the tables the supplied values
  2175. * are used repeatedly until the tables are fully populated.
  2176. */
  2177. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2178. const u8 * cpus, const u16 *rspq)
  2179. {
  2180. int i, j, cpu_idx = 0, q_idx = 0;
  2181. if (cpus)
  2182. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2183. u32 val = i << 16;
  2184. for (j = 0; j < 2; ++j) {
  2185. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2186. if (cpus[cpu_idx] == 0xff)
  2187. cpu_idx = 0;
  2188. }
  2189. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2190. }
  2191. if (rspq)
  2192. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2193. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2194. (i << 16) | rspq[q_idx++]);
  2195. if (rspq[q_idx] == 0xffff)
  2196. q_idx = 0;
  2197. }
  2198. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2199. }
  2200. /**
  2201. * t3_read_rss - read the contents of the RSS tables
  2202. * @adapter: the adapter
  2203. * @lkup: holds the contents of the RSS lookup table
  2204. * @map: holds the contents of the RSS map table
  2205. *
  2206. * Reads the contents of the receive packet steering tables.
  2207. */
  2208. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  2209. {
  2210. int i;
  2211. u32 val;
  2212. if (lkup)
  2213. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2214. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  2215. 0xffff0000 | i);
  2216. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  2217. if (!(val & 0x80000000))
  2218. return -EAGAIN;
  2219. *lkup++ = val;
  2220. *lkup++ = (val >> 8);
  2221. }
  2222. if (map)
  2223. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2224. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2225. 0xffff0000 | i);
  2226. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  2227. if (!(val & 0x80000000))
  2228. return -EAGAIN;
  2229. *map++ = val;
  2230. }
  2231. return 0;
  2232. }
  2233. /**
  2234. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2235. * @adap: the adapter
  2236. * @enable: 1 to select offload mode, 0 for regular NIC
  2237. *
  2238. * Switches TP to NIC/offload mode.
  2239. */
  2240. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2241. {
  2242. if (is_offload(adap) || !enable)
  2243. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2244. V_NICMODE(!enable));
  2245. }
  2246. /**
  2247. * pm_num_pages - calculate the number of pages of the payload memory
  2248. * @mem_size: the size of the payload memory
  2249. * @pg_size: the size of each payload memory page
  2250. *
  2251. * Calculate the number of pages, each of the given size, that fit in a
  2252. * memory of the specified size, respecting the HW requirement that the
  2253. * number of pages must be a multiple of 24.
  2254. */
  2255. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2256. unsigned int pg_size)
  2257. {
  2258. unsigned int n = mem_size / pg_size;
  2259. return n - n % 24;
  2260. }
  2261. #define mem_region(adap, start, size, reg) \
  2262. t3_write_reg((adap), A_ ## reg, (start)); \
  2263. start += size
  2264. /**
  2265. * partition_mem - partition memory and configure TP memory settings
  2266. * @adap: the adapter
  2267. * @p: the TP parameters
  2268. *
  2269. * Partitions context and payload memory and configures TP's memory
  2270. * registers.
  2271. */
  2272. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2273. {
  2274. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2275. unsigned int timers = 0, timers_shift = 22;
  2276. if (adap->params.rev > 0) {
  2277. if (tids <= 16 * 1024) {
  2278. timers = 1;
  2279. timers_shift = 16;
  2280. } else if (tids <= 64 * 1024) {
  2281. timers = 2;
  2282. timers_shift = 18;
  2283. } else if (tids <= 256 * 1024) {
  2284. timers = 3;
  2285. timers_shift = 20;
  2286. }
  2287. }
  2288. t3_write_reg(adap, A_TP_PMM_SIZE,
  2289. p->chan_rx_size | (p->chan_tx_size >> 16));
  2290. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2291. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2292. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2293. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2294. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2295. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2296. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2297. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2298. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2299. /* Add a bit of headroom and make multiple of 24 */
  2300. pstructs += 48;
  2301. pstructs -= pstructs % 24;
  2302. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2303. m = tids * TCB_SIZE;
  2304. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2305. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2306. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2307. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2308. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2309. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2310. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2311. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2312. m = (m + 4095) & ~0xfff;
  2313. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2314. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2315. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2316. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2317. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2318. if (tids < m)
  2319. adap->params.mc5.nservers += m - tids;
  2320. }
  2321. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2322. u32 val)
  2323. {
  2324. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2325. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2326. }
  2327. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2328. {
  2329. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2330. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2331. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2332. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2333. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2334. V_TIMESTAMPSMODE(0) | V_SACKMODE(1) | V_SACKRX(1));
