sys_ia32.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818
  1. /*
  2. * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c.
  3. *
  4. * Copyright (C) 2000 VA Linux Co
  5. * Copyright (C) 2000 Don Dugger <n0ano@valinux.com>
  6. * Copyright (C) 1999 Arun Sharma <arun.sharma@intel.com>
  7. * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  8. * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
  9. * Copyright (C) 2000-2003, 2005 Hewlett-Packard Co
  10. * David Mosberger-Tang <davidm@hpl.hp.com>
  11. * Copyright (C) 2004 Gordon Jin <gordon.jin@intel.com>
  12. *
  13. * These routines maintain argument size conversion between 32bit and 64bit
  14. * environment.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/syscalls.h>
  18. #include <linux/sysctl.h>
  19. #include <linux/sched.h>
  20. #include <linux/fs.h>
  21. #include <linux/file.h>
  22. #include <linux/signal.h>
  23. #include <linux/resource.h>
  24. #include <linux/times.h>
  25. #include <linux/utsname.h>
  26. #include <linux/smp.h>
  27. #include <linux/smp_lock.h>
  28. #include <linux/sem.h>
  29. #include <linux/msg.h>
  30. #include <linux/mm.h>
  31. #include <linux/shm.h>
  32. #include <linux/slab.h>
  33. #include <linux/uio.h>
  34. #include <linux/socket.h>
  35. #include <linux/quota.h>
  36. #include <linux/poll.h>
  37. #include <linux/eventpoll.h>
  38. #include <linux/personality.h>
  39. #include <linux/ptrace.h>
  40. #include <linux/regset.h>
  41. #include <linux/stat.h>
  42. #include <linux/ipc.h>
  43. #include <linux/capability.h>
  44. #include <linux/compat.h>
  45. #include <linux/vfs.h>
  46. #include <linux/mman.h>
  47. #include <linux/mutex.h>
  48. #include <asm/intrinsics.h>
  49. #include <asm/types.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/unistd.h>
  52. #include "ia32priv.h"
  53. #include <net/scm.h>
  54. #include <net/sock.h>
  55. #define DEBUG 0
  56. #if DEBUG
  57. # define DBG(fmt...) printk(KERN_DEBUG fmt)
  58. #else
  59. # define DBG(fmt...)
  60. #endif
  61. #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1)))
  62. #define OFFSET4K(a) ((a) & 0xfff)
  63. #define PAGE_START(addr) ((addr) & PAGE_MASK)
  64. #define MINSIGSTKSZ_IA32 2048
  65. #define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid))
  66. #define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid))
  67. /*
  68. * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore
  69. * while doing so.
  70. */
  71. /* XXX make per-mm: */
  72. static DEFINE_MUTEX(ia32_mmap_mutex);
  73. asmlinkage long
  74. sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp,
  75. struct pt_regs *regs)
  76. {
  77. long error;
  78. char *filename;
  79. unsigned long old_map_base, old_task_size, tssd;
  80. filename = getname(name);
  81. error = PTR_ERR(filename);
  82. if (IS_ERR(filename))
  83. return error;
  84. old_map_base = current->thread.map_base;
  85. old_task_size = current->thread.task_size;
  86. tssd = ia64_get_kr(IA64_KR_TSSD);
  87. /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */
  88. current->thread.map_base = DEFAULT_MAP_BASE;
  89. current->thread.task_size = DEFAULT_TASK_SIZE;
  90. ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
  91. ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
  92. error = compat_do_execve(filename, argv, envp, regs);
  93. putname(filename);
  94. if (error < 0) {
  95. /* oops, execve failed, switch back to old values... */
  96. ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE);
  97. ia64_set_kr(IA64_KR_TSSD, tssd);
  98. current->thread.map_base = old_map_base;
  99. current->thread.task_size = old_task_size;
  100. }
  101. return error;
  102. }
  103. #if PAGE_SHIFT > IA32_PAGE_SHIFT
  104. static int
  105. get_page_prot (struct vm_area_struct *vma, unsigned long addr)
  106. {
  107. int prot = 0;
  108. if (!vma || vma->vm_start > addr)
  109. return 0;
  110. if (vma->vm_flags & VM_READ)
  111. prot |= PROT_READ;
  112. if (vma->vm_flags & VM_WRITE)
  113. prot |= PROT_WRITE;
  114. if (vma->vm_flags & VM_EXEC)
  115. prot |= PROT_EXEC;
  116. return prot;
  117. }
  118. /*
  119. * Map a subpage by creating an anonymous page that contains the union of the old page and
  120. * the subpage.
  121. */
  122. static unsigned long
  123. mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags,
  124. loff_t off)
  125. {
  126. void *page = NULL;
  127. struct inode *inode;
  128. unsigned long ret = 0;
  129. struct vm_area_struct *vma = find_vma(current->mm, start);
  130. int old_prot = get_page_prot(vma, start);
  131. DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n",
  132. file, start, end, prot, flags, off);
  133. /* Optimize the case where the old mmap and the new mmap are both anonymous */
  134. if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) {
  135. if (clear_user((void __user *) start, end - start)) {
  136. ret = -EFAULT;
  137. goto out;
  138. }
  139. goto skip_mmap;
  140. }
  141. page = (void *) get_zeroed_page(GFP_KERNEL);
  142. if (!page)
  143. return -ENOMEM;
  144. if (old_prot)
  145. copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE);
  146. down_write(&current->mm->mmap_sem);
  147. {
  148. ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE,
  149. flags | MAP_FIXED | MAP_ANONYMOUS, 0);
  150. }
  151. up_write(&current->mm->mmap_sem);
  152. if (IS_ERR((void *) ret))
  153. goto out;
  154. if (old_prot) {
  155. /* copy back the old page contents. */
  156. if (offset_in_page(start))
  157. copy_to_user((void __user *) PAGE_START(start), page,
  158. offset_in_page(start));
  159. if (offset_in_page(end))
  160. copy_to_user((void __user *) end, page + offset_in_page(end),
  161. PAGE_SIZE - offset_in_page(end));
  162. }
  163. if (!(flags & MAP_ANONYMOUS)) {
  164. /* read the file contents */
  165. inode = file->f_path.dentry->d_inode;
  166. if (!inode->i_fop || !file->f_op->read
  167. || ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0))
  168. {
  169. ret = -EINVAL;
  170. goto out;
  171. }
  172. }
  173. skip_mmap:
  174. if (!(prot & PROT_WRITE))
  175. ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot);
  176. out:
  177. if (page)
  178. free_page((unsigned long) page);
  179. return ret;
  180. }
  181. /* SLAB cache for ia64_partial_page structures */
  182. struct kmem_cache *ia64_partial_page_cachep;
  183. /*
  184. * init ia64_partial_page_list.
  185. * return 0 means kmalloc fail.
  186. */
  187. struct ia64_partial_page_list*
  188. ia32_init_pp_list(void)
  189. {
  190. struct ia64_partial_page_list *p;
  191. if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL)
  192. return p;
  193. p->pp_head = NULL;
  194. p->ppl_rb = RB_ROOT;
  195. p->pp_hint = NULL;
  196. atomic_set(&p->pp_count, 1);
  197. return p;
  198. }
  199. /*
  200. * Search for the partial page with @start in partial page list @ppl.
  201. * If finds the partial page, return the found partial page.
  202. * Else, return 0 and provide @pprev, @rb_link, @rb_parent to
  203. * be used by later __ia32_insert_pp().
  204. */
  205. static struct ia64_partial_page *
  206. __ia32_find_pp(struct ia64_partial_page_list *ppl, unsigned int start,
  207. struct ia64_partial_page **pprev, struct rb_node ***rb_link,
  208. struct rb_node **rb_parent)
  209. {
  210. struct ia64_partial_page *pp;
  211. struct rb_node **__rb_link, *__rb_parent, *rb_prev;
  212. pp = ppl->pp_hint;
  213. if (pp && pp->base == start)
  214. return pp;
  215. __rb_link = &ppl->ppl_rb.rb_node;
  216. rb_prev = __rb_parent = NULL;
  217. while (*__rb_link) {
  218. __rb_parent = *__rb_link;
  219. pp = rb_entry(__rb_parent, struct ia64_partial_page, pp_rb);
  220. if (pp->base == start) {
  221. ppl->pp_hint = pp;
  222. return pp;
  223. } else if (pp->base < start) {
  224. rb_prev = __rb_parent;
  225. __rb_link = &__rb_parent->rb_right;
  226. } else {
  227. __rb_link = &__rb_parent->rb_left;
  228. }
  229. }
  230. *rb_link = __rb_link;
  231. *rb_parent = __rb_parent;
  232. *pprev = NULL;
  233. if (rb_prev)
  234. *pprev = rb_entry(rb_prev, struct ia64_partial_page, pp_rb);
  235. return NULL;
  236. }
  237. /*
  238. * insert @pp into @ppl.
  239. */
  240. static void
  241. __ia32_insert_pp(struct ia64_partial_page_list *ppl,
  242. struct ia64_partial_page *pp, struct ia64_partial_page *prev,
  243. struct rb_node **rb_link, struct rb_node *rb_parent)
  244. {
  245. /* link list */
  246. if (prev) {
  247. pp->next = prev->next;
  248. prev->next = pp;
  249. } else {
  250. ppl->pp_head = pp;
  251. if (rb_parent)
  252. pp->next = rb_entry(rb_parent,
  253. struct ia64_partial_page, pp_rb);
  254. else
  255. pp->next = NULL;
  256. }
  257. /* link rb */
  258. rb_link_node(&pp->pp_rb, rb_parent, rb_link);
  259. rb_insert_color(&pp->pp_rb, &ppl->ppl_rb);
  260. ppl->pp_hint = pp;
  261. }
  262. /*
  263. * delete @pp from partial page list @ppl.
  264. */
  265. static void
  266. __ia32_delete_pp(struct ia64_partial_page_list *ppl,
  267. struct ia64_partial_page *pp, struct ia64_partial_page *prev)
  268. {
  269. if (prev) {
  270. prev->next = pp->next;
  271. if (ppl->pp_hint == pp)
  272. ppl->pp_hint = prev;
  273. } else {
  274. ppl->pp_head = pp->next;
  275. if (ppl->pp_hint == pp)
  276. ppl->pp_hint = pp->next;
  277. }
  278. rb_erase(&pp->pp_rb, &ppl->ppl_rb);
  279. kmem_cache_free(ia64_partial_page_cachep, pp);
  280. }
  281. static struct ia64_partial_page *
  282. __pp_prev(struct ia64_partial_page *pp)
  283. {
  284. struct rb_node *prev = rb_prev(&pp->pp_rb);
  285. if (prev)
  286. return rb_entry(prev, struct ia64_partial_page, pp_rb);
  287. else
  288. return NULL;
  289. }
  290. /*
  291. * Delete partial pages with address between @start and @end.
  292. * @start and @end are page aligned.
  293. */
  294. static void
  295. __ia32_delete_pp_range(unsigned int start, unsigned int end)
  296. {
  297. struct ia64_partial_page *pp, *prev;
  298. struct rb_node **rb_link, *rb_parent;
  299. if (start >= end)
  300. return;
  301. pp = __ia32_find_pp(current->thread.ppl, start, &prev,
  302. &rb_link, &rb_parent);
  303. if (pp)
  304. prev = __pp_prev(pp);
  305. else {
  306. if (prev)
  307. pp = prev->next;
  308. else
  309. pp = current->thread.ppl->pp_head;
  310. }
  311. while (pp && pp->base < end) {
  312. struct ia64_partial_page *tmp = pp->next;
  313. __ia32_delete_pp(current->thread.ppl, pp, prev);
  314. pp = tmp;
  315. }
  316. }
  317. /*
  318. * Set the range between @start and @end in bitmap.
