smp.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413
  1. /* smp.c: Sparc64 SMP support.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/delay.h>
  15. #include <linux/init.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/jiffies.h>
  21. #include <linux/profile.h>
  22. #include <linux/lmb.h>
  23. #include <linux/cpu.h>
  24. #include <asm/head.h>
  25. #include <asm/ptrace.h>
  26. #include <asm/atomic.h>
  27. #include <asm/tlbflush.h>
  28. #include <asm/mmu_context.h>
  29. #include <asm/cpudata.h>
  30. #include <asm/hvtramp.h>
  31. #include <asm/io.h>
  32. #include <asm/timer.h>
  33. #include <asm/irq.h>
  34. #include <asm/irq_regs.h>
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/oplib.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/starfire.h>
  40. #include <asm/tlb.h>
  41. #include <asm/sections.h>
  42. #include <asm/prom.h>
  43. #include <asm/mdesc.h>
  44. #include <asm/ldc.h>
  45. #include <asm/hypervisor.h>
  46. int sparc64_multi_core __read_mostly;
  47. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
  48. cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
  49. DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  50. cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  51. { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  52. EXPORT_SYMBOL(cpu_possible_map);
  53. EXPORT_SYMBOL(cpu_online_map);
  54. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  55. EXPORT_SYMBOL(cpu_core_map);
  56. static cpumask_t smp_commenced_mask;
  57. void smp_info(struct seq_file *m)
  58. {
  59. int i;
  60. seq_printf(m, "State:\n");
  61. for_each_online_cpu(i)
  62. seq_printf(m, "CPU%d:\t\tonline\n", i);
  63. }
  64. void smp_bogo(struct seq_file *m)
  65. {
  66. int i;
  67. for_each_online_cpu(i)
  68. seq_printf(m,
  69. "Cpu%dClkTck\t: %016lx\n",
  70. i, cpu_data(i).clock_tick);
  71. }
  72. extern void setup_sparc64_timer(void);
  73. static volatile unsigned long callin_flag = 0;
  74. void __cpuinit smp_callin(void)
  75. {
  76. int cpuid = hard_smp_processor_id();
  77. __local_per_cpu_offset = __per_cpu_offset(cpuid);
  78. if (tlb_type == hypervisor)
  79. sun4v_ktsb_register();
  80. __flush_tlb_all();
  81. setup_sparc64_timer();
  82. if (cheetah_pcache_forced_on)
  83. cheetah_enable_pcache();
  84. local_irq_enable();
  85. callin_flag = 1;
  86. __asm__ __volatile__("membar #Sync\n\t"
  87. "flush %%g6" : : : "memory");
  88. /* Clear this or we will die instantly when we
  89. * schedule back to this idler...
  90. */
  91. current_thread_info()->new_child = 0;
  92. /* Attach to the address space of init_task. */
  93. atomic_inc(&init_mm.mm_count);
  94. current->active_mm = &init_mm;
  95. /* inform the notifiers about the new cpu */
  96. notify_cpu_starting(cpuid);
  97. while (!cpu_isset(cpuid, smp_commenced_mask))
  98. rmb();
  99. ipi_call_lock();
  100. cpu_set(cpuid, cpu_online_map);
  101. ipi_call_unlock();
  102. /* idle thread is expected to have preempt disabled */
  103. preempt_disable();
  104. }
  105. void cpu_panic(void)
  106. {
  107. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  108. panic("SMP bolixed\n");
  109. }
  110. /* This tick register synchronization scheme is taken entirely from
  111. * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
  112. *
  113. * The only change I've made is to rework it so that the master
  114. * initiates the synchonization instead of the slave. -DaveM
  115. */
  116. #define MASTER 0
  117. #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
  118. #define NUM_ROUNDS 64 /* magic value */
  119. #define NUM_ITERS 5 /* likewise */
  120. static DEFINE_SPINLOCK(itc_sync_lock);
  121. static unsigned long go[SLAVE + 1];
  122. #define DEBUG_TICK_SYNC 0
  123. static inline long get_delta (long *rt, long *master)
  124. {
  125. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  126. unsigned long tcenter, t0, t1, tm;
  127. unsigned long i;
  128. for (i = 0; i < NUM_ITERS; i++) {
  129. t0 = tick_ops->get_tick();
  130. go[MASTER] = 1;
  131. membar_storeload();
  132. while (!(tm = go[SLAVE]))
  133. rmb();
  134. go[SLAVE] = 0;
  135. wmb();
  136. t1 = tick_ops->get_tick();
  137. if (t1 - t0 < best_t1 - best_t0)
  138. best_t0 = t0, best_t1 = t1, best_tm = tm;
  139. }
  140. *rt = best_t1 - best_t0;
  141. *master = best_tm - best_t0;
  142. /* average best_t0 and best_t1 without overflow: */
  143. tcenter = (best_t0/2 + best_t1/2);
  144. if (best_t0 % 2 + best_t1 % 2 == 2)
  145. tcenter++;
  146. return tcenter - best_tm;
  147. }
  148. void smp_synchronize_tick_client(void)
  149. {
  150. long i, delta, adj, adjust_latency = 0, done = 0;
  151. unsigned long flags, rt, master_time_stamp, bound;
  152. #if DEBUG_TICK_SYNC
  153. struct {
  154. long rt; /* roundtrip time */
  155. long master; /* master's timestamp */
  156. long diff; /* difference between midpoint and master's timestamp */
  157. long lat; /* estimate of itc adjustment latency */
  158. } t[NUM_ROUNDS];
  159. #endif
  160. go[MASTER] = 1;
  161. while (go[MASTER])
  162. rmb();
  163. local_irq_save(flags);
  164. {
  165. for (i = 0; i < NUM_ROUNDS; i++) {
  166. delta = get_delta(&rt, &master_time_stamp);
  167. if (delta == 0) {
  168. done = 1; /* let's lock on to this... */
