time.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266
  1. /*
  2. * linux/arch/parisc/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6. * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7. *
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. */
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/param.h>
  18. #include <linux/string.h>
  19. #include <linux/mm.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/smp.h>
  24. #include <linux/profile.h>
  25. #include <linux/clocksource.h>
  26. #include <linux/platform_device.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <asm/param.h>
  31. #include <asm/pdc.h>
  32. #include <asm/led.h>
  33. #include <linux/timex.h>
  34. static unsigned long clocktick __read_mostly; /* timer cycles per tick */
  35. /*
  36. * We keep time on PA-RISC Linux by using the Interval Timer which is
  37. * a pair of registers; one is read-only and one is write-only; both
  38. * accessed through CR16. The read-only register is 32 or 64 bits wide,
  39. * and increments by 1 every CPU clock tick. The architecture only
  40. * guarantees us a rate between 0.5 and 2, but all implementations use a
  41. * rate of 1. The write-only register is 32-bits wide. When the lowest
  42. * 32 bits of the read-only register compare equal to the write-only
  43. * register, it raises a maskable external interrupt. Each processor has
  44. * an Interval Timer of its own and they are not synchronised.
  45. *
  46. * We want to generate an interrupt every 1/HZ seconds. So we program
  47. * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
  48. * is programmed with the intended time of the next tick. We can be
  49. * held off for an arbitrarily long period of time by interrupts being
  50. * disabled, so we may miss one or more ticks.
  51. */
  52. irqreturn_t timer_interrupt(int irq, void *dev_id)
  53. {
  54. unsigned long now;
  55. unsigned long next_tick;
  56. unsigned long cycles_elapsed, ticks_elapsed;
  57. unsigned long cycles_remainder;
  58. unsigned int cpu = smp_processor_id();
  59. struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu];
  60. /* gcc can optimize for "read-only" case with a local clocktick */
  61. unsigned long cpt = clocktick;
  62. profile_tick(CPU_PROFILING);
  63. /* Initialize next_tick to the expected tick time. */
  64. next_tick = cpuinfo->it_value;
  65. /* Get current interval timer.
  66. * CR16 reads as 64 bits in CPU wide mode.
  67. * CR16 reads as 32 bits in CPU narrow mode.
  68. */
  69. now = mfctl(16);
  70. cycles_elapsed = now - next_tick;
  71. if ((cycles_elapsed >> 5) < cpt) {
  72. /* use "cheap" math (add/subtract) instead
  73. * of the more expensive div/mul method
  74. */
  75. cycles_remainder = cycles_elapsed;
  76. ticks_elapsed = 1;
  77. while (cycles_remainder > cpt) {
  78. cycles_remainder -= cpt;
  79. ticks_elapsed++;
  80. }
  81. } else {
  82. cycles_remainder = cycles_elapsed % cpt;
  83. ticks_elapsed = 1 + cycles_elapsed / cpt;
  84. }
  85. /* Can we differentiate between "early CR16" (aka Scenario 1) and
  86. * "long delay" (aka Scenario 3)? I don't think so.
  87. *
  88. * We expected timer_interrupt to be delivered at least a few hundred
  89. * cycles after the IT fires. But it's arbitrary how much time passes
  90. * before we call it "late". I've picked one second.
  91. */
  92. if (unlikely(ticks_elapsed > HZ)) {
  93. /* Scenario 3: very long delay? bad in any case */
  94. printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
  95. " cycles %lX rem %lX "
  96. " next/now %lX/%lX\n",
  97. cpu,
  98. cycles_elapsed, cycles_remainder,
  99. next_tick, now );
  100. }
  101. /* convert from "division remainder" to "remainder of clock tick" */
  102. cycles_remainder = cpt - cycles_remainder;
  103. /* Determine when (in CR16 cycles) next IT interrupt will fire.
  104. * We want IT to fire modulo clocktick even if we miss/skip some.
  105. * But those interrupts don't in fact get delivered that regularly.
  106. */
  107. next_tick = now + cycles_remainder;
  108. cpuinfo->it_value = next_tick;
  109. /* Skip one clocktick on purpose if we are likely to miss next_tick.
  110. * We want to avoid the new next_tick being less than CR16.