  319. * @start and @end should be IA32 page aligned and in the same IA64 page.
  320. */
  321. static int
  322. __ia32_set_pp(unsigned int start, unsigned int end, int flags)
  323. {
  324. struct ia64_partial_page *pp, *prev;
  325. struct rb_node ** rb_link, *rb_parent;
  326. unsigned int pstart, start_bit, end_bit, i;
  327. pstart = PAGE_START(start);
  328. start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
  329. end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
  330. if (end_bit == 0)
  331. end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
  332. pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
  333. &rb_link, &rb_parent);
  334. if (pp) {
  335. for (i = start_bit; i < end_bit; i++)
  336. set_bit(i, &pp->bitmap);
  337. /*
  338. * Check: if this partial page has been set to a full page,
  339. * then delete it.
  340. */
  341. if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >=
  342. PAGE_SIZE/IA32_PAGE_SIZE) {
  343. __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
  344. }
  345. return 0;
  346. }
  347. /*
  348. * MAP_FIXED may lead to overlapping mmap.
  349. * In this case, the requested mmap area may already mmaped as a full
  350. * page. So check vma before adding a new partial page.
  351. */
  352. if (flags & MAP_FIXED) {
  353. struct vm_area_struct *vma = find_vma(current->mm, pstart);
  354. if (vma && vma->vm_start <= pstart)
  355. return 0;
  356. }
  357. /* new a ia64_partial_page */
  358. pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
  359. if (!pp)
  360. return -ENOMEM;
  361. pp->base = pstart;
  362. pp->bitmap = 0;
  363. for (i=start_bit; i<end_bit; i++)
  364. set_bit(i, &(pp->bitmap));
  365. pp->next = NULL;
  366. __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
  367. return 0;
  368. }
  369. /*
  370. * @start and @end should be IA32 page aligned, but don't need to be in the
  371. * same IA64 page. Split @start and @end to make sure they're in the same IA64
  372. * page, then call __ia32_set_pp().
  373. */
  374. static void
  375. ia32_set_pp(unsigned int start, unsigned int end, int flags)
  376. {
  377. down_write(&current->mm->mmap_sem);
  378. if (flags & MAP_FIXED) {
  379. /*
  380. * MAP_FIXED may lead to overlapping mmap. When this happens,
  381. * a series of complete IA64 pages results in deletion of
  382. * old partial pages in that range.
  383. */
  384. __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
  385. }
  386. if (end < PAGE_ALIGN(start)) {
  387. __ia32_set_pp(start, end, flags);
  388. } else {
  389. if (offset_in_page(start))
  390. __ia32_set_pp(start, PAGE_ALIGN(start), flags);
  391. if (offset_in_page(end))
  392. __ia32_set_pp(PAGE_START(end), end, flags);
  393. }
  394. up_write(&current->mm->mmap_sem);
  395. }
  396. /*
  397. * Unset the range between @start and @end in bitmap.
  398. * @start and @end should be IA32 page aligned and in the same IA64 page.
  399. * After doing that, if the bitmap is 0, then free the page and return 1,
  400. * else return 0;
  401. * If not find the partial page in the list, then
  402. * If the vma exists, then the full page is set to a partial page;
  403. * Else return -ENOMEM.
  404. */
  405. static int
  406. __ia32_unset_pp(unsigned int start, unsigned int end)
  407. {
  408. struct ia64_partial_page *pp, *prev;
  409. struct rb_node ** rb_link, *rb_parent;
  410. unsigned int pstart, start_bit, end_bit, i;
  411. struct vm_area_struct *vma;
  412. pstart = PAGE_START(start);
  413. start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
  414. end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
  415. if (end_bit == 0)
  416. end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
  417. pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
  418. &rb_link, &rb_parent);
  419. if (pp) {
  420. for (i = start_bit; i < end_bit; i++)
  421. clear_bit(i, &pp->bitmap);
  422. if (pp->bitmap == 0) {
  423. __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
  424. return 1;
  425. }
  426. return 0;
  427. }
  428. vma = find_vma(current->mm, pstart);
  429. if (!vma || vma->vm_start > pstart) {
  430. return -ENOMEM;
  431. }
  432. /* new a ia64_partial_page */
  433. pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
  434. if (!pp)
  435. return -ENOMEM;
  436. pp->base = pstart;
  437. pp->bitmap = 0;
  438. for (i = 0; i < start_bit; i++)
  439. set_bit(i, &(pp->bitmap));
  440. for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++)
  441. set_bit(i, &(pp->bitmap));
  442. pp->next = NULL;
  443. __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
  444. return 0;
  445. }
  446. /*
  447. * Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling
  448. * __ia32_delete_pp_range(). Unset possible partial pages by calling
  449. * __ia32_unset_pp().
  450. * The returned value see __ia32_unset_pp().
  451. */
  452. static int
  453. ia32_unset_pp(unsigned int *startp, unsigned int *endp)
  454. {
  455. unsigned int start = *startp, end = *endp;
  456. int ret = 0;
  457. down_write(&current->mm->mmap_sem);
  458. __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
  459. if (end < PAGE_ALIGN(start)) {
  460. ret = __ia32_unset_pp(start, end);
  461. if (ret == 1) {
  462. *startp = PAGE_START(start);
  463. *endp = PAGE_ALIGN(end);
  464. }
  465. if (ret == 0) {
  466. /* to shortcut sys_munmap() in sys32_munmap() */
  467. *startp = PAGE_START(start);
  468. *endp = PAGE_START(end);
  469. }
  470. } else {
  471. if (offset_in_page(start)) {
  472. ret = __ia32_unset_pp(start, PAGE_ALIGN(start));
  473. if (ret == 1)
  474. *startp = PAGE_START(start);
  475. if (ret == 0)
  476. *startp = PAGE_ALIGN(start);
  477. if (ret < 0)
  478. goto out;
  479. }
  480. if (offset_in_page(end)) {
  481. ret = __ia32_unset_pp(PAGE_START(end), end);
  482. if (ret == 1)
  483. *endp = PAGE_ALIGN(end);
  484. if (ret == 0)
  485. *endp = PAGE_START(end);
  486. }
  487. }
  488. out:
  489. up_write(&current->mm->mmap_sem);
  490. return ret;
  491. }
  492. /*
  493. * Compare the range between @start and @end with bitmap in partial page.
  494. * @start and @end should be IA32 page aligned and in the same IA64 page.
  495. */
  496. static int
  497. __ia32_compare_pp(unsigned int start, unsigned int end)
  498. {
  499. struct ia64_partial_page *pp, *prev;
  500. struct rb_node ** rb_link, *rb_parent;
  501. unsigned int pstart, start_bit, end_bit, size;
  502. unsigned int first_bit, next_zero_bit; /* the first range in bitmap */
  503. pstart = PAGE_START(start);
  504. pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
  505. &rb_link, &rb_parent);
  506. if (!pp)
  507. return 1;
  508. start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
  509. end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
  510. size = sizeof(pp->bitmap) * 8;
  511. first_bit = find_first_bit(&pp->bitmap, size);
  512. next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit);
  513. if ((start_bit < first_bit) || (end_bit > next_zero_bit)) {
  514. /* exceeds the first range in bitmap */
  515. return -ENOMEM;
  516. } else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) {
  517. first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit);
  518. if ((next_zero_bit < first_bit) && (first_bit < size))
  519. return 1; /* has next range */
  520. else
  521. return 0; /* no next range */
  522. } else
  523. return 1;
  524. }
  525. /*
  526. * @start and @end should be IA32 page aligned, but don't need to be in the
  527. * same IA64 page. Split @start and @end to make sure they're in the same IA64
  528. * page, then call __ia32_compare_pp().
  529. *
  530. * Take this as example: the range is the 1st and 2nd 4K page.
  531. * Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011;
  532. * Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111;
  533. * Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or
  534. * bitmap = 00000101.
  535. */
  536. static int
  537. ia32_compare_pp(unsigned int *startp, unsigned int *endp)
  538. {
  539. unsigned int start = *startp, end = *endp;
  540. int retval = 0;
  541. down_write(&current->mm->mmap_sem);
  542. if (end < PAGE_ALIGN(start)) {
  543. retval = __ia32_compare_pp(start, end);
  544. if (retval == 0) {
  545. *startp = PAGE_START(start);
  546. *endp = PAGE_ALIGN(end);
  547. }
  548. } else {
  549. if (offset_in_page(start)) {
  550. retval = __ia32_compare_pp(start,
  551. PAGE_ALIGN(start));
  552. if (retval == 0)
  553. *startp = PAGE_START(start);
  554. if (retval < 0)
  555. goto out;
  556. }
  557. if (offset_in_page(end)) {
  558. retval = __ia32_compare_pp(PAGE_START(end), end);
  559. if (retval == 0)
  560. *endp = PAGE_ALIGN(end);
  561. }
  562. }
  563. out:
  564. up_write(&current->mm->mmap_sem);
  565. return retval;
  566. }
  567. static void
  568. __ia32_drop_pp_list(struct ia64_partial_page_list *ppl)
  569. {
  570. struct ia64_partial_page *pp = ppl->pp_head;
  571. while (pp) {
  572. struct ia64_partial_page *next = pp->next;
  573. kmem_cache_free(ia64_partial_page_cachep, pp);
  574. pp = next;
  575. }
  576. kfree(ppl);
  577. }
  578. void
  579. ia32_drop_ia64_partial_page_list(struct task_struct *task)
  580. {
  581. struct ia64_partial_page_list* ppl = task->thread.ppl;
  582. if (ppl && atomic_dec_and_test(&ppl->pp_count))
  583. __ia32_drop_pp_list(ppl);
  584. }
  585. /*
  586. * Copy current->thread.ppl to ppl (already initialized).
  587. */
  588. static int
  589. __ia32_copy_pp_list(struct ia64_partial_page_list *ppl)
  590. {
  591. struct ia64_partial_page *pp, *tmp, *prev;
  592. struct rb_node **rb_link, *rb_parent;
  593. ppl->pp_head = NULL;
  594. ppl->pp_hint = NULL;
  595. ppl->ppl_rb = RB_ROOT;
  596. rb_link = &ppl->ppl_rb.rb_node;
  597. rb_parent = NULL;
  598. prev = NULL;
  599. for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) {
  600. tmp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
  601. if (!tmp)
  602. return -ENOMEM;
  603. *tmp = *pp;
  604. __ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent);
  605. prev = tmp;
  606. rb_link = &tmp->pp_rb.rb_right;
  607. rb_parent = &tmp->pp_rb;
  608. }
  609. return 0;
  610. }
  611. int
  612. ia32_copy_ia64_partial_page_list(struct task_struct *p,
  613. unsigned long clone_flags)
  614. {
  615. int retval = 0;
  616. if (clone_flags & CLONE_VM) {
  617. atomic_inc(&current->thread.ppl->pp_count);
  618. p->thread.ppl = current->thread.ppl;
  619. } else {
  620. p->thread.ppl = ia32_init_pp_list();
  621. if (!p->thread.ppl)
  622. return -ENOMEM;
  623. down_write(&current->mm->mmap_sem);
  624. {
  625. retval = __ia32_copy_pp_list(p->thread.ppl);
  626. }
  627. up_write(&current->mm->mmap_sem);
  628. }
  629. return retval;
  630. }
  631. static unsigned long
  632. emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags,
  633. loff_t off)
  634. {
  635. unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0;
  636. struct inode *inode;
  637. loff_t poff;
  638. end = start + len;
  639. pstart = PAGE_START(start);
  640. pend = PAGE_ALIGN(end);
  641. if (flags & MAP_FIXED) {
  642. ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
  643. if (start > pstart) {
  644. if (flags & MAP_SHARED)
  645. printk(KERN_INFO
  646. "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n",
  647. current->comm, task_pid_nr(current), start);
  648. ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags,
  649. off);
  650. if (IS_ERR((void *) ret))
  651. return ret;
  652. pstart += PAGE_SIZE;
  653. if (pstart >= pend)
  654. goto out; /* done */
  655. }
  656. if (end < pend) {
  657. if (flags & MAP_SHARED)
  658. printk(KERN_INFO
  659. "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n",
  660. current->comm, task_pid_nr(current), end);
  661. ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags,
  662. (off + len) - offset_in_page(end));
  663. if (IS_ERR((void *) ret))
  664. return ret;
  665. pend -= PAGE_SIZE;
  666. if (pstart >= pend)
  667. goto out; /* done */
  668. }
  669. } else {
  670. /*
  671. * If a start address was specified, use it if the entire rounded out area
  672. * is available.