  169. bound = rt;
  170. }
  171. if (!done) {
  172. if (i > 0) {
  173. adjust_latency += -delta;
  174. adj = -delta + adjust_latency/4;
  175. } else
  176. adj = -delta;
  177. tick_ops->add_tick(adj);
  178. }
  179. #if DEBUG_TICK_SYNC
  180. t[i].rt = rt;
  181. t[i].master = master_time_stamp;
  182. t[i].diff = delta;
  183. t[i].lat = adjust_latency/4;
  184. #endif
  185. }
  186. }
  187. local_irq_restore(flags);
  188. #if DEBUG_TICK_SYNC
  189. for (i = 0; i < NUM_ROUNDS; i++)
  190. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  191. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  192. #endif
  193. printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
  194. "(last diff %ld cycles, maxerr %lu cycles)\n",
  195. smp_processor_id(), delta, rt);
  196. }
  197. static void smp_start_sync_tick_client(int cpu);
  198. static void smp_synchronize_one_tick(int cpu)
  199. {
  200. unsigned long flags, i;
  201. go[MASTER] = 0;
  202. smp_start_sync_tick_client(cpu);
  203. /* wait for client to be ready */
  204. while (!go[MASTER])
  205. rmb();
  206. /* now let the client proceed into his loop */
  207. go[MASTER] = 0;
  208. membar_storeload();
  209. spin_lock_irqsave(&itc_sync_lock, flags);
  210. {
  211. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
  212. while (!go[MASTER])
  213. rmb();
  214. go[MASTER] = 0;
  215. wmb();
  216. go[SLAVE] = tick_ops->get_tick();
  217. membar_storeload();
  218. }
  219. }
  220. spin_unlock_irqrestore(&itc_sync_lock, flags);
  221. }
  222. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  223. /* XXX Put this in some common place. XXX */
  224. static unsigned long kimage_addr_to_ra(void *p)
  225. {
  226. unsigned long val = (unsigned long) p;
  227. return kern_base + (val - KERNBASE);
  228. }
  229. static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
  230. {
  231. extern unsigned long sparc64_ttable_tl0;
  232. extern unsigned long kern_locked_tte_data;
  233. struct hvtramp_descr *hdesc;
  234. unsigned long trampoline_ra;
  235. struct trap_per_cpu *tb;
  236. u64 tte_vaddr, tte_data;
  237. unsigned long hv_err;
  238. int i;
  239. hdesc = kzalloc(sizeof(*hdesc) +
  240. (sizeof(struct hvtramp_mapping) *
  241. num_kernel_image_mappings - 1),
  242. GFP_KERNEL);
  243. if (!hdesc) {
  244. printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
  245. "hvtramp_descr.\n");
  246. return;
  247. }
  248. hdesc->cpu = cpu;
  249. hdesc->num_mappings = num_kernel_image_mappings;
  250. tb = &trap_block[cpu];
  251. tb->hdesc = hdesc;
  252. hdesc->fault_info_va = (unsigned long) &tb->fault_info;
  253. hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
  254. hdesc->thread_reg = thread_reg;
  255. tte_vaddr = (unsigned long) KERNBASE;
  256. tte_data = kern_locked_tte_data;
  257. for (i = 0; i < hdesc->num_mappings; i++) {
  258. hdesc->maps[i].vaddr = tte_vaddr;
  259. hdesc->maps[i].tte = tte_data;
  260. tte_vaddr += 0x400000;
  261. tte_data += 0x400000;
  262. }
  263. trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
  264. hv_err = sun4v_cpu_start(cpu, trampoline_ra,
  265. kimage_addr_to_ra(&sparc64_ttable_tl0),
  266. __pa(hdesc));
  267. if (hv_err)
  268. printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
  269. "gives error %lu\n", hv_err);
  270. }
  271. #endif
  272. extern unsigned long sparc64_cpu_startup;
  273. /* The OBP cpu startup callback truncates the 3rd arg cookie to
  274. * 32-bits (I think) so to be safe we have it read the pointer
  275. * contained here so we work on >4GB machines. -DaveM
  276. */
  277. static struct thread_info *cpu_new_thread = NULL;
  278. static int __devinit smp_boot_one_cpu(unsigned int cpu)
  279. {
  280. struct trap_per_cpu *tb = &trap_block[cpu];
  281. unsigned long entry =
  282. (unsigned long)(&sparc64_cpu_startup);
  283. unsigned long cookie =
  284. (unsigned long)(&cpu_new_thread);
  285. struct task_struct *p;
  286. int timeout, ret;
  287. p = fork_idle(cpu);
  288. if (IS_ERR(p))
  289. return PTR_ERR(p);
  290. callin_flag = 0;
  291. cpu_new_thread = task_thread_info(p);
  292. if (tlb_type == hypervisor) {
  293. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  294. if (ldom_domaining_enabled)
  295. ldom_startcpu_cpuid(cpu,
  296. (unsigned long) cpu_new_thread);
  297. else
  298. #endif
  299. prom_startcpu_cpuid(cpu, entry, cookie);
  300. } else {
  301. struct device_node *dp = of_find_node_by_cpuid(cpu);
  302. prom_startcpu(dp->node, entry, cookie);
  303. }
  304. for (timeout = 0; timeout < 50000; timeout++) {
  305. if (callin_flag)
  306. break;
  307. udelay(100);
  308. }
  309. if (callin_flag) {
  310. ret = 0;
  311. } else {
  312. printk("Processor %d is stuck.\n", cpu);
  313. ret = -ENODEV;
  314. }
  315. cpu_new_thread = NULL;
  316. if (tb->hdesc) {
  317. kfree(tb->hdesc);
  318. tb->hdesc = NULL;
  319. }
  320. return ret;
  321. }
  322. static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
  323. {
  324. u64 result, target;
  325. int stuck, tmp;
  326. if (this_is_starfire) {
  327. /* map to real upaid */
  328. cpu = (((cpu & 0x3c) << 1) |
  329. ((cpu & 0x40) >> 4) |
  330. (cpu & 0x3));
  331. }
  332. target = (cpu << 14) | 0x70;
  333. again:
  334. /* Ok, this is the real Spitfire Errata #54.
