ppc_mmu_32.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
  1. /*
  2. * This file contains the routines for handling the MMU on those
  3. * PowerPC implementations where the MMU substantially follows the
  4. * architecture specification. This includes the 6xx, 7xx, 7xxx,
  5. * 8260, and POWER3 implementations but excludes the 8xx and 4xx.
  6. * -- paulus
  7. *
  8. * Derived from arch/ppc/mm/init.c:
  9. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10. *
  11. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  12. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  13. * Copyright (C) 1996 Paul Mackerras
  14. *
  15. * Derived from "arch/i386/mm/init.c"
  16. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  17. *
  18. * This program is free software; you can redistribute it and/or
  19. * modify it under the terms of the GNU General Public License
  20. * as published by the Free Software Foundation; either version
  21. * 2 of the License, or (at your option) any later version.
  22. *
  23. */
  24. #include <linux/kernel.h>
  25. #include <linux/mm.h>
  26. #include <linux/init.h>
  27. #include <linux/highmem.h>
  28. #include <linux/lmb.h>
  29. #include <asm/prom.h>
  30. #include <asm/mmu.h>
  31. #include <asm/machdep.h>
  32. #include "mmu_decl.h"
  33. struct hash_pte *Hash, *Hash_end;
  34. unsigned long Hash_size, Hash_mask;
  35. unsigned long _SDR1;
  36. struct ppc_bat BATS[8][2]; /* 8 pairs of IBAT, DBAT */
  37. struct batrange { /* stores address ranges mapped by BATs */
  38. unsigned long start;
  39. unsigned long limit;
  40. phys_addr_t phys;
  41. } bat_addrs[8];
  42. /*
  43. * Return PA for this VA if it is mapped by a BAT, or 0
  44. */
  45. phys_addr_t v_mapped_by_bats(unsigned long va)
  46. {
  47. int b;
  48. for (b = 0; b < 4; ++b)
  49. if (va >= bat_addrs[b].start && va < bat_addrs[b].limit)
  50. return bat_addrs[b].phys + (va - bat_addrs[b].start);
  51. return 0;
  52. }
  53. /*
  54. * Return VA for a given PA or 0 if not mapped
  55. */
  56. unsigned long p_mapped_by_bats(phys_addr_t pa)
  57. {
  58. int b;
  59. for (b = 0; b < 4; ++b)
  60. if (pa >= bat_addrs[b].phys
  61. && pa < (bat_addrs[b].limit-bat_addrs[b].start)
  62. +bat_addrs[b].phys)
  63. return bat_addrs[b].start+(pa-bat_addrs[b].phys);
  64. return 0;
  65. }
  66. unsigned long __init mmu_mapin_ram(void)
  67. {
  68. #ifdef CONFIG_POWER4
  69. return 0;
  70. #else
  71. unsigned long tot, bl, done;
  72. unsigned long max_size = (256<<20);
  73. if (__map_without_bats) {
  74. printk(KERN_DEBUG "RAM mapped without BATs\n");
  75. return 0;
  76. }
  77. /* Set up BAT2 and if necessary BAT3 to cover RAM. */
  78. /* Make sure we don't map a block larger than the
  79. smallest alignment of the physical address. */
  80. tot = total_lowmem;
  81. for (bl = 128<<10; bl < max_size; bl <<= 1) {
  82. if (bl * 2 > tot)
  83. break;
  84. }
  85. setbat(2, KERNELBASE, 0, bl, _PAGE_RAM);
  86. done = (unsigned long)bat_addrs[2].limit - KERNELBASE + 1;
  87. if ((done < tot) && !bat_addrs[3].limit) {
  88. /* use BAT3 to cover a bit more */
  89. tot -= done;
  90. for (bl = 128<<10; bl < max_size; bl <<= 1)
  91. if (bl * 2 > tot)
  92. break;
  93. setbat(3, KERNELBASE+done, done, bl, _PAGE_RAM);
  94. done = (unsigned long)bat_addrs[3].limit - KERNELBASE + 1;
  95. }
  96. return done;
  97. #endif
  98. }
  99. /*
  100. * Set up one of the I/D BAT (block address translation) register pairs.
