qe.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574
  1. /*
  2. * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
  3. *
  4. * Authors: Shlomi Gridish <gridish@freescale.com>
  5. * Li Yang <leoli@freescale.com>
  6. * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
  7. *
  8. * Description:
  9. * General Purpose functions for the global management of the
  10. * QUICC Engine (QE).
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms of the GNU General Public License as published by the
  14. * Free Software Foundation; either version 2 of the License, or (at your
  15. * option) any later version.
  16. */
  17. #include <linux/errno.h>
  18. #include <linux/sched.h>
  19. #include <linux/kernel.h>
  20. #include <linux/param.h>
  21. #include <linux/string.h>
  22. #include <linux/mm.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/module.h>
  26. #include <linux/delay.h>
  27. #include <linux/ioport.h>
  28. #include <linux/crc32.h>
  29. #include <asm/irq.h>
  30. #include <asm/page.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/immap_qe.h>
  33. #include <asm/qe.h>
  34. #include <asm/prom.h>
  35. #include <asm/rheap.h>
  36. static void qe_snums_init(void);
  37. static int qe_sdma_init(void);
  38. static DEFINE_SPINLOCK(qe_lock);
  39. /* QE snum state */
  40. enum qe_snum_state {
  41. QE_SNUM_STATE_USED,
  42. QE_SNUM_STATE_FREE
  43. };
  44. /* QE snum */
  45. struct qe_snum {
  46. u8 num;
  47. enum qe_snum_state state;
  48. };
  49. /* We allocate this here because it is used almost exclusively for
  50. * the communication processor devices.
  51. */
  52. struct qe_immap __iomem *qe_immr;
  53. EXPORT_SYMBOL(qe_immr);
  54. static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */
  55. static phys_addr_t qebase = -1;
  56. phys_addr_t get_qe_base(void)
  57. {
  58. struct device_node *qe;
  59. int size;
  60. const u32 *prop;
  61. if (qebase != -1)
  62. return qebase;
  63. qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
  64. if (!qe) {
  65. qe = of_find_node_by_type(NULL, "qe");
  66. if (!qe)
  67. return qebase;
  68. }
  69. prop = of_get_property(qe, "reg", &size);
  70. if (prop && size >= sizeof(*prop))
  71. qebase = of_translate_address(qe, prop);
  72. of_node_put(qe);
  73. return qebase;
  74. }
  75. EXPORT_SYMBOL(get_qe_base);
  76. void __init qe_reset(void)
  77. {
  78. if (qe_immr == NULL)
  79. qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);
  80. qe_snums_init();
  81. qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
  82. QE_CR_PROTOCOL_UNSPECIFIED, 0);
  83. /* Reclaim the MURAM memory for our use. */
  84. qe_muram_init();
  85. if (qe_sdma_init())
  86. panic("sdma init failed!");
  87. }
  88. int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
  89. {
  90. unsigned long flags;
  91. u8 mcn_shift = 0, dev_shift = 0;
  92. spin_lock_irqsave(&qe_lock, flags);
  93. if (cmd == QE_RESET) {
  94. out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG));
  95. } else {
  96. if (cmd == QE_ASSIGN_PAGE) {
  97. /* Here device is the SNUM, not sub-block */
  98. dev_shift = QE_CR_SNUM_SHIFT;
  99. } else if (cmd == QE_ASSIGN_RISC) {
  100. /* Here device is the SNUM, and mcnProtocol is
  101. * e_QeCmdRiscAssignment value */
  102. dev_shift = QE_CR_SNUM_SHIFT;
  103. mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
  104. } else {
  105. if (device == QE_CR_SUBBLOCK_USB)
  106. mcn_shift = QE_CR_MCN_USB_SHIFT;
  107. else
  108. mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
  109. }
  110. out_be32(&qe_immr->cp.cecdr, cmd_input);
  111. out_be32(&qe_immr->cp.cecr,
  112. (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32)
  113. mcn_protocol << mcn_shift));
  114. }
  115. /* wait for the QE_CR_FLG to clear */
  116. while(in_be32(&qe_immr->cp.cecr) & QE_CR_FLG)
  117. cpu_relax();
  118. spin_unlock_irqrestore(&qe_lock, flags);
  119. return 0;
  120. }
  121. EXPORT_SYMBOL(qe_issue_cmd);
  122. /* Set a baud rate generator. This needs lots of work. There are
  123. * 16 BRGs, which can be connected to the QE channels or output
  124. * as clocks. The BRGs are in two different block of internal
  125. * memory mapped space.