  2335. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2336. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2337. V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
  2338. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2339. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
  2340. F_IPV6ENABLE | F_NICMODE);
  2341. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2342. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2343. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2344. adap->params.rev > 0 ? F_ENABLEESND :
  2345. F_T3A_ENABLEESND);
  2346. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2347. F_ENABLEEPCMDAFULL,
  2348. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2349. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2350. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
  2351. F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
  2352. F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
  2353. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2354. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2355. if (adap->params.rev > 0) {
  2356. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2357. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2358. F_TXPACEAUTO);
  2359. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2360. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2361. } else
  2362. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2363. if (adap->params.rev == T3_REV_C)
  2364. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2365. V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
  2366. V_TABLELATENCYDELTA(4));
  2367. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2368. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2369. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2370. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2371. }
  2372. /* Desired TP timer resolution in usec */
  2373. #define TP_TMR_RES 50
  2374. /* TCP timer values in ms */
  2375. #define TP_DACK_TIMER 50
  2376. #define TP_RTO_MIN 250
  2377. /**
  2378. * tp_set_timers - set TP timing parameters
  2379. * @adap: the adapter to set
  2380. * @core_clk: the core clock frequency in Hz
  2381. *
  2382. * Set TP's timing parameters, such as the various timer resolutions and
  2383. * the TCP timer values.
  2384. */
  2385. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2386. {
  2387. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2388. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2389. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2390. unsigned int tps = core_clk >> tre;
  2391. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2392. V_DELAYEDACKRESOLUTION(dack_re) |
  2393. V_TIMESTAMPRESOLUTION(tstamp_re));
  2394. t3_write_reg(adap, A_TP_DACK_TIMER,
  2395. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2396. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2397. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2398. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2399. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2400. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2401. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2402. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2403. V_KEEPALIVEMAX(9));
  2404. #define SECONDS * tps
  2405. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2406. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2407. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2408. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2409. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2410. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2411. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2412. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2413. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2414. #undef SECONDS
  2415. }
  2416. /**
  2417. * t3_tp_set_coalescing_size - set receive coalescing size
  2418. * @adap: the adapter
  2419. * @size: the receive coalescing size
  2420. * @psh: whether a set PSH bit should deliver coalesced data
  2421. *
  2422. * Set the receive coalescing size and PSH bit handling.
  2423. */
  2424. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2425. {
  2426. u32 val;
  2427. if (size > MAX_RX_COALESCING_LEN)
  2428. return -EINVAL;
  2429. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2430. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2431. if (size) {
  2432. val |= F_RXCOALESCEENABLE;
  2433. if (psh)
  2434. val |= F_RXCOALESCEPSHEN;
  2435. size = min(MAX_RX_COALESCING_LEN, size);
  2436. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2437. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2438. }
  2439. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2440. return 0;
  2441. }
  2442. /**
  2443. * t3_tp_set_max_rxsize - set the max receive size
  2444. * @adap: the adapter
  2445. * @size: the max receive size
  2446. *
  2447. * Set TP's max receive size. This is the limit that applies when
  2448. * receive coalescing is disabled.
  2449. */
  2450. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2451. {
  2452. t3_write_reg(adap, A_TP_PARA_REG7,
  2453. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2454. }
  2455. static void init_mtus(unsigned short mtus[])
  2456. {
  2457. /*
  2458. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2459. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2460. * are enabled and still have at least 8 bytes of payload.
  2461. */
  2462. mtus[0] = 88;
  2463. mtus[1] = 88;
  2464. mtus[2] = 256;
  2465. mtus[3] = 512;
  2466. mtus[4] = 576;
  2467. mtus[5] = 1024;
  2468. mtus[6] = 1280;
  2469. mtus[7] = 1492;
  2470. mtus[8] = 1500;
  2471. mtus[9] = 2002;
  2472. mtus[10] = 2048;
  2473. mtus[11] = 4096;
  2474. mtus[12] = 4352;
  2475. mtus[13] = 8192;
  2476. mtus[14] = 9000;
  2477. mtus[15] = 9600;
  2478. }
  2479. /*
  2480. * Initial congestion control parameters.