  111. * If that happened, itimer wouldn't fire until CR16 wrapped.
  112. * We'll catch the tick we missed on the tick after that.
  113. */
  114. if (!(cycles_remainder >> 13))
  115. next_tick += cpt;
  116. /* Program the IT when to deliver the next interrupt. */
  117. /* Only bottom 32-bits of next_tick are written to cr16. */
  118. mtctl(next_tick, 16);
  119. /* Done mucking with unreliable delivery of interrupts.
  120. * Go do system house keeping.
  121. */
  122. if (!--cpuinfo->prof_counter) {
  123. cpuinfo->prof_counter = cpuinfo->prof_multiplier;
  124. update_process_times(user_mode(get_irq_regs()));
  125. }
  126. if (cpu == 0) {
  127. write_seqlock(&xtime_lock);
  128. do_timer(ticks_elapsed);
  129. write_sequnlock(&xtime_lock);
  130. }
  131. return IRQ_HANDLED;
  132. }
  133. unsigned long profile_pc(struct pt_regs *regs)
  134. {
  135. unsigned long pc = instruction_pointer(regs);
  136. if (regs->gr[0] & PSW_N)
  137. pc -= 4;
  138. #ifdef CONFIG_SMP
  139. if (in_lock_functions(pc))
  140. pc = regs->gr[2];
  141. #endif
  142. return pc;
  143. }
  144. EXPORT_SYMBOL(profile_pc);
  145. /* clock source code */
  146. static cycle_t read_cr16(void)
  147. {
  148. return get_cycles();
  149. }
  150. static struct clocksource clocksource_cr16 = {
  151. .name = "cr16",
  152. .rating = 300,
  153. .read = read_cr16,
  154. .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
  155. .mult = 0, /* to be set */
  156. .shift = 22,
  157. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  158. };
  159. #ifdef CONFIG_SMP
  160. int update_cr16_clocksource(void)
  161. {
  162. /* since the cr16 cycle counters are not synchronized across CPUs,
  163. we'll check if we should switch to a safe clocksource: */
  164. if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
  165. clocksource_change_rating(&clocksource_cr16, 0);
  166. return 1;
  167. }
  168. return 0;
  169. }
  170. #else
  171. int update_cr16_clocksource(void)
  172. {
  173. return 0; /* no change */
  174. }
  175. #endif /*CONFIG_SMP*/
  176. void __init start_cpu_itimer(void)
  177. {
  178. unsigned int cpu = smp_processor_id();
  179. unsigned long next_tick = mfctl(16) + clocktick;
  180. mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
  181. cpu_data[cpu].it_value = next_tick;
  182. }
  183. struct platform_device rtc_parisc_dev = {
  184. .name = "rtc-parisc",
  185. .id = -1,
  186. };
  187. static int __init rtc_init(void)
  188. {
  189. int ret;
  190. ret = platform_device_register(&rtc_parisc_dev);
  191. if (ret < 0)
  192. printk(KERN_ERR "unable to register rtc device...\n");
  193. /* not necessarily an error */
  194. return 0;
  195. }
  196. module_init(rtc_init);
  197. void __init time_init(void)
  198. {
  199. static struct pdc_tod tod_data;
  200. unsigned long current_cr16_khz;
  201. clocktick = (100 * PAGE0->mem_10msec) / HZ;
  202. start_cpu_itimer(); /* get CPU 0 started */
  203. /* register at clocksource framework */
  204. current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
  205. clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
  206. clocksource_cr16.shift);
  207. clocksource_register(&clocksource_cr16);
  208. if (pdc_tod_read(&tod_data) == 0) {
  209. unsigned long flags;
  210. write_seqlock_irqsave(&xtime_lock, flags);
  211. xtime.tv_sec = tod_data.tod_sec;
  212. xtime.tv_nsec = tod_data.tod_usec * 1000;
  213. set_normalized_timespec(&wall_to_monotonic,
  214. -xtime.tv_sec, -xtime.tv_nsec);
  215. write_sequnlock_irqrestore(&xtime_lock, flags);
  216. } else {
  217. printk(KERN_ERR "Error reading tod clock\n");
  218. xtime.tv_sec = 0;
  219. xtime.tv_nsec = 0;
  220. }
  221. }