  673. */
  674. if (start && !pstart)
  675. fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */
  676. tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags);
  677. if (tmp != pstart) {
  678. pstart = tmp;
  679. start = pstart + offset_in_page(off); /* make start congruent with off */
  680. end = start + len;
  681. pend = PAGE_ALIGN(end);
  682. }
  683. }
  684. poff = off + (pstart - start); /* note: (pstart - start) may be negative */
  685. is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0);
  686. if ((flags & MAP_SHARED) && !is_congruent)
  687. printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap "
  688. "(addr=0x%lx,off=0x%llx)\n", current->comm, task_pid_nr(current), start, off);
  689. DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend,
  690. is_congruent ? "congruent" : "not congruent", poff);
  691. down_write(&current->mm->mmap_sem);
  692. {
  693. if (!(flags & MAP_ANONYMOUS) && is_congruent)
  694. ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff);
  695. else
  696. ret = do_mmap(NULL, pstart, pend - pstart,
  697. prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE),
  698. flags | MAP_FIXED | MAP_ANONYMOUS, 0);
  699. }
  700. up_write(&current->mm->mmap_sem);
  701. if (IS_ERR((void *) ret))
  702. return ret;
  703. if (!is_congruent) {
  704. /* read the file contents */
  705. inode = file->f_path.dentry->d_inode;
  706. if (!inode->i_fop || !file->f_op->read
  707. || ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff)
  708. < 0))
  709. {
  710. sys_munmap(pstart, pend - pstart);
  711. return -EINVAL;
  712. }
  713. if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0)
  714. return -EINVAL;
  715. }
  716. if (!(flags & MAP_FIXED))
  717. ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
  718. out:
  719. return start;
  720. }
  721. #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
  722. static inline unsigned int
  723. get_prot32 (unsigned int prot)
  724. {
  725. if (prot & PROT_WRITE)
  726. /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */
  727. prot |= PROT_READ | PROT_WRITE | PROT_EXEC;
  728. else if (prot & (PROT_READ | PROT_EXEC))
  729. /* on x86, there is no distinction between PROT_READ and PROT_EXEC */
  730. prot |= (PROT_READ | PROT_EXEC);
  731. return prot;
  732. }
  733. unsigned long
  734. ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags,
  735. loff_t offset)
  736. {
  737. DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n",
  738. file, addr, len, prot, flags, offset);
  739. if (file && (!file->f_op || !file->f_op->mmap))
  740. return -ENODEV;
  741. len = IA32_PAGE_ALIGN(len);
  742. if (len == 0)
  743. return addr;
  744. if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len)
  745. {
  746. if (flags & MAP_FIXED)
  747. return -ENOMEM;
  748. else
  749. return -EINVAL;
  750. }
  751. if (OFFSET4K(offset))
  752. return -EINVAL;
  753. prot = get_prot32(prot);
  754. #if PAGE_SHIFT > IA32_PAGE_SHIFT
  755. mutex_lock(&ia32_mmap_mutex);
  756. {
  757. addr = emulate_mmap(file, addr, len, prot, flags, offset);
  758. }
  759. mutex_unlock(&ia32_mmap_mutex);
  760. #else
  761. down_write(&current->mm->mmap_sem);
  762. {
  763. addr = do_mmap(file, addr, len, prot, flags, offset);
  764. }
  765. up_write(&current->mm->mmap_sem);
  766. #endif
  767. DBG("ia32_do_mmap: returning 0x%lx\n", addr);
  768. return addr;
  769. }
  770. /*
  771. * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these
  772. * system calls used a memory block for parameter passing..
  773. */
  774. struct mmap_arg_struct {
  775. unsigned int addr;
  776. unsigned int len;
  777. unsigned int prot;
  778. unsigned int flags;
  779. unsigned int fd;
  780. unsigned int offset;
  781. };
  782. asmlinkage long
  783. sys32_mmap (struct mmap_arg_struct __user *arg)
  784. {
  785. struct mmap_arg_struct a;
  786. struct file *file = NULL;
  787. unsigned long addr;
  788. int flags;
  789. if (copy_from_user(&a, arg, sizeof(a)))
  790. return -EFAULT;
  791. if (OFFSET4K(a.offset))
  792. return -EINVAL;
  793. flags = a.flags;
  794. flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
  795. if (!(flags & MAP_ANONYMOUS)) {
  796. file = fget(a.fd);
  797. if (!file)
  798. return -EBADF;
  799. }
  800. addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset);
  801. if (file)
  802. fput(file);
  803. return addr;
  804. }
  805. asmlinkage long
  806. sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags,
  807. unsigned int fd, unsigned int pgoff)
  808. {
  809. struct file *file = NULL;
  810. unsigned long retval;
  811. flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
  812. if (!(flags & MAP_ANONYMOUS)) {
  813. file = fget(fd);
  814. if (!file)
  815. return -EBADF;
  816. }
  817. retval = ia32_do_mmap(file, addr, len, prot, flags,
  818. (unsigned long) pgoff << IA32_PAGE_SHIFT);
  819. if (file)
  820. fput(file);
  821. return retval;
  822. }
  823. asmlinkage long
  824. sys32_munmap (unsigned int start, unsigned int len)
  825. {
  826. unsigned int end = start + len;
  827. long ret;
  828. #if PAGE_SHIFT <= IA32_PAGE_SHIFT
  829. ret = sys_munmap(start, end - start);
  830. #else
  831. if (OFFSET4K(start))
  832. return -EINVAL;
  833. end = IA32_PAGE_ALIGN(end);
  834. if (start >= end)
  835. return -EINVAL;
  836. ret = ia32_unset_pp(&start, &end);
  837. if (ret < 0)
  838. return ret;
  839. if (start >= end)
  840. return 0;
  841. mutex_lock(&ia32_mmap_mutex);
  842. ret = sys_munmap(start, end - start);
  843. mutex_unlock(&ia32_mmap_mutex);
  844. #endif
  845. return ret;
  846. }
  847. #if PAGE_SHIFT > IA32_PAGE_SHIFT
  848. /*
  849. * When mprotect()ing a partial page, we set the permission to the union of the old
  850. * settings and the new settings. In other words, it's only possible to make access to a
  851. * partial page less restrictive.
  852. */
  853. static long
  854. mprotect_subpage (unsigned long address, int new_prot)
  855. {
  856. int old_prot;
  857. struct vm_area_struct *vma;
  858. if (new_prot == PROT_NONE)
  859. return 0; /* optimize case where nothing changes... */
  860. vma = find_vma(current->mm, address);
  861. old_prot = get_page_prot(vma, address);
  862. return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot);
  863. }
  864. #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
  865. asmlinkage long
  866. sys32_mprotect (unsigned int start, unsigned int len, int prot)
  867. {
  868. unsigned int end = start + len;
  869. #if PAGE_SHIFT > IA32_PAGE_SHIFT
  870. long retval = 0;
  871. #endif
  872. prot = get_prot32(prot);
  873. #if PAGE_SHIFT <= IA32_PAGE_SHIFT
  874. return sys_mprotect(start, end - start, prot);
  875. #else
  876. if (OFFSET4K(start))
  877. return -EINVAL;
  878. end = IA32_PAGE_ALIGN(end);
  879. if (end < start)
  880. return -EINVAL;
  881. retval = ia32_compare_pp(&start, &end);
  882. if (retval < 0)
  883. return retval;
  884. mutex_lock(&ia32_mmap_mutex);
  885. {
  886. if (offset_in_page(start)) {
  887. /* start address is 4KB aligned but not page aligned. */
  888. retval = mprotect_subpage(PAGE_START(start), prot);
  889. if (retval < 0)
  890. goto out;
  891. start = PAGE_ALIGN(start);
  892. if (start >= end)
  893. goto out; /* retval is already zero... */
  894. }
  895. if (offset_in_page(end)) {
  896. /* end address is 4KB aligned but not page aligned. */
  897. retval = mprotect_subpage(PAGE_START(end), prot);
  898. if (retval < 0)
  899. goto out;
  900. end = PAGE_START(end);
  901. }
  902. retval = sys_mprotect(start, end - start, prot);
  903. }
  904. out:
  905. mutex_unlock(&ia32_mmap_mutex);
  906. return retval;
  907. #endif
  908. }
  909. asmlinkage long
  910. sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len,
  911. unsigned int flags, unsigned int new_addr)
  912. {
  913. long ret;
  914. #if PAGE_SHIFT <= IA32_PAGE_SHIFT
  915. ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
  916. #else
  917. unsigned int old_end, new_end;
  918. if (OFFSET4K(addr))
  919. return -EINVAL;
  920. old_len = IA32_PAGE_ALIGN(old_len);
  921. new_len = IA32_PAGE_ALIGN(new_len);
  922. old_end = addr + old_len;
  923. new_end = addr + new_len;
  924. if (!new_len)
  925. return -EINVAL;
  926. if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr)))
  927. return -EINVAL;
  928. if (old_len >= new_len) {
  929. ret = sys32_munmap(addr + new_len, old_len - new_len);
  930. if (ret && old_len != new_len)
  931. return ret;
  932. ret = addr;
  933. if (!(flags & MREMAP_FIXED) || (new_addr == addr))
  934. return ret;
  935. old_len = new_len;
  936. }
  937. addr = PAGE_START(addr);
  938. old_len = PAGE_ALIGN(old_end) - addr;
  939. new_len = PAGE_ALIGN(new_end) - addr;
  940. mutex_lock(&ia32_mmap_mutex);
  941. ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
  942. mutex_unlock(&ia32_mmap_mutex);
  943. if ((ret >= 0) && (old_len < new_len)) {
  944. /* mremap expanded successfully */
  945. ia32_set_pp(old_end, new_end, flags);
  946. }
  947. #endif
  948. return ret;
  949. }
  950. asmlinkage unsigned long
  951. sys32_alarm (unsigned int seconds)
  952. {
  953. return alarm_setitimer(seconds);
  954. }
  955. struct sel_arg_struct {
  956. unsigned int n;
  957. unsigned int inp;
  958. unsigned int outp;
  959. unsigned int exp;
  960. unsigned int tvp;
  961. };
  962. asmlinkage long
  963. sys32_old_select (struct sel_arg_struct __user *arg)
  964. {
  965. struct sel_arg_struct a;
  966. if (copy_from_user(&a, arg, sizeof(a)))
  967. return -EFAULT;
  968. return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp),
  969. compat_ptr(a.exp), compat_ptr(a.tvp));
  970. }
  971. #define SEMOP 1
  972. #define SEMGET 2
  973. #define SEMCTL 3
  974. #define SEMTIMEDOP 4
  975. #define MSGSND 11
  976. #define MSGRCV 12
  977. #define MSGGET 13
  978. #define MSGCTL 14
  979. #define SHMAT 21
  980. #define SHMDT 22
  981. #define SHMGET 23
  982. #define SHMCTL 24
  983. asmlinkage long
  984. sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth)
  985. {
  986. int version;
  987. version = call >> 16; /* hack for backward compatibility */
  988. call &= 0xffff;
  989. switch (call) {