  2481. */
  2482. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  2483. {
  2484. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2485. a[9] = 2;
  2486. a[10] = 3;
  2487. a[11] = 4;
  2488. a[12] = 5;
  2489. a[13] = 6;
  2490. a[14] = 7;
  2491. a[15] = 8;
  2492. a[16] = 9;
  2493. a[17] = 10;
  2494. a[18] = 14;
  2495. a[19] = 17;
  2496. a[20] = 21;
  2497. a[21] = 25;
  2498. a[22] = 30;
  2499. a[23] = 35;
  2500. a[24] = 45;
  2501. a[25] = 60;
  2502. a[26] = 80;
  2503. a[27] = 100;
  2504. a[28] = 200;
  2505. a[29] = 300;
  2506. a[30] = 400;
  2507. a[31] = 500;
  2508. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2509. b[9] = b[10] = 1;
  2510. b[11] = b[12] = 2;
  2511. b[13] = b[14] = b[15] = b[16] = 3;
  2512. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2513. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2514. b[28] = b[29] = 6;
  2515. b[30] = b[31] = 7;
  2516. }
  2517. /* The minimum additive increment value for the congestion control table */
  2518. #define CC_MIN_INCR 2U
  2519. /**
  2520. * t3_load_mtus - write the MTU and congestion control HW tables
  2521. * @adap: the adapter
  2522. * @mtus: the unrestricted values for the MTU table
  2523. * @alphs: the values for the congestion control alpha parameter
  2524. * @beta: the values for the congestion control beta parameter
  2525. * @mtu_cap: the maximum permitted effective MTU
  2526. *
  2527. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2528. * Update the high-speed congestion control table with the supplied alpha,
  2529. * beta, and MTUs.
  2530. */
  2531. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2532. unsigned short alpha[NCCTRL_WIN],
  2533. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2534. {
  2535. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2536. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2537. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2538. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2539. };
  2540. unsigned int i, w;
  2541. for (i = 0; i < NMTUS; ++i) {
  2542. unsigned int mtu = min(mtus[i], mtu_cap);
  2543. unsigned int log2 = fls(mtu);
  2544. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2545. log2--;
  2546. t3_write_reg(adap, A_TP_MTU_TABLE,
  2547. (i << 24) | (log2 << 16) | mtu);
  2548. for (w = 0; w < NCCTRL_WIN; ++w) {
  2549. unsigned int inc;
  2550. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2551. CC_MIN_INCR);
  2552. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2553. (w << 16) | (beta[w] << 13) | inc);
  2554. }
  2555. }
  2556. }
  2557. /**
  2558. * t3_read_hw_mtus - returns the values in the HW MTU table
  2559. * @adap: the adapter
  2560. * @mtus: where to store the HW MTU values
  2561. *
  2562. * Reads the HW MTU table.
  2563. */
  2564. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2565. {
  2566. int i;
  2567. for (i = 0; i < NMTUS; ++i) {
  2568. unsigned int val;
  2569. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2570. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2571. mtus[i] = val & 0x3fff;
  2572. }
  2573. }
  2574. /**
  2575. * t3_get_cong_cntl_tab - reads the congestion control table
  2576. * @adap: the adapter
  2577. * @incr: where to store the alpha values
  2578. *
  2579. * Reads the additive increments programmed into the HW congestion
  2580. * control table.
  2581. */
  2582. void t3_get_cong_cntl_tab(struct adapter *adap,
  2583. unsigned short incr[NMTUS][NCCTRL_WIN])
  2584. {
  2585. unsigned int mtu, w;
  2586. for (mtu = 0; mtu < NMTUS; ++mtu)
  2587. for (w = 0; w < NCCTRL_WIN; ++w) {
  2588. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2589. 0xffff0000 | (mtu << 5) | w);
  2590. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2591. 0x1fff;
  2592. }
  2593. }
  2594. /**
  2595. * t3_tp_get_mib_stats - read TP's MIB counters
  2596. * @adap: the adapter
  2597. * @tps: holds the returned counter values
  2598. *
  2599. * Returns the values of TP's MIB counters.
  2600. */
  2601. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2602. {
  2603. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2604. sizeof(*tps) / sizeof(u32), 0);
  2605. }
  2606. #define ulp_region(adap, name, start, len) \
  2607. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2608. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2609. (start) + (len) - 1); \
  2610. start += len
  2611. #define ulptx_region(adap, name, start, len) \
  2612. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2613. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2614. (start) + (len) - 1)
  2615. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2616. {
  2617. unsigned int m = p->chan_rx_size;
  2618. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2619. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2620. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2621. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2622. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2623. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2624. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2625. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2626. }
  2627. /**
  2628. * t3_set_proto_sram - set the contents of the protocol sram
  2629. * @adapter: the adapter
  2630. * @data: the protocol image
  2631. *
  2632. * Write the contents of the protocol SRAM.
