memcontrol.c 185 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * Memory thresholds
  10. * Copyright (C) 2009 Nokia Corporation
  11. * Author: Kirill A. Shutemov
  12. *
  13. * Kernel Memory Controller
  14. * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15. * Authors: Glauber Costa and Suleiman Souhlal
  16. *
  17. * This program is free software; you can redistribute it and/or modify
  18. * it under the terms of the GNU General Public License as published by
  19. * the Free Software Foundation; either version 2 of the License, or
  20. * (at your option) any later version.
  21. *
  22. * This program is distributed in the hope that it will be useful,
  23. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  24. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  25. * GNU General Public License for more details.
  26. */
  27. #include <linux/res_counter.h>
  28. #include <linux/memcontrol.h>
  29. #include <linux/cgroup.h>
  30. #include <linux/mm.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/smp.h>
  34. #include <linux/page-flags.h>
  35. #include <linux/backing-dev.h>
  36. #include <linux/bit_spinlock.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/limits.h>
  39. #include <linux/export.h>
  40. #include <linux/mutex.h>
  41. #include <linux/rbtree.h>
  42. #include <linux/slab.h>
  43. #include <linux/swap.h>
  44. #include <linux/swapops.h>
  45. #include <linux/spinlock.h>
  46. #include <linux/eventfd.h>
  47. #include <linux/sort.h>
  48. #include <linux/fs.h>
  49. #include <linux/seq_file.h>
  50. #include <linux/vmalloc.h>
  51. #include <linux/vmpressure.h>
  52. #include <linux/mm_inline.h>
  53. #include <linux/page_cgroup.h>
  54. #include <linux/cpu.h>
  55. #include <linux/oom.h>
  56. #include "internal.h"
  57. #include <net/sock.h>
  58. #include <net/ip.h>
  59. #include <net/tcp_memcontrol.h>
  60. #include <asm/uaccess.h>
  61. #include <trace/events/vmscan.h>
  62. struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  63. EXPORT_SYMBOL(mem_cgroup_subsys);
  64. #define MEM_CGROUP_RECLAIM_RETRIES 5
  65. static struct mem_cgroup *root_mem_cgroup __read_mostly;
  66. #ifdef CONFIG_MEMCG_SWAP
  67. /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  68. int do_swap_account __read_mostly;
  69. /* for remember boot option*/
  70. #ifdef CONFIG_MEMCG_SWAP_ENABLED
  71. static int really_do_swap_account __initdata = 1;
  72. #else
  73. static int really_do_swap_account __initdata = 0;
  74. #endif
  75. #else
  76. #define do_swap_account 0
  77. #endif
  78. /*
  79. * Statistics for memory cgroup.
  80. */
  81. enum mem_cgroup_stat_index {
  82. /*
  83. * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  84. */
  85. MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
  86. MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
  87. MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
  88. MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
  89. MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
  90. MEM_CGROUP_STAT_NSTATS,
  91. };
  92. static const char * const mem_cgroup_stat_names[] = {
  93. "cache",
  94. "rss",
  95. "rss_huge",
  96. "mapped_file",
  97. "swap",
  98. };
  99. enum mem_cgroup_events_index {
  100. MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
  101. MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
  102. MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
  103. MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
  104. MEM_CGROUP_EVENTS_NSTATS,
  105. };
  106. static const char * const mem_cgroup_events_names[] = {
  107. "pgpgin",
  108. "pgpgout",
  109. "pgfault",
  110. "pgmajfault",
  111. };
  112. static const char * const mem_cgroup_lru_names[] = {
  113. "inactive_anon",
  114. "active_anon",
  115. "inactive_file",
  116. "active_file",
  117. "unevictable",
  118. };
  119. /*
  120. * Per memcg event counter is incremented at every pagein/pageout. With THP,
  121. * it will be incremated by the number of pages. This counter is used for
  122. * for trigger some periodic events. This is straightforward and better
  123. * than using jiffies etc. to handle periodic memcg event.
  124. */
  125. enum mem_cgroup_events_target {
  126. MEM_CGROUP_TARGET_THRESH,
  127. MEM_CGROUP_TARGET_SOFTLIMIT,
  128. MEM_CGROUP_TARGET_NUMAINFO,
  129. MEM_CGROUP_NTARGETS,
  130. };
  131. #define THRESHOLDS_EVENTS_TARGET 128
  132. #define SOFTLIMIT_EVENTS_TARGET 1024
  133. #define NUMAINFO_EVENTS_TARGET 1024
  134. struct mem_cgroup_stat_cpu {
  135. long count[MEM_CGROUP_STAT_NSTATS];
  136. unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
  137. unsigned long nr_page_events;
  138. unsigned long targets[MEM_CGROUP_NTARGETS];
  139. };
  140. struct mem_cgroup_reclaim_iter {
  141. /*
  142. * last scanned hierarchy member. Valid only if last_dead_count
  143. * matches memcg->dead_count of the hierarchy root group.
  144. */
  145. struct mem_cgroup *last_visited;
  146. unsigned long last_dead_count;
  147. /* scan generation, increased every round-trip */
  148. unsigned int generation;
  149. };
  150. /*
  151. * per-zone information in memory controller.
  152. */
  153. struct mem_cgroup_per_zone {
  154. struct lruvec lruvec;
  155. unsigned long lru_size[NR_LRU_LISTS];
  156. struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
  157. struct rb_node tree_node; /* RB tree node */
  158. unsigned long long usage_in_excess;/* Set to the value by which */
  159. /* the soft limit is exceeded*/
  160. bool on_tree;
  161. struct mem_cgroup *memcg; /* Back pointer, we cannot */
  162. /* use container_of */
  163. };
  164. struct mem_cgroup_per_node {
  165. struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
  166. };
  167. struct mem_cgroup_lru_info {
  168. struct mem_cgroup_per_node *nodeinfo[0];
  169. };
  170. /*
  171. * Cgroups above their limits are maintained in a RB-Tree, independent of
  172. * their hierarchy representation
  173. */
  174. struct mem_cgroup_tree_per_zone {
  175. struct rb_root rb_root;
  176. spinlock_t lock;
  177. };
  178. struct mem_cgroup_tree_per_node {
  179. struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
  180. };
  181. struct mem_cgroup_tree {
  182. struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  183. };
  184. static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  185. struct mem_cgroup_threshold {
  186. struct eventfd_ctx *eventfd;
  187. u64 threshold;
  188. };
  189. /* For threshold */
  190. struct mem_cgroup_threshold_ary {
  191. /* An array index points to threshold just below or equal to usage. */
  192. int current_threshold;
  193. /* Size of entries[] */
  194. unsigned int size;
  195. /* Array of thresholds */
  196. struct mem_cgroup_threshold entries[0];
  197. };
  198. struct mem_cgroup_thresholds {
  199. /* Primary thresholds array */
  200. struct mem_cgroup_threshold_ary *primary;
  201. /*
  202. * Spare threshold array.
  203. * This is needed to make mem_cgroup_unregister_event() "never fail".
  204. * It must be able to store at least primary->size - 1 entries.
  205. */
  206. struct mem_cgroup_threshold_ary *spare;
  207. };
  208. /* for OOM */
  209. struct mem_cgroup_eventfd_list {
  210. struct list_head list;
  211. struct eventfd_ctx *eventfd;
  212. };
  213. static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  214. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  215. /*
  216. * The memory controller data structure. The memory controller controls both
  217. * page cache and RSS per cgroup. We would eventually like to provide
  218. * statistics based on the statistics developed by Rik Van Riel for clock-pro,
  219. * to help the administrator determine what knobs to tune.
  220. *
  221. * TODO: Add a water mark for the memory controller. Reclaim will begin when
  222. * we hit the water mark. May be even add a low water mark, such that
  223. * no reclaim occurs from a cgroup at it's low water mark, this is
  224. * a feature that will be implemented much later in the future.
  225. */
  226. struct mem_cgroup {
  227. struct cgroup_subsys_state css;
  228. /*
  229. * the counter to account for memory usage
  230. */
  231. struct res_counter res;
  232. /* vmpressure notifications */
  233. struct vmpressure vmpressure;
  234. union {
  235. /*
  236. * the counter to account for mem+swap usage.
  237. */
  238. struct res_counter memsw;
  239. /*
  240. * rcu_freeing is used only when freeing struct mem_cgroup,
  241. * so put it into a union to avoid wasting more memory.
  242. * It must be disjoint from the css field. It could be
  243. * in a union with the res field, but res plays a much
  244. * larger part in mem_cgroup life than memsw, and might
  245. * be of interest, even at time of free, when debugging.
  246. * So share rcu_head with the less interesting memsw.
  247. */
  248. struct rcu_head rcu_freeing;
  249. /*
  250. * We also need some space for a worker in deferred freeing.
  251. * By the time we call it, rcu_freeing is no longer in use.
  252. */
  253. struct work_struct work_freeing;
  254. };
  255. /*
  256. * the counter to account for kernel memory usage.
  257. */
  258. struct res_counter kmem;
  259. /*
  260. * Should the accounting and control be hierarchical, per subtree?
  261. */
  262. bool use_hierarchy;
  263. unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
  264. bool oom_lock;
  265. atomic_t under_oom;
  266. atomic_t refcnt;
  267. int swappiness;
  268. /* OOM-Killer disable */
  269. int oom_kill_disable;
  270. /* set when res.limit == memsw.limit */
  271. bool memsw_is_minimum;
  272. /* protect arrays of thresholds */
  273. struct mutex thresholds_lock;
  274. /* thresholds for memory usage. RCU-protected */
  275. struct mem_cgroup_thresholds thresholds;
  276. /* thresholds for mem+swap usage. RCU-protected */
  277. struct mem_cgroup_thresholds memsw_thresholds;
  278. /* For oom notifier event fd */
  279. struct list_head oom_notify;
  280. /*
  281. * Should we move charges of a task when a task is moved into this
  282. * mem_cgroup ? And what type of charges should we move ?
  283. */
  284. unsigned long move_charge_at_immigrate;
  285. /*
  286. * set > 0 if pages under this cgroup are moving to other cgroup.
  287. */
  288. atomic_t moving_account;
  289. /* taken only while moving_account > 0 */
  290. spinlock_t move_lock;
  291. /*
  292. * percpu counter.
  293. */
  294. struct mem_cgroup_stat_cpu __percpu *stat;
  295. /*
  296. * used when a cpu is offlined or other synchronizations
  297. * See mem_cgroup_read_stat().
  298. */
  299. struct mem_cgroup_stat_cpu nocpu_base;
  300. spinlock_t pcp_counter_lock;
  301. atomic_t dead_count;
  302. #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
  303. struct tcp_memcontrol tcp_mem;
  304. #endif
  305. #if defined(CONFIG_MEMCG_KMEM)
  306. /* analogous to slab_common's slab_caches list. per-memcg */
  307. struct list_head memcg_slab_caches;
  308. /* Not a spinlock, we can take a lot of time walking the list */
  309. struct mutex slab_caches_mutex;
  310. /* Index in the kmem_cache->memcg_params->memcg_caches array */
  311. int kmemcg_id;
  312. #endif
  313. int last_scanned_node;
  314. #if MAX_NUMNODES > 1
  315. nodemask_t scan_nodes;
  316. atomic_t numainfo_events;
  317. atomic_t numainfo_updating;
  318. #endif
  319. /*
  320. * Per cgroup active and inactive list, similar to the
  321. * per zone LRU lists.
  322. *
  323. * WARNING: This has to be the last element of the struct. Don't
  324. * add new fields after this point.
  325. */
  326. struct mem_cgroup_lru_info info;
  327. };
  328. static size_t memcg_size(void)
  329. {
  330. return sizeof(struct mem_cgroup) +
  331. nr_node_ids * sizeof(struct mem_cgroup_per_node);
  332. }
  333. /* internal only representation about the status of kmem accounting. */
  334. enum {
  335. KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
  336. KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
  337. KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
  338. };
  339. /* We account when limit is on, but only after call sites are patched */
  340. #define KMEM_ACCOUNTED_MASK \
  341. ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
  342. #ifdef CONFIG_MEMCG_KMEM
  343. static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
  344. {
  345. set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
  346. }
  347. static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
  348. {
  349. return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
  350. }
  351. static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
  352. {
  353. set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
  354. }
  355. static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
  356. {
  357. clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
  358. }
  359. static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
  360. {
  361. if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
  362. set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
  363. }
  364. static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
  365. {
  366. return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
  367. &memcg->kmem_account_flags);
  368. }
  369. #endif
  370. /* Stuffs for move charges at task migration. */
  371. /*
  372. * Types of charges to be moved. "move_charge_at_immitgrate" and
  373. * "immigrate_flags" are treated as a left-shifted bitmap of these types.
  374. */
  375. enum move_type {
  376. MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
  377. MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
  378. NR_MOVE_TYPE,
  379. };
  380. /* "mc" and its members are protected by cgroup_mutex */
  381. static struct move_charge_struct {
  382. spinlock_t lock; /* for from, to */
  383. struct mem_cgroup *from;
  384. struct mem_cgroup *to;
  385. unsigned long immigrate_flags;
  386. unsigned long precharge;
  387. unsigned long moved_charge;
  388. unsigned long moved_swap;
  389. struct task_struct *moving_task; /* a task moving charges */
  390. wait_queue_head_t waitq; /* a waitq for other context */
  391. } mc = {
  392. .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  393. .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  394. };
  395. static bool move_anon(void)
  396. {
  397. return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
  398. }
  399. static bool move_file(void)
  400. {
  401. return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
  402. }
  403. /*
  404. * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  405. * limit reclaim to prevent infinite loops, if they ever occur.
  406. */
  407. #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
  408. #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  409. enum charge_type {
  410. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  411. MEM_CGROUP_CHARGE_TYPE_ANON,
  412. MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  413. MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
  414. NR_CHARGE_TYPE,
  415. };
  416. /* for encoding cft->private value on file */
  417. enum res_type {
  418. _MEM,
  419. _MEMSWAP,
  420. _OOM_TYPE,
  421. _KMEM,
  422. };
  423. #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  424. #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
  425. #define MEMFILE_ATTR(val) ((val) & 0xffff)
  426. /* Used for OOM nofiier */
  427. #define OOM_CONTROL (0)
  428. /*
  429. * Reclaim flags for mem_cgroup_hierarchical_reclaim
  430. */
  431. #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
  432. #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
  433. #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
  434. #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
  435. /*
  436. * The memcg_create_mutex will be held whenever a new cgroup is created.
  437. * As a consequence, any change that needs to protect against new child cgroups
  438. * appearing has to hold it as well.
  439. */
  440. static DEFINE_MUTEX(memcg_create_mutex);
  441. static void mem_cgroup_get(struct mem_cgroup *memcg);
  442. static void mem_cgroup_put(struct mem_cgroup *memcg);
  443. static inline
  444. struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
  445. {
  446. return container_of(s, struct mem_cgroup, css);
  447. }
  448. /* Some nice accessors for the vmpressure. */
  449. struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
  450. {
  451. if (!memcg)
  452. memcg = root_mem_cgroup;
  453. return &memcg->vmpressure;
  454. }
  455. struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
  456. {
  457. return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
  458. }
  459. struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
  460. {
  461. return &mem_cgroup_from_css(css)->vmpressure;
  462. }
  463. static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
  464. {
  465. return (memcg == root_mem_cgroup);
  466. }
  467. /* Writing them here to avoid exposing memcg's inner layout */
  468. #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
  469. void sock_update_memcg(struct sock *sk)
  470. {
  471. if (mem_cgroup_sockets_enabled) {
  472. struct mem_cgroup *memcg;
  473. struct cg_proto *cg_proto;
  474. BUG_ON(!sk->sk_prot->proto_cgroup);
  475. /* Socket cloning can throw us here with sk_cgrp already
  476. * filled. It won't however, necessarily happen from
  477. * process context. So the test for root memcg given
  478. * the current task's memcg won't help us in this case.
  479. *
  480. * Respecting the original socket's memcg is a better
  481. * decision in this case.
  482. */
  483. if (sk->sk_cgrp) {
  484. BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
  485. mem_cgroup_get(sk->sk_cgrp->memcg);
  486. return;
  487. }
  488. rcu_read_lock();
  489. memcg = mem_cgroup_from_task(current);
  490. cg_proto = sk->sk_prot->proto_cgroup(memcg);
  491. if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
  492. mem_cgroup_get(memcg);
  493. sk->sk_cgrp = cg_proto;
  494. }
  495. rcu_read_unlock();
  496. }
  497. }
  498. EXPORT_SYMBOL(sock_update_memcg);
  499. void sock_release_memcg(struct sock *sk)
  500. {
  501. if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
  502. struct mem_cgroup *memcg;
  503. WARN_ON(!sk->sk_cgrp->memcg);
  504. memcg = sk->sk_cgrp->memcg;
  505. mem_cgroup_put(memcg);
  506. }
  507. }
  508. struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
  509. {
  510. if (!memcg || mem_cgroup_is_root(memcg))
  511. return NULL;
  512. return &memcg->tcp_mem.cg_proto;
  513. }
  514. EXPORT_SYMBOL(tcp_proto_cgroup);
  515. static void disarm_sock_keys(struct mem_cgroup *memcg)
  516. {
  517. if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
  518. return;
  519. static_key_slow_dec(&memcg_socket_limit_enabled);
  520. }
  521. #else
  522. static void disarm_sock_keys(struct mem_cgroup *memcg)
  523. {
  524. }
  525. #endif
  526. #ifdef CONFIG_MEMCG_KMEM
  527. /*
  528. * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
  529. * There are two main reasons for not using the css_id for this:
  530. * 1) this works better in sparse environments, where we have a lot of memcgs,
  531. * but only a few kmem-limited. Or also, if we have, for instance, 200
  532. * memcgs, and none but the 200th is kmem-limited, we'd have to have a
  533. * 200 entry array for that.
  534. *
  535. * 2) In order not to violate the cgroup API, we would like to do all memory
  536. * allocation in ->create(). At that point, we haven't yet allocated the
  537. * css_id. Having a separate index prevents us from messing with the cgroup
  538. * core for this
  539. *
  540. * The current size of the caches array is stored in
  541. * memcg_limited_groups_array_size. It will double each time we have to
  542. * increase it.