  990. case SEMTIMEDOP:
  991. if (fifth)
  992. return compat_sys_semtimedop(first, compat_ptr(ptr),
  993. second, compat_ptr(fifth));
  994. /* else fall through for normal semop() */
  995. case SEMOP:
  996. /* struct sembuf is the same on 32 and 64bit :)) */
  997. return sys_semtimedop(first, compat_ptr(ptr), second,
  998. NULL);
  999. case SEMGET:
  1000. return sys_semget(first, second, third);
  1001. case SEMCTL:
  1002. return compat_sys_semctl(first, second, third, compat_ptr(ptr));
  1003. case MSGSND:
  1004. return compat_sys_msgsnd(first, second, third, compat_ptr(ptr));
  1005. case MSGRCV:
  1006. return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr));
  1007. case MSGGET:
  1008. return sys_msgget((key_t) first, second);
  1009. case MSGCTL:
  1010. return compat_sys_msgctl(first, second, compat_ptr(ptr));
  1011. case SHMAT:
  1012. return compat_sys_shmat(first, second, third, version, compat_ptr(ptr));
  1013. break;
  1014. case SHMDT:
  1015. return sys_shmdt(compat_ptr(ptr));
  1016. case SHMGET:
  1017. return sys_shmget(first, (unsigned)second, third);
  1018. case SHMCTL:
  1019. return compat_sys_shmctl(first, second, compat_ptr(ptr));
  1020. default:
  1021. return -ENOSYS;
  1022. }
  1023. return -EINVAL;
  1024. }
  1025. asmlinkage long
  1026. compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options,
  1027. struct compat_rusage *ru);
  1028. asmlinkage long
  1029. sys32_waitpid (int pid, unsigned int *stat_addr, int options)
  1030. {
  1031. return compat_sys_wait4(pid, stat_addr, options, NULL);
  1032. }
  1033. /*
  1034. * The order in which registers are stored in the ptrace regs structure
  1035. */
  1036. #define PT_EBX 0
  1037. #define PT_ECX 1
  1038. #define PT_EDX 2
  1039. #define PT_ESI 3
  1040. #define PT_EDI 4
  1041. #define PT_EBP 5
  1042. #define PT_EAX 6
  1043. #define PT_DS 7
  1044. #define PT_ES 8
  1045. #define PT_FS 9
  1046. #define PT_GS 10
  1047. #define PT_ORIG_EAX 11
  1048. #define PT_EIP 12
  1049. #define PT_CS 13
  1050. #define PT_EFL 14
  1051. #define PT_UESP 15
  1052. #define PT_SS 16
  1053. static unsigned int
  1054. getreg (struct task_struct *child, int regno)
  1055. {
  1056. struct pt_regs *child_regs;
  1057. child_regs = task_pt_regs(child);
  1058. switch (regno / sizeof(int)) {
  1059. case PT_EBX: return child_regs->r11;
  1060. case PT_ECX: return child_regs->r9;
  1061. case PT_EDX: return child_regs->r10;
  1062. case PT_ESI: return child_regs->r14;
  1063. case PT_EDI: return child_regs->r15;
  1064. case PT_EBP: return child_regs->r13;
  1065. case PT_EAX: return child_regs->r8;
  1066. case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */
  1067. case PT_EIP: return child_regs->cr_iip;
  1068. case PT_UESP: return child_regs->r12;
  1069. case PT_EFL: return child->thread.eflag;
  1070. case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
  1071. return __USER_DS;
  1072. case PT_CS: return __USER_CS;
  1073. default:
  1074. printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno);
  1075. break;
  1076. }
  1077. return 0;
  1078. }
  1079. static void
  1080. putreg (struct task_struct *child, int regno, unsigned int value)
  1081. {
  1082. struct pt_regs *child_regs;
  1083. child_regs = task_pt_regs(child);
  1084. switch (regno / sizeof(int)) {
  1085. case PT_EBX: child_regs->r11 = value; break;
  1086. case PT_ECX: child_regs->r9 = value; break;
  1087. case PT_EDX: child_regs->r10 = value; break;
  1088. case PT_ESI: child_regs->r14 = value; break;
  1089. case PT_EDI: child_regs->r15 = value; break;
  1090. case PT_EBP: child_regs->r13 = value; break;
  1091. case PT_EAX: child_regs->r8 = value; break;
  1092. case PT_ORIG_EAX: child_regs->r1 = value; break;
  1093. case PT_EIP: child_regs->cr_iip = value; break;
  1094. case PT_UESP: child_regs->r12 = value; break;
  1095. case PT_EFL: child->thread.eflag = value; break;
  1096. case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
  1097. if (value != __USER_DS)
  1098. printk(KERN_ERR
  1099. "ia32.putreg: attempt to set invalid segment register %d = %x\n",
  1100. regno, value);
  1101. break;
  1102. case PT_CS:
  1103. if (value != __USER_CS)
  1104. printk(KERN_ERR
  1105. "ia32.putreg: attempt to to set invalid segment register %d = %x\n",
  1106. regno, value);
  1107. break;
  1108. default:
  1109. printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno);
  1110. break;
  1111. }
  1112. }
  1113. static void
  1114. put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
  1115. struct switch_stack *swp, int tos)
  1116. {
  1117. struct _fpreg_ia32 *f;
  1118. char buf[32];
  1119. f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15);
  1120. if ((regno += tos) >= 8)
  1121. regno -= 8;
  1122. switch (regno) {
  1123. case 0:
  1124. ia64f2ia32f(f, &ptp->f8);
  1125. break;
  1126. case 1:
  1127. ia64f2ia32f(f, &ptp->f9);
  1128. break;
  1129. case 2:
  1130. ia64f2ia32f(f, &ptp->f10);
  1131. break;
  1132. case 3:
  1133. ia64f2ia32f(f, &ptp->f11);
  1134. break;
  1135. case 4:
  1136. case 5:
  1137. case 6:
  1138. case 7:
  1139. ia64f2ia32f(f, &swp->f12 + (regno - 4));
  1140. break;
  1141. }
  1142. copy_to_user(reg, f, sizeof(*reg));
  1143. }
  1144. static void
  1145. get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
  1146. struct switch_stack *swp, int tos)
  1147. {
  1148. if ((regno += tos) >= 8)
  1149. regno -= 8;
  1150. switch (regno) {
  1151. case 0:
  1152. copy_from_user(&ptp->f8, reg, sizeof(*reg));
  1153. break;
  1154. case 1:
  1155. copy_from_user(&ptp->f9, reg, sizeof(*reg));
  1156. break;
  1157. case 2:
  1158. copy_from_user(&ptp->f10, reg, sizeof(*reg));
  1159. break;
  1160. case 3:
  1161. copy_from_user(&ptp->f11, reg, sizeof(*reg));
  1162. break;
  1163. case 4:
  1164. case 5:
  1165. case 6:
  1166. case 7:
  1167. copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg));
  1168. break;
  1169. }
  1170. return;
  1171. }
  1172. int
  1173. save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
  1174. {
  1175. struct switch_stack *swp;
  1176. struct pt_regs *ptp;
  1177. int i, tos;
  1178. if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
  1179. return -EFAULT;
  1180. __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
  1181. __put_user(tsk->thread.fsr & 0xffff, &save->swd);
  1182. __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
  1183. __put_user(tsk->thread.fir, &save->fip);
  1184. __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
  1185. __put_user(tsk->thread.fdr, &save->foo);
  1186. __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
  1187. /*
  1188. * Stack frames start with 16-bytes of temp space
  1189. */
  1190. swp = (struct switch_stack *)(tsk->thread.ksp + 16);
  1191. ptp = task_pt_regs(tsk);
  1192. tos = (tsk->thread.fsr >> 11) & 7;
  1193. for (i = 0; i < 8; i++)
  1194. put_fpreg(i, &save->st_space[i], ptp, swp, tos);
  1195. return 0;
  1196. }
  1197. static int
  1198. restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
  1199. {
  1200. struct switch_stack *swp;
  1201. struct pt_regs *ptp;
  1202. int i, tos;
  1203. unsigned int fsrlo, fsrhi, num32;
  1204. if (!access_ok(VERIFY_READ, save, sizeof(*save)))
  1205. return(-EFAULT);
  1206. __get_user(num32, (unsigned int __user *)&save->cwd);
  1207. tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
  1208. __get_user(fsrlo, (unsigned int __user *)&save->swd);
  1209. __get_user(fsrhi, (unsigned int __user *)&save->twd);
  1210. num32 = (fsrhi << 16) | fsrlo;
  1211. tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
  1212. __get_user(num32, (unsigned int __user *)&save->fip);
  1213. tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
  1214. __get_user(num32, (unsigned int __user *)&save->foo);
  1215. tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
  1216. /*
  1217. * Stack frames start with 16-bytes of temp space
  1218. */
  1219. swp = (struct switch_stack *)(tsk->thread.ksp + 16);
  1220. ptp = task_pt_regs(tsk);
  1221. tos = (tsk->thread.fsr >> 11) & 7;
  1222. for (i = 0; i < 8; i++)
  1223. get_fpreg(i, &save->st_space[i], ptp, swp, tos);
  1224. return 0;
  1225. }
  1226. int
  1227. save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
  1228. {
  1229. struct switch_stack *swp;
  1230. struct pt_regs *ptp;
  1231. int i, tos;
  1232. unsigned long mxcsr=0;
  1233. unsigned long num128[2];
  1234. if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
  1235. return -EFAULT;
  1236. __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
  1237. __put_user(tsk->thread.fsr & 0xffff, &save->swd);
  1238. __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
  1239. __put_user(tsk->thread.fir, &save->fip);
  1240. __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
  1241. __put_user(tsk->thread.fdr, &save->foo);
  1242. __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
  1243. /*
  1244. * Stack frames start with 16-bytes of temp space
  1245. */
  1246. swp = (struct switch_stack *)(tsk->thread.ksp + 16);
  1247. ptp = task_pt_regs(tsk);
  1248. tos = (tsk->thread.fsr >> 11) & 7;
  1249. for (i = 0; i < 8; i++)
  1250. put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
  1251. mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f);
  1252. __put_user(mxcsr & 0xffff, &save->mxcsr);
  1253. for (i = 0; i < 8; i++) {
  1254. memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long));
  1255. memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long));
  1256. copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32));
  1257. }
  1258. return 0;
  1259. }
  1260. static int
  1261. restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
  1262. {
  1263. struct switch_stack *swp;
  1264. struct pt_regs *ptp;
  1265. int i, tos;
  1266. unsigned int fsrlo, fsrhi, num32;
  1267. int mxcsr;
  1268. unsigned long num64;
  1269. unsigned long num128[2];
  1270. if (!access_ok(VERIFY_READ, save, sizeof(*save)))
  1271. return(-EFAULT);
  1272. __get_user(num32, (unsigned int __user *)&save->cwd);
  1273. tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
  1274. __get_user(fsrlo, (unsigned int __user *)&save->swd);