  126. * The BRG clock is the QE clock divided by 2.
  127. * It was set up long ago during the initial boot phase and is
  128. * is given to us.
  129. * Baud rate clocks are zero-based in the driver code (as that maps
  130. * to port numbers). Documentation uses 1-based numbering.
  131. */
  132. static unsigned int brg_clk = 0;
  133. unsigned int qe_get_brg_clk(void)
  134. {
  135. struct device_node *qe;
  136. int size;
  137. const u32 *prop;
  138. if (brg_clk)
  139. return brg_clk;
  140. qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
  141. if (!qe) {
  142. qe = of_find_node_by_type(NULL, "qe");
  143. if (!qe)
  144. return brg_clk;
  145. }
  146. prop = of_get_property(qe, "brg-frequency", &size);
  147. if (prop && size == sizeof(*prop))
  148. brg_clk = *prop;
  149. of_node_put(qe);
  150. return brg_clk;
  151. }
  152. EXPORT_SYMBOL(qe_get_brg_clk);
  153. /* Program the BRG to the given sampling rate and multiplier
  154. *
  155. * @brg: the BRG, QE_BRG1 - QE_BRG16
  156. * @rate: the desired sampling rate
  157. * @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or
  158. * GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01,
  159. * then 'multiplier' should be 8.
  160. */
  161. int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier)
  162. {
  163. u32 divisor, tempval;
  164. u32 div16 = 0;
  165. if ((brg < QE_BRG1) || (brg > QE_BRG16))
  166. return -EINVAL;
  167. divisor = qe_get_brg_clk() / (rate * multiplier);
  168. if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
  169. div16 = QE_BRGC_DIV16;
  170. divisor /= 16;
  171. }
  172. /* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says
  173. that the BRG divisor must be even if you're not using divide-by-16
  174. mode. */
  175. if (!div16 && (divisor & 1))
  176. divisor++;
  177. tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) |
  178. QE_BRGC_ENABLE | div16;
  179. out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval);
  180. return 0;
  181. }
  182. EXPORT_SYMBOL(qe_setbrg);
  183. /* Convert a string to a QE clock source enum
  184. *
  185. * This function takes a string, typically from a property in the device
  186. * tree, and returns the corresponding "enum qe_clock" value.
  187. */
  188. enum qe_clock qe_clock_source(const char *source)
  189. {
  190. unsigned int i;
  191. if (strcasecmp(source, "none") == 0)
  192. return QE_CLK_NONE;
  193. if (strncasecmp(source, "brg", 3) == 0) {
  194. i = simple_strtoul(source + 3, NULL, 10);
  195. if ((i >= 1) && (i <= 16))
  196. return (QE_BRG1 - 1) + i;
  197. else
  198. return QE_CLK_DUMMY;
  199. }
  200. if (strncasecmp(source, "clk", 3) == 0) {
  201. i = simple_strtoul(source + 3, NULL, 10);
  202. if ((i >= 1) && (i <= 24))
  203. return (QE_CLK1 - 1) + i;
  204. else
  205. return QE_CLK_DUMMY;
  206. }
  207. return QE_CLK_DUMMY;
  208. }
  209. EXPORT_SYMBOL(qe_clock_source);
  210. /* Initialize SNUMs (thread serial numbers) according to
  211. * QE Module Control chapter, SNUM table
  212. */
  213. static void qe_snums_init(void)
  214. {
  215. int i;
  216. static const u8 snum_init[] = {
  217. 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
  218. 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
  219. 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
  220. 0xD8, 0xD9, 0xE8, 0xE9,
  221. };
  222. for (i = 0; i < QE_NUM_OF_SNUM; i++) {
  223. snums[i].num = snum_init[i];
  224. snums[i].state = QE_SNUM_STATE_FREE;
  225. }
  226. }
  227. int qe_get_snum(void)
  228. {
  229. unsigned long flags;
  230. int snum = -EBUSY;
  231. int i;
  232. spin_lock_irqsave(&qe_lock, flags);
  233. for (i = 0; i < QE_NUM_OF_SNUM; i++) {
  234. if (snums[i].state == QE_SNUM_STATE_FREE) {
  235. snums[i].state = QE_SNUM_STATE_USED;
  236. snum = snums[i].num;
  237. break;
  238. }
  239. }
  240. spin_unlock_irqrestore(&qe_lock, flags);
  241. return snum;
  242. }
  243. EXPORT_SYMBOL(qe_get_snum);
  244. void qe_put_snum(u8 snum)
  245. {
  246. int i;
  247. for (i = 0; i < QE_NUM_OF_SNUM; i++) {
  248. if (snums[i].num == snum) {
  249. snums[i].state = QE_SNUM_STATE_FREE;
  250. break;
  251. }
  252. }
  253. }
  254. EXPORT_SYMBOL(qe_put_snum);
  255. static int qe_sdma_init(void)
  256. {
  257. struct sdma __iomem *sdma = &qe_immr->sdma;
  258. unsigned long sdma_buf_offset;
  259. if (!sdma)
  260. return -ENODEV;
  261. /* allocate 2 internal temporary buffers (512 bytes size each) for
  262. * the SDMA */
  263. sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
  264. if (IS_ERR_VALUE(sdma_buf_offset))
  265. return -ENOMEM;
  266. out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK);
  267. out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK |
  268. (0x1 << QE_SDMR_CEN_SHIFT)));
  269. return 0;
  270. }
  271. /* The maximum number of RISCs we support */
  272. #define MAX_QE_RISC 2
  273. /* Firmware information stored here for qe_get_firmware_info() */
  274. static struct qe_firmware_info qe_firmware_info;
  275. /*
  276. * Set to 1 if QE firmware has been uploaded, and therefore
  277. * qe_firmware_info contains valid data.