  543. */
  544. static DEFINE_IDA(kmem_limited_groups);
  545. int memcg_limited_groups_array_size;
  546. /*
  547. * MIN_SIZE is different than 1, because we would like to avoid going through
  548. * the alloc/free process all the time. In a small machine, 4 kmem-limited
  549. * cgroups is a reasonable guess. In the future, it could be a parameter or
  550. * tunable, but that is strictly not necessary.
  551. *
  552. * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
  553. * this constant directly from cgroup, but it is understandable that this is
  554. * better kept as an internal representation in cgroup.c. In any case, the
  555. * css_id space is not getting any smaller, and we don't have to necessarily
  556. * increase ours as well if it increases.
  557. */
  558. #define MEMCG_CACHES_MIN_SIZE 4
  559. #define MEMCG_CACHES_MAX_SIZE 65535
  560. /*
  561. * A lot of the calls to the cache allocation functions are expected to be
  562. * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
  563. * conditional to this static branch, we'll have to allow modules that does
  564. * kmem_cache_alloc and the such to see this symbol as well
  565. */
  566. struct static_key memcg_kmem_enabled_key;
  567. EXPORT_SYMBOL(memcg_kmem_enabled_key);
  568. static void disarm_kmem_keys(struct mem_cgroup *memcg)
  569. {
  570. if (memcg_kmem_is_active(memcg)) {
  571. static_key_slow_dec(&memcg_kmem_enabled_key);
  572. ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
  573. }
  574. /*
  575. * This check can't live in kmem destruction function,
  576. * since the charges will outlive the cgroup
  577. */
  578. WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
  579. }
  580. #else
  581. static void disarm_kmem_keys(struct mem_cgroup *memcg)
  582. {
  583. }
  584. #endif /* CONFIG_MEMCG_KMEM */
  585. static void disarm_static_keys(struct mem_cgroup *memcg)
  586. {
  587. disarm_sock_keys(memcg);
  588. disarm_kmem_keys(memcg);
  589. }
  590. static void drain_all_stock_async(struct mem_cgroup *memcg);
  591. static struct mem_cgroup_per_zone *
  592. mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
  593. {
  594. VM_BUG_ON((unsigned)nid >= nr_node_ids);
  595. return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
  596. }
  597. struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
  598. {
  599. return &memcg->css;
  600. }
  601. static struct mem_cgroup_per_zone *
  602. page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
  603. {
  604. int nid = page_to_nid(page);
  605. int zid = page_zonenum(page);
  606. return mem_cgroup_zoneinfo(memcg, nid, zid);
  607. }
  608. static struct mem_cgroup_tree_per_zone *
  609. soft_limit_tree_node_zone(int nid, int zid)
  610. {
  611. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  612. }
  613. static struct mem_cgroup_tree_per_zone *
  614. soft_limit_tree_from_page(struct page *page)
  615. {
  616. int nid = page_to_nid(page);
  617. int zid = page_zonenum(page);
  618. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  619. }
  620. static void
  621. __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
  622. struct mem_cgroup_per_zone *mz,
  623. struct mem_cgroup_tree_per_zone *mctz,
  624. unsigned long long new_usage_in_excess)
  625. {
  626. struct rb_node **p = &mctz->rb_root.rb_node;
  627. struct rb_node *parent = NULL;
  628. struct mem_cgroup_per_zone *mz_node;
  629. if (mz->on_tree)
  630. return;
  631. mz->usage_in_excess = new_usage_in_excess;
  632. if (!mz->usage_in_excess)
  633. return;
  634. while (*p) {
  635. parent = *p;
  636. mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
  637. tree_node);
  638. if (mz->usage_in_excess < mz_node->usage_in_excess)
  639. p = &(*p)->rb_left;
  640. /*
  641. * We can't avoid mem cgroups that are over their soft
  642. * limit by the same amount
  643. */
  644. else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  645. p = &(*p)->rb_right;
  646. }
  647. rb_link_node(&mz->tree_node, parent, p);
  648. rb_insert_color(&mz->tree_node, &mctz->rb_root);
  649. mz->on_tree = true;
  650. }
  651. static void
  652. __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
  653. struct mem_cgroup_per_zone *mz,
  654. struct mem_cgroup_tree_per_zone *mctz)
  655. {
  656. if (!mz->on_tree)
  657. return;
  658. rb_erase(&mz->tree_node, &mctz->rb_root);
  659. mz->on_tree = false;
  660. }
  661. static void
  662. mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
  663. struct mem_cgroup_per_zone *mz,
  664. struct mem_cgroup_tree_per_zone *mctz)
  665. {
  666. spin_lock(&mctz->lock);
  667. __mem_cgroup_remove_exceeded(memcg, mz, mctz);
  668. spin_unlock(&mctz->lock);
  669. }
  670. static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  671. {
  672. unsigned long long excess;
  673. struct mem_cgroup_per_zone *mz;
  674. struct mem_cgroup_tree_per_zone *mctz;
  675. int nid = page_to_nid(page);
  676. int zid = page_zonenum(page);
  677. mctz = soft_limit_tree_from_page(page);
  678. /*
  679. * Necessary to update all ancestors when hierarchy is used.
  680. * because their event counter is not touched.
  681. */
  682. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  683. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  684. excess = res_counter_soft_limit_excess(&memcg->res);
  685. /*
  686. * We have to update the tree if mz is on RB-tree or
  687. * mem is over its softlimit.
  688. */
  689. if (excess || mz->on_tree) {
  690. spin_lock(&mctz->lock);
  691. /* if on-tree, remove it */
  692. if (mz->on_tree)
  693. __mem_cgroup_remove_exceeded(memcg, mz, mctz);
  694. /*
  695. * Insert again. mz->usage_in_excess will be updated.
  696. * If excess is 0, no tree ops.
  697. */
  698. __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
  699. spin_unlock(&mctz->lock);
  700. }
  701. }
  702. }
  703. static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  704. {
  705. int node, zone;
  706. struct mem_cgroup_per_zone *mz;
  707. struct mem_cgroup_tree_per_zone *mctz;
  708. for_each_node(node) {
  709. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  710. mz = mem_cgroup_zoneinfo(memcg, node, zone);
  711. mctz = soft_limit_tree_node_zone(node, zone);
  712. mem_cgroup_remove_exceeded(memcg, mz, mctz);
  713. }
  714. }
  715. }
  716. static struct mem_cgroup_per_zone *
  717. __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  718. {
  719. struct rb_node *rightmost = NULL;
  720. struct mem_cgroup_per_zone *mz;
  721. retry:
  722. mz = NULL;
  723. rightmost = rb_last(&mctz->rb_root);
  724. if (!rightmost)
  725. goto done; /* Nothing to reclaim from */
  726. mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
  727. /*
  728. * Remove the node now but someone else can add it back,
  729. * we will to add it back at the end of reclaim to its correct
  730. * position in the tree.
  731. */
  732. __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
  733. if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
  734. !css_tryget(&mz->memcg->css))
  735. goto retry;
  736. done:
  737. return mz;
  738. }
  739. static struct mem_cgroup_per_zone *
  740. mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  741. {
  742. struct mem_cgroup_per_zone *mz;
  743. spin_lock(&mctz->lock);
  744. mz = __mem_cgroup_largest_soft_limit_node(mctz);
  745. spin_unlock(&mctz->lock);
  746. return mz;
  747. }
  748. /*
  749. * Implementation Note: reading percpu statistics for memcg.
  750. *
  751. * Both of vmstat[] and percpu_counter has threshold and do periodic
  752. * synchronization to implement "quick" read. There are trade-off between
  753. * reading cost and precision of value. Then, we may have a chance to implement
  754. * a periodic synchronizion of counter in memcg's counter.
  755. *
  756. * But this _read() function is used for user interface now. The user accounts
  757. * memory usage by memory cgroup and he _always_ requires exact value because
  758. * he accounts memory. Even if we provide quick-and-fuzzy read, we always
  759. * have to visit all online cpus and make sum. So, for now, unnecessary
  760. * synchronization is not implemented. (just implemented for cpu hotplug)
  761. *
  762. * If there are kernel internal actions which can make use of some not-exact
  763. * value, and reading all cpu value can be performance bottleneck in some
  764. * common workload, threashold and synchonization as vmstat[] should be
  765. * implemented.
  766. */
  767. static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
  768. enum mem_cgroup_stat_index idx)
  769. {
  770. long val = 0;
  771. int cpu;
  772. get_online_cpus();
  773. for_each_online_cpu(cpu)
  774. val += per_cpu(memcg->stat->count[idx], cpu);
  775. #ifdef CONFIG_HOTPLUG_CPU
  776. spin_lock(&memcg->pcp_counter_lock);
  777. val += memcg->nocpu_base.count[idx];
  778. spin_unlock(&memcg->pcp_counter_lock);
  779. #endif
  780. put_online_cpus();
  781. return val;
  782. }
  783. static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
  784. bool charge)
  785. {
  786. int val = (charge) ? 1 : -1;
  787. this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
  788. }
  789. static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
  790. enum mem_cgroup_events_index idx)
  791. {
  792. unsigned long val = 0;
  793. int cpu;
  794. for_each_online_cpu(cpu)
  795. val += per_cpu(memcg->stat->events[idx], cpu);
  796. #ifdef CONFIG_HOTPLUG_CPU
  797. spin_lock(&memcg->pcp_counter_lock);
  798. val += memcg->nocpu_base.events[idx];
  799. spin_unlock(&memcg->pcp_counter_lock);
  800. #endif
  801. return val;
  802. }
  803. static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  804. struct page *page,
  805. bool anon, int nr_pages)
  806. {
  807. preempt_disable();
  808. /*
  809. * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  810. * counted as CACHE even if it's on ANON LRU.
  811. */
  812. if (anon)
  813. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
  814. nr_pages);
  815. else
  816. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
  817. nr_pages);
  818. if (PageTransHuge(page))
  819. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  820. nr_pages);
  821. /* pagein of a big page is an event. So, ignore page size */
  822. if (nr_pages > 0)
  823. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
  824. else {
  825. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
  826. nr_pages = -nr_pages; /* for event */
  827. }
  828. __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  829. preempt_enable();
  830. }
  831. unsigned long
  832. mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  833. {
  834. struct mem_cgroup_per_zone *mz;
  835. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  836. return mz->lru_size[lru];
  837. }
  838. static unsigned long
  839. mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
  840. unsigned int lru_mask)
  841. {
  842. struct mem_cgroup_per_zone *mz;
  843. enum lru_list lru;
  844. unsigned long ret = 0;
  845. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  846. for_each_lru(lru) {
  847. if (BIT(lru) & lru_mask)
  848. ret += mz->lru_size[lru];
  849. }
  850. return ret;
  851. }
  852. static unsigned long
  853. mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  854. int nid, unsigned int lru_mask)
  855. {
  856. u64 total = 0;
  857. int zid;
  858. for (zid = 0; zid < MAX_NR_ZONES; zid++)
  859. total += mem_cgroup_zone_nr_lru_pages(memcg,
  860. nid, zid, lru_mask);
  861. return total;
  862. }
  863. static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  864. unsigned int lru_mask)
  865. {
  866. int nid;
  867. u64 total = 0;
  868. for_each_node_state(nid, N_MEMORY)
  869. total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  870. return total;
  871. }
  872. static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  873. enum mem_cgroup_events_target target)
  874. {
  875. unsigned long val, next;
  876. val = __this_cpu_read(memcg->stat->nr_page_events);
  877. next = __this_cpu_read(memcg->stat->targets[target]);
  878. /* from time_after() in jiffies.h */
  879. if ((long)next - (long)val < 0) {
  880. switch (target) {
  881. case MEM_CGROUP_TARGET_THRESH:
  882. next = val + THRESHOLDS_EVENTS_TARGET;
  883. break;
  884. case MEM_CGROUP_TARGET_SOFTLIMIT:
  885. next = val + SOFTLIMIT_EVENTS_TARGET;
  886. break;
  887. case MEM_CGROUP_TARGET_NUMAINFO:
  888. next = val + NUMAINFO_EVENTS_TARGET;
  889. break;
  890. default:
  891. break;
  892. }
  893. __this_cpu_write(memcg->stat->targets[target], next);
  894. return true;
  895. }
  896. return false;
  897. }
  898. /*
  899. * Check events in order.
  900. *
  901. */
  902. static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  903. {
  904. preempt_disable();
  905. /* threshold event is triggered in finer grain than soft limit */
  906. if (unlikely(mem_cgroup_event_ratelimit(memcg,
  907. MEM_CGROUP_TARGET_THRESH))) {
  908. bool do_softlimit;
  909. bool do_numainfo __maybe_unused;
  910. do_softlimit = mem_cgroup_event_ratelimit(memcg,
  911. MEM_CGROUP_TARGET_SOFTLIMIT);
  912. #if MAX_NUMNODES > 1
  913. do_numainfo = mem_cgroup_event_ratelimit(memcg,
  914. MEM_CGROUP_TARGET_NUMAINFO);
  915. #endif
  916. preempt_enable();
  917. mem_cgroup_threshold(memcg);
  918. if (unlikely(do_softlimit))
  919. mem_cgroup_update_tree(memcg, page);
  920. #if MAX_NUMNODES > 1
  921. if (unlikely(do_numainfo))
  922. atomic_inc(&memcg->numainfo_events);
  923. #endif
  924. } else
  925. preempt_enable();
  926. }
  927. struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
  928. {
  929. return mem_cgroup_from_css(
  930. cgroup_subsys_state(cont, mem_cgroup_subsys_id));
  931. }
  932. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  933. {
  934. /*
  935. * mm_update_next_owner() may clear mm->owner to NULL
  936. * if it races with swapoff, page migration, etc.
  937. * So this can be called with p == NULL.
  938. */
  939. if (unlikely(!p))
  940. return NULL;
  941. return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
  942. }
  943. struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
  944. {
  945. struct mem_cgroup *memcg = NULL;
  946. if (!mm)
  947. return NULL;
  948. /*
  949. * Because we have no locks, mm->owner's may be being moved to other
  950. * cgroup. We use css_tryget() here even if this looks
  951. * pessimistic (rather than adding locks here).
  952. */
  953. rcu_read_lock();
  954. do {
  955. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  956. if (unlikely(!memcg))
  957. break;
  958. } while (!css_tryget(&memcg->css));
  959. rcu_read_unlock();
  960. return memcg;
  961. }
  962. /*
  963. * Returns a next (in a pre-order walk) alive memcg (with elevated css
  964. * ref. count) or NULL if the whole root's subtree has been visited.
  965. *
  966. * helper function to be used by mem_cgroup_iter
  967. */
  968. static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
  969. struct mem_cgroup *last_visited)
  970. {
  971. struct cgroup *prev_cgroup, *next_cgroup;
  972. /*
  973. * Root is not visited by cgroup iterators so it needs an
  974. * explicit visit.
  975. */
  976. if (!last_visited)
  977. return root;
  978. prev_cgroup = (last_visited == root) ? NULL
  979. : last_visited->css.cgroup;
  980. skip_node:
  981. next_cgroup = cgroup_next_descendant_pre(
  982. prev_cgroup, root->css.cgroup);
  983. /*
  984. * Even if we found a group we have to make sure it is
  985. * alive. css && !memcg means that the groups should be
  986. * skipped and we should continue the tree walk.
  987. * last_visited css is safe to use because it is
  988. * protected by css_get and the tree walk is rcu safe.
  989. */
  990. if (next_cgroup) {
  991. struct mem_cgroup *mem = mem_cgroup_from_cont(
  992. next_cgroup);
  993. if (css_tryget(&mem->css))
  994. return mem;
  995. else {
  996. prev_cgroup = next_cgroup;
  997. goto skip_node;
  998. }
  999. }
  1000. return NULL;
  1001. }
  1002. /**
  1003. * mem_cgroup_iter - iterate over memory cgroup hierarchy
  1004. * @root: hierarchy root
  1005. * @prev: previously returned memcg, NULL on first invocation
  1006. * @reclaim: cookie for shared reclaim walks, NULL for full walks
  1007. *
  1008. * Returns references to children of the hierarchy below @root, or
  1009. * @root itself, or %NULL after a full round-trip.
  1010. *
  1011. * Caller must pass the return value in @prev on subsequent
  1012. * invocations for reference counting, or use mem_cgroup_iter_break()
  1013. * to cancel a hierarchy walk before the round-trip is complete.
  1014. *
  1015. * Reclaimers can specify a zone and a priority level in @reclaim to
  1016. * divide up the memcgs in the hierarchy among all concurrent
  1017. * reclaimers operating on the same zone and priority.
  1018. */
  1019. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
  1020. struct mem_cgroup *prev,
  1021. struct mem_cgroup_reclaim_cookie *reclaim)
  1022. {
  1023. struct mem_cgroup *memcg = NULL;
  1024. struct mem_cgroup *last_visited = NULL;
  1025. unsigned long uninitialized_var(dead_count);
  1026. if (mem_cgroup_disabled())
  1027. return NULL;
  1028. if (!root)
  1029. root = root_mem_cgroup;
  1030. if (prev && !reclaim)
  1031. last_visited = prev;
  1032. if (!root->use_hierarchy && root != root_mem_cgroup) {
  1033. if (prev)
  1034. goto out_css_put;
  1035. return root;
  1036. }
  1037. rcu_read_lock();
  1038. while (!memcg) {
  1039. struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
  1040. if (reclaim) {
  1041. int nid = zone_to_nid(reclaim->zone);
  1042. int zid = zone_idx(reclaim->zone);
  1043. struct mem_cgroup_per_zone *mz;
  1044. mz = mem_cgroup_zoneinfo(root, nid, zid);
  1045. iter = &mz->reclaim_iter[reclaim->priority];
  1046. last_visited = iter->last_visited;
  1047. if (prev && reclaim->generation != iter->generation) {
  1048. iter->last_visited = NULL;
  1049. goto out_unlock;
  1050. }
  1051. /*
  1052. * If the dead_count mismatches, a destruction
  1053. * has happened or is happening concurrently.
  1054. * If the dead_count matches, a destruction
  1055. * might still happen concurrently, but since
  1056. * we checked under RCU, that destruction
  1057. * won't free the object until we release the
  1058. * RCU reader lock. Thus, the dead_count
  1059. * check verifies the pointer is still valid,
  1060. * css_tryget() verifies the cgroup pointed to
  1061. * is alive.
