genx2apic_uv_x.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV APIC functions (note: not an Intel compatible APIC)
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/threads.h>
  12. #include <linux/cpumask.h>
  13. #include <linux/string.h>
  14. #include <linux/ctype.h>
  15. #include <linux/init.h>
  16. #include <linux/sched.h>
  17. #include <linux/module.h>
  18. #include <linux/hardirq.h>
  19. #include <asm/smp.h>
  20. #include <asm/ipi.h>
  21. #include <asm/genapic.h>
  22. #include <asm/pgtable.h>
  23. #include <asm/uv/uv_mmrs.h>
  24. #include <asm/uv/uv_hub.h>
  25. #include <asm/uv/bios.h>
  26. DEFINE_PER_CPU(int, x2apic_extra_bits);
  27. static enum uv_system_type uv_system_type;
  28. static int uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
  29. {
  30. if (!strcmp(oem_id, "SGI")) {
  31. if (!strcmp(oem_table_id, "UVL"))
  32. uv_system_type = UV_LEGACY_APIC;
  33. else if (!strcmp(oem_table_id, "UVX"))
  34. uv_system_type = UV_X2APIC;
  35. else if (!strcmp(oem_table_id, "UVH")) {
  36. uv_system_type = UV_NON_UNIQUE_APIC;
  37. return 1;
  38. }
  39. }
  40. return 0;
  41. }
  42. enum uv_system_type get_uv_system_type(void)
  43. {
  44. return uv_system_type;
  45. }
  46. int is_uv_system(void)
  47. {
  48. return uv_system_type != UV_NONE;
  49. }
  50. EXPORT_SYMBOL_GPL(is_uv_system);
  51. DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  52. EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);
  53. struct uv_blade_info *uv_blade_info;
  54. EXPORT_SYMBOL_GPL(uv_blade_info);
  55. short *uv_node_to_blade;
  56. EXPORT_SYMBOL_GPL(uv_node_to_blade);
  57. short *uv_cpu_to_blade;
  58. EXPORT_SYMBOL_GPL(uv_cpu_to_blade);
  59. short uv_possible_blades;
  60. EXPORT_SYMBOL_GPL(uv_possible_blades);
  61. unsigned long sn_rtc_cycles_per_second;
  62. EXPORT_SYMBOL(sn_rtc_cycles_per_second);
  63. /* Start with all IRQs pointing to boot CPU. IRQ balancing will shift them. */
  64. static cpumask_t uv_target_cpus(void)
  65. {
  66. return cpumask_of_cpu(0);
  67. }
  68. static cpumask_t uv_vector_allocation_domain(int cpu)
  69. {
  70. cpumask_t domain = CPU_MASK_NONE;
  71. cpu_set(cpu, domain);
  72. return domain;
  73. }
  74. int uv_wakeup_secondary(int phys_apicid, unsigned int start_rip)
  75. {
  76. unsigned long val;
  77. int pnode;
  78. pnode = uv_apicid_to_pnode(phys_apicid);
  79. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  80. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  81. (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  82. APIC_DM_INIT;
  83. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  84. mdelay(10);
  85. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  86. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  87. (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  88. APIC_DM_STARTUP;
  89. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  90. return 0;
  91. }
  92. static void uv_send_IPI_one(int cpu, int vector)
  93. {
  94. unsigned long val, apicid, lapicid;
  95. int pnode;
  96. apicid = per_cpu(x86_cpu_to_apicid, cpu);
  97. lapicid = apicid & 0x3f; /* ZZZ macro needed */
  98. pnode = uv_apicid_to_pnode(apicid);
  99. val =
  100. (1UL << UVH_IPI_INT_SEND_SHFT) | (lapicid <<
  101. UVH_IPI_INT_APIC_ID_SHFT) |
  102. (vector << UVH_IPI_INT_VECTOR_SHFT);
  103. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  104. }
  105. static void uv_send_IPI_mask(cpumask_t mask, int vector)
  106. {
  107. unsigned int cpu;
  108. for_each_possible_cpu(cpu)
  109. if (cpu_isset(cpu, mask))
  110. uv_send_IPI_one(cpu, vector);
  111. }
  112. static void uv_send_IPI_allbutself(int vector)
  113. {
  114. cpumask_t mask = cpu_online_map;
  115. cpu_clear(smp_processor_id(), mask);
  116. if (!cpus_empty(mask))
  117. uv_send_IPI_mask(mask, vector);
  118. }
  119. static void uv_send_IPI_all(int vector)
  120. {
  121. uv_send_IPI_mask(cpu_online_map, vector);
  122. }
  123. static int uv_apic_id_registered(void)
  124. {
  125. return 1;
  126. }
  127. static void uv_init_apic_ldr(void)
  128. {
  129. }
  130. static unsigned int uv_cpu_mask_to_apicid(cpumask_t cpumask)
  131. {
  132. int cpu;
  133. /*
  134. * We're using fixed IRQ delivery, can only return one phys APIC ID.