  335. * One must read back from a UDB internal register
  336. * after writes to the UDB interrupt dispatch, but
  337. * before the membar Sync for that write.
  338. * So we use the high UDB control register (ASI 0x7f,
  339. * ADDR 0x20) for the dummy read. -DaveM
  340. */
  341. tmp = 0x40;
  342. __asm__ __volatile__(
  343. "wrpr %1, %2, %%pstate\n\t"
  344. "stxa %4, [%0] %3\n\t"
  345. "stxa %5, [%0+%8] %3\n\t"
  346. "add %0, %8, %0\n\t"
  347. "stxa %6, [%0+%8] %3\n\t"
  348. "membar #Sync\n\t"
  349. "stxa %%g0, [%7] %3\n\t"
  350. "membar #Sync\n\t"
  351. "mov 0x20, %%g1\n\t"
  352. "ldxa [%%g1] 0x7f, %%g0\n\t"
  353. "membar #Sync"
  354. : "=r" (tmp)
  355. : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
  356. "r" (data0), "r" (data1), "r" (data2), "r" (target),
  357. "r" (0x10), "0" (tmp)
  358. : "g1");
  359. /* NOTE: PSTATE_IE is still clear. */
  360. stuck = 100000;
  361. do {
  362. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  363. : "=r" (result)
  364. : "i" (ASI_INTR_DISPATCH_STAT));
  365. if (result == 0) {
  366. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  367. : : "r" (pstate));
  368. return;
  369. }
  370. stuck -= 1;
  371. if (stuck == 0)
  372. break;
  373. } while (result & 0x1);
  374. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  375. : : "r" (pstate));
  376. if (stuck == 0) {
  377. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  378. smp_processor_id(), result);
  379. } else {
  380. udelay(2);
  381. goto again;
  382. }
  383. }
  384. static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  385. {
  386. u64 *mondo, data0, data1, data2;
  387. u16 *cpu_list;
  388. u64 pstate;
  389. int i;
  390. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  391. cpu_list = __va(tb->cpu_list_pa);
  392. mondo = __va(tb->cpu_mondo_block_pa);
  393. data0 = mondo[0];
  394. data1 = mondo[1];
  395. data2 = mondo[2];
  396. for (i = 0; i < cnt; i++)
  397. spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
  398. }
  399. /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
  400. * packet, but we have no use for that. However we do take advantage of
  401. * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
  402. */
  403. static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  404. {
  405. int nack_busy_id, is_jbus, need_more;
  406. u64 *mondo, pstate, ver, busy_mask;
  407. u16 *cpu_list;
  408. cpu_list = __va(tb->cpu_list_pa);
  409. mondo = __va(tb->cpu_mondo_block_pa);
  410. /* Unfortunately, someone at Sun had the brilliant idea to make the
  411. * busy/nack fields hard-coded by ITID number for this Ultra-III
  412. * derivative processor.
  413. */
  414. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  415. is_jbus = ((ver >> 32) == __JALAPENO_ID ||
  416. (ver >> 32) == __SERRANO_ID);
  417. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  418. retry:
  419. need_more = 0;
  420. __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
  421. : : "r" (pstate), "i" (PSTATE_IE));
  422. /* Setup the dispatch data registers. */
  423. __asm__ __volatile__("stxa %0, [%3] %6\n\t"
  424. "stxa %1, [%4] %6\n\t"
  425. "stxa %2, [%5] %6\n\t"
  426. "membar #Sync\n\t"
  427. : /* no outputs */
  428. : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
  429. "r" (0x40), "r" (0x50), "r" (0x60),
  430. "i" (ASI_INTR_W));
  431. nack_busy_id = 0;
  432. busy_mask = 0;
  433. {
  434. int i;
  435. for (i = 0; i < cnt; i++) {
  436. u64 target, nr;
  437. nr = cpu_list[i];
  438. if (nr == 0xffff)
  439. continue;
  440. target = (nr << 14) | 0x70;
  441. if (is_jbus) {
  442. busy_mask |= (0x1UL << (nr * 2));
  443. } else {
  444. target |= (nack_busy_id << 24);
  445. busy_mask |= (0x1UL <<
  446. (nack_busy_id * 2));
  447. }
  448. __asm__ __volatile__(
  449. "stxa %%g0, [%0] %1\n\t"
  450. "membar #Sync\n\t"
  451. : /* no outputs */
  452. : "r" (target), "i" (ASI_INTR_W));
  453. nack_busy_id++;
  454. if (nack_busy_id == 32) {
  455. need_more = 1;
  456. break;
  457. }
  458. }
  459. }
  460. /* Now, poll for completion. */
  461. {
  462. u64 dispatch_stat, nack_mask;
  463. long stuck;
  464. stuck = 100000 * nack_busy_id;
  465. nack_mask = busy_mask << 1;
  466. do {
  467. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  468. : "=r" (dispatch_stat)
  469. : "i" (ASI_INTR_DISPATCH_STAT));
  470. if (!(dispatch_stat & (busy_mask | nack_mask))) {
  471. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  472. : : "r" (pstate));
  473. if (unlikely(need_more)) {
  474. int i, this_cnt = 0;
  475. for (i = 0; i < cnt; i++) {
  476. if (cpu_list[i] == 0xffff)
  477. continue;
  478. cpu_list[i] = 0xffff;
  479. this_cnt++;
  480. if (this_cnt == 32)
  481. break;
  482. }
  483. goto retry;
  484. }
  485. return;
  486. }
  487. if (!--stuck)
  488. break;
  489. } while (dispatch_stat & busy_mask);
  490. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  491. : : "r" (pstate));
  492. if (dispatch_stat & busy_mask) {
  493. /* Busy bits will not clear, continue instead
  494. * of freezing up on this cpu.