  1062. */
  1063. dead_count = atomic_read(&root->dead_count);
  1064. smp_rmb();
  1065. last_visited = iter->last_visited;
  1066. if (last_visited) {
  1067. if ((dead_count != iter->last_dead_count) ||
  1068. !css_tryget(&last_visited->css)) {
  1069. last_visited = NULL;
  1070. }
  1071. }
  1072. }
  1073. memcg = __mem_cgroup_iter_next(root, last_visited);
  1074. if (reclaim) {
  1075. if (last_visited)
  1076. css_put(&last_visited->css);
  1077. iter->last_visited = memcg;
  1078. smp_wmb();
  1079. iter->last_dead_count = dead_count;
  1080. if (!memcg)
  1081. iter->generation++;
  1082. else if (!prev && memcg)
  1083. reclaim->generation = iter->generation;
  1084. }
  1085. if (prev && !memcg)
  1086. goto out_unlock;
  1087. }
  1088. out_unlock:
  1089. rcu_read_unlock();
  1090. out_css_put:
  1091. if (prev && prev != root)
  1092. css_put(&prev->css);
  1093. return memcg;
  1094. }
  1095. /**
  1096. * mem_cgroup_iter_break - abort a hierarchy walk prematurely
  1097. * @root: hierarchy root
  1098. * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
  1099. */
  1100. void mem_cgroup_iter_break(struct mem_cgroup *root,
  1101. struct mem_cgroup *prev)
  1102. {
  1103. if (!root)
  1104. root = root_mem_cgroup;
  1105. if (prev && prev != root)
  1106. css_put(&prev->css);
  1107. }
  1108. /*
  1109. * Iteration constructs for visiting all cgroups (under a tree). If
  1110. * loops are exited prematurely (break), mem_cgroup_iter_break() must
  1111. * be used for reference counting.
  1112. */
  1113. #define for_each_mem_cgroup_tree(iter, root) \
  1114. for (iter = mem_cgroup_iter(root, NULL, NULL); \
  1115. iter != NULL; \
  1116. iter = mem_cgroup_iter(root, iter, NULL))
  1117. #define for_each_mem_cgroup(iter) \
  1118. for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
  1119. iter != NULL; \
  1120. iter = mem_cgroup_iter(NULL, iter, NULL))
  1121. void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
  1122. {
  1123. struct mem_cgroup *memcg;
  1124. rcu_read_lock();
  1125. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  1126. if (unlikely(!memcg))
  1127. goto out;
  1128. switch (idx) {
  1129. case PGFAULT:
  1130. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
  1131. break;
  1132. case PGMAJFAULT:
  1133. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
  1134. break;
  1135. default:
  1136. BUG();
  1137. }
  1138. out:
  1139. rcu_read_unlock();
  1140. }
  1141. EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
  1142. /**
  1143. * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
  1144. * @zone: zone of the wanted lruvec
  1145. * @memcg: memcg of the wanted lruvec
  1146. *
  1147. * Returns the lru list vector holding pages for the given @zone and
  1148. * @mem. This can be the global zone lruvec, if the memory controller
  1149. * is disabled.
  1150. */
  1151. struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
  1152. struct mem_cgroup *memcg)
  1153. {
  1154. struct mem_cgroup_per_zone *mz;
  1155. struct lruvec *lruvec;
  1156. if (mem_cgroup_disabled()) {
  1157. lruvec = &zone->lruvec;
  1158. goto out;
  1159. }
  1160. mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
  1161. lruvec = &mz->lruvec;
  1162. out:
  1163. /*
  1164. * Since a node can be onlined after the mem_cgroup was created,
  1165. * we have to be prepared to initialize lruvec->zone here;
  1166. * and if offlined then reonlined, we need to reinitialize it.
  1167. */
  1168. if (unlikely(lruvec->zone != zone))
  1169. lruvec->zone = zone;
  1170. return lruvec;
  1171. }
  1172. /*
  1173. * Following LRU functions are allowed to be used without PCG_LOCK.
  1174. * Operations are called by routine of global LRU independently from memcg.
  1175. * What we have to take care of here is validness of pc->mem_cgroup.
  1176. *
  1177. * Changes to pc->mem_cgroup happens when
  1178. * 1. charge
  1179. * 2. moving account
  1180. * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
  1181. * It is added to LRU before charge.
  1182. * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
  1183. * When moving account, the page is not on LRU. It's isolated.
  1184. */
  1185. /**
  1186. * mem_cgroup_page_lruvec - return lruvec for adding an lru page
  1187. * @page: the page
  1188. * @zone: zone of the page
  1189. */
  1190. struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
  1191. {
  1192. struct mem_cgroup_per_zone *mz;
  1193. struct mem_cgroup *memcg;
  1194. struct page_cgroup *pc;
  1195. struct lruvec *lruvec;
  1196. if (mem_cgroup_disabled()) {
  1197. lruvec = &zone->lruvec;
  1198. goto out;
  1199. }
  1200. pc = lookup_page_cgroup(page);
  1201. memcg = pc->mem_cgroup;
  1202. /*
  1203. * Surreptitiously switch any uncharged offlist page to root:
  1204. * an uncharged page off lru does nothing to secure
  1205. * its former mem_cgroup from sudden removal.
  1206. *
  1207. * Our caller holds lru_lock, and PageCgroupUsed is updated
  1208. * under page_cgroup lock: between them, they make all uses
  1209. * of pc->mem_cgroup safe.
  1210. */
  1211. if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
  1212. pc->mem_cgroup = memcg = root_mem_cgroup;
  1213. mz = page_cgroup_zoneinfo(memcg, page);
  1214. lruvec = &mz->lruvec;
  1215. out:
  1216. /*
  1217. * Since a node can be onlined after the mem_cgroup was created,
  1218. * we have to be prepared to initialize lruvec->zone here;
  1219. * and if offlined then reonlined, we need to reinitialize it.
  1220. */
  1221. if (unlikely(lruvec->zone != zone))
  1222. lruvec->zone = zone;
  1223. return lruvec;
  1224. }
  1225. /**
  1226. * mem_cgroup_update_lru_size - account for adding or removing an lru page
  1227. * @lruvec: mem_cgroup per zone lru vector
  1228. * @lru: index of lru list the page is sitting on
  1229. * @nr_pages: positive when adding or negative when removing
  1230. *
  1231. * This function must be called when a page is added to or removed from an
  1232. * lru list.
  1233. */
  1234. void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  1235. int nr_pages)
  1236. {
  1237. struct mem_cgroup_per_zone *mz;
  1238. unsigned long *lru_size;
  1239. if (mem_cgroup_disabled())
  1240. return;
  1241. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  1242. lru_size = mz->lru_size + lru;
  1243. *lru_size += nr_pages;
  1244. VM_BUG_ON((long)(*lru_size) < 0);
  1245. }
  1246. /*
  1247. * Checks whether given mem is same or in the root_mem_cgroup's
  1248. * hierarchy subtree
  1249. */
  1250. bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
  1251. struct mem_cgroup *memcg)
  1252. {
  1253. if (root_memcg == memcg)
  1254. return true;
  1255. if (!root_memcg->use_hierarchy || !memcg)
  1256. return false;
  1257. return css_is_ancestor(&memcg->css, &root_memcg->css);
  1258. }
  1259. static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
  1260. struct mem_cgroup *memcg)
  1261. {
  1262. bool ret;
  1263. rcu_read_lock();
  1264. ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
  1265. rcu_read_unlock();
  1266. return ret;
  1267. }
  1268. int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
  1269. {
  1270. int ret;
  1271. struct mem_cgroup *curr = NULL;
  1272. struct task_struct *p;
  1273. p = find_lock_task_mm(task);
  1274. if (p) {
  1275. curr = try_get_mem_cgroup_from_mm(p->mm);
  1276. task_unlock(p);
  1277. } else {
  1278. /*
  1279. * All threads may have already detached their mm's, but the oom
  1280. * killer still needs to detect if they have already been oom
  1281. * killed to prevent needlessly killing additional tasks.
  1282. */
  1283. task_lock(task);
  1284. curr = mem_cgroup_from_task(task);
  1285. if (curr)
  1286. css_get(&curr->css);
  1287. task_unlock(task);
  1288. }
  1289. if (!curr)
  1290. return 0;
  1291. /*
  1292. * We should check use_hierarchy of "memcg" not "curr". Because checking
  1293. * use_hierarchy of "curr" here make this function true if hierarchy is
  1294. * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
  1295. * hierarchy(even if use_hierarchy is disabled in "memcg").
  1296. */
  1297. ret = mem_cgroup_same_or_subtree(memcg, curr);
  1298. css_put(&curr->css);
  1299. return ret;
  1300. }
  1301. int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
  1302. {
  1303. unsigned long inactive_ratio;
  1304. unsigned long inactive;
  1305. unsigned long active;
  1306. unsigned long gb;
  1307. inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1308. active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
  1309. gb = (inactive + active) >> (30 - PAGE_SHIFT);
  1310. if (gb)
  1311. inactive_ratio = int_sqrt(10 * gb);
  1312. else
  1313. inactive_ratio = 1;
  1314. return inactive * inactive_ratio < active;
  1315. }
  1316. #define mem_cgroup_from_res_counter(counter, member) \
  1317. container_of(counter, struct mem_cgroup, member)
  1318. /**
  1319. * mem_cgroup_margin - calculate chargeable space of a memory cgroup
  1320. * @memcg: the memory cgroup
  1321. *
  1322. * Returns the maximum amount of memory @mem can be charged with, in
  1323. * pages.
  1324. */
  1325. static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
  1326. {
  1327. unsigned long long margin;
  1328. margin = res_counter_margin(&memcg->res);
  1329. if (do_swap_account)
  1330. margin = min(margin, res_counter_margin(&memcg->memsw));
  1331. return margin >> PAGE_SHIFT;
  1332. }
  1333. int mem_cgroup_swappiness(struct mem_cgroup *memcg)
  1334. {
  1335. struct cgroup *cgrp = memcg->css.cgroup;
  1336. /* root ? */
  1337. if (cgrp->parent == NULL)
  1338. return vm_swappiness;
  1339. return memcg->swappiness;
  1340. }
  1341. /*
  1342. * memcg->moving_account is used for checking possibility that some thread is
  1343. * calling move_account(). When a thread on CPU-A starts moving pages under
  1344. * a memcg, other threads should check memcg->moving_account under
  1345. * rcu_read_lock(), like this:
  1346. *
  1347. * CPU-A CPU-B
  1348. * rcu_read_lock()
  1349. * memcg->moving_account+1 if (memcg->mocing_account)
  1350. * take heavy locks.
  1351. * synchronize_rcu() update something.
  1352. * rcu_read_unlock()
  1353. * start move here.
  1354. */
  1355. /* for quick checking without looking up memcg */
  1356. atomic_t memcg_moving __read_mostly;
  1357. static void mem_cgroup_start_move(struct mem_cgroup *memcg)
  1358. {
  1359. atomic_inc(&memcg_moving);
  1360. atomic_inc(&memcg->moving_account);
  1361. synchronize_rcu();
  1362. }
  1363. static void mem_cgroup_end_move(struct mem_cgroup *memcg)
  1364. {
  1365. /*
  1366. * Now, mem_cgroup_clear_mc() may call this function with NULL.
  1367. * We check NULL in callee rather than caller.
  1368. */
  1369. if (memcg) {
  1370. atomic_dec(&memcg_moving);
  1371. atomic_dec(&memcg->moving_account);
  1372. }
  1373. }
  1374. /*
  1375. * 2 routines for checking "mem" is under move_account() or not.
  1376. *
  1377. * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
  1378. * is used for avoiding races in accounting. If true,
  1379. * pc->mem_cgroup may be overwritten.
  1380. *
  1381. * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
  1382. * under hierarchy of moving cgroups. This is for
  1383. * waiting at hith-memory prressure caused by "move".
  1384. */
  1385. static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
  1386. {
  1387. VM_BUG_ON(!rcu_read_lock_held());
  1388. return atomic_read(&memcg->moving_account) > 0;
  1389. }
  1390. static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
  1391. {
  1392. struct mem_cgroup *from;
  1393. struct mem_cgroup *to;
  1394. bool ret = false;
  1395. /*
  1396. * Unlike task_move routines, we access mc.to, mc.from not under
  1397. * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
  1398. */
  1399. spin_lock(&mc.lock);
  1400. from = mc.from;
  1401. to = mc.to;
  1402. if (!from)
  1403. goto unlock;
  1404. ret = mem_cgroup_same_or_subtree(memcg, from)
  1405. || mem_cgroup_same_or_subtree(memcg, to);
  1406. unlock:
  1407. spin_unlock(&mc.lock);
  1408. return ret;
  1409. }
  1410. static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
  1411. {
  1412. if (mc.moving_task && current != mc.moving_task) {
  1413. if (mem_cgroup_under_move(memcg)) {
  1414. DEFINE_WAIT(wait);
  1415. prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
  1416. /* moving charge context might have finished. */
  1417. if (mc.moving_task)
  1418. schedule();
  1419. finish_wait(&mc.waitq, &wait);
  1420. return true;
  1421. }
  1422. }
  1423. return false;
  1424. }
  1425. /*
  1426. * Take this lock when
  1427. * - a code tries to modify page's memcg while it's USED.
  1428. * - a code tries to modify page state accounting in a memcg.
  1429. * see mem_cgroup_stolen(), too.
  1430. */
  1431. static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
  1432. unsigned long *flags)
  1433. {
  1434. spin_lock_irqsave(&memcg->move_lock, *flags);
  1435. }
  1436. static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
  1437. unsigned long *flags)
  1438. {
  1439. spin_unlock_irqrestore(&memcg->move_lock, *flags);
  1440. }
  1441. #define K(x) ((x) << (PAGE_SHIFT-10))
  1442. /**
  1443. * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
  1444. * @memcg: The memory cgroup that went over limit
  1445. * @p: Task that is going to be killed
  1446. *
  1447. * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
  1448. * enabled
  1449. */
  1450. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  1451. {
  1452. struct cgroup *task_cgrp;
  1453. struct cgroup *mem_cgrp;
  1454. /*
  1455. * Need a buffer in BSS, can't rely on allocations. The code relies
  1456. * on the assumption that OOM is serialized for memory controller.
  1457. * If this assumption is broken, revisit this code.
  1458. */
  1459. static char memcg_name[PATH_MAX];
  1460. int ret;
  1461. struct mem_cgroup *iter;
  1462. unsigned int i;
  1463. if (!p)
  1464. return;
  1465. rcu_read_lock();
  1466. mem_cgrp = memcg->css.cgroup;
  1467. task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
  1468. ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
  1469. if (ret < 0) {
  1470. /*
  1471. * Unfortunately, we are unable to convert to a useful name
  1472. * But we'll still print out the usage information
  1473. */
  1474. rcu_read_unlock();
  1475. goto done;
  1476. }
  1477. rcu_read_unlock();
  1478. pr_info("Task in %s killed", memcg_name);
  1479. rcu_read_lock();
  1480. ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
  1481. if (ret < 0) {
  1482. rcu_read_unlock();
  1483. goto done;
  1484. }
  1485. rcu_read_unlock();
  1486. /*
  1487. * Continues from above, so we don't need an KERN_ level
  1488. */
  1489. pr_cont(" as a result of limit of %s\n", memcg_name);
  1490. done:
  1491. pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
  1492. res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
  1493. res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
  1494. res_counter_read_u64(&memcg->res, RES_FAILCNT));
  1495. pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
  1496. res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
  1497. res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
  1498. res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
  1499. pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
  1500. res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
  1501. res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
  1502. res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
  1503. for_each_mem_cgroup_tree(iter, memcg) {
  1504. pr_info("Memory cgroup stats");
  1505. rcu_read_lock();
  1506. ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
  1507. if (!ret)
  1508. pr_cont(" for %s", memcg_name);
  1509. rcu_read_unlock();
  1510. pr_cont(":");
  1511. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  1512. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  1513. continue;
  1514. pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
  1515. K(mem_cgroup_read_stat(iter, i)));
  1516. }
  1517. for (i = 0; i < NR_LRU_LISTS; i++)
  1518. pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
  1519. K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
  1520. pr_cont("\n");
  1521. }
  1522. }
  1523. /*
  1524. * This function returns the number of memcg under hierarchy tree. Returns
  1525. * 1(self count) if no children.
  1526. */
  1527. static int mem_cgroup_count_children(struct mem_cgroup *memcg)
  1528. {
  1529. int num = 0;
  1530. struct mem_cgroup *iter;
  1531. for_each_mem_cgroup_tree(iter, memcg)
  1532. num++;
  1533. return num;
  1534. }
  1535. /*
  1536. * Return the memory (and swap, if configured) limit for a memcg.
  1537. */
  1538. static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
  1539. {
  1540. u64 limit;
  1541. limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  1542. /*
  1543. * Do not consider swap space if we cannot swap due to swappiness
  1544. */
  1545. if (mem_cgroup_swappiness(memcg)) {
  1546. u64 memsw;
  1547. limit += total_swap_pages << PAGE_SHIFT;
  1548. memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  1549. /*
  1550. * If memsw is finite and limits the amount of swap space
  1551. * available to this memcg, return that limit.
  1552. */
  1553. limit = min(limit, memsw);
  1554. }
  1555. return limit;
  1556. }
  1557. static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1558. int order)
  1559. {
  1560. struct mem_cgroup *iter;
  1561. unsigned long chosen_points = 0;
  1562. unsigned long totalpages;
  1563. unsigned int points = 0;
  1564. struct task_struct *chosen = NULL;
  1565. /*
  1566. * If current has a pending SIGKILL or is exiting, then automatically
  1567. * select it. The goal is to allow it to allocate so that it may
  1568. * quickly exit and free its memory.