  1275. __get_user(fsrhi, (unsigned int __user *)&save->twd);
  1276. num32 = (fsrhi << 16) | fsrlo;
  1277. tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
  1278. __get_user(num32, (unsigned int __user *)&save->fip);
  1279. tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
  1280. __get_user(num32, (unsigned int __user *)&save->foo);
  1281. tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
  1282. /*
  1283. * Stack frames start with 16-bytes of temp space
  1284. */
  1285. swp = (struct switch_stack *)(tsk->thread.ksp + 16);
  1286. ptp = task_pt_regs(tsk);
  1287. tos = (tsk->thread.fsr >> 11) & 7;
  1288. for (i = 0; i < 8; i++)
  1289. get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
  1290. __get_user(mxcsr, (unsigned int __user *)&save->mxcsr);
  1291. num64 = mxcsr & 0xff10;
  1292. tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32);
  1293. num64 = mxcsr & 0x3f;
  1294. tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32);
  1295. for (i = 0; i < 8; i++) {
  1296. copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32));
  1297. memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long));
  1298. memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long));
  1299. }
  1300. return 0;
  1301. }
  1302. long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
  1303. compat_ulong_t caddr, compat_ulong_t cdata)
  1304. {
  1305. unsigned long addr = caddr;
  1306. unsigned long data = cdata;
  1307. unsigned int tmp;
  1308. long i, ret;
  1309. switch (request) {
  1310. case PTRACE_PEEKUSR: /* read word at addr in USER area */
  1311. ret = -EIO;
  1312. if ((addr & 3) || addr > 17*sizeof(int))
  1313. break;
  1314. tmp = getreg(child, addr);
  1315. if (!put_user(tmp, (unsigned int __user *) compat_ptr(data)))
  1316. ret = 0;
  1317. break;
  1318. case PTRACE_POKEUSR: /* write word at addr in USER area */
  1319. ret = -EIO;
  1320. if ((addr & 3) || addr > 17*sizeof(int))
  1321. break;
  1322. putreg(child, addr, data);
  1323. ret = 0;
  1324. break;
  1325. case IA32_PTRACE_GETREGS:
  1326. if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) {
  1327. ret = -EIO;
  1328. break;
  1329. }
  1330. for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
  1331. put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data));
  1332. data += sizeof(int);
  1333. }
  1334. ret = 0;
  1335. break;
  1336. case IA32_PTRACE_SETREGS:
  1337. if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) {
  1338. ret = -EIO;
  1339. break;
  1340. }
  1341. for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
  1342. get_user(tmp, (unsigned int __user *) compat_ptr(data));
  1343. putreg(child, i, tmp);
  1344. data += sizeof(int);
  1345. }
  1346. ret = 0;
  1347. break;
  1348. case IA32_PTRACE_GETFPREGS:
  1349. ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
  1350. compat_ptr(data));
  1351. break;
  1352. case IA32_PTRACE_GETFPXREGS:
  1353. ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
  1354. compat_ptr(data));
  1355. break;
  1356. case IA32_PTRACE_SETFPREGS:
  1357. ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
  1358. compat_ptr(data));
  1359. break;
  1360. case IA32_PTRACE_SETFPXREGS:
  1361. ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
  1362. compat_ptr(data));
  1363. break;
  1364. default:
  1365. return compat_ptrace_request(child, request, caddr, cdata);
  1366. }
  1367. return ret;
  1368. }
  1369. typedef struct {
  1370. unsigned int ss_sp;
  1371. unsigned int ss_flags;
  1372. unsigned int ss_size;
  1373. } ia32_stack_t;
  1374. asmlinkage long
  1375. sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32,
  1376. long arg2, long arg3, long arg4, long arg5, long arg6,
  1377. long arg7, struct pt_regs pt)
  1378. {
  1379. stack_t uss, uoss;
  1380. ia32_stack_t buf32;
  1381. int ret;
  1382. mm_segment_t old_fs = get_fs();
  1383. if (uss32) {
  1384. if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t)))
  1385. return -EFAULT;
  1386. uss.ss_sp = (void __user *) (long) buf32.ss_sp;
  1387. uss.ss_flags = buf32.ss_flags;
  1388. /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the
  1389. check and set it to the user requested value later */
  1390. if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) {
  1391. ret = -ENOMEM;
  1392. goto out;
  1393. }
  1394. uss.ss_size = MINSIGSTKSZ;
  1395. }
  1396. set_fs(KERNEL_DS);
  1397. ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL,
  1398. (stack_t __user *) &uoss, pt.r12);
  1399. current->sas_ss_size = buf32.ss_size;
  1400. set_fs(old_fs);
  1401. out:
  1402. if (ret < 0)
  1403. return(ret);
  1404. if (uoss32) {
  1405. buf32.ss_sp = (long __user) uoss.ss_sp;
  1406. buf32.ss_flags = uoss.ss_flags;
  1407. buf32.ss_size = uoss.ss_size;
  1408. if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t)))
  1409. return -EFAULT;
  1410. }
  1411. return ret;
  1412. }
  1413. asmlinkage int
  1414. sys32_msync (unsigned int start, unsigned int len, int flags)
  1415. {
  1416. unsigned int addr;
  1417. if (OFFSET4K(start))
  1418. return -EINVAL;
  1419. addr = PAGE_START(start);
  1420. return sys_msync(addr, len + (start - addr), flags);
  1421. }
  1422. struct sysctl32 {
  1423. unsigned int name;
  1424. int nlen;
  1425. unsigned int oldval;
  1426. unsigned int oldlenp;
  1427. unsigned int newval;
  1428. unsigned int newlen;
  1429. unsigned int __unused[4];
  1430. };
  1431. #ifdef CONFIG_SYSCTL_SYSCALL
  1432. asmlinkage long
  1433. sys32_sysctl (struct sysctl32 __user *args)
  1434. {
  1435. struct sysctl32 a32;
  1436. mm_segment_t old_fs = get_fs ();
  1437. void __user *oldvalp, *newvalp;
  1438. size_t oldlen;
  1439. int __user *namep;
  1440. long ret;
  1441. if (copy_from_user(&a32, args, sizeof(a32)))
  1442. return -EFAULT;
  1443. /*
  1444. * We need to pre-validate these because we have to disable address checking
  1445. * before calling do_sysctl() because of OLDLEN but we can't run the risk of the
  1446. * user specifying bad addresses here. Well, since we're dealing with 32 bit
  1447. * addresses, we KNOW that access_ok() will always succeed, so this is an
  1448. * expensive NOP, but so what...
  1449. */
  1450. namep = (int __user *) compat_ptr(a32.name);
  1451. oldvalp = compat_ptr(a32.oldval);
  1452. newvalp = compat_ptr(a32.newval);
  1453. if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp)))
  1454. || !access_ok(VERIFY_WRITE, namep, 0)
  1455. || !access_ok(VERIFY_WRITE, oldvalp, 0)
  1456. || !access_ok(VERIFY_WRITE, newvalp, 0))
  1457. return -EFAULT;
  1458. set_fs(KERNEL_DS);
  1459. lock_kernel();
  1460. ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen,
  1461. newvalp, (size_t) a32.newlen);
  1462. unlock_kernel();
  1463. set_fs(old_fs);
  1464. if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp)))
  1465. return -EFAULT;
  1466. return ret;
  1467. }
  1468. #endif
  1469. asmlinkage long
  1470. sys32_newuname (struct new_utsname __user *name)
  1471. {
  1472. int ret = sys_newuname(name);
  1473. if (!ret)
  1474. if (copy_to_user(name->machine, "i686\0\0\0", 8))
  1475. ret = -EFAULT;
  1476. return ret;
  1477. }
  1478. asmlinkage long
  1479. sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid)
  1480. {
  1481. uid_t a, b, c;
  1482. int ret;
  1483. mm_segment_t old_fs = get_fs();
  1484. set_fs(KERNEL_DS);
  1485. ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c);
  1486. set_fs(old_fs);
  1487. if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid))
  1488. return -EFAULT;
  1489. return ret;
  1490. }
  1491. asmlinkage long
  1492. sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid)
  1493. {
  1494. gid_t a, b, c;
  1495. int ret;
  1496. mm_segment_t old_fs = get_fs();
  1497. set_fs(KERNEL_DS);
  1498. ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c);
  1499. set_fs(old_fs);
  1500. if (ret)
  1501. return ret;
  1502. return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid);
  1503. }
  1504. asmlinkage long
  1505. sys32_lseek (unsigned int fd, int offset, unsigned int whence)
  1506. {
  1507. /* Sign-extension of "offset" is important here... */
  1508. return sys_lseek(fd, offset, whence);
  1509. }
  1510. static int
  1511. groups16_to_user(short __user *grouplist, struct group_info *group_info)
  1512. {
  1513. int i;
  1514. short group;
  1515. for (i = 0; i < group_info->ngroups; i++) {
  1516. group = (short)GROUP_AT(group_info, i);
  1517. if (put_user(group, grouplist+i))
  1518. return -EFAULT;
  1519. }
  1520. return 0;
  1521. }
  1522. static int
  1523. groups16_from_user(struct group_info *group_info, short __user *grouplist)
  1524. {
  1525. int i;
  1526. short group;
  1527. for (i = 0; i < group_info->ngroups; i++) {
  1528. if (get_user(group, grouplist+i))
  1529. return -EFAULT;
  1530. GROUP_AT(group_info, i) = (gid_t)group;
  1531. }
  1532. return 0;
  1533. }
  1534. asmlinkage long
  1535. sys32_getgroups16 (int gidsetsize, short __user *grouplist)
  1536. {
  1537. int i;
  1538. if (gidsetsize < 0)
  1539. return -EINVAL;
  1540. get_group_info(current->group_info);
  1541. i = current->group_info->ngroups;
  1542. if (gidsetsize) {
  1543. if (i > gidsetsize) {
  1544. i = -EINVAL;
  1545. goto out;
  1546. }
  1547. if (groups16_to_user(grouplist, current->group_info)) {
  1548. i = -EFAULT;
  1549. goto out;
  1550. }
  1551. }
  1552. out:
  1553. put_group_info(current->group_info);
  1554. return i;
  1555. }
  1556. asmlinkage long
  1557. sys32_setgroups16 (int gidsetsize, short __user *grouplist)
  1558. {
  1559. struct group_info *group_info;
  1560. int retval;
  1561. if (!capable(CAP_SETGID))
  1562. return -EPERM;
  1563. if ((unsigned)gidsetsize > NGROUPS_MAX)
  1564. return -EINVAL;
  1565. group_info = groups_alloc(gidsetsize);
  1566. if (!group_info)
  1567. return -ENOMEM;
  1568. retval = groups16_from_user(group_info, grouplist);
  1569. if (retval) {
  1570. put_group_info(group_info);
  1571. return retval;
  1572. }
  1573. retval = set_current_groups(group_info);
  1574. put_group_info(group_info);
  1575. return retval;
  1576. }
  1577. asmlinkage long
  1578. sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi)
  1579. {