  495. */
  496. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  497. smp_processor_id(), dispatch_stat);
  498. } else {
  499. int i, this_busy_nack = 0;
  500. /* Delay some random time with interrupts enabled
  501. * to prevent deadlock.
  502. */
  503. udelay(2 * nack_busy_id);
  504. /* Clear out the mask bits for cpus which did not
  505. * NACK us.
  506. */
  507. for (i = 0; i < cnt; i++) {
  508. u64 check_mask, nr;
  509. nr = cpu_list[i];
  510. if (nr == 0xffff)
  511. continue;
  512. if (is_jbus)
  513. check_mask = (0x2UL << (2*nr));
  514. else
  515. check_mask = (0x2UL <<
  516. this_busy_nack);
  517. if ((dispatch_stat & check_mask) == 0)
  518. cpu_list[i] = 0xffff;
  519. this_busy_nack += 2;
  520. if (this_busy_nack == 64)
  521. break;
  522. }
  523. goto retry;
  524. }
  525. }
  526. }
  527. /* Multi-cpu list version. */
  528. static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  529. {
  530. int retries, this_cpu, prev_sent, i, saw_cpu_error;
  531. unsigned long status;
  532. u16 *cpu_list;
  533. this_cpu = smp_processor_id();
  534. cpu_list = __va(tb->cpu_list_pa);
  535. saw_cpu_error = 0;
  536. retries = 0;
  537. prev_sent = 0;
  538. do {
  539. int forward_progress, n_sent;
  540. status = sun4v_cpu_mondo_send(cnt,
  541. tb->cpu_list_pa,
  542. tb->cpu_mondo_block_pa);
  543. /* HV_EOK means all cpus received the xcall, we're done. */
  544. if (likely(status == HV_EOK))
  545. break;
  546. /* First, see if we made any forward progress.
  547. *
  548. * The hypervisor indicates successful sends by setting
  549. * cpu list entries to the value 0xffff.
  550. */
  551. n_sent = 0;
  552. for (i = 0; i < cnt; i++) {
  553. if (likely(cpu_list[i] == 0xffff))
  554. n_sent++;
  555. }
  556. forward_progress = 0;
  557. if (n_sent > prev_sent)
  558. forward_progress = 1;
  559. prev_sent = n_sent;
  560. /* If we get a HV_ECPUERROR, then one or more of the cpus
  561. * in the list are in error state. Use the cpu_state()
  562. * hypervisor call to find out which cpus are in error state.
  563. */
  564. if (unlikely(status == HV_ECPUERROR)) {
  565. for (i = 0; i < cnt; i++) {
  566. long err;
  567. u16 cpu;
  568. cpu = cpu_list[i];
  569. if (cpu == 0xffff)
  570. continue;
  571. err = sun4v_cpu_state(cpu);
  572. if (err == HV_CPU_STATE_ERROR) {
  573. saw_cpu_error = (cpu + 1);
  574. cpu_list[i] = 0xffff;
  575. }
  576. }
  577. } else if (unlikely(status != HV_EWOULDBLOCK))
  578. goto fatal_mondo_error;
  579. /* Don't bother rewriting the CPU list, just leave the
  580. * 0xffff and non-0xffff entries in there and the
  581. * hypervisor will do the right thing.
  582. *
  583. * Only advance timeout state if we didn't make any
  584. * forward progress.
  585. */
  586. if (unlikely(!forward_progress)) {
  587. if (unlikely(++retries > 10000))
  588. goto fatal_mondo_timeout;
  589. /* Delay a little bit to let other cpus catch up
  590. * on their cpu mondo queue work.