  135. * May as well be the first.
  136. */
  137. cpu = first_cpu(cpumask);
  138. if ((unsigned)cpu < nr_cpu_ids)
  139. return per_cpu(x86_cpu_to_apicid, cpu);
  140. else
  141. return BAD_APICID;
  142. }
  143. static unsigned int get_apic_id(unsigned long x)
  144. {
  145. unsigned int id;
  146. WARN_ON(preemptible() && num_online_cpus() > 1);
  147. id = x | __get_cpu_var(x2apic_extra_bits);
  148. return id;
  149. }
  150. static unsigned long set_apic_id(unsigned int id)
  151. {
  152. unsigned long x;
  153. /* maskout x2apic_extra_bits ? */
  154. x = id;
  155. return x;
  156. }
  157. static unsigned int uv_read_apic_id(void)
  158. {
  159. return get_apic_id(apic_read(APIC_ID));
  160. }
  161. static unsigned int phys_pkg_id(int index_msb)
  162. {
  163. return uv_read_apic_id() >> index_msb;
  164. }
  165. static void uv_send_IPI_self(int vector)
  166. {
  167. apic_write(APIC_SELF_IPI, vector);
  168. }
  169. struct genapic apic_x2apic_uv_x = {
  170. .name = "UV large system",
  171. .acpi_madt_oem_check = uv_acpi_madt_oem_check,
  172. .int_delivery_mode = dest_Fixed,
  173. .int_dest_mode = (APIC_DEST_PHYSICAL != 0),
  174. .target_cpus = uv_target_cpus,
  175. .vector_allocation_domain = uv_vector_allocation_domain,
  176. .apic_id_registered = uv_apic_id_registered,
  177. .init_apic_ldr = uv_init_apic_ldr,
  178. .send_IPI_all = uv_send_IPI_all,
  179. .send_IPI_allbutself = uv_send_IPI_allbutself,
  180. .send_IPI_mask = uv_send_IPI_mask,
  181. .send_IPI_self = uv_send_IPI_self,
  182. .cpu_mask_to_apicid = uv_cpu_mask_to_apicid,
  183. .phys_pkg_id = phys_pkg_id,
  184. .get_apic_id = get_apic_id,
  185. .set_apic_id = set_apic_id,
  186. .apic_id_mask = (0xFFFFFFFFu),
  187. };
  188. static __cpuinit void set_x2apic_extra_bits(int pnode)
  189. {
  190. __get_cpu_var(x2apic_extra_bits) = (pnode << 6);
  191. }
  192. /*
  193. * Called on boot cpu.