  2633. */
  2634. int t3_set_proto_sram(struct adapter *adap, const u8 *data)
  2635. {
  2636. int i;
  2637. const __be32 *buf = (const __be32 *)data;
  2638. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2639. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
  2640. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
  2641. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
  2642. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
  2643. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
  2644. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2645. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2646. return -EIO;
  2647. }
  2648. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2649. return 0;
  2650. }
  2651. void t3_config_trace_filter(struct adapter *adapter,
  2652. const struct trace_params *tp, int filter_index,
  2653. int invert, int enable)
  2654. {
  2655. u32 addr, key[4], mask[4];
  2656. key[0] = tp->sport | (tp->sip << 16);
  2657. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2658. key[2] = tp->dip;
  2659. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2660. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2661. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2662. mask[2] = tp->dip_mask;
  2663. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2664. if (invert)
  2665. key[3] |= (1 << 29);
  2666. if (enable)
  2667. key[3] |= (1 << 28);
  2668. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2669. tp_wr_indirect(adapter, addr++, key[0]);
  2670. tp_wr_indirect(adapter, addr++, mask[0]);
  2671. tp_wr_indirect(adapter, addr++, key[1]);
  2672. tp_wr_indirect(adapter, addr++, mask[1]);
  2673. tp_wr_indirect(adapter, addr++, key[2]);
  2674. tp_wr_indirect(adapter, addr++, mask[2]);
  2675. tp_wr_indirect(adapter, addr++, key[3]);
  2676. tp_wr_indirect(adapter, addr, mask[3]);
  2677. t3_read_reg(adapter, A_TP_PIO_DATA);
  2678. }
  2679. /**
  2680. * t3_config_sched - configure a HW traffic scheduler
  2681. * @adap: the adapter
  2682. * @kbps: target rate in Kbps
  2683. * @sched: the scheduler index
  2684. *
  2685. * Configure a HW scheduler for the target rate
  2686. */
  2687. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2688. {
  2689. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2690. unsigned int clk = adap->params.vpd.cclk * 1000;
  2691. unsigned int selected_cpt = 0, selected_bpt = 0;
  2692. if (kbps > 0) {
  2693. kbps *= 125; /* -> bytes */
  2694. for (cpt = 1; cpt <= 255; cpt++) {
  2695. tps = clk / cpt;
  2696. bpt = (kbps + tps / 2) / tps;
  2697. if (bpt > 0 && bpt <= 255) {
  2698. v = bpt * tps;
  2699. delta = v >= kbps ? v - kbps : kbps - v;
  2700. if (delta <= mindelta) {
  2701. mindelta = delta;
  2702. selected_cpt = cpt;
  2703. selected_bpt = bpt;
  2704. }
  2705. } else if (selected_cpt)
  2706. break;
  2707. }
  2708. if (!selected_cpt)
  2709. return -EINVAL;
  2710. }
  2711. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2712. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2713. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2714. if (sched & 1)
  2715. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2716. else
  2717. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2718. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2719. return 0;
  2720. }
  2721. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2722. {
  2723. int busy = 0;
  2724. tp_config(adap, p);
  2725. t3_set_vlan_accel(adap, 3, 0);
  2726. if (is_offload(adap)) {
  2727. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2728. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2729. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2730. 0, 1000, 5);
  2731. if (busy)
  2732. CH_ERR(adap, "TP initialization timed out\n");
  2733. }
  2734. if (!busy)
  2735. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2736. return busy;
  2737. }
  2738. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2739. {
  2740. if (port_mask & ~((1 << adap->params.nports) - 1))
  2741. return -EINVAL;
  2742. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2743. port_mask << S_PORT0ACTIVE);
  2744. return 0;
  2745. }
  2746. /*
  2747. * Perform the bits of HW initialization that are dependent on the number
  2748. * of available ports.