  1569. */
  1570. if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
  1571. set_thread_flag(TIF_MEMDIE);
  1572. return;
  1573. }
  1574. check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
  1575. totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
  1576. for_each_mem_cgroup_tree(iter, memcg) {
  1577. struct cgroup *cgroup = iter->css.cgroup;
  1578. struct cgroup_iter it;
  1579. struct task_struct *task;
  1580. cgroup_iter_start(cgroup, &it);
  1581. while ((task = cgroup_iter_next(cgroup, &it))) {
  1582. switch (oom_scan_process_thread(task, totalpages, NULL,
  1583. false)) {
  1584. case OOM_SCAN_SELECT:
  1585. if (chosen)
  1586. put_task_struct(chosen);
  1587. chosen = task;
  1588. chosen_points = ULONG_MAX;
  1589. get_task_struct(chosen);
  1590. /* fall through */
  1591. case OOM_SCAN_CONTINUE:
  1592. continue;
  1593. case OOM_SCAN_ABORT:
  1594. cgroup_iter_end(cgroup, &it);
  1595. mem_cgroup_iter_break(memcg, iter);
  1596. if (chosen)
  1597. put_task_struct(chosen);
  1598. return;
  1599. case OOM_SCAN_OK:
  1600. break;
  1601. };
  1602. points = oom_badness(task, memcg, NULL, totalpages);
  1603. if (points > chosen_points) {
  1604. if (chosen)
  1605. put_task_struct(chosen);
  1606. chosen = task;
  1607. chosen_points = points;
  1608. get_task_struct(chosen);
  1609. }
  1610. }
  1611. cgroup_iter_end(cgroup, &it);
  1612. }
  1613. if (!chosen)
  1614. return;
  1615. points = chosen_points * 1000 / totalpages;
  1616. oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
  1617. NULL, "Memory cgroup out of memory");
  1618. }
  1619. static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
  1620. gfp_t gfp_mask,
  1621. unsigned long flags)
  1622. {
  1623. unsigned long total = 0;
  1624. bool noswap = false;
  1625. int loop;
  1626. if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
  1627. noswap = true;
  1628. if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
  1629. noswap = true;
  1630. for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
  1631. if (loop)
  1632. drain_all_stock_async(memcg);
  1633. total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
  1634. /*
  1635. * Allow limit shrinkers, which are triggered directly
  1636. * by userspace, to catch signals and stop reclaim
  1637. * after minimal progress, regardless of the margin.
  1638. */
  1639. if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
  1640. break;
  1641. if (mem_cgroup_margin(memcg))
  1642. break;
  1643. /*
  1644. * If nothing was reclaimed after two attempts, there
  1645. * may be no reclaimable pages in this hierarchy.
  1646. */
  1647. if (loop && !total)
  1648. break;
  1649. }
  1650. return total;
  1651. }
  1652. /**
  1653. * test_mem_cgroup_node_reclaimable
  1654. * @memcg: the target memcg
  1655. * @nid: the node ID to be checked.
  1656. * @noswap : specify true here if the user wants flle only information.
  1657. *
  1658. * This function returns whether the specified memcg contains any
  1659. * reclaimable pages on a node. Returns true if there are any reclaimable
  1660. * pages in the node.
  1661. */
  1662. static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
  1663. int nid, bool noswap)
  1664. {
  1665. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
  1666. return true;
  1667. if (noswap || !total_swap_pages)
  1668. return false;
  1669. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
  1670. return true;
  1671. return false;
  1672. }
  1673. #if MAX_NUMNODES > 1
  1674. /*
  1675. * Always updating the nodemask is not very good - even if we have an empty
  1676. * list or the wrong list here, we can start from some node and traverse all
  1677. * nodes based on the zonelist. So update the list loosely once per 10 secs.
  1678. *
  1679. */
  1680. static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
  1681. {
  1682. int nid;
  1683. /*
  1684. * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
  1685. * pagein/pageout changes since the last update.
  1686. */
  1687. if (!atomic_read(&memcg->numainfo_events))
  1688. return;
  1689. if (atomic_inc_return(&memcg->numainfo_updating) > 1)
  1690. return;
  1691. /* make a nodemask where this memcg uses memory from */
  1692. memcg->scan_nodes = node_states[N_MEMORY];
  1693. for_each_node_mask(nid, node_states[N_MEMORY]) {
  1694. if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
  1695. node_clear(nid, memcg->scan_nodes);
  1696. }
  1697. atomic_set(&memcg->numainfo_events, 0);
  1698. atomic_set(&memcg->numainfo_updating, 0);
  1699. }
  1700. /*
  1701. * Selecting a node where we start reclaim from. Because what we need is just
  1702. * reducing usage counter, start from anywhere is O,K. Considering
  1703. * memory reclaim from current node, there are pros. and cons.
  1704. *
  1705. * Freeing memory from current node means freeing memory from a node which
  1706. * we'll use or we've used. So, it may make LRU bad. And if several threads
  1707. * hit limits, it will see a contention on a node. But freeing from remote
  1708. * node means more costs for memory reclaim because of memory latency.
  1709. *
  1710. * Now, we use round-robin. Better algorithm is welcomed.
  1711. */
  1712. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1713. {
  1714. int node;
  1715. mem_cgroup_may_update_nodemask(memcg);
  1716. node = memcg->last_scanned_node;
  1717. node = next_node(node, memcg->scan_nodes);
  1718. if (node == MAX_NUMNODES)
  1719. node = first_node(memcg->scan_nodes);
  1720. /*
  1721. * We call this when we hit limit, not when pages are added to LRU.
  1722. * No LRU may hold pages because all pages are UNEVICTABLE or
  1723. * memcg is too small and all pages are not on LRU. In that case,
  1724. * we use curret node.
  1725. */
  1726. if (unlikely(node == MAX_NUMNODES))
  1727. node = numa_node_id();
  1728. memcg->last_scanned_node = node;
  1729. return node;
  1730. }
  1731. /*
  1732. * Check all nodes whether it contains reclaimable pages or not.
  1733. * For quick scan, we make use of scan_nodes. This will allow us to skip
  1734. * unused nodes. But scan_nodes is lazily updated and may not cotain
  1735. * enough new information. We need to do double check.
  1736. */
  1737. static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
  1738. {
  1739. int nid;
  1740. /*
  1741. * quick check...making use of scan_node.
  1742. * We can skip unused nodes.
  1743. */
  1744. if (!nodes_empty(memcg->scan_nodes)) {
  1745. for (nid = first_node(memcg->scan_nodes);
  1746. nid < MAX_NUMNODES;
  1747. nid = next_node(nid, memcg->scan_nodes)) {
  1748. if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
  1749. return true;
  1750. }
  1751. }
  1752. /*
  1753. * Check rest of nodes.
  1754. */
  1755. for_each_node_state(nid, N_MEMORY) {
  1756. if (node_isset(nid, memcg->scan_nodes))
  1757. continue;
  1758. if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
  1759. return true;
  1760. }
  1761. return false;
  1762. }
  1763. #else
  1764. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1765. {
  1766. return 0;
  1767. }
  1768. static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
  1769. {
  1770. return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
  1771. }
  1772. #endif
  1773. static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
  1774. struct zone *zone,
  1775. gfp_t gfp_mask,
  1776. unsigned long *total_scanned)
  1777. {
  1778. struct mem_cgroup *victim = NULL;
  1779. int total = 0;
  1780. int loop = 0;
  1781. unsigned long excess;
  1782. unsigned long nr_scanned;
  1783. struct mem_cgroup_reclaim_cookie reclaim = {
  1784. .zone = zone,
  1785. .priority = 0,
  1786. };
  1787. excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
  1788. while (1) {
  1789. victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
  1790. if (!victim) {
  1791. loop++;
  1792. if (loop >= 2) {
  1793. /*
  1794. * If we have not been able to reclaim
  1795. * anything, it might because there are
  1796. * no reclaimable pages under this hierarchy
  1797. */
  1798. if (!total)
  1799. break;
  1800. /*
  1801. * We want to do more targeted reclaim.
  1802. * excess >> 2 is not to excessive so as to
  1803. * reclaim too much, nor too less that we keep
  1804. * coming back to reclaim from this cgroup
  1805. */
  1806. if (total >= (excess >> 2) ||
  1807. (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
  1808. break;
  1809. }
  1810. continue;
  1811. }
  1812. if (!mem_cgroup_reclaimable(victim, false))
  1813. continue;
  1814. total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
  1815. zone, &nr_scanned);
  1816. *total_scanned += nr_scanned;
  1817. if (!res_counter_soft_limit_excess(&root_memcg->res))
  1818. break;
  1819. }
  1820. mem_cgroup_iter_break(root_memcg, victim);
  1821. return total;
  1822. }
  1823. /*
  1824. * Check OOM-Killer is already running under our hierarchy.
  1825. * If someone is running, return false.
  1826. * Has to be called with memcg_oom_lock
  1827. */
  1828. static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
  1829. {
  1830. struct mem_cgroup *iter, *failed = NULL;
  1831. for_each_mem_cgroup_tree(iter, memcg) {
  1832. if (iter->oom_lock) {
  1833. /*
  1834. * this subtree of our hierarchy is already locked
  1835. * so we cannot give a lock.
  1836. */
  1837. failed = iter;
  1838. mem_cgroup_iter_break(memcg, iter);
  1839. break;
  1840. } else
  1841. iter->oom_lock = true;
  1842. }
  1843. if (!failed)
  1844. return true;
  1845. /*
  1846. * OK, we failed to lock the whole subtree so we have to clean up
  1847. * what we set up to the failing subtree
  1848. */
  1849. for_each_mem_cgroup_tree(iter, memcg) {
  1850. if (iter == failed) {
  1851. mem_cgroup_iter_break(memcg, iter);
  1852. break;
  1853. }
  1854. iter->oom_lock = false;
  1855. }
  1856. return false;
  1857. }
  1858. /*
  1859. * Has to be called with memcg_oom_lock
  1860. */
  1861. static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
  1862. {
  1863. struct mem_cgroup *iter;
  1864. for_each_mem_cgroup_tree(iter, memcg)
  1865. iter->oom_lock = false;
  1866. return 0;
  1867. }
  1868. static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
  1869. {
  1870. struct mem_cgroup *iter;
  1871. for_each_mem_cgroup_tree(iter, memcg)
  1872. atomic_inc(&iter->under_oom);
  1873. }
  1874. static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
  1875. {
  1876. struct mem_cgroup *iter;
  1877. /*
  1878. * When a new child is created while the hierarchy is under oom,
  1879. * mem_cgroup_oom_lock() may not be called. We have to use
  1880. * atomic_add_unless() here.
  1881. */
  1882. for_each_mem_cgroup_tree(iter, memcg)
  1883. atomic_add_unless(&iter->under_oom, -1, 0);
  1884. }
  1885. static DEFINE_SPINLOCK(memcg_oom_lock);
  1886. static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
  1887. struct oom_wait_info {
  1888. struct mem_cgroup *memcg;
  1889. wait_queue_t wait;
  1890. };
  1891. static int memcg_oom_wake_function(wait_queue_t *wait,
  1892. unsigned mode, int sync, void *arg)
  1893. {
  1894. struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
  1895. struct mem_cgroup *oom_wait_memcg;
  1896. struct oom_wait_info *oom_wait_info;
  1897. oom_wait_info = container_of(wait, struct oom_wait_info, wait);
  1898. oom_wait_memcg = oom_wait_info->memcg;
  1899. /*
  1900. * Both of oom_wait_info->memcg and wake_memcg are stable under us.
  1901. * Then we can use css_is_ancestor without taking care of RCU.
  1902. */
  1903. if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
  1904. && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
  1905. return 0;
  1906. return autoremove_wake_function(wait, mode, sync, arg);
  1907. }
  1908. static void memcg_wakeup_oom(struct mem_cgroup *memcg)
  1909. {
  1910. /* for filtering, pass "memcg" as argument. */
  1911. __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
  1912. }
  1913. static void memcg_oom_recover(struct mem_cgroup *memcg)
  1914. {
  1915. if (memcg && atomic_read(&memcg->under_oom))
  1916. memcg_wakeup_oom(memcg);
  1917. }
  1918. /*
  1919. * try to call OOM killer. returns false if we should exit memory-reclaim loop.
  1920. */
  1921. static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
  1922. int order)
  1923. {
  1924. struct oom_wait_info owait;
  1925. bool locked, need_to_kill;
  1926. owait.memcg = memcg;
  1927. owait.wait.flags = 0;
  1928. owait.wait.func = memcg_oom_wake_function;
  1929. owait.wait.private = current;
  1930. INIT_LIST_HEAD(&owait.wait.task_list);
  1931. need_to_kill = true;
  1932. mem_cgroup_mark_under_oom(memcg);
  1933. /* At first, try to OOM lock hierarchy under memcg.*/
  1934. spin_lock(&memcg_oom_lock);
  1935. locked = mem_cgroup_oom_lock(memcg);
  1936. /*
  1937. * Even if signal_pending(), we can't quit charge() loop without
  1938. * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
  1939. * under OOM is always welcomed, use TASK_KILLABLE here.
  1940. */
  1941. prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
  1942. if (!locked || memcg->oom_kill_disable)
  1943. need_to_kill = false;
  1944. if (locked)
  1945. mem_cgroup_oom_notify(memcg);
  1946. spin_unlock(&memcg_oom_lock);
  1947. if (need_to_kill) {
  1948. finish_wait(&memcg_oom_waitq, &owait.wait);
  1949. mem_cgroup_out_of_memory(memcg, mask, order);
  1950. } else {
  1951. schedule();
  1952. finish_wait(&memcg_oom_waitq, &owait.wait);
  1953. }
  1954. spin_lock(&memcg_oom_lock);
  1955. if (locked)
  1956. mem_cgroup_oom_unlock(memcg);
  1957. memcg_wakeup_oom(memcg);
  1958. spin_unlock(&memcg_oom_lock);
  1959. mem_cgroup_unmark_under_oom(memcg);
  1960. if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
  1961. return false;
  1962. /* Give chance to dying process */
  1963. schedule_timeout_uninterruptible(1);
  1964. return true;
  1965. }
  1966. /*
  1967. * Currently used to update mapped file statistics, but the routine can be
  1968. * generalized to update other statistics as well.
  1969. *
  1970. * Notes: Race condition
  1971. *
  1972. * We usually use page_cgroup_lock() for accessing page_cgroup member but
  1973. * it tends to be costly. But considering some conditions, we doesn't need
  1974. * to do so _always_.
  1975. *
  1976. * Considering "charge", lock_page_cgroup() is not required because all
  1977. * file-stat operations happen after a page is attached to radix-tree. There
  1978. * are no race with "charge".
  1979. *
  1980. * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
  1981. * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
  1982. * if there are race with "uncharge". Statistics itself is properly handled
  1983. * by flags.
  1984. *
  1985. * Considering "move", this is an only case we see a race. To make the race
  1986. * small, we check mm->moving_account and detect there are possibility of race
  1987. * If there is, we take a lock.
  1988. */
  1989. void __mem_cgroup_begin_update_page_stat(struct page *page,
  1990. bool *locked, unsigned long *flags)
  1991. {
  1992. struct mem_cgroup *memcg;
  1993. struct page_cgroup *pc;
  1994. pc = lookup_page_cgroup(page);
  1995. again:
  1996. memcg = pc->mem_cgroup;
  1997. if (unlikely(!memcg || !PageCgroupUsed(pc)))
  1998. return;
  1999. /*
  2000. * If this memory cgroup is not under account moving, we don't
  2001. * need to take move_lock_mem_cgroup(). Because we already hold
  2002. * rcu_read_lock(), any calls to move_account will be delayed until
  2003. * rcu_read_unlock() if mem_cgroup_stolen() == true.
  2004. */
  2005. if (!mem_cgroup_stolen(memcg))
  2006. return;
  2007. move_lock_mem_cgroup(memcg, flags);
  2008. if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
  2009. move_unlock_mem_cgroup(memcg, flags);
  2010. goto again;
  2011. }
  2012. *locked = true;
  2013. }
  2014. void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
  2015. {
  2016. struct page_cgroup *pc = lookup_page_cgroup(page);
  2017. /*
  2018. * It's guaranteed that pc->mem_cgroup never changes while
  2019. * lock is held because a routine modifies pc->mem_cgroup
  2020. * should take move_lock_mem_cgroup().
  2021. */
  2022. move_unlock_mem_cgroup(pc->mem_cgroup, flags);
  2023. }
  2024. void mem_cgroup_update_page_stat(struct page *page,
  2025. enum mem_cgroup_page_stat_item idx, int val)
  2026. {
  2027. struct mem_cgroup *memcg;
  2028. struct page_cgroup *pc = lookup_page_cgroup(page);
  2029. unsigned long uninitialized_var(flags);
  2030. if (mem_cgroup_disabled())
  2031. return;
  2032. memcg = pc->mem_cgroup;
  2033. if (unlikely(!memcg || !PageCgroupUsed(pc)))
  2034. return;
  2035. switch (idx) {
  2036. case MEMCG_NR_FILE_MAPPED:
  2037. idx = MEM_CGROUP_STAT_FILE_MAPPED;
  2038. break;
  2039. default:
  2040. BUG();
  2041. }
  2042. this_cpu_add(memcg->stat->count[idx], val);
  2043. }
  2044. /*
  2045. * size of first charge trial. "32" comes from vmscan.c's magic value.
  2046. * TODO: maybe necessary to use big numbers in big irons.
  2047. */
  2048. #define CHARGE_BATCH 32U
  2049. struct memcg_stock_pcp {
  2050. struct mem_cgroup *cached; /* this never be root cgroup */
  2051. unsigned int nr_pages;
  2052. struct work_struct work;
  2053. unsigned long flags;
  2054. #define FLUSHING_CACHED_CHARGE 0
  2055. };
  2056. static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
  2057. static DEFINE_MUTEX(percpu_charge_mutex);
  2058. /**
  2059. * consume_stock: Try to consume stocked charge on this cpu.
  2060. * @memcg: memcg to consume from.
  2061. * @nr_pages: how many pages to charge.
  2062. *
  2063. * The charges will only happen if @memcg matches the current cpu's memcg
  2064. * stock, and at least @nr_pages are available in that stock. Failure to
  2065. * service an allocation will refill the stock.
  2066. *
  2067. * returns true if successful, false otherwise.
  2068. */
  2069. static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  2070. {
  2071. struct memcg_stock_pcp *stock;
  2072. bool ret = true;
  2073. if (nr_pages > CHARGE_BATCH)
  2074. return false;
  2075. stock = &get_cpu_var(memcg_stock);
  2076. if (memcg == stock->cached && stock->nr_pages >= nr_pages)
  2077. stock->nr_pages -= nr_pages;
  2078. else /* need to call res_counter_charge */
  2079. ret = false;
  2080. put_cpu_var(memcg_stock);
  2081. return ret;
  2082. }
  2083. /*
  2084. * Returns stocks cached in percpu to res_counter and reset cached information.
  2085. */
  2086. static void drain_stock(struct memcg_stock_pcp *stock)
  2087. {
  2088. struct mem_cgroup *old = stock->cached;
  2089. if (stock->nr_pages) {
  2090. unsigned long bytes = stock->nr_pages * PAGE_SIZE;
  2091. res_counter_uncharge(&old->res, bytes);
  2092. if (do_swap_account)
  2093. res_counter_uncharge(&old->memsw, bytes);
  2094. stock->nr_pages = 0;
  2095. }
  2096. stock->cached = NULL;
  2097. }
  2098. /*
  2099. * This must be called under preempt disabled or must be called by
  2100. * a thread which is pinned to local cpu.