  101. * The parameters are not checked; in particular size must be a power
  102. * of 2 between 128k and 256M.
  103. */
  104. void __init setbat(int index, unsigned long virt, phys_addr_t phys,
  105. unsigned int size, int flags)
  106. {
  107. unsigned int bl;
  108. int wimgxpp;
  109. struct ppc_bat *bat = BATS[index];
  110. if (((flags & _PAGE_NO_CACHE) == 0) &&
  111. cpu_has_feature(CPU_FTR_NEED_COHERENT))
  112. flags |= _PAGE_COHERENT;
  113. bl = (size >> 17) - 1;
  114. if (PVR_VER(mfspr(SPRN_PVR)) != 1) {
  115. /* 603, 604, etc. */
  116. /* Do DBAT first */
  117. wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE
  118. | _PAGE_COHERENT | _PAGE_GUARDED);
  119. wimgxpp |= (flags & _PAGE_RW)? BPP_RW: BPP_RX;
  120. bat[1].batu = virt | (bl << 2) | 2; /* Vs=1, Vp=0 */
  121. bat[1].batl = BAT_PHYS_ADDR(phys) | wimgxpp;
  122. #ifndef CONFIG_KGDB /* want user access for breakpoints */
  123. if (flags & _PAGE_USER)
  124. #endif
  125. bat[1].batu |= 1; /* Vp = 1 */
  126. if (flags & _PAGE_GUARDED) {
  127. /* G bit must be zero in IBATs */
  128. bat[0].batu = bat[0].batl = 0;
  129. } else {
  130. /* make IBAT same as DBAT */
  131. bat[0] = bat[1];
  132. }
  133. } else {
  134. /* 601 cpu */
  135. if (bl > BL_8M)
  136. bl = BL_8M;
  137. wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE
  138. | _PAGE_COHERENT);
  139. wimgxpp |= (flags & _PAGE_RW)?
  140. ((flags & _PAGE_USER)? PP_RWRW: PP_RWXX): PP_RXRX;
  141. bat->batu = virt | wimgxpp | 4; /* Ks=0, Ku=1 */
  142. bat->batl = phys | bl | 0x40; /* V=1 */
  143. }
  144. bat_addrs[index].start = virt;
  145. bat_addrs[index].limit = virt + ((bl + 1) << 17) - 1;
  146. bat_addrs[index].phys = phys;
  147. }
  148. /*
  149. * Preload a translation in the hash table
  150. */
  151. void hash_preload(struct mm_struct *mm, unsigned long ea,
  152. unsigned long access, unsigned long trap)
  153. {
  154. pmd_t *pmd;
  155. if (Hash == 0)
  156. return;
  157. pmd = pmd_offset(pud_offset(pgd_offset(mm, ea), ea), ea);
  158. if (!pmd_none(*pmd))
  159. add_hash_page(mm->context.id, ea, pmd_val(*pmd));
  160. }
  161. /*
  162. * Initialize the hash table and patch the instructions in hashtable.S.
  163. */
  164. void __init MMU_init_hw(void)
  165. {
  166. unsigned int hmask, mb, mb2;
  167. unsigned int n_hpteg, lg_n_hpteg;
  168. extern unsigned int hash_page_patch_A[];
  169. extern unsigned int hash_page_patch_B[], hash_page_patch_C[];
  170. extern unsigned int hash_page[];
  171. extern unsigned int flush_hash_patch_A[], flush_hash_patch_B[];
  172. if (!cpu_has_feature(CPU_FTR_HPTE_TABLE)) {
  173. /*
  174. * Put a blr (procedure return) instruction at the
  175. * start of hash_page, since we can still get DSI
  176. * exceptions on a 603.