  591. */
  592. udelay(2 * cnt);
  593. }
  594. } while (1);
  595. if (unlikely(saw_cpu_error))
  596. goto fatal_mondo_cpu_error;
  597. return;
  598. fatal_mondo_cpu_error:
  599. printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
  600. "(including %d) were in error state\n",
  601. this_cpu, saw_cpu_error - 1);
  602. return;
  603. fatal_mondo_timeout:
  604. printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
  605. " progress after %d retries.\n",
  606. this_cpu, retries);
  607. goto dump_cpu_list_and_out;
  608. fatal_mondo_error:
  609. printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
  610. this_cpu, status);
  611. printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
  612. "mondo_block_pa(%lx)\n",
  613. this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
  614. dump_cpu_list_and_out:
  615. printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
  616. for (i = 0; i < cnt; i++)
  617. printk("%u ", cpu_list[i]);
  618. printk("]\n");
  619. }
  620. static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
  621. static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
  622. {
  623. struct trap_per_cpu *tb;
  624. int this_cpu, i, cnt;
  625. unsigned long flags;
  626. u16 *cpu_list;
  627. u64 *mondo;
  628. /* We have to do this whole thing with interrupts fully disabled.
  629. * Otherwise if we send an xcall from interrupt context it will
  630. * corrupt both our mondo block and cpu list state.
  631. *
  632. * One consequence of this is that we cannot use timeout mechanisms
  633. * that depend upon interrupts being delivered locally. So, for
  634. * example, we cannot sample jiffies and expect it to advance.
  635. *
  636. * Fortunately, udelay() uses %stick/%tick so we can use that.
  637. */
  638. local_irq_save(flags);
  639. this_cpu = smp_processor_id();
  640. tb = &trap_block[this_cpu];
  641. mondo = __va(tb->cpu_mondo_block_pa);
  642. mondo[0] = data0;
  643. mondo[1] = data1;
  644. mondo[2] = data2;
  645. wmb();
  646. cpu_list = __va(tb->cpu_list_pa);
  647. /* Setup the initial cpu list. */
  648. cnt = 0;
  649. for_each_cpu_mask_nr(i, *mask) {
  650. if (i == this_cpu || !cpu_online(i))
  651. continue;
  652. cpu_list[cnt++] = i;
  653. }
  654. if (cnt)
  655. xcall_deliver_impl(tb, cnt);
  656. local_irq_restore(flags);
  657. }
  658. /* Send cross call to all processors mentioned in MASK_P
  659. * except self. Really, there are only two cases currently,
  660. * "&cpu_online_map" and "&mm->cpu_vm_mask".
  661. */
  662. static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
  663. {
  664. u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
  665. xcall_deliver(data0, data1, data2, mask);
  666. }
  667. /* Send cross call to all processors except self. */
  668. static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
  669. {
  670. smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
  671. }
  672. extern unsigned long xcall_sync_tick;
  673. static void smp_start_sync_tick_client(int cpu)
  674. {
  675. xcall_deliver((u64) &xcall_sync_tick, 0, 0,
  676. &cpumask_of_cpu(cpu));
  677. }
  678. extern unsigned long xcall_call_function;
  679. void arch_send_call_function_ipi(cpumask_t mask)
  680. {
  681. xcall_deliver((u64) &xcall_call_function, 0, 0, &mask);
  682. }
  683. extern unsigned long xcall_call_function_single;
  684. void arch_send_call_function_single_ipi(int cpu)
  685. {
  686. xcall_deliver((u64) &xcall_call_function_single, 0, 0,
  687. &cpumask_of_cpu(cpu));
  688. }
  689. void smp_call_function_client(int irq, struct pt_regs *regs)
  690. {
  691. clear_softint(1 << irq);
  692. generic_smp_call_function_interrupt();
  693. }
  694. void smp_call_function_single_client(int irq, struct pt_regs *regs)
  695. {
  696. clear_softint(1 << irq);
  697. generic_smp_call_function_single_interrupt();
  698. }
  699. static void tsb_sync(void *info)
  700. {
  701. struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
  702. struct mm_struct *mm = info;
  703. /* It is not valid to test "currrent->active_mm == mm" here.
  704. *
  705. * The value of "current" is not changed atomically with
  706. * switch_mm(). But that's OK, we just need to check the
  707. * current cpu's trap block PGD physical address.
  708. */
  709. if (tp->pgd_paddr == __pa(mm->pgd))
  710. tsb_context_switch(mm);
  711. }
  712. void smp_tsb_sync(struct mm_struct *mm)
  713. {
  714. smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1);
  715. }
  716. extern unsigned long xcall_flush_tlb_mm;
  717. extern unsigned long xcall_flush_tlb_pending;
  718. extern unsigned long xcall_flush_tlb_kernel_range;
  719. extern unsigned long xcall_fetch_glob_regs;
  720. extern unsigned long xcall_receive_signal;
  721. extern unsigned long xcall_new_mmu_context_version;
  722. #ifdef CONFIG_KGDB
  723. extern unsigned long xcall_kgdb_capture;
  724. #endif
  725. #ifdef DCACHE_ALIASING_POSSIBLE
  726. extern unsigned long xcall_flush_dcache_page_cheetah;
  727. #endif
  728. extern unsigned long xcall_flush_dcache_page_spitfire;
  729. #ifdef CONFIG_DEBUG_DCFLUSH
  730. extern atomic_t dcpage_flushes;
  731. extern atomic_t dcpage_flushes_xcall;
  732. #endif
  733. static inline void __local_flush_dcache_page(struct page *page)
  734. {
  735. #ifdef DCACHE_ALIASING_POSSIBLE
  736. __flush_dcache_page(page_address(page),
  737. ((tlb_type == spitfire) &&