  2749. */
  2750. static void init_hw_for_avail_ports(struct adapter *adap, int nports)
  2751. {
  2752. int i;
  2753. if (nports == 1) {
  2754. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2755. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2756. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
  2757. F_PORT0ACTIVE | F_ENFORCEPKT);
  2758. t3_write_reg(adap, A_PM1_TX_CFG, 0xffffffff);
  2759. } else {
  2760. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2761. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2762. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2763. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2764. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2765. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2766. F_ENFORCEPKT);
  2767. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2768. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2769. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2770. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2771. for (i = 0; i < 16; i++)
  2772. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2773. (i << 16) | 0x1010);
  2774. }
  2775. }
  2776. static int calibrate_xgm(struct adapter *adapter)
  2777. {
  2778. if (uses_xaui(adapter)) {
  2779. unsigned int v, i;
  2780. for (i = 0; i < 5; ++i) {
  2781. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2782. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2783. msleep(1);
  2784. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2785. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2786. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2787. V_XAUIIMP(G_CALIMP(v) >> 2));
  2788. return 0;
  2789. }
  2790. }
  2791. CH_ERR(adapter, "MAC calibration failed\n");
  2792. return -1;
  2793. } else {
  2794. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2795. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2796. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2797. F_XGM_IMPSETUPDATE);
  2798. }
  2799. return 0;
  2800. }
  2801. static void calibrate_xgm_t3b(struct adapter *adapter)
  2802. {
  2803. if (!uses_xaui(adapter)) {
  2804. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2805. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2806. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2807. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2808. F_XGM_IMPSETUPDATE);
  2809. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2810. 0);
  2811. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2812. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2813. }
  2814. }
  2815. struct mc7_timing_params {
  2816. unsigned char ActToPreDly;
  2817. unsigned char ActToRdWrDly;
  2818. unsigned char PreCyc;
  2819. unsigned char RefCyc[5];
  2820. unsigned char BkCyc;
  2821. unsigned char WrToRdDly;
  2822. unsigned char RdToWrDly;
  2823. };
  2824. /*
  2825. * Write a value to a register and check that the write completed. These
  2826. * writes normally complete in a cycle or two, so one read should suffice.
  2827. * The very first read exists to flush the posted write to the device.
  2828. */
  2829. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2830. {
  2831. t3_write_reg(adapter, addr, val);
  2832. t3_read_reg(adapter, addr); /* flush */
  2833. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2834. return 0;
  2835. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2836. return -EIO;
  2837. }
  2838. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2839. {
  2840. static const unsigned int mc7_mode[] = {
  2841. 0x632, 0x642, 0x652, 0x432, 0x442
  2842. };
  2843. static const struct mc7_timing_params mc7_timings[] = {
  2844. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2845. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2846. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2847. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2848. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2849. };
  2850. u32 val;
  2851. unsigned int width, density, slow, attempts;
  2852. struct adapter *adapter = mc7->adapter;
  2853. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2854. if (!mc7->size)
  2855. return 0;
  2856. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2857. slow = val & F_SLOW;
  2858. width = G_WIDTH(val);
  2859. density = G_DEN(val);
  2860. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2861. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2862. msleep(1);
  2863. if (!slow) {
  2864. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  2865. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  2866. msleep(1);
  2867. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  2868. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  2869. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  2870. mc7->name);
  2871. goto out_fail;
  2872. }
  2873. }
  2874. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  2875. V_ACTTOPREDLY(p->ActToPreDly) |
  2876. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  2877. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  2878. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  2879. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  2880. val | F_CLKEN | F_TERM150);
  2881. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2882. if (!slow)
  2883. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  2884. F_DLLENB);
  2885. udelay(1);
  2886. val = slow ? 3 : 6;
  2887. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2888. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  2889. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  2890. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2891. goto out_fail;
  2892. if (!slow) {
  2893. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  2894. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  2895. udelay(5);
  2896. }
  2897. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2898. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2899. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2900. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  2901. mc7_mode[mem_type]) ||
  2902. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  2903. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2904. goto out_fail;
  2905. /* clock value is in KHz */
  2906. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  2907. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  2908. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  2909. F_PERREFEN | V_PREREFDIV(mc7_clock));
  2910. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  2911. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  2912. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  2913. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  2914. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  2915. (mc7->size << width) - 1);
  2916. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  2917. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  2918. attempts = 50;
  2919. do {
  2920. msleep(250);
  2921. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  2922. } while ((val & F_BUSY) && --attempts);
  2923. if (val & F_BUSY) {
  2924. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  2925. goto out_fail;
  2926. }
  2927. /* Enable normal memory accesses. */
  2928. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  2929. return 0;
  2930. out_fail:
  2931. return -1;
  2932. }
  2933. static void config_pcie(struct adapter *adap)
  2934. {
  2935. static const u16 ack_lat[4][6] = {
  2936. {237, 416, 559, 1071, 2095, 4143},
  2937. {128, 217, 289, 545, 1057, 2081},
  2938. {73, 118, 154, 282, 538, 1050},
  2939. {67, 107, 86, 150, 278, 534}
  2940. };
  2941. static const u16 rpl_tmr[4][6] = {
  2942. {711, 1248, 1677, 3213, 6285, 12429},
  2943. {384, 651, 867, 1635, 3171, 6243},
  2944. {219, 354, 462, 846, 1614, 3150},
  2945. {201, 321, 258, 450, 834, 1602}
  2946. };
  2947. u16 val;
  2948. unsigned int log2_width, pldsize;
  2949. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  2950. pci_read_config_word(adap->pdev,
  2951. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  2952. &val);
  2953. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  2954. pci_read_config_word(adap->pdev,
  2955. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  2956. &val);
  2957. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  2958. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  2959. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  2960. log2_width = fls(adap->params.pci.width) - 1;
  2961. acklat = ack_lat[log2_width][pldsize];
  2962. if (val & 1) /* check LOsEnable */
  2963. acklat += fst_trn_tx * 4;
  2964. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  2965. if (adap->params.rev == 0)
  2966. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  2967. V_T3A_ACKLAT(M_T3A_ACKLAT),
  2968. V_T3A_ACKLAT(acklat));
  2969. else
  2970. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  2971. V_ACKLAT(acklat));
  2972. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  2973. V_REPLAYLMT(rpllmt));
  2974. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  2975. t3_set_reg_field(adap, A_PCIE_CFG, 0,
  2976. F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
  2977. F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
  2978. }
  2979. /*
  2980. * Initialize and configure T3 HW modules. This performs the
  2981. * initialization steps that need to be done once after a card is reset.