  1580. return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo);
  1581. }
  1582. asmlinkage long
  1583. sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi)
  1584. {
  1585. return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo);
  1586. }
  1587. static int
  1588. putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf)
  1589. {
  1590. int err;
  1591. u64 hdev;
  1592. if (clear_user(ubuf, sizeof(*ubuf)))
  1593. return -EFAULT;
  1594. hdev = huge_encode_dev(kbuf->dev);
  1595. err = __put_user(hdev, (u32 __user*)&ubuf->st_dev);
  1596. err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1);
  1597. err |= __put_user(kbuf->ino, &ubuf->__st_ino);
  1598. err |= __put_user(kbuf->ino, &ubuf->st_ino_lo);
  1599. err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi);
  1600. err |= __put_user(kbuf->mode, &ubuf->st_mode);
  1601. err |= __put_user(kbuf->nlink, &ubuf->st_nlink);
  1602. err |= __put_user(kbuf->uid, &ubuf->st_uid);
  1603. err |= __put_user(kbuf->gid, &ubuf->st_gid);
  1604. hdev = huge_encode_dev(kbuf->rdev);
  1605. err = __put_user(hdev, (u32 __user*)&ubuf->st_rdev);
  1606. err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1);
  1607. err |= __put_user(kbuf->size, &ubuf->st_size_lo);
  1608. err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi);
  1609. err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime);
  1610. err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec);
  1611. err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime);
  1612. err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec);
  1613. err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime);
  1614. err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec);
  1615. err |= __put_user(kbuf->blksize, &ubuf->st_blksize);
  1616. err |= __put_user(kbuf->blocks, &ubuf->st_blocks);
  1617. return err;
  1618. }
  1619. asmlinkage long
  1620. sys32_stat64 (char __user *filename, struct stat64 __user *statbuf)
  1621. {
  1622. struct kstat s;
  1623. long ret = vfs_stat(filename, &s);
  1624. if (!ret)
  1625. ret = putstat64(statbuf, &s);
  1626. return ret;
  1627. }
  1628. asmlinkage long
  1629. sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf)
  1630. {
  1631. struct kstat s;
  1632. long ret = vfs_lstat(filename, &s);
  1633. if (!ret)
  1634. ret = putstat64(statbuf, &s);
  1635. return ret;
  1636. }
  1637. asmlinkage long
  1638. sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf)
  1639. {
  1640. struct kstat s;
  1641. long ret = vfs_fstat(fd, &s);
  1642. if (!ret)
  1643. ret = putstat64(statbuf, &s);
  1644. return ret;
  1645. }
  1646. asmlinkage long
  1647. sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval)
  1648. {
  1649. mm_segment_t old_fs = get_fs();
  1650. struct timespec t;
  1651. long ret;
  1652. set_fs(KERNEL_DS);
  1653. ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t);
  1654. set_fs(old_fs);
  1655. if (put_compat_timespec(&t, interval))
  1656. return -EFAULT;
  1657. return ret;
  1658. }
  1659. asmlinkage long
  1660. sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
  1661. {
  1662. return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
  1663. }
  1664. asmlinkage long
  1665. sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
  1666. {
  1667. return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
  1668. }
  1669. asmlinkage long
  1670. sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count)
  1671. {
  1672. mm_segment_t old_fs = get_fs();
  1673. long ret;
  1674. off_t of;
  1675. if (offset && get_user(of, offset))
  1676. return -EFAULT;
  1677. set_fs(KERNEL_DS);
  1678. ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count);
  1679. set_fs(old_fs);
  1680. if (offset && put_user(of, offset))
  1681. return -EFAULT;
  1682. return ret;
  1683. }
  1684. asmlinkage long
  1685. sys32_personality (unsigned int personality)
  1686. {
  1687. long ret;
  1688. if (current->personality == PER_LINUX32 && personality == PER_LINUX)
  1689. personality = PER_LINUX32;
  1690. ret = sys_personality(personality);
  1691. if (ret == PER_LINUX32)
  1692. ret = PER_LINUX;
  1693. return ret;
  1694. }
  1695. asmlinkage unsigned long
  1696. sys32_brk (unsigned int brk)
  1697. {
  1698. unsigned long ret, obrk;
  1699. struct mm_struct *mm = current->mm;
  1700. obrk = mm->brk;
  1701. ret = sys_brk(brk);
  1702. if (ret < obrk)
  1703. clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret);
  1704. return ret;
  1705. }
  1706. /* Structure for ia32 emulation on ia64 */
  1707. struct epoll_event32
  1708. {
  1709. u32 events;
  1710. u32 data[2];
  1711. };
  1712. asmlinkage long
  1713. sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event)
  1714. {
  1715. mm_segment_t old_fs = get_fs();
  1716. struct epoll_event event64;
  1717. int error;
  1718. u32 data_halfword;
  1719. if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32)))
  1720. return -EFAULT;
  1721. __get_user(event64.events, &event->events);
  1722. __get_user(data_halfword, &event->data[0]);
  1723. event64.data = data_halfword;
  1724. __get_user(data_halfword, &event->data[1]);
  1725. event64.data |= (u64)data_halfword << 32;
  1726. set_fs(KERNEL_DS);
  1727. error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64);
  1728. set_fs(old_fs);
  1729. return error;
  1730. }
  1731. asmlinkage long
  1732. sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents,
  1733. int timeout)
  1734. {
  1735. struct epoll_event *events64 = NULL;
  1736. mm_segment_t old_fs = get_fs();
  1737. int numevents, size;
  1738. int evt_idx;
  1739. int do_free_pages = 0;
  1740. if (maxevents <= 0) {
  1741. return -EINVAL;
  1742. }
  1743. /* Verify that the area passed by the user is writeable */
  1744. if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32)))
  1745. return -EFAULT;
  1746. /*
  1747. * Allocate space for the intermediate copy. If the space needed
  1748. * is large enough to cause kmalloc to fail, then try again with
  1749. * __get_free_pages.
  1750. */
  1751. size = maxevents * sizeof(struct epoll_event);
  1752. events64 = kmalloc(size, GFP_KERNEL);
  1753. if (events64 == NULL) {
  1754. events64 = (struct epoll_event *)
  1755. __get_free_pages(GFP_KERNEL, get_order(size));
  1756. if (events64 == NULL)
  1757. return -ENOMEM;
  1758. do_free_pages = 1;
  1759. }
  1760. /* Do the system call */
  1761. set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/
  1762. numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64,
  1763. maxevents, timeout);
  1764. set_fs(old_fs);
  1765. /* Don't modify userspace memory if we're returning an error */
  1766. if (numevents > 0) {
  1767. /* Translate the 64-bit structures back into the 32-bit
  1768. structures */
  1769. for (evt_idx = 0; evt_idx < numevents; evt_idx++) {
  1770. __put_user(events64[evt_idx].events,
  1771. &events[evt_idx].events);
  1772. __put_user((u32)events64[evt_idx].data,
  1773. &events[evt_idx].data[0]);
  1774. __put_user((u32)(events64[evt_idx].data >> 32),
  1775. &events[evt_idx].data[1]);
  1776. }
  1777. }
  1778. if (do_free_pages)
  1779. free_pages((unsigned long) events64, get_order(size));
  1780. else
  1781. kfree(events64);
  1782. return numevents;
  1783. }
  1784. /*
  1785. * Get a yet unused TLS descriptor index.
  1786. */
  1787. static int
  1788. get_free_idx (void)
  1789. {
  1790. struct thread_struct *t = &current->thread;
  1791. int idx;
  1792. for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
  1793. if (desc_empty(t->tls_array + idx))
  1794. return idx + GDT_ENTRY_TLS_MIN;
  1795. return -ESRCH;
  1796. }
  1797. static void set_tls_desc(struct task_struct *p, int idx,
  1798. const struct ia32_user_desc *info, int n)
  1799. {
  1800. struct thread_struct *t = &p->thread;
  1801. struct desc_struct *desc = &t->tls_array[idx - GDT_ENTRY_TLS_MIN];
  1802. int cpu;
  1803. /*
  1804. * We must not get preempted while modifying the TLS.
  1805. */
  1806. cpu = get_cpu();
  1807. while (n-- > 0) {
  1808. if (LDT_empty(info)) {
  1809. desc->a = 0;
  1810. desc->b = 0;
  1811. } else {
  1812. desc->a = LDT_entry_a(info);
  1813. desc->b = LDT_entry_b(info);
  1814. }
  1815. ++info;
  1816. ++desc;
  1817. }
  1818. if (t == &current->thread)
  1819. load_TLS(t, cpu);
  1820. put_cpu();
  1821. }
  1822. /*
  1823. * Set a given TLS descriptor:
  1824. */
  1825. asmlinkage int
  1826. sys32_set_thread_area (struct ia32_user_desc __user *u_info)
  1827. {
  1828. struct ia32_user_desc info;
  1829. int idx;
  1830. if (copy_from_user(&info, u_info, sizeof(info)))
  1831. return -EFAULT;
  1832. idx = info.entry_number;
  1833. /*
  1834. * index -1 means the kernel should try to find and allocate an empty descriptor:
  1835. */
  1836. if (idx == -1) {
  1837. idx = get_free_idx();
  1838. if (idx < 0)
  1839. return idx;
  1840. if (put_user(idx, &u_info->entry_number))
  1841. return -EFAULT;
  1842. }
  1843. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  1844. return -EINVAL;
  1845. set_tls_desc(current, idx, &info, 1);
  1846. return 0;
  1847. }
  1848. /*
  1849. * Get the current Thread-Local Storage area:
  1850. */
  1851. #define GET_BASE(desc) ( \
  1852. (((desc)->a >> 16) & 0x0000ffff) | \
  1853. (((desc)->b << 16) & 0x00ff0000) | \
  1854. ( (desc)->b & 0xff000000) )
  1855. #define GET_LIMIT(desc) ( \
  1856. ((desc)->a & 0x0ffff) | \
  1857. ((desc)->b & 0xf0000) )
  1858. #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
  1859. #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
  1860. #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
  1861. #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
  1862. #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
  1863. #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
  1864. static void fill_user_desc(struct ia32_user_desc *info, int idx,
  1865. const struct desc_struct *desc)
  1866. {
  1867. info->entry_number = idx;
  1868. info->base_addr = GET_BASE(desc);
  1869. info->limit = GET_LIMIT(desc);
  1870. info->seg_32bit = GET_32BIT(desc);
  1871. info->contents = GET_CONTENTS(desc);
  1872. info->read_exec_only = !GET_WRITABLE(desc);