  738. page_mapping(page) != NULL));
  739. #else
  740. if (page_mapping(page) != NULL &&
  741. tlb_type == spitfire)
  742. __flush_icache_page(__pa(page_address(page)));
  743. #endif
  744. }
  745. void smp_flush_dcache_page_impl(struct page *page, int cpu)
  746. {
  747. int this_cpu;
  748. if (tlb_type == hypervisor)
  749. return;
  750. #ifdef CONFIG_DEBUG_DCFLUSH
  751. atomic_inc(&dcpage_flushes);
  752. #endif
  753. this_cpu = get_cpu();
  754. if (cpu == this_cpu) {
  755. __local_flush_dcache_page(page);
  756. } else if (cpu_online(cpu)) {
  757. void *pg_addr = page_address(page);
  758. u64 data0 = 0;
  759. if (tlb_type == spitfire) {
  760. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  761. if (page_mapping(page) != NULL)
  762. data0 |= ((u64)1 << 32);
  763. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  764. #ifdef DCACHE_ALIASING_POSSIBLE
  765. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  766. #endif
  767. }
  768. if (data0) {
  769. xcall_deliver(data0, __pa(pg_addr),
  770. (u64) pg_addr, &cpumask_of_cpu(cpu));
  771. #ifdef CONFIG_DEBUG_DCFLUSH
  772. atomic_inc(&dcpage_flushes_xcall);
  773. #endif
  774. }
  775. }
  776. put_cpu();
  777. }
  778. void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
  779. {
  780. void *pg_addr;
  781. int this_cpu;
  782. u64 data0;
  783. if (tlb_type == hypervisor)
  784. return;
  785. this_cpu = get_cpu();
  786. #ifdef CONFIG_DEBUG_DCFLUSH
  787. atomic_inc(&dcpage_flushes);
  788. #endif
  789. data0 = 0;
  790. pg_addr = page_address(page);
  791. if (tlb_type == spitfire) {
  792. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  793. if (page_mapping(page) != NULL)
  794. data0 |= ((u64)1 << 32);
  795. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  796. #ifdef DCACHE_ALIASING_POSSIBLE
  797. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  798. #endif
  799. }
  800. if (data0) {
  801. xcall_deliver(data0, __pa(pg_addr),
  802. (u64) pg_addr, &cpu_online_map);
  803. #ifdef CONFIG_DEBUG_DCFLUSH
  804. atomic_inc(&dcpage_flushes_xcall);
  805. #endif
  806. }
  807. __local_flush_dcache_page(page);
  808. put_cpu();
  809. }
  810. void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
  811. {
  812. struct mm_struct *mm;
  813. unsigned long flags;
  814. clear_softint(1 << irq);
  815. /* See if we need to allocate a new TLB context because
  816. * the version of the one we are using is now out of date.
  817. */
  818. mm = current->active_mm;
  819. if (unlikely(!mm || (mm == &init_mm)))
  820. return;
  821. spin_lock_irqsave(&mm->context.lock, flags);
  822. if (unlikely(!CTX_VALID(mm->context)))
  823. get_new_mmu_context(mm);
  824. spin_unlock_irqrestore(&mm->context.lock, flags);
  825. load_secondary_context(mm);
  826. __flush_tlb_mm(CTX_HWBITS(mm->context),
  827. SECONDARY_CONTEXT);
  828. }
  829. void smp_new_mmu_context_version(void)
  830. {
  831. smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
  832. }
  833. #ifdef CONFIG_KGDB
  834. void kgdb_roundup_cpus(unsigned long flags)
  835. {
  836. smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
  837. }
  838. #endif
  839. void smp_fetch_global_regs(void)
  840. {
  841. smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
  842. }
  843. /* We know that the window frames of the user have been flushed
  844. * to the stack before we get here because all callers of us
  845. * are flush_tlb_*() routines, and these run after flush_cache_*()
  846. * which performs the flushw.
  847. *
  848. * The SMP TLB coherency scheme we use works as follows:
  849. *
  850. * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
  851. * space has (potentially) executed on, this is the heuristic
  852. * we use to avoid doing cross calls.
  853. *
  854. * Also, for flushing from kswapd and also for clones, we
  855. * use cpu_vm_mask as the list of cpus to make run the TLB.
  856. *
  857. * 2) TLB context numbers are shared globally across all processors
  858. * in the system, this allows us to play several games to avoid
  859. * cross calls.
  860. *
  861. * One invariant is that when a cpu switches to a process, and
  862. * that processes tsk->active_mm->cpu_vm_mask does not have the
  863. * current cpu's bit set, that tlb context is flushed locally.
  864. *
  865. * If the address space is non-shared (ie. mm->count == 1) we avoid
  866. * cross calls when we want to flush the currently running process's
  867. * tlb state. This is done by clearing all cpu bits except the current
  868. * processor's in current->active_mm->cpu_vm_mask and performing the
  869. * flush locally only. This will force any subsequent cpus which run
  870. * this task to flush the context from the local tlb if the process
  871. * migrates to another cpu (again).
  872. *
  873. * 3) For shared address spaces (threads) and swapping we bite the
  874. * bullet for most cases and perform the cross call (but only to
  875. * the cpus listed in cpu_vm_mask).
  876. *
  877. * The performance gain from "optimizing" away the cross call for threads is
  878. * questionable (in theory the big win for threads is the massive sharing of
  879. * address space state across processors).
  880. */
  881. /* This currently is only used by the hugetlb arch pre-fault
  882. * hook on UltraSPARC-III+ and later when changing the pagesize
  883. * bits of the context register for an address space.