  2982. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  2983. *
  2984. * fw_params are passed to FW and their value is platform dependent. Only the
  2985. * top 8 bits are available for use, the rest must be 0.
  2986. */
  2987. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  2988. {
  2989. int err = -EIO, attempts, i;
  2990. const struct vpd_params *vpd = &adapter->params.vpd;
  2991. if (adapter->params.rev > 0)
  2992. calibrate_xgm_t3b(adapter);
  2993. else if (calibrate_xgm(adapter))
  2994. goto out_err;
  2995. if (vpd->mclk) {
  2996. partition_mem(adapter, &adapter->params.tp);
  2997. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  2998. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  2999. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  3000. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  3001. adapter->params.mc5.nfilters,
  3002. adapter->params.mc5.nroutes))
  3003. goto out_err;
  3004. for (i = 0; i < 32; i++)
  3005. if (clear_sge_ctxt(adapter, i, F_CQ))
  3006. goto out_err;
  3007. }
  3008. if (tp_init(adapter, &adapter->params.tp))
  3009. goto out_err;
  3010. t3_tp_set_coalescing_size(adapter,
  3011. min(adapter->params.sge.max_pkt_size,
  3012. MAX_RX_COALESCING_LEN), 1);
  3013. t3_tp_set_max_rxsize(adapter,
  3014. min(adapter->params.sge.max_pkt_size, 16384U));
  3015. ulp_config(adapter, &adapter->params.tp);
  3016. if (is_pcie(adapter))
  3017. config_pcie(adapter);
  3018. else
  3019. t3_set_reg_field(adapter, A_PCIX_CFG, 0,
  3020. F_DMASTOPEN | F_CLIDECEN);
  3021. if (adapter->params.rev == T3_REV_C)
  3022. t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
  3023. F_CFG_CQE_SOP_MASK);
  3024. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  3025. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  3026. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  3027. init_hw_for_avail_ports(adapter, adapter->params.nports);
  3028. t3_sge_init(adapter, &adapter->params.sge);
  3029. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
  3030. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  3031. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  3032. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  3033. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  3034. attempts = 100;
  3035. do { /* wait for uP to initialize */
  3036. msleep(20);
  3037. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  3038. if (!attempts) {
  3039. CH_ERR(adapter, "uP initialization timed out\n");
  3040. goto out_err;
  3041. }
  3042. err = 0;
  3043. out_err:
  3044. return err;
  3045. }
  3046. /**
  3047. * get_pci_mode - determine a card's PCI mode
  3048. * @adapter: the adapter
  3049. * @p: where to store the PCI settings
  3050. *
  3051. * Determines a card's PCI mode and associated parameters, such as speed
  3052. * and width.