  278. */
  279. static int qe_firmware_uploaded;
  280. /*
  281. * Upload a QE microcode
  282. *
  283. * This function is a worker function for qe_upload_firmware(). It does
  284. * the actual uploading of the microcode.
  285. */
  286. static void qe_upload_microcode(const void *base,
  287. const struct qe_microcode *ucode)
  288. {
  289. const __be32 *code = base + be32_to_cpu(ucode->code_offset);
  290. unsigned int i;
  291. if (ucode->major || ucode->minor || ucode->revision)
  292. printk(KERN_INFO "qe-firmware: "
  293. "uploading microcode '%s' version %u.%u.%u\n",
  294. ucode->id, ucode->major, ucode->minor, ucode->revision);
  295. else
  296. printk(KERN_INFO "qe-firmware: "
  297. "uploading microcode '%s'\n", ucode->id);
  298. /* Use auto-increment */
  299. out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) |
  300. QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR);
  301. for (i = 0; i < be32_to_cpu(ucode->count); i++)
  302. out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i]));
  303. }
  304. /*
  305. * Upload a microcode to the I-RAM at a specific address.
  306. *
  307. * See Documentation/powerpc/qe-firmware.txt for information on QE microcode
  308. * uploading.
  309. *
  310. * Currently, only version 1 is supported, so the 'version' field must be
  311. * set to 1.
  312. *
  313. * The SOC model and revision are not validated, they are only displayed for
  314. * informational purposes.
  315. *
  316. * 'calc_size' is the calculated size, in bytes, of the firmware structure and
  317. * all of the microcode structures, minus the CRC.
  318. *
  319. * 'length' is the size that the structure says it is, including the CRC.
  320. */
  321. int qe_upload_firmware(const struct qe_firmware *firmware)
  322. {
  323. unsigned int i;
  324. unsigned int j;
  325. u32 crc;
  326. size_t calc_size = sizeof(struct qe_firmware);
  327. size_t length;
  328. const struct qe_header *hdr;
  329. if (!firmware) {
  330. printk(KERN_ERR "qe-firmware: invalid pointer\n");
  331. return -EINVAL;
  332. }
  333. hdr = &firmware->header;
  334. length = be32_to_cpu(hdr->length);
  335. /* Check the magic */
  336. if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
  337. (hdr->magic[2] != 'F')) {
  338. printk(KERN_ERR "qe-firmware: not a microcode\n");
  339. return -EPERM;
  340. }
  341. /* Check the version */
  342. if (hdr->version != 1) {
  343. printk(KERN_ERR "qe-firmware: unsupported version\n");
  344. return -EPERM;
  345. }
  346. /* Validate some of the fields */
  347. if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) {
  348. printk(KERN_ERR "qe-firmware: invalid data\n");
  349. return -EINVAL;
  350. }
  351. /* Validate the length and check if there's a CRC */
  352. calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
  353. for (i = 0; i < firmware->count; i++)
  354. /*
  355. * For situations where the second RISC uses the same microcode
  356. * as the first, the 'code_offset' and 'count' fields will be
  357. * zero, so it's okay to add those.