  194. */
  195. static __init int boot_pnode_to_blade(int pnode)
  196. {
  197. int blade;
  198. for (blade = 0; blade < uv_num_possible_blades(); blade++)
  199. if (pnode == uv_blade_info[blade].pnode)
  200. return blade;
  201. BUG();
  202. }
  203. struct redir_addr {
  204. unsigned long redirect;
  205. unsigned long alias;
  206. };
  207. #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
  208. static __initdata struct redir_addr redir_addrs[] = {
  209. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_SI_ALIAS0_OVERLAY_CONFIG},
  210. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_SI_ALIAS1_OVERLAY_CONFIG},
  211. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_SI_ALIAS2_OVERLAY_CONFIG},
  212. };
  213. static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
  214. {
  215. union uvh_si_alias0_overlay_config_u alias;
  216. union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
  217. int i;
  218. for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
  219. alias.v = uv_read_local_mmr(redir_addrs[i].alias);
  220. if (alias.s.base == 0) {
  221. *size = (1UL << alias.s.m_alias);
  222. redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
  223. *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
  224. return;
  225. }
  226. }
  227. BUG();
  228. }
  229. static __init void map_low_mmrs(void)
  230. {
  231. init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
  232. init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
  233. }
  234. enum map_type {map_wb, map_uc};
  235. static __init void map_high(char *id, unsigned long base, int shift,
  236. int max_pnode, enum map_type map_type)
  237. {
  238. unsigned long bytes, paddr;
  239. paddr = base << shift;
  240. bytes = (1UL << shift) * (max_pnode + 1);
  241. printk(KERN_INFO "UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr,
  242. paddr + bytes);
  243. if (map_type == map_uc)
  244. init_extra_mapping_uc(paddr, bytes);
  245. else
  246. init_extra_mapping_wb(paddr, bytes);
  247. }
  248. static __init void map_gru_high(int max_pnode)
  249. {
  250. union uvh_rh_gam_gru_overlay_config_mmr_u gru;
  251. int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
  252. gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
  253. if (gru.s.enable)
  254. map_high("GRU", gru.s.base, shift, max_pnode, map_wb);
  255. }
  256. static __init void map_config_high(int max_pnode)
  257. {
  258. union uvh_rh_gam_cfg_overlay_config_mmr_u cfg;
  259. int shift = UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR_BASE_SHFT;
  260. cfg.v = uv_read_local_mmr(UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR);
  261. if (cfg.s.enable)
  262. map_high("CONFIG", cfg.s.base, shift, max_pnode, map_uc);
  263. }
  264. static __init void map_mmr_high(int max_pnode)
  265. {
  266. union uvh_rh_gam_mmr_overlay_config_mmr_u mmr;
  267. int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT;
  268. mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR);
  269. if (mmr.s.enable)
  270. map_high("MMR", mmr.s.base, shift, max_pnode, map_uc);
  271. }
  272. static __init void map_mmioh_high(int max_pnode)
  273. {
  274. union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
  275. int shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
  276. mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
  277. if (mmioh.s.enable)
  278. map_high("MMIOH", mmioh.s.base, shift, max_pnode, map_uc);
  279. }
  280. static __init void uv_rtc_init(void)
  281. {
  282. long status;
  283. u64 ticks_per_sec;
  284. status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK,
  285. &ticks_per_sec);
  286. if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
  287. printk(KERN_WARNING
  288. "unable to determine platform RTC clock frequency, "
  289. "guessing.\n");
  290. /* BIOS gives wrong value for clock freq. so guess */
  291. sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
  292. } else
  293. sn_rtc_cycles_per_second = ticks_per_sec;
  294. }
  295. /*
  296. * Called on each cpu to initialize the per_cpu UV data area.