  3053. */
  3054. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3055. {
  3056. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  3057. u32 pci_mode, pcie_cap;
  3058. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  3059. if (pcie_cap) {
  3060. u16 val;
  3061. p->variant = PCI_VARIANT_PCIE;
  3062. p->pcie_cap_addr = pcie_cap;
  3063. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  3064. &val);
  3065. p->width = (val >> 4) & 0x3f;
  3066. return;
  3067. }
  3068. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  3069. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  3070. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  3071. pci_mode = G_PCIXINITPAT(pci_mode);
  3072. if (pci_mode == 0)
  3073. p->variant = PCI_VARIANT_PCI;
  3074. else if (pci_mode < 4)
  3075. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  3076. else if (pci_mode < 8)
  3077. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  3078. else
  3079. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  3080. }
  3081. /**
  3082. * init_link_config - initialize a link's SW state
  3083. * @lc: structure holding the link state
  3084. * @ai: information about the current card
  3085. *
  3086. * Initializes the SW state maintained for each link, including the link's
  3087. * capabilities and default speed/duplex/flow-control/autonegotiation
  3088. * settings.
  3089. */
  3090. static void init_link_config(struct link_config *lc, unsigned int caps)
  3091. {
  3092. lc->supported = caps;
  3093. lc->requested_speed = lc->speed = SPEED_INVALID;
  3094. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  3095. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3096. if (lc->supported & SUPPORTED_Autoneg) {
  3097. lc->advertising = lc->supported;
  3098. lc->autoneg = AUTONEG_ENABLE;
  3099. lc->requested_fc |= PAUSE_AUTONEG;
  3100. } else {
  3101. lc->advertising = 0;
  3102. lc->autoneg = AUTONEG_DISABLE;
  3103. }
  3104. }
  3105. /**
  3106. * mc7_calc_size - calculate MC7 memory size
  3107. * @cfg: the MC7 configuration
  3108. *
  3109. * Calculates the size of an MC7 memory in bytes from the value of its
  3110. * configuration register.
  3111. */
  3112. static unsigned int mc7_calc_size(u32 cfg)
  3113. {
  3114. unsigned int width = G_WIDTH(cfg);
  3115. unsigned int banks = !!(cfg & F_BKS) + 1;
  3116. unsigned int org = !!(cfg & F_ORG) + 1;
  3117. unsigned int density = G_DEN(cfg);
  3118. unsigned int MBs = ((256 << density) * banks) / (org << width);
  3119. return MBs << 20;
  3120. }
  3121. static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  3122. unsigned int base_addr, const char *name)
  3123. {
  3124. u32 cfg;
  3125. mc7->adapter = adapter;
  3126. mc7->name = name;
  3127. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  3128. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3129. mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  3130. mc7->width = G_WIDTH(cfg);
  3131. }
  3132. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3133. {
  3134. mac->adapter = adapter;
  3135. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3136. mac->nucast = 1;
  3137. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3138. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3139. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3140. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3141. F_ENRGMII, 0);
  3142. }
  3143. }
  3144. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  3145. {
  3146. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3147. mi1_init(adapter, ai);
  3148. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3149. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3150. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3151. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3152. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3153. t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
  3154. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3155. val |= F_ENRGMII;
  3156. /* Enable MAC clocks so we can access the registers */
  3157. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3158. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3159. val |= F_CLKDIVRESET_;
  3160. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3161. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3162. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3163. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3164. }
  3165. /*
  3166. * Reset the adapter.
  3167. * Older PCIe cards lose their config space during reset, PCI-X
  3168. * ones don't.
  3169. */
  3170. int t3_reset_adapter(struct adapter *adapter)
  3171. {
  3172. int i, save_and_restore_pcie =
  3173. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3174. uint16_t devid = 0;
  3175. if (save_and_restore_pcie)
  3176. pci_save_state(adapter->pdev);
  3177. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3178. /*
  3179. * Delay. Give Some time to device to reset fully.
  3180. * XXX The delay time should be modified.
  3181. */
  3182. for (i = 0; i < 10; i++) {
  3183. msleep(50);
  3184. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3185. if (devid == 0x1425)
  3186. break;
  3187. }
  3188. if (devid != 0x1425)
  3189. return -1;
  3190. if (save_and_restore_pcie)
  3191. pci_restore_state(adapter->pdev);
  3192. return 0;
  3193. }
  3194. static int init_parity(struct adapter *adap)
  3195. {
  3196. int i, err, addr;
  3197. if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  3198. return -EBUSY;
  3199. for (err = i = 0; !err && i < 16; i++)
  3200. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3201. for (i = 0xfff0; !err && i <= 0xffff; i++)
  3202. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3203. for (i = 0; !err && i < SGE_QSETS; i++)
  3204. err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
  3205. if (err)
  3206. return err;
  3207. t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
  3208. for (i = 0; i < 4; i++)
  3209. for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
  3210. t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
  3211. F_IBQDBGWR | V_IBQDBGQID(i) |
  3212. V_IBQDBGADDR(addr));
  3213. err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
  3214. F_IBQDBGBUSY, 0, 2, 1);
  3215. if (err)
  3216. return err;
  3217. }
  3218. return 0;
  3219. }
  3220. /*
  3221. * Initialize adapter SW state for the various HW modules, set initial values
  3222. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3223. * interface.