  1873. info->limit_in_pages = GET_LIMIT_PAGES(desc);
  1874. info->seg_not_present = !GET_PRESENT(desc);
  1875. info->useable = GET_USEABLE(desc);
  1876. }
  1877. asmlinkage int
  1878. sys32_get_thread_area (struct ia32_user_desc __user *u_info)
  1879. {
  1880. struct ia32_user_desc info;
  1881. struct desc_struct *desc;
  1882. int idx;
  1883. if (get_user(idx, &u_info->entry_number))
  1884. return -EFAULT;
  1885. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  1886. return -EINVAL;
  1887. desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
  1888. fill_user_desc(&info, idx, desc);
  1889. if (copy_to_user(u_info, &info, sizeof(info)))
  1890. return -EFAULT;
  1891. return 0;
  1892. }
  1893. struct regset_get {
  1894. void *kbuf;
  1895. void __user *ubuf;
  1896. };
  1897. struct regset_set {
  1898. const void *kbuf;
  1899. const void __user *ubuf;
  1900. };
  1901. struct regset_getset {
  1902. struct task_struct *target;
  1903. const struct user_regset *regset;
  1904. union {
  1905. struct regset_get get;
  1906. struct regset_set set;
  1907. } u;
  1908. unsigned int pos;
  1909. unsigned int count;
  1910. int ret;
  1911. };
  1912. static void getfpreg(struct task_struct *task, int regno, int *val)
  1913. {
  1914. switch (regno / sizeof(int)) {
  1915. case 0:
  1916. *val = task->thread.fcr & 0xffff;
  1917. break;
  1918. case 1:
  1919. *val = task->thread.fsr & 0xffff;
  1920. break;
  1921. case 2:
  1922. *val = (task->thread.fsr>>16) & 0xffff;
  1923. break;
  1924. case 3:
  1925. *val = task->thread.fir;
  1926. break;
  1927. case 4:
  1928. *val = (task->thread.fir>>32) & 0xffff;
  1929. break;
  1930. case 5:
  1931. *val = task->thread.fdr;
  1932. break;
  1933. case 6:
  1934. *val = (task->thread.fdr >> 32) & 0xffff;
  1935. break;
  1936. }
  1937. }
  1938. static void setfpreg(struct task_struct *task, int regno, int val)
  1939. {
  1940. switch (regno / sizeof(int)) {
  1941. case 0:
  1942. task->thread.fcr = (task->thread.fcr & (~0x1f3f))
  1943. | (val & 0x1f3f);
  1944. break;
  1945. case 1:
  1946. task->thread.fsr = (task->thread.fsr & (~0xffff)) | val;
  1947. break;
  1948. case 2:
  1949. task->thread.fsr = (task->thread.fsr & (~0xffff0000))
  1950. | (val << 16);
  1951. break;
  1952. case 3:
  1953. task->thread.fir = (task->thread.fir & (~0xffffffff)) | val;
  1954. break;
  1955. case 5:
  1956. task->thread.fdr = (task->thread.fdr & (~0xffffffff)) | val;
  1957. break;
  1958. }
  1959. }
  1960. static void access_fpreg_ia32(int regno, void *reg,
  1961. struct pt_regs *pt, struct switch_stack *sw,
  1962. int tos, int write)
  1963. {
  1964. void *f;
  1965. if ((regno += tos) >= 8)
  1966. regno -= 8;
  1967. if (regno < 4)
  1968. f = &pt->f8 + regno;
  1969. else if (regno <= 7)
  1970. f = &sw->f12 + (regno - 4);
  1971. else {
  1972. printk(KERN_ERR "regno must be less than 7 \n");
  1973. return;
  1974. }
  1975. if (write)
  1976. memcpy(f, reg, sizeof(struct _fpreg_ia32));
  1977. else
  1978. memcpy(reg, f, sizeof(struct _fpreg_ia32));
  1979. }
  1980. static void do_fpregs_get(struct unw_frame_info *info, void *arg)
  1981. {
  1982. struct regset_getset *dst = arg;
  1983. struct task_struct *task = dst->target;
  1984. struct pt_regs *pt;
  1985. int start, end, tos;
  1986. char buf[80];
  1987. if (dst->count == 0 || unw_unwind_to_user(info) < 0)
  1988. return;
  1989. if (dst->pos < 7 * sizeof(int)) {
  1990. end = min((dst->pos + dst->count),
  1991. (unsigned int)(7 * sizeof(int)));
  1992. for (start = dst->pos; start < end; start += sizeof(int))
  1993. getfpreg(task, start, (int *)(buf + start));
  1994. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1995. &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
  1996. 0, 7 * sizeof(int));
  1997. if (dst->ret || dst->count == 0)
  1998. return;
  1999. }
  2000. if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
  2001. pt = task_pt_regs(task);
  2002. tos = (task->thread.fsr >> 11) & 7;
  2003. end = min(dst->pos + dst->count,
  2004. (unsigned int)(sizeof(struct ia32_user_i387_struct)));
  2005. start = (dst->pos - 7 * sizeof(int)) /
  2006. sizeof(struct _fpreg_ia32);
  2007. end = (end - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
  2008. for (; start < end; start++)
  2009. access_fpreg_ia32(start,
  2010. (struct _fpreg_ia32 *)buf + start,
  2011. pt, info->sw, tos, 0);
  2012. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  2013. &dst->u.get.kbuf, &dst->u.get.ubuf,
  2014. buf, 7 * sizeof(int),
  2015. sizeof(struct ia32_user_i387_struct));
  2016. if (dst->ret || dst->count == 0)
  2017. return;
  2018. }
  2019. }
  2020. static void do_fpregs_set(struct unw_frame_info *info, void *arg)
  2021. {
  2022. struct regset_getset *dst = arg;
  2023. struct task_struct *task = dst->target;
  2024. struct pt_regs *pt;
  2025. char buf[80];
  2026. int end, start, tos;
  2027. if (dst->count == 0 || unw_unwind_to_user(info) < 0)
  2028. return;
  2029. if (dst->pos < 7 * sizeof(int)) {
  2030. start = dst->pos;
  2031. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  2032. &dst->u.set.kbuf, &dst->u.set.ubuf, buf,
  2033. 0, 7 * sizeof(int));
  2034. if (dst->ret)
  2035. return;
  2036. for (; start < dst->pos; start += sizeof(int))
  2037. setfpreg(task, start, *((int *)(buf + start)));
  2038. if (dst->count == 0)
  2039. return;
  2040. }
  2041. if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
  2042. start = (dst->pos - 7 * sizeof(int)) /
  2043. sizeof(struct _fpreg_ia32);
  2044. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  2045. &dst->u.set.kbuf, &dst->u.set.ubuf,
  2046. buf, 7 * sizeof(int),
  2047. sizeof(struct ia32_user_i387_struct));
  2048. if (dst->ret)
  2049. return;
  2050. pt = task_pt_regs(task);
  2051. tos = (task->thread.fsr >> 11) & 7;
  2052. end = (dst->pos - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
  2053. for (; start < end; start++)
  2054. access_fpreg_ia32(start,
  2055. (struct _fpreg_ia32 *)buf + start,
  2056. pt, info->sw, tos, 1);
  2057. if (dst->count == 0)
  2058. return;
  2059. }
  2060. }
  2061. #define OFFSET(member) ((int)(offsetof(struct ia32_user_fxsr_struct, member)))
  2062. static void getfpxreg(struct task_struct *task, int start, int end, char *buf)
  2063. {
  2064. int min_val;
  2065. min_val = min(end, OFFSET(fop));
  2066. while (start < min_val) {
  2067. if (start == OFFSET(cwd))
  2068. *((short *)buf) = task->thread.fcr & 0xffff;
  2069. else if (start == OFFSET(swd))
  2070. *((short *)buf) = task->thread.fsr & 0xffff;
  2071. else if (start == OFFSET(twd))
  2072. *((short *)buf) = (task->thread.fsr>>16) & 0xffff;
  2073. buf += 2;
  2074. start += 2;
  2075. }
  2076. /* skip fop element */
  2077. if (start == OFFSET(fop)) {
  2078. start += 2;
  2079. buf += 2;
  2080. }
  2081. while (start < end) {
  2082. if (start == OFFSET(fip))
  2083. *((int *)buf) = task->thread.fir;
  2084. else if (start == OFFSET(fcs))
  2085. *((int *)buf) = (task->thread.fir>>32) & 0xffff;
  2086. else if (start == OFFSET(foo))
  2087. *((int *)buf) = task->thread.fdr;
  2088. else if (start == OFFSET(fos))
  2089. *((int *)buf) = (task->thread.fdr>>32) & 0xffff;
  2090. else if (start == OFFSET(mxcsr))
  2091. *((int *)buf) = ((task->thread.fcr>>32) & 0xff80)
  2092. | ((task->thread.fsr>>32) & 0x3f);
  2093. buf += 4;
  2094. start += 4;
  2095. }
  2096. }
  2097. static void setfpxreg(struct task_struct *task, int start, int end, char *buf)
  2098. {
  2099. int min_val, num32;
  2100. short num;
  2101. unsigned long num64;
  2102. min_val = min(end, OFFSET(fop));
  2103. while (start < min_val) {
  2104. num = *((short *)buf);
  2105. if (start == OFFSET(cwd)) {
  2106. task->thread.fcr = (task->thread.fcr & (~0x1f3f))
  2107. | (num & 0x1f3f);
  2108. } else if (start == OFFSET(swd)) {
  2109. task->thread.fsr = (task->thread.fsr & (~0xffff)) | num;
  2110. } else if (start == OFFSET(twd)) {
  2111. task->thread.fsr = (task->thread.fsr & (~0xffff0000))
  2112. | (((int)num) << 16);
  2113. }
  2114. buf += 2;
  2115. start += 2;
  2116. }
  2117. /* skip fop element */
  2118. if (start == OFFSET(fop)) {
  2119. start += 2;
  2120. buf += 2;
  2121. }
  2122. while (start < end) {
  2123. num32 = *((int *)buf);
  2124. if (start == OFFSET(fip))
  2125. task->thread.fir = (task->thread.fir & (~0xffffffff))
  2126. | num32;
  2127. else if (start == OFFSET(foo))
  2128. task->thread.fdr = (task->thread.fdr & (~0xffffffff))
  2129. | num32;
  2130. else if (start == OFFSET(mxcsr)) {
  2131. num64 = num32 & 0xff10;
  2132. task->thread.fcr = (task->thread.fcr &
  2133. (~0xff1000000000UL)) | (num64<<32);
  2134. num64 = num32 & 0x3f;
  2135. task->thread.fsr = (task->thread.fsr &
  2136. (~0x3f00000000UL)) | (num64<<32);
  2137. }
  2138. buf += 4;
  2139. start += 4;
  2140. }
  2141. }
  2142. static void do_fpxregs_get(struct unw_frame_info *info, void *arg)
  2143. {
  2144. struct regset_getset *dst = arg;
  2145. struct task_struct *task = dst->target;
  2146. struct pt_regs *pt;
  2147. char buf[128];
  2148. int start, end, tos;
  2149. if (dst->count == 0 || unw_unwind_to_user(info) < 0)
  2150. return;
  2151. if (dst->pos < OFFSET(st_space[0])) {
  2152. end = min(dst->pos + dst->count, (unsigned int)32);
  2153. getfpxreg(task, dst->pos, end, buf);
  2154. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  2155. &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
  2156. 0, OFFSET(st_space[0]));
  2157. if (dst->ret || dst->count == 0)
  2158. return;
  2159. }
  2160. if (dst->pos < OFFSET(xmm_space[0])) {
  2161. pt = task_pt_regs(task);
  2162. tos = (task->thread.fsr >> 11) & 7;
  2163. end = min(dst->pos + dst->count,
  2164. (unsigned int)OFFSET(xmm_space[0]));
  2165. start = (dst->pos - OFFSET(st_space[0])) / 16;
  2166. end = (end - OFFSET(st_space[0])) / 16;
  2167. for (; start < end; start++)
  2168. access_fpreg_ia32(start, buf + 16 * start, pt,
  2169. info->sw, tos, 0);
  2170. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  2171. &dst->u.get.kbuf, &dst->u.get.ubuf,
  2172. buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
  2173. if (dst->ret || dst->count == 0)
  2174. return;
  2175. }