  358. */
  359. calc_size += sizeof(__be32) *
  360. be32_to_cpu(firmware->microcode[i].count);
  361. /* Validate the length */
  362. if (length != calc_size + sizeof(__be32)) {
  363. printk(KERN_ERR "qe-firmware: invalid length\n");
  364. return -EPERM;
  365. }
  366. /* Validate the CRC */
  367. crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size));
  368. if (crc != crc32(0, firmware, calc_size)) {
  369. printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n");
  370. return -EIO;
  371. }
  372. /*
  373. * If the microcode calls for it, split the I-RAM.
  374. */
  375. if (!firmware->split)
  376. setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR);
  377. if (firmware->soc.model)
  378. printk(KERN_INFO
  379. "qe-firmware: firmware '%s' for %u V%u.%u\n",
  380. firmware->id, be16_to_cpu(firmware->soc.model),
  381. firmware->soc.major, firmware->soc.minor);
  382. else
  383. printk(KERN_INFO "qe-firmware: firmware '%s'\n",
  384. firmware->id);
  385. /*
  386. * The QE only supports one microcode per RISC, so clear out all the
  387. * saved microcode information and put in the new.
  388. */
  389. memset(&qe_firmware_info, 0, sizeof(qe_firmware_info));
  390. strcpy(qe_firmware_info.id, firmware->id);
  391. qe_firmware_info.extended_modes = firmware->extended_modes;
  392. memcpy(qe_firmware_info.vtraps, firmware->vtraps,
  393. sizeof(firmware->vtraps));
  394. /* Loop through each microcode. */
  395. for (i = 0; i < firmware->count; i++) {
  396. const struct qe_microcode *ucode = &firmware->microcode[i];
  397. /* Upload a microcode if it's present */
  398. if (ucode->code_offset)
  399. qe_upload_microcode(firmware, ucode);
  400. /* Program the traps for this processor */
  401. for (j = 0; j < 16; j++) {
  402. u32 trap = be32_to_cpu(ucode->traps[j]);
  403. if (trap)
  404. out_be32(&qe_immr->rsp[i].tibcr[j], trap);
  405. }
  406. /* Enable traps */
  407. out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr));
  408. }
  409. qe_firmware_uploaded = 1;
  410. return 0;
  411. }
  412. EXPORT_SYMBOL(qe_upload_firmware);
  413. /*
  414. * Get info on the currently-loaded firmware
  415. *
  416. * This function also checks the device tree to see if the boot loader has
  417. * uploaded a firmware already.
  418. */
  419. struct qe_firmware_info *qe_get_firmware_info(void)
  420. {
  421. static int initialized;
  422. struct property *prop;
  423. struct device_node *qe;
  424. struct device_node *fw = NULL;
  425. const char *sprop;
  426. unsigned int i;
  427. /*
  428. * If we haven't checked yet, and a driver hasn't uploaded a firmware
  429. * yet, then check the device tree for information.
  430. */
  431. if (qe_firmware_uploaded)
  432. return &qe_firmware_info;
  433. if (initialized)
  434. return NULL;
  435. initialized = 1;
  436. /*
  437. * Newer device trees have an "fsl,qe" compatible property for the QE
  438. * node, but we still need to support older device trees.
  439. */
  440. qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
  441. if (!qe) {
  442. qe = of_find_node_by_type(NULL, "qe");
  443. if (!qe)
  444. return NULL;
  445. }
  446. /* Find the 'firmware' child node */
  447. for_each_child_of_node(qe, fw) {
  448. if (strcmp(fw->name, "firmware") == 0)
  449. break;
  450. }
  451. of_node_put(qe);
  452. /* Did we find the 'firmware' node? */
  453. if (!fw)
  454. return NULL;
  455. qe_firmware_uploaded = 1;
  456. /* Copy the data into qe_firmware_info*/
  457. sprop = of_get_property(fw, "id", NULL);
  458. if (sprop)
  459. strncpy(qe_firmware_info.id, sprop,
  460. sizeof(qe_firmware_info.id) - 1);
  461. prop = of_find_property(fw, "extended-modes", NULL);
  462. if (prop && (prop->length == sizeof(u64))) {
  463. const u64 *iprop = prop->value;
  464. qe_firmware_info.extended_modes = *iprop;
  465. }
  466. prop = of_find_property(fw, "virtual-traps", NULL);
  467. if (prop && (prop->length == 32)) {
  468. const u32 *iprop = prop->value;
  469. for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++)
  470. qe_firmware_info.vtraps[i] = iprop[i];
  471. }
  472. of_node_put(fw);
  473. return &qe_firmware_info;
  474. }
  475. EXPORT_SYMBOL(qe_get_firmware_info);