  884. */
  885. void smp_flush_tlb_mm(struct mm_struct *mm)
  886. {
  887. u32 ctx = CTX_HWBITS(mm->context);
  888. int cpu = get_cpu();
  889. if (atomic_read(&mm->mm_users) == 1) {
  890. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  891. goto local_flush_and_out;
  892. }
  893. smp_cross_call_masked(&xcall_flush_tlb_mm,
  894. ctx, 0, 0,
  895. &mm->cpu_vm_mask);
  896. local_flush_and_out:
  897. __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
  898. put_cpu();
  899. }
  900. void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
  901. {
  902. u32 ctx = CTX_HWBITS(mm->context);
  903. int cpu = get_cpu();
  904. if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
  905. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  906. else
  907. smp_cross_call_masked(&xcall_flush_tlb_pending,
  908. ctx, nr, (unsigned long) vaddrs,
  909. &mm->cpu_vm_mask);
  910. __flush_tlb_pending(ctx, nr, vaddrs);
  911. put_cpu();
  912. }
  913. void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  914. {
  915. start &= PAGE_MASK;
  916. end = PAGE_ALIGN(end);
  917. if (start != end) {
  918. smp_cross_call(&xcall_flush_tlb_kernel_range,
  919. 0, start, end);
  920. __flush_tlb_kernel_range(start, end);
  921. }
  922. }
  923. /* CPU capture. */
  924. /* #define CAPTURE_DEBUG */
  925. extern unsigned long xcall_capture;
  926. static atomic_t smp_capture_depth = ATOMIC_INIT(0);
  927. static atomic_t smp_capture_registry = ATOMIC_INIT(0);
  928. static unsigned long penguins_are_doing_time;
  929. void smp_capture(void)
  930. {
  931. int result = atomic_add_ret(1, &smp_capture_depth);
  932. if (result == 1) {
  933. int ncpus = num_online_cpus();
  934. #ifdef CAPTURE_DEBUG
  935. printk("CPU[%d]: Sending penguins to jail...",
  936. smp_processor_id());
  937. #endif
  938. penguins_are_doing_time = 1;
  939. membar_storestore_loadstore();
  940. atomic_inc(&smp_capture_registry);
  941. smp_cross_call(&xcall_capture, 0, 0, 0);
  942. while (atomic_read(&smp_capture_registry) != ncpus)
  943. rmb();
  944. #ifdef CAPTURE_DEBUG
  945. printk("done\n");
  946. #endif
  947. }
  948. }
  949. void smp_release(void)
  950. {
  951. if (atomic_dec_and_test(&smp_capture_depth)) {
  952. #ifdef CAPTURE_DEBUG
  953. printk("CPU[%d]: Giving pardon to "
  954. "imprisoned penguins\n",
  955. smp_processor_id());
  956. #endif
  957. penguins_are_doing_time = 0;
  958. membar_storeload_storestore();
  959. atomic_dec(&smp_capture_registry);
  960. }
  961. }
  962. /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
  963. * can service tlb flush xcalls...
  964. */
  965. extern void prom_world(int);
  966. void smp_penguin_jailcell(int irq, struct pt_regs *regs)
  967. {
  968. clear_softint(1 << irq);
  969. preempt_disable();
  970. __asm__ __volatile__("flushw");
  971. prom_world(1);
  972. atomic_inc(&smp_capture_registry);
  973. membar_storeload_storestore();
  974. while (penguins_are_doing_time)
  975. rmb();
  976. atomic_dec(&smp_capture_registry);
  977. prom_world(0);
  978. preempt_enable();
  979. }
  980. /* /proc/profile writes can call this, don't __init it please. */
  981. int setup_profiling_timer(unsigned int multiplier)
  982. {
  983. return -EINVAL;
  984. }
  985. void __init smp_prepare_cpus(unsigned int max_cpus)
  986. {
  987. }
  988. void __devinit smp_prepare_boot_cpu(void)
  989. {
  990. }
  991. void __init smp_setup_processor_id(void)
  992. {
  993. if (tlb_type == spitfire)
  994. xcall_deliver_impl = spitfire_xcall_deliver;
  995. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  996. xcall_deliver_impl = cheetah_xcall_deliver;
  997. else
  998. xcall_deliver_impl = hypervisor_xcall_deliver;
  999. }
  1000. void __devinit smp_fill_in_sib_core_maps(void)
  1001. {
  1002. unsigned int i;
  1003. for_each_present_cpu(i) {
  1004. unsigned int j;
  1005. cpus_clear(cpu_core_map[i]);
  1006. if (cpu_data(i).core_id == 0) {
  1007. cpu_set(i, cpu_core_map[i]);
  1008. continue;
  1009. }
  1010. for_each_present_cpu(j) {
  1011. if (cpu_data(i).core_id ==
  1012. cpu_data(j).core_id)
  1013. cpu_set(j, cpu_core_map[i]);
  1014. }
  1015. }
  1016. for_each_present_cpu(i) {
  1017. unsigned int j;
  1018. cpus_clear(per_cpu(cpu_sibling_map, i));
  1019. if (cpu_data(i).proc_id == -1) {
  1020. cpu_set(i, per_cpu(cpu_sibling_map, i));
  1021. continue;
  1022. }
  1023. for_each_present_cpu(j) {
  1024. if (cpu_data(i).proc_id ==
  1025. cpu_data(j).proc_id)
  1026. cpu_set(j, per_cpu(cpu_sibling_map, i));
  1027. }
  1028. }
  1029. }
  1030. int __cpuinit __cpu_up(unsigned int cpu)
  1031. {
  1032. int ret = smp_boot_one_cpu(cpu);
  1033. if (!ret) {
  1034. cpu_set(cpu, smp_commenced_mask);
  1035. while (!cpu_isset(cpu, cpu_online_map))
  1036. mb();
  1037. if (!cpu_isset(cpu, cpu_online_map)) {
  1038. ret = -ENODEV;
  1039. } else {
  1040. /* On SUN4V, writes to %tick and %stick are
  1041. * not allowed.