  2101. */
  2102. static void drain_local_stock(struct work_struct *dummy)
  2103. {
  2104. struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
  2105. drain_stock(stock);
  2106. clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
  2107. }
  2108. static void __init memcg_stock_init(void)
  2109. {
  2110. int cpu;
  2111. for_each_possible_cpu(cpu) {
  2112. struct memcg_stock_pcp *stock =
  2113. &per_cpu(memcg_stock, cpu);
  2114. INIT_WORK(&stock->work, drain_local_stock);
  2115. }
  2116. }
  2117. /*
  2118. * Cache charges(val) which is from res_counter, to local per_cpu area.
  2119. * This will be consumed by consume_stock() function, later.
  2120. */
  2121. static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  2122. {
  2123. struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
  2124. if (stock->cached != memcg) { /* reset if necessary */
  2125. drain_stock(stock);
  2126. stock->cached = memcg;
  2127. }
  2128. stock->nr_pages += nr_pages;
  2129. put_cpu_var(memcg_stock);
  2130. }
  2131. /*
  2132. * Drains all per-CPU charge caches for given root_memcg resp. subtree
  2133. * of the hierarchy under it. sync flag says whether we should block
  2134. * until the work is done.
  2135. */
  2136. static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
  2137. {
  2138. int cpu, curcpu;
  2139. /* Notify other cpus that system-wide "drain" is running */
  2140. get_online_cpus();
  2141. curcpu = get_cpu();
  2142. for_each_online_cpu(cpu) {
  2143. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  2144. struct mem_cgroup *memcg;
  2145. memcg = stock->cached;
  2146. if (!memcg || !stock->nr_pages)
  2147. continue;
  2148. if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
  2149. continue;
  2150. if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
  2151. if (cpu == curcpu)
  2152. drain_local_stock(&stock->work);
  2153. else
  2154. schedule_work_on(cpu, &stock->work);
  2155. }
  2156. }
  2157. put_cpu();
  2158. if (!sync)
  2159. goto out;
  2160. for_each_online_cpu(cpu) {
  2161. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  2162. if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
  2163. flush_work(&stock->work);
  2164. }
  2165. out:
  2166. put_online_cpus();
  2167. }
  2168. /*
  2169. * Tries to drain stocked charges in other cpus. This function is asynchronous
  2170. * and just put a work per cpu for draining localy on each cpu. Caller can
  2171. * expects some charges will be back to res_counter later but cannot wait for
  2172. * it.
  2173. */
  2174. static void drain_all_stock_async(struct mem_cgroup *root_memcg)
  2175. {
  2176. /*
  2177. * If someone calls draining, avoid adding more kworker runs.
  2178. */
  2179. if (!mutex_trylock(&percpu_charge_mutex))
  2180. return;
  2181. drain_all_stock(root_memcg, false);
  2182. mutex_unlock(&percpu_charge_mutex);
  2183. }
  2184. /* This is a synchronous drain interface. */
  2185. static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
  2186. {
  2187. /* called when force_empty is called */
  2188. mutex_lock(&percpu_charge_mutex);
  2189. drain_all_stock(root_memcg, true);
  2190. mutex_unlock(&percpu_charge_mutex);
  2191. }
  2192. /*
  2193. * This function drains percpu counter value from DEAD cpu and
  2194. * move it to local cpu. Note that this function can be preempted.
  2195. */
  2196. static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
  2197. {
  2198. int i;
  2199. spin_lock(&memcg->pcp_counter_lock);
  2200. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  2201. long x = per_cpu(memcg->stat->count[i], cpu);
  2202. per_cpu(memcg->stat->count[i], cpu) = 0;
  2203. memcg->nocpu_base.count[i] += x;
  2204. }
  2205. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  2206. unsigned long x = per_cpu(memcg->stat->events[i], cpu);
  2207. per_cpu(memcg->stat->events[i], cpu) = 0;
  2208. memcg->nocpu_base.events[i] += x;
  2209. }
  2210. spin_unlock(&memcg->pcp_counter_lock);
  2211. }
  2212. static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
  2213. unsigned long action,
  2214. void *hcpu)
  2215. {
  2216. int cpu = (unsigned long)hcpu;
  2217. struct memcg_stock_pcp *stock;
  2218. struct mem_cgroup *iter;
  2219. if (action == CPU_ONLINE)
  2220. return NOTIFY_OK;
  2221. if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
  2222. return NOTIFY_OK;
  2223. for_each_mem_cgroup(iter)
  2224. mem_cgroup_drain_pcp_counter(iter, cpu);
  2225. stock = &per_cpu(memcg_stock, cpu);
  2226. drain_stock(stock);
  2227. return NOTIFY_OK;
  2228. }
  2229. /* See __mem_cgroup_try_charge() for details */
  2230. enum {
  2231. CHARGE_OK, /* success */
  2232. CHARGE_RETRY, /* need to retry but retry is not bad */
  2233. CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
  2234. CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
  2235. CHARGE_OOM_DIE, /* the current is killed because of OOM */
  2236. };
  2237. static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
  2238. unsigned int nr_pages, unsigned int min_pages,
  2239. bool oom_check)
  2240. {
  2241. unsigned long csize = nr_pages * PAGE_SIZE;
  2242. struct mem_cgroup *mem_over_limit;
  2243. struct res_counter *fail_res;
  2244. unsigned long flags = 0;
  2245. int ret;
  2246. ret = res_counter_charge(&memcg->res, csize, &fail_res);
  2247. if (likely(!ret)) {
  2248. if (!do_swap_account)
  2249. return CHARGE_OK;
  2250. ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
  2251. if (likely(!ret))
  2252. return CHARGE_OK;
  2253. res_counter_uncharge(&memcg->res, csize);
  2254. mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
  2255. flags |= MEM_CGROUP_RECLAIM_NOSWAP;
  2256. } else
  2257. mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
  2258. /*
  2259. * Never reclaim on behalf of optional batching, retry with a
  2260. * single page instead.
  2261. */
  2262. if (nr_pages > min_pages)
  2263. return CHARGE_RETRY;
  2264. if (!(gfp_mask & __GFP_WAIT))
  2265. return CHARGE_WOULDBLOCK;
  2266. if (gfp_mask & __GFP_NORETRY)
  2267. return CHARGE_NOMEM;
  2268. ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
  2269. if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
  2270. return CHARGE_RETRY;
  2271. /*
  2272. * Even though the limit is exceeded at this point, reclaim
  2273. * may have been able to free some pages. Retry the charge
  2274. * before killing the task.
  2275. *
  2276. * Only for regular pages, though: huge pages are rather
  2277. * unlikely to succeed so close to the limit, and we fall back
  2278. * to regular pages anyway in case of failure.
  2279. */
  2280. if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
  2281. return CHARGE_RETRY;
  2282. /*
  2283. * At task move, charge accounts can be doubly counted. So, it's
  2284. * better to wait until the end of task_move if something is going on.
  2285. */
  2286. if (mem_cgroup_wait_acct_move(mem_over_limit))
  2287. return CHARGE_RETRY;
  2288. /* If we don't need to call oom-killer at el, return immediately */
  2289. if (!oom_check)
  2290. return CHARGE_NOMEM;
  2291. /* check OOM */
  2292. if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
  2293. return CHARGE_OOM_DIE;
  2294. return CHARGE_RETRY;
  2295. }
  2296. /*
  2297. * __mem_cgroup_try_charge() does
  2298. * 1. detect memcg to be charged against from passed *mm and *ptr,
  2299. * 2. update res_counter
  2300. * 3. call memory reclaim if necessary.
  2301. *
  2302. * In some special case, if the task is fatal, fatal_signal_pending() or
  2303. * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
  2304. * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
  2305. * as possible without any hazards. 2: all pages should have a valid
  2306. * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
  2307. * pointer, that is treated as a charge to root_mem_cgroup.
  2308. *
  2309. * So __mem_cgroup_try_charge() will return
  2310. * 0 ... on success, filling *ptr with a valid memcg pointer.
  2311. * -ENOMEM ... charge failure because of resource limits.
  2312. * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
  2313. *
  2314. * Unlike the exported interface, an "oom" parameter is added. if oom==true,
  2315. * the oom-killer can be invoked.
  2316. */
  2317. static int __mem_cgroup_try_charge(struct mm_struct *mm,
  2318. gfp_t gfp_mask,
  2319. unsigned int nr_pages,
  2320. struct mem_cgroup **ptr,
  2321. bool oom)
  2322. {
  2323. unsigned int batch = max(CHARGE_BATCH, nr_pages);
  2324. int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2325. struct mem_cgroup *memcg = NULL;
  2326. int ret;
  2327. /*
  2328. * Unlike gloval-vm's OOM-kill, we're not in memory shortage
  2329. * in system level. So, allow to go ahead dying process in addition to
  2330. * MEMDIE process.
  2331. */
  2332. if (unlikely(test_thread_flag(TIF_MEMDIE)
  2333. || fatal_signal_pending(current)))
  2334. goto bypass;
  2335. /*
  2336. * We always charge the cgroup the mm_struct belongs to.
  2337. * The mm_struct's mem_cgroup changes on task migration if the
  2338. * thread group leader migrates. It's possible that mm is not
  2339. * set, if so charge the root memcg (happens for pagecache usage).
  2340. */
  2341. if (!*ptr && !mm)
  2342. *ptr = root_mem_cgroup;
  2343. again:
  2344. if (*ptr) { /* css should be a valid one */
  2345. memcg = *ptr;
  2346. if (mem_cgroup_is_root(memcg))
  2347. goto done;
  2348. if (consume_stock(memcg, nr_pages))
  2349. goto done;
  2350. css_get(&memcg->css);
  2351. } else {
  2352. struct task_struct *p;
  2353. rcu_read_lock();
  2354. p = rcu_dereference(mm->owner);
  2355. /*
  2356. * Because we don't have task_lock(), "p" can exit.
  2357. * In that case, "memcg" can point to root or p can be NULL with
  2358. * race with swapoff. Then, we have small risk of mis-accouning.
  2359. * But such kind of mis-account by race always happens because
  2360. * we don't have cgroup_mutex(). It's overkill and we allo that
  2361. * small race, here.
  2362. * (*) swapoff at el will charge against mm-struct not against
  2363. * task-struct. So, mm->owner can be NULL.
  2364. */
  2365. memcg = mem_cgroup_from_task(p);
  2366. if (!memcg)
  2367. memcg = root_mem_cgroup;
  2368. if (mem_cgroup_is_root(memcg)) {
  2369. rcu_read_unlock();
  2370. goto done;
  2371. }
  2372. if (consume_stock(memcg, nr_pages)) {
  2373. /*
  2374. * It seems dagerous to access memcg without css_get().
  2375. * But considering how consume_stok works, it's not
  2376. * necessary. If consume_stock success, some charges
  2377. * from this memcg are cached on this cpu. So, we
  2378. * don't need to call css_get()/css_tryget() before
  2379. * calling consume_stock().
  2380. */
  2381. rcu_read_unlock();
  2382. goto done;
  2383. }
  2384. /* after here, we may be blocked. we need to get refcnt */
  2385. if (!css_tryget(&memcg->css)) {
  2386. rcu_read_unlock();
  2387. goto again;
  2388. }
  2389. rcu_read_unlock();
  2390. }
  2391. do {
  2392. bool oom_check;
  2393. /* If killed, bypass charge */
  2394. if (fatal_signal_pending(current)) {
  2395. css_put(&memcg->css);
  2396. goto bypass;
  2397. }
  2398. oom_check = false;
  2399. if (oom && !nr_oom_retries) {
  2400. oom_check = true;
  2401. nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2402. }
  2403. ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
  2404. oom_check);
  2405. switch (ret) {
  2406. case CHARGE_OK:
  2407. break;
  2408. case CHARGE_RETRY: /* not in OOM situation but retry */
  2409. batch = nr_pages;
  2410. css_put(&memcg->css);
  2411. memcg = NULL;
  2412. goto again;
  2413. case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
  2414. css_put(&memcg->css);
  2415. goto nomem;
  2416. case CHARGE_NOMEM: /* OOM routine works */
  2417. if (!oom) {
  2418. css_put(&memcg->css);
  2419. goto nomem;
  2420. }
  2421. /* If oom, we never return -ENOMEM */
  2422. nr_oom_retries--;
  2423. break;
  2424. case CHARGE_OOM_DIE: /* Killed by OOM Killer */
  2425. css_put(&memcg->css);
  2426. goto bypass;
  2427. }
  2428. } while (ret != CHARGE_OK);
  2429. if (batch > nr_pages)
  2430. refill_stock(memcg, batch - nr_pages);
  2431. css_put(&memcg->css);
  2432. done:
  2433. *ptr = memcg;
  2434. return 0;
  2435. nomem:
  2436. *ptr = NULL;
  2437. return -ENOMEM;
  2438. bypass:
  2439. *ptr = root_mem_cgroup;
  2440. return -EINTR;
  2441. }
  2442. /*
  2443. * Somemtimes we have to undo a charge we got by try_charge().
  2444. * This function is for that and do uncharge, put css's refcnt.
  2445. * gotten by try_charge().
  2446. */
  2447. static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
  2448. unsigned int nr_pages)
  2449. {
  2450. if (!mem_cgroup_is_root(memcg)) {
  2451. unsigned long bytes = nr_pages * PAGE_SIZE;
  2452. res_counter_uncharge(&memcg->res, bytes);
  2453. if (do_swap_account)
  2454. res_counter_uncharge(&memcg->memsw, bytes);
  2455. }
  2456. }
  2457. /*
  2458. * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
  2459. * This is useful when moving usage to parent cgroup.
  2460. */
  2461. static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
  2462. unsigned int nr_pages)
  2463. {
  2464. unsigned long bytes = nr_pages * PAGE_SIZE;
  2465. if (mem_cgroup_is_root(memcg))
  2466. return;
  2467. res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
  2468. if (do_swap_account)
  2469. res_counter_uncharge_until(&memcg->memsw,
  2470. memcg->memsw.parent, bytes);
  2471. }
  2472. /*
  2473. * A helper function to get mem_cgroup from ID. must be called under
  2474. * rcu_read_lock(). The caller is responsible for calling css_tryget if
  2475. * the mem_cgroup is used for charging. (dropping refcnt from swap can be
  2476. * called against removed memcg.)
  2477. */
  2478. static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
  2479. {
  2480. struct cgroup_subsys_state *css;
  2481. /* ID 0 is unused ID */
  2482. if (!id)
  2483. return NULL;
  2484. css = css_lookup(&mem_cgroup_subsys, id);
  2485. if (!css)
  2486. return NULL;
  2487. return mem_cgroup_from_css(css);
  2488. }
  2489. struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
  2490. {
  2491. struct mem_cgroup *memcg = NULL;
  2492. struct page_cgroup *pc;
  2493. unsigned short id;
  2494. swp_entry_t ent;
  2495. VM_BUG_ON(!PageLocked(page));
  2496. pc = lookup_page_cgroup(page);
  2497. lock_page_cgroup(pc);
  2498. if (PageCgroupUsed(pc)) {
  2499. memcg = pc->mem_cgroup;
  2500. if (memcg && !css_tryget(&memcg->css))
  2501. memcg = NULL;
  2502. } else if (PageSwapCache(page)) {
  2503. ent.val = page_private(page);
  2504. id = lookup_swap_cgroup_id(ent);
  2505. rcu_read_lock();
  2506. memcg = mem_cgroup_lookup(id);
  2507. if (memcg && !css_tryget(&memcg->css))
  2508. memcg = NULL;
  2509. rcu_read_unlock();
  2510. }
  2511. unlock_page_cgroup(pc);
  2512. return memcg;
  2513. }
  2514. static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
  2515. struct page *page,
  2516. unsigned int nr_pages,
  2517. enum charge_type ctype,
  2518. bool lrucare)
  2519. {
  2520. struct page_cgroup *pc = lookup_page_cgroup(page);
  2521. struct zone *uninitialized_var(zone);
  2522. struct lruvec *lruvec;
  2523. bool was_on_lru = false;
  2524. bool anon;
  2525. lock_page_cgroup(pc);
  2526. VM_BUG_ON(PageCgroupUsed(pc));
  2527. /*
  2528. * we don't need page_cgroup_lock about tail pages, becase they are not
  2529. * accessed by any other context at this point.
  2530. */
  2531. /*
  2532. * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
  2533. * may already be on some other mem_cgroup's LRU. Take care of it.
  2534. */
  2535. if (lrucare) {
  2536. zone = page_zone(page);
  2537. spin_lock_irq(&zone->lru_lock);
  2538. if (PageLRU(page)) {
  2539. lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
  2540. ClearPageLRU(page);
  2541. del_page_from_lru_list(page, lruvec, page_lru(page));
  2542. was_on_lru = true;
  2543. }
  2544. }
  2545. pc->mem_cgroup = memcg;
  2546. /*
  2547. * We access a page_cgroup asynchronously without lock_page_cgroup().
  2548. * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
  2549. * is accessed after testing USED bit. To make pc->mem_cgroup visible
  2550. * before USED bit, we need memory barrier here.
  2551. * See mem_cgroup_add_lru_list(), etc.
  2552. */
  2553. smp_wmb();
  2554. SetPageCgroupUsed(pc);
  2555. if (lrucare) {
  2556. if (was_on_lru) {
  2557. lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
  2558. VM_BUG_ON(PageLRU(page));
  2559. SetPageLRU(page);
  2560. add_page_to_lru_list(page, lruvec, page_lru(page));
  2561. }
  2562. spin_unlock_irq(&zone->lru_lock);
  2563. }
  2564. if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
  2565. anon = true;
  2566. else
  2567. anon = false;
  2568. mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
  2569. unlock_page_cgroup(pc);
  2570. /*
  2571. * "charge_statistics" updated event counter. Then, check it.
  2572. * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
  2573. * if they exceeds softlimit.
  2574. */
  2575. memcg_check_events(memcg, page);
  2576. }
  2577. static DEFINE_MUTEX(set_limit_mutex);
  2578. #ifdef CONFIG_MEMCG_KMEM
  2579. static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
  2580. {
  2581. return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
  2582. (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
  2583. }
  2584. /*
  2585. * This is a bit cumbersome, but it is rarely used and avoids a backpointer
  2586. * in the memcg_cache_params struct.