  177. */
  178. hash_page[0] = 0x4e800020;
  179. flush_icache_range((unsigned long) &hash_page[0],
  180. (unsigned long) &hash_page[1]);
  181. return;
  182. }
  183. if ( ppc_md.progress ) ppc_md.progress("hash:enter", 0x105);
  184. #define LG_HPTEG_SIZE 6 /* 64 bytes per HPTEG */
  185. #define SDR1_LOW_BITS ((n_hpteg - 1) >> 10)
  186. #define MIN_N_HPTEG 1024 /* min 64kB hash table */
  187. /*
  188. * Allow 1 HPTE (1/8 HPTEG) for each page of memory.
  189. * This is less than the recommended amount, but then
  190. * Linux ain't AIX.
  191. */
  192. n_hpteg = total_memory / (PAGE_SIZE * 8);
  193. if (n_hpteg < MIN_N_HPTEG)
  194. n_hpteg = MIN_N_HPTEG;
  195. lg_n_hpteg = __ilog2(n_hpteg);
  196. if (n_hpteg & (n_hpteg - 1)) {
  197. ++lg_n_hpteg; /* round up if not power of 2 */
  198. n_hpteg = 1 << lg_n_hpteg;
  199. }
  200. Hash_size = n_hpteg << LG_HPTEG_SIZE;
  201. /*
  202. * Find some memory for the hash table.
  203. */
  204. if ( ppc_md.progress ) ppc_md.progress("hash:find piece", 0x322);
  205. Hash = __va(lmb_alloc_base(Hash_size, Hash_size,
  206. __initial_memory_limit_addr));
  207. cacheable_memzero(Hash, Hash_size);
  208. _SDR1 = __pa(Hash) | SDR1_LOW_BITS;
  209. Hash_end = (struct hash_pte *) ((unsigned long)Hash + Hash_size);
  210. printk("Total memory = %lldMB; using %ldkB for hash table (at %p)\n",
  211. (unsigned long long)(total_memory >> 20), Hash_size >> 10, Hash);
  212. /*
  213. * Patch up the instructions in hashtable.S:create_hpte
  214. */
  215. if ( ppc_md.progress ) ppc_md.progress("hash:patch", 0x345);
  216. Hash_mask = n_hpteg - 1;
  217. hmask = Hash_mask >> (16 - LG_HPTEG_SIZE);
  218. mb2 = mb = 32 - LG_HPTEG_SIZE - lg_n_hpteg;
  219. if (lg_n_hpteg > 16)
  220. mb2 = 16 - LG_HPTEG_SIZE;
  221. hash_page_patch_A[0] = (hash_page_patch_A[0] & ~0xffff)
  222. | ((unsigned int)(Hash) >> 16);
  223. hash_page_patch_A[1] = (hash_page_patch_A[1] & ~0x7c0) | (mb << 6);
  224. hash_page_patch_A[2] = (hash_page_patch_A[2] & ~0x7c0) | (mb2 << 6);
  225. hash_page_patch_B[0] = (hash_page_patch_B[0] & ~0xffff) | hmask;
  226. hash_page_patch_C[0] = (hash_page_patch_C[0] & ~0xffff) | hmask;
  227. /*
  228. * Ensure that the locations we've patched have been written
  229. * out from the data cache and invalidated in the instruction
  230. * cache, on those machines with split caches.
  231. */
  232. flush_icache_range((unsigned long) &hash_page_patch_A[0],
  233. (unsigned long) &hash_page_patch_C[1]);
  234. /*
  235. * Patch up the instructions in hashtable.S:flush_hash_page
  236. */
  237. flush_hash_patch_A[0] = (flush_hash_patch_A[0] & ~0xffff)
  238. | ((unsigned int)(Hash) >> 16);
  239. flush_hash_patch_A[1] = (flush_hash_patch_A[1] & ~0x7c0) | (mb << 6);
  240. flush_hash_patch_A[2] = (flush_hash_patch_A[2] & ~0x7c0) | (mb2 << 6);
  241. flush_hash_patch_B[0] = (flush_hash_patch_B[0] & ~0xffff) | hmask;
  242. flush_icache_range((unsigned long) &flush_hash_patch_A[0],
  243. (unsigned long) &flush_hash_patch_B[1]);
  244. if ( ppc_md.progress ) ppc_md.progress("hash:done", 0x205);
  245. }