  3224. */
  3225. int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
  3226. int reset)
  3227. {
  3228. int ret;
  3229. unsigned int i, j = -1;
  3230. get_pci_mode(adapter, &adapter->params.pci);
  3231. adapter->params.info = ai;
  3232. adapter->params.nports = ai->nports;
  3233. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3234. adapter->params.linkpoll_period = 0;
  3235. adapter->params.stats_update_period = is_10G(adapter) ?
  3236. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3237. adapter->params.pci.vpd_cap_addr =
  3238. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3239. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3240. if (ret < 0)
  3241. return ret;
  3242. if (reset && t3_reset_adapter(adapter))
  3243. return -1;
  3244. t3_sge_prep(adapter, &adapter->params.sge);
  3245. if (adapter->params.vpd.mclk) {
  3246. struct tp_params *p = &adapter->params.tp;
  3247. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3248. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3249. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3250. p->nchan = ai->nports;
  3251. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3252. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3253. p->cm_size = t3_mc7_size(&adapter->cm);
  3254. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3255. p->chan_tx_size = p->pmtx_size / p->nchan;
  3256. p->rx_pg_size = 64 * 1024;
  3257. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3258. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3259. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3260. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3261. adapter->params.rev > 0 ? 12 : 6;
  3262. }
  3263. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3264. t3_mc7_size(&adapter->pmtx) &&
  3265. t3_mc7_size(&adapter->cm);
  3266. if (is_offload(adapter)) {
  3267. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3268. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3269. DEFAULT_NFILTERS : 0;
  3270. adapter->params.mc5.nroutes = 0;
  3271. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3272. init_mtus(adapter->params.mtus);
  3273. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3274. }
  3275. early_hw_init(adapter, ai);
  3276. ret = init_parity(adapter);
  3277. if (ret)
  3278. return ret;
  3279. for_each_port(adapter, i) {
  3280. u8 hw_addr[6];
  3281. const struct port_type_info *pti;
  3282. struct port_info *p = adap2pinfo(adapter, i);
  3283. while (!adapter->params.vpd.port_type[++j])
  3284. ;
  3285. pti = &port_types[adapter->params.vpd.port_type[j]];
  3286. if (!pti->phy_prep) {
  3287. CH_ALERT(adapter, "Invalid port type index %d\n",
  3288. adapter->params.vpd.port_type[j]);
  3289. return -EINVAL;
  3290. }
  3291. ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3292. ai->mdio_ops);
  3293. if (ret)
  3294. return ret;
  3295. mac_prep(&p->mac, adapter, j);
  3296. /*
  3297. * The VPD EEPROM stores the base Ethernet address for the
  3298. * card. A port's address is derived from the base by adding
  3299. * the port's index to the base's low octet.
  3300. */
  3301. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3302. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3303. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3304. ETH_ALEN);
  3305. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3306. ETH_ALEN);
  3307. init_link_config(&p->link_config, p->phy.caps);
  3308. p->phy.ops->power_down(&p->phy, 1);
  3309. if (!(p->phy.caps & SUPPORTED_IRQ))
  3310. adapter->params.linkpoll_period = 10;
  3311. }
  3312. return 0;
  3313. }
  3314. void t3_led_ready(struct adapter *adapter)
  3315. {
  3316. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3317. F_GPIO0_OUT_VAL);
  3318. }
  3319. int t3_replay_prep_adapter(struct adapter *adapter)
  3320. {
  3321. const struct adapter_info *ai = adapter->params.info;
  3322. unsigned int i, j = -1;
  3323. int ret;
  3324. early_hw_init(adapter, ai);
  3325. ret = init_parity(adapter);
  3326. if (ret)
  3327. return ret;
  3328. for_each_port(adapter, i) {
  3329. const struct port_type_info *pti;
  3330. struct port_info *p = adap2pinfo(adapter, i);
  3331. while (!adapter->params.vpd.port_type[++j])
  3332. ;
  3333. pti = &port_types[adapter->params.vpd.port_type[j]];
  3334. ret = pti->phy_prep(&p->phy, adapter, p->phy.addr, NULL);
  3335. if (ret)
  3336. return ret;
  3337. p->phy.ops->power_down(&p->phy, 1);
  3338. }
  3339. return 0;
  3340. }