  2587. */
  2588. static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
  2589. {
  2590. struct kmem_cache *cachep;
  2591. VM_BUG_ON(p->is_root_cache);
  2592. cachep = p->root_cache;
  2593. return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
  2594. }
  2595. #ifdef CONFIG_SLABINFO
  2596. static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
  2597. struct seq_file *m)
  2598. {
  2599. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  2600. struct memcg_cache_params *params;
  2601. if (!memcg_can_account_kmem(memcg))
  2602. return -EIO;
  2603. print_slabinfo_header(m);
  2604. mutex_lock(&memcg->slab_caches_mutex);
  2605. list_for_each_entry(params, &memcg->memcg_slab_caches, list)
  2606. cache_show(memcg_params_to_cache(params), m);
  2607. mutex_unlock(&memcg->slab_caches_mutex);
  2608. return 0;
  2609. }
  2610. #endif
  2611. static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
  2612. {
  2613. struct res_counter *fail_res;
  2614. struct mem_cgroup *_memcg;
  2615. int ret = 0;
  2616. bool may_oom;
  2617. ret = res_counter_charge(&memcg->kmem, size, &fail_res);
  2618. if (ret)
  2619. return ret;
  2620. /*
  2621. * Conditions under which we can wait for the oom_killer. Those are
  2622. * the same conditions tested by the core page allocator
  2623. */
  2624. may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
  2625. _memcg = memcg;
  2626. ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
  2627. &_memcg, may_oom);
  2628. if (ret == -EINTR) {
  2629. /*
  2630. * __mem_cgroup_try_charge() chosed to bypass to root due to
  2631. * OOM kill or fatal signal. Since our only options are to
  2632. * either fail the allocation or charge it to this cgroup, do
  2633. * it as a temporary condition. But we can't fail. From a
  2634. * kmem/slab perspective, the cache has already been selected,
  2635. * by mem_cgroup_kmem_get_cache(), so it is too late to change
  2636. * our minds.
  2637. *
  2638. * This condition will only trigger if the task entered
  2639. * memcg_charge_kmem in a sane state, but was OOM-killed during
  2640. * __mem_cgroup_try_charge() above. Tasks that were already
  2641. * dying when the allocation triggers should have been already
  2642. * directed to the root cgroup in memcontrol.h
  2643. */
  2644. res_counter_charge_nofail(&memcg->res, size, &fail_res);
  2645. if (do_swap_account)
  2646. res_counter_charge_nofail(&memcg->memsw, size,
  2647. &fail_res);
  2648. ret = 0;
  2649. } else if (ret)
  2650. res_counter_uncharge(&memcg->kmem, size);
  2651. return ret;
  2652. }
  2653. static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
  2654. {
  2655. res_counter_uncharge(&memcg->res, size);
  2656. if (do_swap_account)
  2657. res_counter_uncharge(&memcg->memsw, size);
  2658. /* Not down to 0 */
  2659. if (res_counter_uncharge(&memcg->kmem, size))
  2660. return;
  2661. if (memcg_kmem_test_and_clear_dead(memcg))
  2662. mem_cgroup_put(memcg);
  2663. }
  2664. void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
  2665. {
  2666. if (!memcg)
  2667. return;
  2668. mutex_lock(&memcg->slab_caches_mutex);
  2669. list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
  2670. mutex_unlock(&memcg->slab_caches_mutex);
  2671. }
  2672. /*
  2673. * helper for acessing a memcg's index. It will be used as an index in the
  2674. * child cache array in kmem_cache, and also to derive its name. This function
  2675. * will return -1 when this is not a kmem-limited memcg.
  2676. */
  2677. int memcg_cache_id(struct mem_cgroup *memcg)
  2678. {
  2679. return memcg ? memcg->kmemcg_id : -1;
  2680. }
  2681. /*
  2682. * This ends up being protected by the set_limit mutex, during normal
  2683. * operation, because that is its main call site.
  2684. *
  2685. * But when we create a new cache, we can call this as well if its parent
  2686. * is kmem-limited. That will have to hold set_limit_mutex as well.
  2687. */
  2688. int memcg_update_cache_sizes(struct mem_cgroup *memcg)
  2689. {
  2690. int num, ret;
  2691. num = ida_simple_get(&kmem_limited_groups,
  2692. 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
  2693. if (num < 0)
  2694. return num;
  2695. /*
  2696. * After this point, kmem_accounted (that we test atomically in
  2697. * the beginning of this conditional), is no longer 0. This
  2698. * guarantees only one process will set the following boolean
  2699. * to true. We don't need test_and_set because we're protected
  2700. * by the set_limit_mutex anyway.
  2701. */
  2702. memcg_kmem_set_activated(memcg);
  2703. ret = memcg_update_all_caches(num+1);
  2704. if (ret) {
  2705. ida_simple_remove(&kmem_limited_groups, num);
  2706. memcg_kmem_clear_activated(memcg);
  2707. return ret;
  2708. }
  2709. memcg->kmemcg_id = num;
  2710. INIT_LIST_HEAD(&memcg->memcg_slab_caches);
  2711. mutex_init(&memcg->slab_caches_mutex);
  2712. return 0;
  2713. }
  2714. static size_t memcg_caches_array_size(int num_groups)
  2715. {
  2716. ssize_t size;
  2717. if (num_groups <= 0)
  2718. return 0;
  2719. size = 2 * num_groups;
  2720. if (size < MEMCG_CACHES_MIN_SIZE)
  2721. size = MEMCG_CACHES_MIN_SIZE;
  2722. else if (size > MEMCG_CACHES_MAX_SIZE)
  2723. size = MEMCG_CACHES_MAX_SIZE;
  2724. return size;
  2725. }
  2726. /*
  2727. * We should update the current array size iff all caches updates succeed. This
  2728. * can only be done from the slab side. The slab mutex needs to be held when
  2729. * calling this.
  2730. */
  2731. void memcg_update_array_size(int num)
  2732. {
  2733. if (num > memcg_limited_groups_array_size)
  2734. memcg_limited_groups_array_size = memcg_caches_array_size(num);
  2735. }
  2736. static void kmem_cache_destroy_work_func(struct work_struct *w);
  2737. int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
  2738. {
  2739. struct memcg_cache_params *cur_params = s->memcg_params;
  2740. VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
  2741. if (num_groups > memcg_limited_groups_array_size) {
  2742. int i;
  2743. ssize_t size = memcg_caches_array_size(num_groups);
  2744. size *= sizeof(void *);
  2745. size += sizeof(struct memcg_cache_params);
  2746. s->memcg_params = kzalloc(size, GFP_KERNEL);
  2747. if (!s->memcg_params) {
  2748. s->memcg_params = cur_params;
  2749. return -ENOMEM;
  2750. }
  2751. INIT_WORK(&s->memcg_params->destroy,
  2752. kmem_cache_destroy_work_func);
  2753. s->memcg_params->is_root_cache = true;
  2754. /*
  2755. * There is the chance it will be bigger than
  2756. * memcg_limited_groups_array_size, if we failed an allocation
  2757. * in a cache, in which case all caches updated before it, will
  2758. * have a bigger array.
  2759. *
  2760. * But if that is the case, the data after
  2761. * memcg_limited_groups_array_size is certainly unused
  2762. */
  2763. for (i = 0; i < memcg_limited_groups_array_size; i++) {
  2764. if (!cur_params->memcg_caches[i])
  2765. continue;
  2766. s->memcg_params->memcg_caches[i] =
  2767. cur_params->memcg_caches[i];
  2768. }
  2769. /*
  2770. * Ideally, we would wait until all caches succeed, and only
  2771. * then free the old one. But this is not worth the extra
  2772. * pointer per-cache we'd have to have for this.
  2773. *
  2774. * It is not a big deal if some caches are left with a size
  2775. * bigger than the others. And all updates will reset this
  2776. * anyway.
  2777. */
  2778. kfree(cur_params);
  2779. }
  2780. return 0;
  2781. }
  2782. int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
  2783. struct kmem_cache *root_cache)
  2784. {
  2785. size_t size = sizeof(struct memcg_cache_params);
  2786. if (!memcg_kmem_enabled())
  2787. return 0;
  2788. if (!memcg)
  2789. size += memcg_limited_groups_array_size * sizeof(void *);
  2790. s->memcg_params = kzalloc(size, GFP_KERNEL);
  2791. if (!s->memcg_params)
  2792. return -ENOMEM;
  2793. INIT_WORK(&s->memcg_params->destroy,
  2794. kmem_cache_destroy_work_func);
  2795. if (memcg) {
  2796. s->memcg_params->memcg = memcg;
  2797. s->memcg_params->root_cache = root_cache;
  2798. } else
  2799. s->memcg_params->is_root_cache = true;
  2800. return 0;
  2801. }
  2802. void memcg_release_cache(struct kmem_cache *s)
  2803. {
  2804. struct kmem_cache *root;
  2805. struct mem_cgroup *memcg;
  2806. int id;
  2807. /*
  2808. * This happens, for instance, when a root cache goes away before we
  2809. * add any memcg.
  2810. */
  2811. if (!s->memcg_params)
  2812. return;
  2813. if (s->memcg_params->is_root_cache)
  2814. goto out;
  2815. memcg = s->memcg_params->memcg;
  2816. id = memcg_cache_id(memcg);
  2817. root = s->memcg_params->root_cache;
  2818. root->memcg_params->memcg_caches[id] = NULL;
  2819. mutex_lock(&memcg->slab_caches_mutex);
  2820. list_del(&s->memcg_params->list);
  2821. mutex_unlock(&memcg->slab_caches_mutex);
  2822. mem_cgroup_put(memcg);
  2823. out:
  2824. kfree(s->memcg_params);
  2825. }
  2826. /*
  2827. * During the creation a new cache, we need to disable our accounting mechanism
  2828. * altogether. This is true even if we are not creating, but rather just
  2829. * enqueing new caches to be created.
  2830. *
  2831. * This is because that process will trigger allocations; some visible, like
  2832. * explicit kmallocs to auxiliary data structures, name strings and internal
  2833. * cache structures; some well concealed, like INIT_WORK() that can allocate
  2834. * objects during debug.
  2835. *
  2836. * If any allocation happens during memcg_kmem_get_cache, we will recurse back
  2837. * to it. This may not be a bounded recursion: since the first cache creation
  2838. * failed to complete (waiting on the allocation), we'll just try to create the
  2839. * cache again, failing at the same point.
  2840. *
  2841. * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
  2842. * memcg_kmem_skip_account. So we enclose anything that might allocate memory
  2843. * inside the following two functions.
  2844. */
  2845. static inline void memcg_stop_kmem_account(void)
  2846. {
  2847. VM_BUG_ON(!current->mm);
  2848. current->memcg_kmem_skip_account++;
  2849. }
  2850. static inline void memcg_resume_kmem_account(void)
  2851. {
  2852. VM_BUG_ON(!current->mm);
  2853. current->memcg_kmem_skip_account--;
  2854. }
  2855. static void kmem_cache_destroy_work_func(struct work_struct *w)
  2856. {
  2857. struct kmem_cache *cachep;
  2858. struct memcg_cache_params *p;
  2859. p = container_of(w, struct memcg_cache_params, destroy);
  2860. cachep = memcg_params_to_cache(p);
  2861. /*
  2862. * If we get down to 0 after shrink, we could delete right away.
  2863. * However, memcg_release_pages() already puts us back in the workqueue
  2864. * in that case. If we proceed deleting, we'll get a dangling
  2865. * reference, and removing the object from the workqueue in that case
  2866. * is unnecessary complication. We are not a fast path.
  2867. *
  2868. * Note that this case is fundamentally different from racing with
  2869. * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
  2870. * kmem_cache_shrink, not only we would be reinserting a dead cache
  2871. * into the queue, but doing so from inside the worker racing to
  2872. * destroy it.
  2873. *
  2874. * So if we aren't down to zero, we'll just schedule a worker and try
  2875. * again
  2876. */
  2877. if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
  2878. kmem_cache_shrink(cachep);
  2879. if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
  2880. return;
  2881. } else
  2882. kmem_cache_destroy(cachep);
  2883. }
  2884. void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
  2885. {
  2886. if (!cachep->memcg_params->dead)
  2887. return;
  2888. /*
  2889. * There are many ways in which we can get here.
  2890. *
  2891. * We can get to a memory-pressure situation while the delayed work is
  2892. * still pending to run. The vmscan shrinkers can then release all
  2893. * cache memory and get us to destruction. If this is the case, we'll
  2894. * be executed twice, which is a bug (the second time will execute over
  2895. * bogus data). In this case, cancelling the work should be fine.
  2896. *
  2897. * But we can also get here from the worker itself, if
  2898. * kmem_cache_shrink is enough to shake all the remaining objects and
  2899. * get the page count to 0. In this case, we'll deadlock if we try to
  2900. * cancel the work (the worker runs with an internal lock held, which
  2901. * is the same lock we would hold for cancel_work_sync().)
  2902. *
  2903. * Since we can't possibly know who got us here, just refrain from
  2904. * running if there is already work pending
  2905. */
  2906. if (work_pending(&cachep->memcg_params->destroy))
  2907. return;
  2908. /*
  2909. * We have to defer the actual destroying to a workqueue, because
  2910. * we might currently be in a context that cannot sleep.
  2911. */
  2912. schedule_work(&cachep->memcg_params->destroy);
  2913. }
  2914. /*
  2915. * This lock protects updaters, not readers. We want readers to be as fast as
  2916. * they can, and they will either see NULL or a valid cache value. Our model
  2917. * allow them to see NULL, in which case the root memcg will be selected.
  2918. *
  2919. * We need this lock because multiple allocations to the same cache from a non
  2920. * will span more than one worker. Only one of them can create the cache.
  2921. */
  2922. static DEFINE_MUTEX(memcg_cache_mutex);
  2923. /*
  2924. * Called with memcg_cache_mutex held
  2925. */
  2926. static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
  2927. struct kmem_cache *s)
  2928. {
  2929. struct kmem_cache *new;
  2930. static char *tmp_name = NULL;
  2931. lockdep_assert_held(&memcg_cache_mutex);
  2932. /*
  2933. * kmem_cache_create_memcg duplicates the given name and
  2934. * cgroup_name for this name requires RCU context.
  2935. * This static temporary buffer is used to prevent from
  2936. * pointless shortliving allocation.
  2937. */
  2938. if (!tmp_name) {
  2939. tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
  2940. if (!tmp_name)
  2941. return NULL;
  2942. }
  2943. rcu_read_lock();
  2944. snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
  2945. memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
  2946. rcu_read_unlock();
  2947. new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
  2948. (s->flags & ~SLAB_PANIC), s->ctor, s);
  2949. if (new)
  2950. new->allocflags |= __GFP_KMEMCG;
  2951. return new;
  2952. }
  2953. static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
  2954. struct kmem_cache *cachep)
  2955. {
  2956. struct kmem_cache *new_cachep;
  2957. int idx;
  2958. BUG_ON(!memcg_can_account_kmem(memcg));
  2959. idx = memcg_cache_id(memcg);
  2960. mutex_lock(&memcg_cache_mutex);
  2961. new_cachep = cachep->memcg_params->memcg_caches[idx];
  2962. if (new_cachep)
  2963. goto out;
  2964. new_cachep = kmem_cache_dup(memcg, cachep);
  2965. if (new_cachep == NULL) {
  2966. new_cachep = cachep;
  2967. goto out;
  2968. }
  2969. mem_cgroup_get(memcg);
  2970. atomic_set(&new_cachep->memcg_params->nr_pages , 0);
  2971. cachep->memcg_params->memcg_caches[idx] = new_cachep;
  2972. /*
  2973. * the readers won't lock, make sure everybody sees the updated value,
  2974. * so they won't put stuff in the queue again for no reason
  2975. */
  2976. wmb();
  2977. out:
  2978. mutex_unlock(&memcg_cache_mutex);
  2979. return new_cachep;
  2980. }
  2981. void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
  2982. {
  2983. struct kmem_cache *c;
  2984. int i;
  2985. if (!s->memcg_params)
  2986. return;
  2987. if (!s->memcg_params->is_root_cache)
  2988. return;
  2989. /*
  2990. * If the cache is being destroyed, we trust that there is no one else
  2991. * requesting objects from it. Even if there are, the sanity checks in
  2992. * kmem_cache_destroy should caught this ill-case.
  2993. *
  2994. * Still, we don't want anyone else freeing memcg_caches under our
  2995. * noses, which can happen if a new memcg comes to life. As usual,
  2996. * we'll take the set_limit_mutex to protect ourselves against this.
  2997. */
  2998. mutex_lock(&set_limit_mutex);
  2999. for (i = 0; i < memcg_limited_groups_array_size; i++) {
  3000. c = s->memcg_params->memcg_caches[i];
  3001. if (!c)
  3002. continue;
  3003. /*
  3004. * We will now manually delete the caches, so to avoid races
  3005. * we need to cancel all pending destruction workers and
  3006. * proceed with destruction ourselves.
  3007. *
  3008. * kmem_cache_destroy() will call kmem_cache_shrink internally,
  3009. * and that could spawn the workers again: it is likely that
  3010. * the cache still have active pages until this very moment.
  3011. * This would lead us back to mem_cgroup_destroy_cache.
  3012. *
  3013. * But that will not execute at all if the "dead" flag is not
  3014. * set, so flip it down to guarantee we are in control.
  3015. */
  3016. c->memcg_params->dead = false;
  3017. cancel_work_sync(&c->memcg_params->destroy);
  3018. kmem_cache_destroy(c);
  3019. }
  3020. mutex_unlock(&set_limit_mutex);
  3021. }
  3022. struct create_work {
  3023. struct mem_cgroup *memcg;
  3024. struct kmem_cache *cachep;
  3025. struct work_struct work;
  3026. };
  3027. static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
  3028. {
  3029. struct kmem_cache *cachep;
  3030. struct memcg_cache_params *params;
  3031. if (!memcg_kmem_is_active(memcg))
  3032. return;
  3033. mutex_lock(&memcg->slab_caches_mutex);
  3034. list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
  3035. cachep = memcg_params_to_cache(params);
  3036. cachep->memcg_params->dead = true;
  3037. schedule_work(&cachep->memcg_params->destroy);
  3038. }
  3039. mutex_unlock(&memcg->slab_caches_mutex);
  3040. }
  3041. static void memcg_create_cache_work_func(struct work_struct *w)
  3042. {
  3043. struct create_work *cw;
  3044. cw = container_of(w, struct create_work, work);
  3045. memcg_create_kmem_cache(cw->memcg, cw->cachep);
  3046. /* Drop the reference gotten when we enqueued. */
  3047. css_put(&cw->memcg->css);
  3048. kfree(cw);
  3049. }
  3050. /*
  3051. * Enqueue the creation of a per-memcg kmem_cache.