  1042. */
  1043. if (tlb_type != hypervisor)
  1044. smp_synchronize_one_tick(cpu);
  1045. }
  1046. }
  1047. return ret;
  1048. }
  1049. #ifdef CONFIG_HOTPLUG_CPU
  1050. void cpu_play_dead(void)
  1051. {
  1052. int cpu = smp_processor_id();
  1053. unsigned long pstate;
  1054. idle_task_exit();
  1055. if (tlb_type == hypervisor) {
  1056. struct trap_per_cpu *tb = &trap_block[cpu];
  1057. sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
  1058. tb->cpu_mondo_pa, 0);
  1059. sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
  1060. tb->dev_mondo_pa, 0);
  1061. sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
  1062. tb->resum_mondo_pa, 0);
  1063. sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
  1064. tb->nonresum_mondo_pa, 0);
  1065. }
  1066. cpu_clear(cpu, smp_commenced_mask);
  1067. membar_safe("#Sync");
  1068. local_irq_disable();
  1069. __asm__ __volatile__(
  1070. "rdpr %%pstate, %0\n\t"
  1071. "wrpr %0, %1, %%pstate"
  1072. : "=r" (pstate)
  1073. : "i" (PSTATE_IE));
  1074. while (1)
  1075. barrier();
  1076. }
  1077. int __cpu_disable(void)
  1078. {
  1079. int cpu = smp_processor_id();
  1080. cpuinfo_sparc *c;
  1081. int i;
  1082. for_each_cpu_mask(i, cpu_core_map[cpu])
  1083. cpu_clear(cpu, cpu_core_map[i]);
  1084. cpus_clear(cpu_core_map[cpu]);
  1085. for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
  1086. cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
  1087. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  1088. c = &cpu_data(cpu);
  1089. c->core_id = 0;
  1090. c->proc_id = -1;
  1091. smp_wmb();
  1092. /* Make sure no interrupts point to this cpu. */
  1093. fixup_irqs();
  1094. local_irq_enable();
  1095. mdelay(1);
  1096. local_irq_disable();
  1097. ipi_call_lock();
  1098. cpu_clear(cpu, cpu_online_map);
  1099. ipi_call_unlock();
  1100. return 0;
  1101. }
  1102. void __cpu_die(unsigned int cpu)
  1103. {
  1104. int i;
  1105. for (i = 0; i < 100; i++) {
  1106. smp_rmb();
  1107. if (!cpu_isset(cpu, smp_commenced_mask))
  1108. break;
  1109. msleep(100);
  1110. }
  1111. if (cpu_isset(cpu, smp_commenced_mask)) {
  1112. printk(KERN_ERR "CPU %u didn't die...\n", cpu);
  1113. } else {
  1114. #if defined(CONFIG_SUN_LDOMS)
  1115. unsigned long hv_err;
  1116. int limit = 100;
  1117. do {
  1118. hv_err = sun4v_cpu_stop(cpu);
  1119. if (hv_err == HV_EOK) {
  1120. cpu_clear(cpu, cpu_present_map);
  1121. break;
  1122. }
  1123. } while (--limit > 0);
  1124. if (limit <= 0) {
  1125. printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
  1126. hv_err);
  1127. }
  1128. #endif
  1129. }
  1130. }
  1131. #endif
  1132. void __init smp_cpus_done(unsigned int max_cpus)
  1133. {
  1134. }
  1135. void smp_send_reschedule(int cpu)
  1136. {
  1137. xcall_deliver((u64) &xcall_receive_signal, 0, 0,
  1138. &cpumask_of_cpu(cpu));
  1139. }
  1140. void smp_receive_signal_client(int irq, struct pt_regs *regs)
  1141. {
  1142. clear_softint(1 << irq);
  1143. }
  1144. /* This is a nop because we capture all other cpus
  1145. * anyways when making the PROM active.
  1146. */
  1147. void smp_send_stop(void)
  1148. {
  1149. }
  1150. unsigned long __per_cpu_base __read_mostly;
  1151. unsigned long __per_cpu_shift __read_mostly;
  1152. EXPORT_SYMBOL(__per_cpu_base);
  1153. EXPORT_SYMBOL(__per_cpu_shift);
  1154. void __init real_setup_per_cpu_areas(void)
  1155. {
  1156. unsigned long paddr, goal, size, i;
  1157. char *ptr;
  1158. /* Copy section for each CPU (we discard the original) */
  1159. goal = PERCPU_ENOUGH_ROOM;
  1160. __per_cpu_shift = PAGE_SHIFT;
  1161. for (size = PAGE_SIZE; size < goal; size <<= 1UL)
  1162. __per_cpu_shift++;
  1163. paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
  1164. if (!paddr) {
  1165. prom_printf("Cannot allocate per-cpu memory.\n");
  1166. prom_halt();
  1167. }
  1168. ptr = __va(paddr);
  1169. __per_cpu_base = ptr - __per_cpu_start;
  1170. for (i = 0; i < NR_CPUS; i++, ptr += size)
  1171. memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
  1172. /* Setup %g5 for the boot cpu. */
  1173. __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
  1174. }