  297. * ZZZ hotplug not supported yet
  298. */
  299. void __cpuinit uv_cpu_init(void)
  300. {
  301. /* CPU 0 initilization will be done via uv_system_init. */
  302. if (!uv_blade_info)
  303. return;
  304. uv_blade_info[uv_numa_blade_id()].nr_online_cpus++;
  305. if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
  306. set_x2apic_extra_bits(uv_hub_info->pnode);
  307. }
  308. void __init uv_system_init(void)
  309. {
  310. union uvh_si_addr_map_config_u m_n_config;
  311. union uvh_node_id_u node_id;
  312. unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
  313. int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
  314. int max_pnode = 0;
  315. unsigned long mmr_base, present;
  316. map_low_mmrs();
  317. m_n_config.v = uv_read_local_mmr(UVH_SI_ADDR_MAP_CONFIG);
  318. m_val = m_n_config.s.m_skt;
  319. n_val = m_n_config.s.n_skt;
  320. mmr_base =
  321. uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
  322. ~UV_MMR_ENABLE;
  323. printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base);
  324. for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++)
  325. uv_possible_blades +=
  326. hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
  327. printk(KERN_DEBUG "UV: Found %d blades\n", uv_num_possible_blades());
  328. bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades();
  329. uv_blade_info = kmalloc(bytes, GFP_KERNEL);
  330. get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);
  331. bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes();
  332. uv_node_to_blade = kmalloc(bytes, GFP_KERNEL);
  333. memset(uv_node_to_blade, 255, bytes);
  334. bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus();
  335. uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL);
  336. memset(uv_cpu_to_blade, 255, bytes);
  337. blade = 0;
  338. for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
  339. present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
  340. for (j = 0; j < 64; j++) {
  341. if (!test_bit(j, &present))
  342. continue;
  343. uv_blade_info[blade].pnode = (i * 64 + j);
  344. uv_blade_info[blade].nr_possible_cpus = 0;
  345. uv_blade_info[blade].nr_online_cpus = 0;
  346. blade++;
  347. }
  348. }
  349. node_id.v = uv_read_local_mmr(UVH_NODE_ID);
  350. gnode_upper = (((unsigned long)node_id.s.node_id) &
  351. ~((1 << n_val) - 1)) << m_val;
  352. uv_bios_init();
  353. uv_bios_get_sn_info(0, &uv_type, &sn_partition_id,
  354. &uv_coherency_id, &uv_region_size);
  355. uv_rtc_init();
  356. for_each_present_cpu(cpu) {
  357. nid = cpu_to_node(cpu);
  358. pnode = uv_apicid_to_pnode(per_cpu(x86_cpu_to_apicid, cpu));
  359. blade = boot_pnode_to_blade(pnode);
  360. lcpu = uv_blade_info[blade].nr_possible_cpus;
  361. uv_blade_info[blade].nr_possible_cpus++;
  362. uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
  363. uv_cpu_hub_info(cpu)->lowmem_remap_top =
  364. lowmem_redir_base + lowmem_redir_size;
  365. uv_cpu_hub_info(cpu)->m_val = m_val;
  366. uv_cpu_hub_info(cpu)->n_val = m_val;
  367. uv_cpu_hub_info(cpu)->numa_blade_id = blade;
  368. uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
  369. uv_cpu_hub_info(cpu)->pnode = pnode;
  370. uv_cpu_hub_info(cpu)->pnode_mask = (1 << n_val) - 1;
  371. uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
  372. uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
  373. uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
  374. uv_cpu_hub_info(cpu)->coherency_domain_number = uv_coherency_id;
  375. uv_node_to_blade[nid] = blade;
  376. uv_cpu_to_blade[cpu] = blade;
  377. max_pnode = max(pnode, max_pnode);
  378. printk(KERN_DEBUG "UV: cpu %d, apicid 0x%x, pnode %d, nid %d, "
  379. "lcpu %d, blade %d\n",
  380. cpu, per_cpu(x86_cpu_to_apicid, cpu), pnode, nid,
  381. lcpu, blade);
  382. }
  383. map_gru_high(max_pnode);
  384. map_mmr_high(max_pnode);
  385. map_config_high(max_pnode);
  386. map_mmioh_high(max_pnode);
  387. uv_cpu_init();
  388. }