  3052. */
  3053. static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
  3054. struct kmem_cache *cachep)
  3055. {
  3056. struct create_work *cw;
  3057. cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
  3058. if (cw == NULL) {
  3059. css_put(&memcg->css);
  3060. return;
  3061. }
  3062. cw->memcg = memcg;
  3063. cw->cachep = cachep;
  3064. INIT_WORK(&cw->work, memcg_create_cache_work_func);
  3065. schedule_work(&cw->work);
  3066. }
  3067. static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
  3068. struct kmem_cache *cachep)
  3069. {
  3070. /*
  3071. * We need to stop accounting when we kmalloc, because if the
  3072. * corresponding kmalloc cache is not yet created, the first allocation
  3073. * in __memcg_create_cache_enqueue will recurse.
  3074. *
  3075. * However, it is better to enclose the whole function. Depending on
  3076. * the debugging options enabled, INIT_WORK(), for instance, can
  3077. * trigger an allocation. This too, will make us recurse. Because at
  3078. * this point we can't allow ourselves back into memcg_kmem_get_cache,
  3079. * the safest choice is to do it like this, wrapping the whole function.
  3080. */
  3081. memcg_stop_kmem_account();
  3082. __memcg_create_cache_enqueue(memcg, cachep);
  3083. memcg_resume_kmem_account();
  3084. }
  3085. /*
  3086. * Return the kmem_cache we're supposed to use for a slab allocation.
  3087. * We try to use the current memcg's version of the cache.
  3088. *
  3089. * If the cache does not exist yet, if we are the first user of it,
  3090. * we either create it immediately, if possible, or create it asynchronously
  3091. * in a workqueue.
  3092. * In the latter case, we will let the current allocation go through with
  3093. * the original cache.
  3094. *
  3095. * Can't be called in interrupt context or from kernel threads.
  3096. * This function needs to be called with rcu_read_lock() held.
  3097. */
  3098. struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
  3099. gfp_t gfp)
  3100. {
  3101. struct mem_cgroup *memcg;
  3102. int idx;
  3103. VM_BUG_ON(!cachep->memcg_params);
  3104. VM_BUG_ON(!cachep->memcg_params->is_root_cache);
  3105. if (!current->mm || current->memcg_kmem_skip_account)
  3106. return cachep;
  3107. rcu_read_lock();
  3108. memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
  3109. if (!memcg_can_account_kmem(memcg))
  3110. goto out;
  3111. idx = memcg_cache_id(memcg);
  3112. /*
  3113. * barrier to mare sure we're always seeing the up to date value. The
  3114. * code updating memcg_caches will issue a write barrier to match this.
  3115. */
  3116. read_barrier_depends();
  3117. if (likely(cachep->memcg_params->memcg_caches[idx])) {
  3118. cachep = cachep->memcg_params->memcg_caches[idx];
  3119. goto out;
  3120. }
  3121. /* The corresponding put will be done in the workqueue. */
  3122. if (!css_tryget(&memcg->css))
  3123. goto out;
  3124. rcu_read_unlock();
  3125. /*
  3126. * If we are in a safe context (can wait, and not in interrupt
  3127. * context), we could be be predictable and return right away.
  3128. * This would guarantee that the allocation being performed
  3129. * already belongs in the new cache.
  3130. *
  3131. * However, there are some clashes that can arrive from locking.
  3132. * For instance, because we acquire the slab_mutex while doing
  3133. * kmem_cache_dup, this means no further allocation could happen
  3134. * with the slab_mutex held.
  3135. *
  3136. * Also, because cache creation issue get_online_cpus(), this
  3137. * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
  3138. * that ends up reversed during cpu hotplug. (cpuset allocates
  3139. * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
  3140. * better to defer everything.
  3141. */
  3142. memcg_create_cache_enqueue(memcg, cachep);
  3143. return cachep;
  3144. out:
  3145. rcu_read_unlock();
  3146. return cachep;
  3147. }
  3148. EXPORT_SYMBOL(__memcg_kmem_get_cache);
  3149. /*
  3150. * We need to verify if the allocation against current->mm->owner's memcg is
  3151. * possible for the given order. But the page is not allocated yet, so we'll
  3152. * need a further commit step to do the final arrangements.
  3153. *
  3154. * It is possible for the task to switch cgroups in this mean time, so at
  3155. * commit time, we can't rely on task conversion any longer. We'll then use
  3156. * the handle argument to return to the caller which cgroup we should commit
  3157. * against. We could also return the memcg directly and avoid the pointer
  3158. * passing, but a boolean return value gives better semantics considering
  3159. * the compiled-out case as well.
  3160. *
  3161. * Returning true means the allocation is possible.
  3162. */
  3163. bool
  3164. __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
  3165. {
  3166. struct mem_cgroup *memcg;
  3167. int ret;
  3168. *_memcg = NULL;
  3169. memcg = try_get_mem_cgroup_from_mm(current->mm);
  3170. /*
  3171. * very rare case described in mem_cgroup_from_task. Unfortunately there
  3172. * isn't much we can do without complicating this too much, and it would
  3173. * be gfp-dependent anyway. Just let it go
  3174. */
  3175. if (unlikely(!memcg))
  3176. return true;
  3177. if (!memcg_can_account_kmem(memcg)) {
  3178. css_put(&memcg->css);
  3179. return true;
  3180. }
  3181. ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
  3182. if (!ret)
  3183. *_memcg = memcg;
  3184. css_put(&memcg->css);
  3185. return (ret == 0);
  3186. }
  3187. void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
  3188. int order)
  3189. {
  3190. struct page_cgroup *pc;
  3191. VM_BUG_ON(mem_cgroup_is_root(memcg));
  3192. /* The page allocation failed. Revert */
  3193. if (!page) {
  3194. memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
  3195. return;
  3196. }
  3197. pc = lookup_page_cgroup(page);
  3198. lock_page_cgroup(pc);
  3199. pc->mem_cgroup = memcg;
  3200. SetPageCgroupUsed(pc);
  3201. unlock_page_cgroup(pc);
  3202. }
  3203. void __memcg_kmem_uncharge_pages(struct page *page, int order)
  3204. {
  3205. struct mem_cgroup *memcg = NULL;
  3206. struct page_cgroup *pc;
  3207. pc = lookup_page_cgroup(page);
  3208. /*
  3209. * Fast unlocked return. Theoretically might have changed, have to
  3210. * check again after locking.
  3211. */
  3212. if (!PageCgroupUsed(pc))
  3213. return;
  3214. lock_page_cgroup(pc);
  3215. if (PageCgroupUsed(pc)) {
  3216. memcg = pc->mem_cgroup;
  3217. ClearPageCgroupUsed(pc);
  3218. }
  3219. unlock_page_cgroup(pc);
  3220. /*
  3221. * We trust that only if there is a memcg associated with the page, it
  3222. * is a valid allocation
  3223. */
  3224. if (!memcg)
  3225. return;
  3226. VM_BUG_ON(mem_cgroup_is_root(memcg));
  3227. memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
  3228. }
  3229. #else
  3230. static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
  3231. {
  3232. }
  3233. #endif /* CONFIG_MEMCG_KMEM */
  3234. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3235. #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
  3236. /*
  3237. * Because tail pages are not marked as "used", set it. We're under
  3238. * zone->lru_lock, 'splitting on pmd' and compound_lock.
  3239. * charge/uncharge will be never happen and move_account() is done under
  3240. * compound_lock(), so we don't have to take care of races.
  3241. */
  3242. void mem_cgroup_split_huge_fixup(struct page *head)
  3243. {
  3244. struct page_cgroup *head_pc = lookup_page_cgroup(head);
  3245. struct page_cgroup *pc;
  3246. struct mem_cgroup *memcg;
  3247. int i;
  3248. if (mem_cgroup_disabled())
  3249. return;
  3250. memcg = head_pc->mem_cgroup;
  3251. for (i = 1; i < HPAGE_PMD_NR; i++) {
  3252. pc = head_pc + i;
  3253. pc->mem_cgroup = memcg;
  3254. smp_wmb();/* see __commit_charge() */
  3255. pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
  3256. }
  3257. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  3258. HPAGE_PMD_NR);
  3259. }
  3260. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  3261. /**
  3262. * mem_cgroup_move_account - move account of the page
  3263. * @page: the page
  3264. * @nr_pages: number of regular pages (>1 for huge pages)
  3265. * @pc: page_cgroup of the page.
  3266. * @from: mem_cgroup which the page is moved from.
  3267. * @to: mem_cgroup which the page is moved to. @from != @to.
  3268. *
  3269. * The caller must confirm following.
  3270. * - page is not on LRU (isolate_page() is useful.)
  3271. * - compound_lock is held when nr_pages > 1
  3272. *
  3273. * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
  3274. * from old cgroup.
  3275. */
  3276. static int mem_cgroup_move_account(struct page *page,
  3277. unsigned int nr_pages,
  3278. struct page_cgroup *pc,
  3279. struct mem_cgroup *from,
  3280. struct mem_cgroup *to)
  3281. {
  3282. unsigned long flags;
  3283. int ret;
  3284. bool anon = PageAnon(page);
  3285. VM_BUG_ON(from == to);
  3286. VM_BUG_ON(PageLRU(page));
  3287. /*
  3288. * The page is isolated from LRU. So, collapse function
  3289. * will not handle this page. But page splitting can happen.
  3290. * Do this check under compound_page_lock(). The caller should
  3291. * hold it.
  3292. */
  3293. ret = -EBUSY;
  3294. if (nr_pages > 1 && !PageTransHuge(page))
  3295. goto out;
  3296. lock_page_cgroup(pc);
  3297. ret = -EINVAL;
  3298. if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
  3299. goto unlock;
  3300. move_lock_mem_cgroup(from, &flags);
  3301. if (!anon && page_mapped(page)) {
  3302. /* Update mapped_file data for mem_cgroup */
  3303. preempt_disable();
  3304. __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
  3305. __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
  3306. preempt_enable();
  3307. }
  3308. mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
  3309. /* caller should have done css_get */
  3310. pc->mem_cgroup = to;
  3311. mem_cgroup_charge_statistics(to, page, anon, nr_pages);
  3312. move_unlock_mem_cgroup(from, &flags);
  3313. ret = 0;
  3314. unlock:
  3315. unlock_page_cgroup(pc);
  3316. /*
  3317. * check events
  3318. */
  3319. memcg_check_events(to, page);
  3320. memcg_check_events(from, page);
  3321. out:
  3322. return ret;
  3323. }
  3324. /**
  3325. * mem_cgroup_move_parent - moves page to the parent group
  3326. * @page: the page to move
  3327. * @pc: page_cgroup of the page
  3328. * @child: page's cgroup
  3329. *
  3330. * move charges to its parent or the root cgroup if the group has no
  3331. * parent (aka use_hierarchy==0).
  3332. * Although this might fail (get_page_unless_zero, isolate_lru_page or
  3333. * mem_cgroup_move_account fails) the failure is always temporary and
  3334. * it signals a race with a page removal/uncharge or migration. In the
  3335. * first case the page is on the way out and it will vanish from the LRU
  3336. * on the next attempt and the call should be retried later.
  3337. * Isolation from the LRU fails only if page has been isolated from
  3338. * the LRU since we looked at it and that usually means either global
  3339. * reclaim or migration going on. The page will either get back to the
  3340. * LRU or vanish.
  3341. * Finaly mem_cgroup_move_account fails only if the page got uncharged
  3342. * (!PageCgroupUsed) or moved to a different group. The page will
  3343. * disappear in the next attempt.
  3344. */
  3345. static int mem_cgroup_move_parent(struct page *page,
  3346. struct page_cgroup *pc,
  3347. struct mem_cgroup *child)
  3348. {
  3349. struct mem_cgroup *parent;
  3350. unsigned int nr_pages;
  3351. unsigned long uninitialized_var(flags);
  3352. int ret;
  3353. VM_BUG_ON(mem_cgroup_is_root(child));
  3354. ret = -EBUSY;
  3355. if (!get_page_unless_zero(page))
  3356. goto out;
  3357. if (isolate_lru_page(page))
  3358. goto put;
  3359. nr_pages = hpage_nr_pages(page);
  3360. parent = parent_mem_cgroup(child);
  3361. /*
  3362. * If no parent, move charges to root cgroup.
  3363. */
  3364. if (!parent)
  3365. parent = root_mem_cgroup;
  3366. if (nr_pages > 1) {
  3367. VM_BUG_ON(!PageTransHuge(page));
  3368. flags = compound_lock_irqsave(page);
  3369. }
  3370. ret = mem_cgroup_move_account(page, nr_pages,
  3371. pc, child, parent);
  3372. if (!ret)
  3373. __mem_cgroup_cancel_local_charge(child, nr_pages);
  3374. if (nr_pages > 1)
  3375. compound_unlock_irqrestore(page, flags);
  3376. putback_lru_page(page);
  3377. put:
  3378. put_page(page);
  3379. out:
  3380. return ret;
  3381. }
  3382. /*
  3383. * Charge the memory controller for page usage.
  3384. * Return
  3385. * 0 if the charge was successful
  3386. * < 0 if the cgroup is over its limit
  3387. */
  3388. static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
  3389. gfp_t gfp_mask, enum charge_type ctype)
  3390. {
  3391. struct mem_cgroup *memcg = NULL;
  3392. unsigned int nr_pages = 1;
  3393. bool oom = true;
  3394. int ret;
  3395. if (PageTransHuge(page)) {
  3396. nr_pages <<= compound_order(page);
  3397. VM_BUG_ON(!PageTransHuge(page));
  3398. /*
  3399. * Never OOM-kill a process for a huge page. The
  3400. * fault handler will fall back to regular pages.
  3401. */
  3402. oom = false;
  3403. }
  3404. ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
  3405. if (ret == -ENOMEM)
  3406. return ret;
  3407. __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
  3408. return 0;
  3409. }
  3410. int mem_cgroup_newpage_charge(struct page *page,
  3411. struct mm_struct *mm, gfp_t gfp_mask)
  3412. {
  3413. if (mem_cgroup_disabled())
  3414. return 0;
  3415. VM_BUG_ON(page_mapped(page));
  3416. VM_BUG_ON(page->mapping && !PageAnon(page));
  3417. VM_BUG_ON(!mm);
  3418. return mem_cgroup_charge_common(page, mm, gfp_mask,
  3419. MEM_CGROUP_CHARGE_TYPE_ANON);
  3420. }
  3421. /*
  3422. * While swap-in, try_charge -> commit or cancel, the page is locked.
  3423. * And when try_charge() successfully returns, one refcnt to memcg without
  3424. * struct page_cgroup is acquired. This refcnt will be consumed by
  3425. * "commit()" or removed by "cancel()"
  3426. */
  3427. static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
  3428. struct page *page,
  3429. gfp_t mask,
  3430. struct mem_cgroup **memcgp)
  3431. {
  3432. struct mem_cgroup *memcg;
  3433. struct page_cgroup *pc;
  3434. int ret;
  3435. pc = lookup_page_cgroup(page);
  3436. /*
  3437. * Every swap fault against a single page tries to charge the
  3438. * page, bail as early as possible. shmem_unuse() encounters
  3439. * already charged pages, too. The USED bit is protected by
  3440. * the page lock, which serializes swap cache removal, which
  3441. * in turn serializes uncharging.
  3442. */
  3443. if (PageCgroupUsed(pc))
  3444. return 0;
  3445. if (!do_swap_account)
  3446. goto charge_cur_mm;
  3447. memcg = try_get_mem_cgroup_from_page(page);
  3448. if (!memcg)
  3449. goto charge_cur_mm;
  3450. *memcgp = memcg;
  3451. ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
  3452. css_put(&memcg->css);
  3453. if (ret == -EINTR)
  3454. ret = 0;
  3455. return ret;
  3456. charge_cur_mm:
  3457. ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
  3458. if (ret == -EINTR)
  3459. ret = 0;
  3460. return ret;
  3461. }
  3462. int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
  3463. gfp_t gfp_mask, struct mem_cgroup **memcgp)
  3464. {
  3465. *memcgp = NULL;
  3466. if (mem_cgroup_disabled())
  3467. return 0;
  3468. /*
  3469. * A racing thread's fault, or swapoff, may have already
  3470. * updated the pte, and even removed page from swap cache: in
  3471. * those cases unuse_pte()'s pte_same() test will fail; but
  3472. * there's also a KSM case which does need to charge the page.
  3473. */
  3474. if (!PageSwapCache(page)) {
  3475. int ret;
  3476. ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
  3477. if (ret == -EINTR)
  3478. ret = 0;
  3479. return ret;
  3480. }
  3481. return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
  3482. }
  3483. void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
  3484. {
  3485. if (mem_cgroup_disabled())
  3486. return;
  3487. if (!memcg)
  3488. return;
  3489. __mem_cgroup_cancel_charge(memcg, 1);
  3490. }
  3491. static void
  3492. __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
  3493. enum charge_type ctype)
  3494. {
  3495. if (mem_cgroup_disabled())
  3496. return;
  3497. if (!memcg)
  3498. return;
  3499. __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
  3500. /*
  3501. * Now swap is on-memory. This means this page may be
  3502. * counted both as mem and swap....double count.
  3503. * Fix it by uncharging from memsw. Basically, this SwapCache is stable
  3504. * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
  3505. * may call delete_from_swap_cache() before reach here.