  2176. if (dst->pos < OFFSET(padding[0]))
  2177. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  2178. &dst->u.get.kbuf, &dst->u.get.ubuf,
  2179. &info->sw->f16, OFFSET(xmm_space[0]),
  2180. OFFSET(padding[0]));
  2181. }
  2182. static void do_fpxregs_set(struct unw_frame_info *info, void *arg)
  2183. {
  2184. struct regset_getset *dst = arg;
  2185. struct task_struct *task = dst->target;
  2186. char buf[128];
  2187. int start, end;
  2188. if (dst->count == 0 || unw_unwind_to_user(info) < 0)
  2189. return;
  2190. if (dst->pos < OFFSET(st_space[0])) {
  2191. start = dst->pos;
  2192. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  2193. &dst->u.set.kbuf, &dst->u.set.ubuf,
  2194. buf, 0, OFFSET(st_space[0]));
  2195. if (dst->ret)
  2196. return;
  2197. setfpxreg(task, start, dst->pos, buf);
  2198. if (dst->count == 0)
  2199. return;
  2200. }
  2201. if (dst->pos < OFFSET(xmm_space[0])) {
  2202. struct pt_regs *pt;
  2203. int tos;
  2204. pt = task_pt_regs(task);
  2205. tos = (task->thread.fsr >> 11) & 7;
  2206. start = (dst->pos - OFFSET(st_space[0])) / 16;
  2207. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  2208. &dst->u.set.kbuf, &dst->u.set.ubuf,
  2209. buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
  2210. if (dst->ret)
  2211. return;
  2212. end = (dst->pos - OFFSET(st_space[0])) / 16;
  2213. for (; start < end; start++)
  2214. access_fpreg_ia32(start, buf + 16 * start, pt, info->sw,
  2215. tos, 1);
  2216. if (dst->count == 0)
  2217. return;
  2218. }
  2219. if (dst->pos < OFFSET(padding[0]))
  2220. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  2221. &dst->u.set.kbuf, &dst->u.set.ubuf,
  2222. &info->sw->f16, OFFSET(xmm_space[0]),
  2223. OFFSET(padding[0]));
  2224. }
  2225. #undef OFFSET
  2226. static int do_regset_call(void (*call)(struct unw_frame_info *, void *),
  2227. struct task_struct *target,
  2228. const struct user_regset *regset,
  2229. unsigned int pos, unsigned int count,
  2230. const void *kbuf, const void __user *ubuf)
  2231. {
  2232. struct regset_getset info = { .target = target, .regset = regset,
  2233. .pos = pos, .count = count,
  2234. .u.set = { .kbuf = kbuf, .ubuf = ubuf },
  2235. .ret = 0 };
  2236. if (target == current)
  2237. unw_init_running(call, &info);
  2238. else {
  2239. struct unw_frame_info ufi;
  2240. memset(&ufi, 0, sizeof(ufi));
  2241. unw_init_from_blocked_task(&ufi, target);
  2242. (*call)(&ufi, &info);
  2243. }
  2244. return info.ret;
  2245. }
  2246. static int ia32_fpregs_get(struct task_struct *target,
  2247. const struct user_regset *regset,
  2248. unsigned int pos, unsigned int count,
  2249. void *kbuf, void __user *ubuf)
  2250. {
  2251. return do_regset_call(do_fpregs_get, target, regset, pos, count,
  2252. kbuf, ubuf);
  2253. }
  2254. static int ia32_fpregs_set(struct task_struct *target,
  2255. const struct user_regset *regset,
  2256. unsigned int pos, unsigned int count,
  2257. const void *kbuf, const void __user *ubuf)
  2258. {
  2259. return do_regset_call(do_fpregs_set, target, regset, pos, count,
  2260. kbuf, ubuf);
  2261. }
  2262. static int ia32_fpxregs_get(struct task_struct *target,
  2263. const struct user_regset *regset,
  2264. unsigned int pos, unsigned int count,
  2265. void *kbuf, void __user *ubuf)
  2266. {
  2267. return do_regset_call(do_fpxregs_get, target, regset, pos, count,
  2268. kbuf, ubuf);
  2269. }
  2270. static int ia32_fpxregs_set(struct task_struct *target,
  2271. const struct user_regset *regset,
  2272. unsigned int pos, unsigned int count,
  2273. const void *kbuf, const void __user *ubuf)
  2274. {
  2275. return do_regset_call(do_fpxregs_set, target, regset, pos, count,
  2276. kbuf, ubuf);
  2277. }
  2278. static int ia32_genregs_get(struct task_struct *target,
  2279. const struct user_regset *regset,
  2280. unsigned int pos, unsigned int count,
  2281. void *kbuf, void __user *ubuf)
  2282. {
  2283. if (kbuf) {
  2284. u32 *kp = kbuf;
  2285. while (count > 0) {
  2286. *kp++ = getreg(target, pos);
  2287. pos += 4;
  2288. count -= 4;
  2289. }
  2290. } else {
  2291. u32 __user *up = ubuf;
  2292. while (count > 0) {
  2293. if (__put_user(getreg(target, pos), up++))
  2294. return -EFAULT;
  2295. pos += 4;
  2296. count -= 4;
  2297. }
  2298. }
  2299. return 0;
  2300. }
  2301. static int ia32_genregs_set(struct task_struct *target,
  2302. const struct user_regset *regset,
  2303. unsigned int pos, unsigned int count,
  2304. const void *kbuf, const void __user *ubuf)
  2305. {
  2306. int ret = 0;
  2307. if (kbuf) {
  2308. const u32 *kp = kbuf;
  2309. while (!ret && count > 0) {
  2310. putreg(target, pos, *kp++);
  2311. pos += 4;
  2312. count -= 4;
  2313. }
  2314. } else {
  2315. const u32 __user *up = ubuf;
  2316. u32 val;
  2317. while (!ret && count > 0) {
  2318. ret = __get_user(val, up++);
  2319. if (!ret)
  2320. putreg(target, pos, val);
  2321. pos += 4;
  2322. count -= 4;
  2323. }
  2324. }
  2325. return ret;
  2326. }
  2327. static int ia32_tls_active(struct task_struct *target,
  2328. const struct user_regset *regset)
  2329. {
  2330. struct thread_struct *t = &target->thread;
  2331. int n = GDT_ENTRY_TLS_ENTRIES;
  2332. while (n > 0 && desc_empty(&t->tls_array[n -1]))
  2333. --n;
  2334. return n;
  2335. }
  2336. static int ia32_tls_get(struct task_struct *target,
  2337. const struct user_regset *regset, unsigned int pos,
  2338. unsigned int count, void *kbuf, void __user *ubuf)
  2339. {
  2340. const struct desc_struct *tls;
  2341. if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
  2342. (pos % sizeof(struct ia32_user_desc)) != 0 ||
  2343. (count % sizeof(struct ia32_user_desc)) != 0)
  2344. return -EINVAL;
  2345. pos /= sizeof(struct ia32_user_desc);
  2346. count /= sizeof(struct ia32_user_desc);
  2347. tls = &target->thread.tls_array[pos];
  2348. if (kbuf) {
  2349. struct ia32_user_desc *info = kbuf;
  2350. while (count-- > 0)
  2351. fill_user_desc(info++, GDT_ENTRY_TLS_MIN + pos++,
  2352. tls++);
  2353. } else {
  2354. struct ia32_user_desc __user *u_info = ubuf;
  2355. while (count-- > 0) {
  2356. struct ia32_user_desc info;
  2357. fill_user_desc(&info, GDT_ENTRY_TLS_MIN + pos++, tls++);
  2358. if (__copy_to_user(u_info++, &info, sizeof(info)))
  2359. return -EFAULT;
  2360. }
  2361. }
  2362. return 0;
  2363. }
  2364. static int ia32_tls_set(struct task_struct *target,
  2365. const struct user_regset *regset, unsigned int pos,
  2366. unsigned int count, const void *kbuf, const void __user *ubuf)
  2367. {
  2368. struct ia32_user_desc infobuf[GDT_ENTRY_TLS_ENTRIES];
  2369. const struct ia32_user_desc *info;
  2370. if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
  2371. (pos % sizeof(struct ia32_user_desc)) != 0 ||
  2372. (count % sizeof(struct ia32_user_desc)) != 0)
  2373. return -EINVAL;
  2374. if (kbuf)
  2375. info = kbuf;
  2376. else if (__copy_from_user(infobuf, ubuf, count))
  2377. return -EFAULT;
  2378. else
  2379. info = infobuf;
  2380. set_tls_desc(target,
  2381. GDT_ENTRY_TLS_MIN + (pos / sizeof(struct ia32_user_desc)),
  2382. info, count / sizeof(struct ia32_user_desc));
  2383. return 0;
  2384. }
  2385. /*
  2386. * This should match arch/i386/kernel/ptrace.c:native_regsets.
  2387. * XXX ioperm? vm86?
  2388. */
  2389. static const struct user_regset ia32_regsets[] = {
  2390. {
  2391. .core_note_type = NT_PRSTATUS,
  2392. .n = sizeof(struct user_regs_struct32)/4,
  2393. .size = 4, .align = 4,
  2394. .get = ia32_genregs_get, .set = ia32_genregs_set
  2395. },
  2396. {
  2397. .core_note_type = NT_PRFPREG,
  2398. .n = sizeof(struct ia32_user_i387_struct) / 4,
  2399. .size = 4, .align = 4,
  2400. .get = ia32_fpregs_get, .set = ia32_fpregs_set
  2401. },
  2402. {
  2403. .core_note_type = NT_PRXFPREG,
  2404. .n = sizeof(struct ia32_user_fxsr_struct) / 4,
  2405. .size = 4, .align = 4,
  2406. .get = ia32_fpxregs_get, .set = ia32_fpxregs_set
  2407. },
  2408. {
  2409. .core_note_type = NT_386_TLS,
  2410. .n = GDT_ENTRY_TLS_ENTRIES,
  2411. .bias = GDT_ENTRY_TLS_MIN,
  2412. .size = sizeof(struct ia32_user_desc),
  2413. .align = sizeof(struct ia32_user_desc),
  2414. .active = ia32_tls_active,
  2415. .get = ia32_tls_get, .set = ia32_tls_set,
  2416. },
  2417. };
  2418. const struct user_regset_view user_ia32_view = {
  2419. .name = "i386", .e_machine = EM_386,
  2420. .regsets = ia32_regsets, .n = ARRAY_SIZE(ia32_regsets)
  2421. };
  2422. long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high,
  2423. __u32 len_low, __u32 len_high, int advice)
  2424. {
  2425. return sys_fadvise64_64(fd,
  2426. (((u64)offset_high)<<32) | offset_low,
  2427. (((u64)len_high)<<32) | len_low,
  2428. advice);
  2429. }
  2430. #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */
  2431. asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid)
  2432. {
  2433. uid_t sruid, seuid;
  2434. sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
  2435. seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
  2436. return sys_setreuid(sruid, seuid);
  2437. }
  2438. asmlinkage long
  2439. sys32_setresuid(compat_uid_t ruid, compat_uid_t euid,
  2440. compat_uid_t suid)
  2441. {
  2442. uid_t sruid, seuid, ssuid;
  2443. sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
  2444. seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
  2445. ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid);
  2446. return sys_setresuid(sruid, seuid, ssuid);
  2447. }
  2448. asmlinkage long
  2449. sys32_setregid(compat_gid_t rgid, compat_gid_t egid)
  2450. {
  2451. gid_t srgid, segid;
  2452. srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
  2453. segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
  2454. return sys_setregid(srgid, segid);
  2455. }
  2456. asmlinkage long
  2457. sys32_setresgid(compat_gid_t rgid, compat_gid_t egid,
  2458. compat_gid_t sgid)
  2459. {
  2460. gid_t srgid, segid, ssgid;
  2461. srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
  2462. segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
  2463. ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid);
  2464. return sys_setresgid(srgid, segid, ssgid);
  2465. }
  2466. #endif /* NOTYET */