  3506. */
  3507. if (do_swap_account && PageSwapCache(page)) {
  3508. swp_entry_t ent = {.val = page_private(page)};
  3509. mem_cgroup_uncharge_swap(ent);
  3510. }
  3511. }
  3512. void mem_cgroup_commit_charge_swapin(struct page *page,
  3513. struct mem_cgroup *memcg)
  3514. {
  3515. __mem_cgroup_commit_charge_swapin(page, memcg,
  3516. MEM_CGROUP_CHARGE_TYPE_ANON);
  3517. }
  3518. int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
  3519. gfp_t gfp_mask)
  3520. {
  3521. struct mem_cgroup *memcg = NULL;
  3522. enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
  3523. int ret;
  3524. if (mem_cgroup_disabled())
  3525. return 0;
  3526. if (PageCompound(page))
  3527. return 0;
  3528. if (!PageSwapCache(page))
  3529. ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
  3530. else { /* page is swapcache/shmem */
  3531. ret = __mem_cgroup_try_charge_swapin(mm, page,
  3532. gfp_mask, &memcg);
  3533. if (!ret)
  3534. __mem_cgroup_commit_charge_swapin(page, memcg, type);
  3535. }
  3536. return ret;
  3537. }
  3538. static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
  3539. unsigned int nr_pages,
  3540. const enum charge_type ctype)
  3541. {
  3542. struct memcg_batch_info *batch = NULL;
  3543. bool uncharge_memsw = true;
  3544. /* If swapout, usage of swap doesn't decrease */
  3545. if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
  3546. uncharge_memsw = false;
  3547. batch = &current->memcg_batch;
  3548. /*
  3549. * In usual, we do css_get() when we remember memcg pointer.
  3550. * But in this case, we keep res->usage until end of a series of
  3551. * uncharges. Then, it's ok to ignore memcg's refcnt.
  3552. */
  3553. if (!batch->memcg)
  3554. batch->memcg = memcg;
  3555. /*
  3556. * do_batch > 0 when unmapping pages or inode invalidate/truncate.
  3557. * In those cases, all pages freed continuously can be expected to be in
  3558. * the same cgroup and we have chance to coalesce uncharges.
  3559. * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
  3560. * because we want to do uncharge as soon as possible.
  3561. */
  3562. if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
  3563. goto direct_uncharge;
  3564. if (nr_pages > 1)
  3565. goto direct_uncharge;
  3566. /*
  3567. * In typical case, batch->memcg == mem. This means we can
  3568. * merge a series of uncharges to an uncharge of res_counter.
  3569. * If not, we uncharge res_counter ony by one.
  3570. */
  3571. if (batch->memcg != memcg)
  3572. goto direct_uncharge;
  3573. /* remember freed charge and uncharge it later */
  3574. batch->nr_pages++;
  3575. if (uncharge_memsw)
  3576. batch->memsw_nr_pages++;
  3577. return;
  3578. direct_uncharge:
  3579. res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
  3580. if (uncharge_memsw)
  3581. res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
  3582. if (unlikely(batch->memcg != memcg))
  3583. memcg_oom_recover(memcg);
  3584. }
  3585. /*
  3586. * uncharge if !page_mapped(page)
  3587. */
  3588. static struct mem_cgroup *
  3589. __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
  3590. bool end_migration)
  3591. {
  3592. struct mem_cgroup *memcg = NULL;
  3593. unsigned int nr_pages = 1;
  3594. struct page_cgroup *pc;
  3595. bool anon;
  3596. if (mem_cgroup_disabled())
  3597. return NULL;
  3598. if (PageTransHuge(page)) {
  3599. nr_pages <<= compound_order(page);
  3600. VM_BUG_ON(!PageTransHuge(page));
  3601. }
  3602. /*
  3603. * Check if our page_cgroup is valid
  3604. */
  3605. pc = lookup_page_cgroup(page);
  3606. if (unlikely(!PageCgroupUsed(pc)))
  3607. return NULL;
  3608. lock_page_cgroup(pc);
  3609. memcg = pc->mem_cgroup;
  3610. if (!PageCgroupUsed(pc))
  3611. goto unlock_out;
  3612. anon = PageAnon(page);
  3613. switch (ctype) {
  3614. case MEM_CGROUP_CHARGE_TYPE_ANON:
  3615. /*
  3616. * Generally PageAnon tells if it's the anon statistics to be
  3617. * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
  3618. * used before page reached the stage of being marked PageAnon.
  3619. */
  3620. anon = true;
  3621. /* fallthrough */
  3622. case MEM_CGROUP_CHARGE_TYPE_DROP:
  3623. /* See mem_cgroup_prepare_migration() */
  3624. if (page_mapped(page))
  3625. goto unlock_out;
  3626. /*
  3627. * Pages under migration may not be uncharged. But
  3628. * end_migration() /must/ be the one uncharging the
  3629. * unused post-migration page and so it has to call
  3630. * here with the migration bit still set. See the
  3631. * res_counter handling below.
  3632. */
  3633. if (!end_migration && PageCgroupMigration(pc))
  3634. goto unlock_out;
  3635. break;
  3636. case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
  3637. if (!PageAnon(page)) { /* Shared memory */
  3638. if (page->mapping && !page_is_file_cache(page))
  3639. goto unlock_out;
  3640. } else if (page_mapped(page)) /* Anon */
  3641. goto unlock_out;
  3642. break;
  3643. default:
  3644. break;
  3645. }
  3646. mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
  3647. ClearPageCgroupUsed(pc);
  3648. /*
  3649. * pc->mem_cgroup is not cleared here. It will be accessed when it's
  3650. * freed from LRU. This is safe because uncharged page is expected not
  3651. * to be reused (freed soon). Exception is SwapCache, it's handled by
  3652. * special functions.
  3653. */
  3654. unlock_page_cgroup(pc);
  3655. /*
  3656. * even after unlock, we have memcg->res.usage here and this memcg
  3657. * will never be freed.
  3658. */
  3659. memcg_check_events(memcg, page);
  3660. if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
  3661. mem_cgroup_swap_statistics(memcg, true);
  3662. mem_cgroup_get(memcg);
  3663. }
  3664. /*
  3665. * Migration does not charge the res_counter for the
  3666. * replacement page, so leave it alone when phasing out the
  3667. * page that is unused after the migration.
  3668. */
  3669. if (!end_migration && !mem_cgroup_is_root(memcg))
  3670. mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
  3671. return memcg;
  3672. unlock_out:
  3673. unlock_page_cgroup(pc);
  3674. return NULL;
  3675. }
  3676. void mem_cgroup_uncharge_page(struct page *page)
  3677. {
  3678. /* early check. */
  3679. if (page_mapped(page))
  3680. return;
  3681. VM_BUG_ON(page->mapping && !PageAnon(page));
  3682. /*
  3683. * If the page is in swap cache, uncharge should be deferred
  3684. * to the swap path, which also properly accounts swap usage
  3685. * and handles memcg lifetime.
  3686. *
  3687. * Note that this check is not stable and reclaim may add the
  3688. * page to swap cache at any time after this. However, if the
  3689. * page is not in swap cache by the time page->mapcount hits
  3690. * 0, there won't be any page table references to the swap
  3691. * slot, and reclaim will free it and not actually write the
  3692. * page to disk.
  3693. */
  3694. if (PageSwapCache(page))
  3695. return;
  3696. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
  3697. }
  3698. void mem_cgroup_uncharge_cache_page(struct page *page)
  3699. {
  3700. VM_BUG_ON(page_mapped(page));
  3701. VM_BUG_ON(page->mapping);
  3702. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
  3703. }
  3704. /*
  3705. * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
  3706. * In that cases, pages are freed continuously and we can expect pages
  3707. * are in the same memcg. All these calls itself limits the number of
  3708. * pages freed at once, then uncharge_start/end() is called properly.
  3709. * This may be called prural(2) times in a context,
  3710. */
  3711. void mem_cgroup_uncharge_start(void)
  3712. {
  3713. current->memcg_batch.do_batch++;
  3714. /* We can do nest. */
  3715. if (current->memcg_batch.do_batch == 1) {
  3716. current->memcg_batch.memcg = NULL;
  3717. current->memcg_batch.nr_pages = 0;
  3718. current->memcg_batch.memsw_nr_pages = 0;
  3719. }
  3720. }
  3721. void mem_cgroup_uncharge_end(void)
  3722. {
  3723. struct memcg_batch_info *batch = &current->memcg_batch;
  3724. if (!batch->do_batch)
  3725. return;
  3726. batch->do_batch--;
  3727. if (batch->do_batch) /* If stacked, do nothing. */
  3728. return;
  3729. if (!batch->memcg)
  3730. return;
  3731. /*
  3732. * This "batch->memcg" is valid without any css_get/put etc...
  3733. * bacause we hide charges behind us.
  3734. */
  3735. if (batch->nr_pages)
  3736. res_counter_uncharge(&batch->memcg->res,
  3737. batch->nr_pages * PAGE_SIZE);
  3738. if (batch->memsw_nr_pages)
  3739. res_counter_uncharge(&batch->memcg->memsw,
  3740. batch->memsw_nr_pages * PAGE_SIZE);
  3741. memcg_oom_recover(batch->memcg);
  3742. /* forget this pointer (for sanity check) */
  3743. batch->memcg = NULL;
  3744. }
  3745. #ifdef CONFIG_SWAP
  3746. /*
  3747. * called after __delete_from_swap_cache() and drop "page" account.
  3748. * memcg information is recorded to swap_cgroup of "ent"
  3749. */
  3750. void
  3751. mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
  3752. {
  3753. struct mem_cgroup *memcg;
  3754. int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
  3755. if (!swapout) /* this was a swap cache but the swap is unused ! */
  3756. ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
  3757. memcg = __mem_cgroup_uncharge_common(page, ctype, false);
  3758. /*
  3759. * record memcg information, if swapout && memcg != NULL,
  3760. * mem_cgroup_get() was called in uncharge().
  3761. */
  3762. if (do_swap_account && swapout && memcg)
  3763. swap_cgroup_record(ent, css_id(&memcg->css));
  3764. }
  3765. #endif
  3766. #ifdef CONFIG_MEMCG_SWAP
  3767. /*
  3768. * called from swap_entry_free(). remove record in swap_cgroup and
  3769. * uncharge "memsw" account.
  3770. */
  3771. void mem_cgroup_uncharge_swap(swp_entry_t ent)
  3772. {
  3773. struct mem_cgroup *memcg;
  3774. unsigned short id;
  3775. if (!do_swap_account)
  3776. return;
  3777. id = swap_cgroup_record(ent, 0);
  3778. rcu_read_lock();
  3779. memcg = mem_cgroup_lookup(id);
  3780. if (memcg) {
  3781. /*
  3782. * We uncharge this because swap is freed.
  3783. * This memcg can be obsolete one. We avoid calling css_tryget
  3784. */
  3785. if (!mem_cgroup_is_root(memcg))
  3786. res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
  3787. mem_cgroup_swap_statistics(memcg, false);
  3788. mem_cgroup_put(memcg);
  3789. }
  3790. rcu_read_unlock();
  3791. }
  3792. /**
  3793. * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
  3794. * @entry: swap entry to be moved
  3795. * @from: mem_cgroup which the entry is moved from
  3796. * @to: mem_cgroup which the entry is moved to
  3797. *
  3798. * It succeeds only when the swap_cgroup's record for this entry is the same
  3799. * as the mem_cgroup's id of @from.
  3800. *
  3801. * Returns 0 on success, -EINVAL on failure.
  3802. *
  3803. * The caller must have charged to @to, IOW, called res_counter_charge() about
  3804. * both res and memsw, and called css_get().
  3805. */
  3806. static int mem_cgroup_move_swap_account(swp_entry_t entry,
  3807. struct mem_cgroup *from, struct mem_cgroup *to)
  3808. {
  3809. unsigned short old_id, new_id;
  3810. old_id = css_id(&from->css);
  3811. new_id = css_id(&to->css);
  3812. if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
  3813. mem_cgroup_swap_statistics(from, false);
  3814. mem_cgroup_swap_statistics(to, true);
  3815. /*
  3816. * This function is only called from task migration context now.
  3817. * It postpones res_counter and refcount handling till the end
  3818. * of task migration(mem_cgroup_clear_mc()) for performance
  3819. * improvement. But we cannot postpone mem_cgroup_get(to)
  3820. * because if the process that has been moved to @to does
  3821. * swap-in, the refcount of @to might be decreased to 0.
  3822. */
  3823. mem_cgroup_get(to);
  3824. return 0;
  3825. }
  3826. return -EINVAL;
  3827. }
  3828. #else
  3829. static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
  3830. struct mem_cgroup *from, struct mem_cgroup *to)
  3831. {
  3832. return -EINVAL;
  3833. }
  3834. #endif
  3835. /*
  3836. * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
  3837. * page belongs to.
  3838. */
  3839. void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
  3840. struct mem_cgroup **memcgp)
  3841. {
  3842. struct mem_cgroup *memcg = NULL;
  3843. unsigned int nr_pages = 1;
  3844. struct page_cgroup *pc;
  3845. enum charge_type ctype;
  3846. *memcgp = NULL;
  3847. if (mem_cgroup_disabled())
  3848. return;
  3849. if (PageTransHuge(page))
  3850. nr_pages <<= compound_order(page);
  3851. pc = lookup_page_cgroup(page);
  3852. lock_page_cgroup(pc);
  3853. if (PageCgroupUsed(pc)) {
  3854. memcg = pc->mem_cgroup;
  3855. css_get(&memcg->css);
  3856. /*
  3857. * At migrating an anonymous page, its mapcount goes down
  3858. * to 0 and uncharge() will be called. But, even if it's fully
  3859. * unmapped, migration may fail and this page has to be
  3860. * charged again. We set MIGRATION flag here and delay uncharge
  3861. * until end_migration() is called
  3862. *
  3863. * Corner Case Thinking
  3864. * A)
  3865. * When the old page was mapped as Anon and it's unmap-and-freed
  3866. * while migration was ongoing.
  3867. * If unmap finds the old page, uncharge() of it will be delayed
  3868. * until end_migration(). If unmap finds a new page, it's
  3869. * uncharged when it make mapcount to be 1->0. If unmap code
  3870. * finds swap_migration_entry, the new page will not be mapped
  3871. * and end_migration() will find it(mapcount==0).
  3872. *
  3873. * B)
  3874. * When the old page was mapped but migraion fails, the kernel
  3875. * remaps it. A charge for it is kept by MIGRATION flag even
  3876. * if mapcount goes down to 0. We can do remap successfully
  3877. * without charging it again.
  3878. *
  3879. * C)
  3880. * The "old" page is under lock_page() until the end of
  3881. * migration, so, the old page itself will not be swapped-out.
  3882. * If the new page is swapped out before end_migraton, our
  3883. * hook to usual swap-out path will catch the event.
  3884. */
  3885. if (PageAnon(page))
  3886. SetPageCgroupMigration(pc);
  3887. }
  3888. unlock_page_cgroup(pc);
  3889. /*
  3890. * If the page is not charged at this point,
  3891. * we return here.
  3892. */
  3893. if (!memcg)
  3894. return;
  3895. *memcgp = memcg;
  3896. /*
  3897. * We charge new page before it's used/mapped. So, even if unlock_page()
  3898. * is called before end_migration, we can catch all events on this new
  3899. * page. In the case new page is migrated but not remapped, new page's
  3900. * mapcount will be finally 0 and we call uncharge in end_migration().
  3901. */
  3902. if (PageAnon(page))
  3903. ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
  3904. else
  3905. ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
  3906. /*
  3907. * The page is committed to the memcg, but it's not actually
  3908. * charged to the res_counter since we plan on replacing the
  3909. * old one and only one page is going to be left afterwards.
  3910. */
  3911. __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
  3912. }
  3913. /* remove redundant charge if migration failed*/
  3914. void mem_cgroup_end_migration(struct mem_cgroup *memcg,
  3915. struct page *oldpage, struct page *newpage, bool migration_ok)
  3916. {
  3917. struct page *used, *unused;
  3918. struct page_cgroup *pc;
  3919. bool anon;
  3920. if (!memcg)
  3921. return;
  3922. if (!migration_ok) {
  3923. used = oldpage;
  3924. unused = newpage;
  3925. } else {
  3926. used = newpage;
  3927. unused = oldpage;
  3928. }
  3929. anon = PageAnon(used);
  3930. __mem_cgroup_uncharge_common(unused,
  3931. anon ? MEM_CGROUP_CHARGE_TYPE_ANON
  3932. : MEM_CGROUP_CHARGE_TYPE_CACHE,
  3933. true);
  3934. css_put(&memcg->css);
  3935. /*
  3936. * We disallowed uncharge of pages under migration because mapcount
  3937. * of the page goes down to zero, temporarly.
  3938. * Clear the flag and check the page should be charged.
  3939. */
  3940. pc = lookup_page_cgroup(oldpage);
  3941. lock_page_cgroup(pc);
  3942. ClearPageCgroupMigration(pc);
  3943. unlock_page_cgroup(pc);
  3944. /*
  3945. * If a page is a file cache, radix-tree replacement is very atomic
  3946. * and we can skip this check. When it was an Anon page, its mapcount
  3947. * goes down to 0. But because we added MIGRATION flage, it's not
  3948. * uncharged yet. There are several case but page->mapcount check
  3949. * and USED bit check in mem_cgroup_uncharge_page() will do enough
  3950. * check. (see prepare_charge() also)
  3951. */
  3952. if (anon)
  3953. mem_cgroup_uncharge_page(used);
  3954. }
  3955. /*
  3956. * At replace page cache, newpage is not under any memcg but it's on
  3957. * LRU. So, this function doesn't touch res_counter but handles LRU
  3958. * in correct way. Both pages are locked so we cannot race with uncharge.
  3959. */
  3960. void mem_cgroup_replace_page_cache(struct page *oldpage,
  3961. struct page *newpage)
  3962. {
  3963. struct mem_cgroup *memcg = NULL;
  3964. struct page_cgroup *pc;
  3965. enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
  3966. if (mem_cgroup_disabled())
  3967. return;
  3968. pc = lookup_page_cgroup(oldpage);
  3969. /* fix accounting on old pages */
  3970. lock_page_cgroup(pc);
  3971. if (PageCgroupUsed(pc)) {
  3972. memcg = pc->mem_cgroup;
  3973. mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
  3974. ClearPageCgroupUsed(pc);
  3975. }
  3976. unlock_page_cgroup(pc);
  3977. /*
  3978. * When called from shmem_replace_page(), in some cases the
  3979. * oldpage has already been charged, and in some cases not.
  3980. */
  3981. if (!memcg)
  3982. return;
  3983. /*
  3984. * Even if newpage->mapping was NULL before starting replacement,
  3985. * the newpage may be on LRU(or pagevec for LRU) already. We lock
  3986. * LRU while we overwrite pc->mem_cgroup.
  3987. */
  3988. __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
  3989. }
  3990. #ifdef CONFIG_DEBUG_VM
  3991. static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
  3992. {
  3993. struct page_cgroup *pc;
  3994. pc = lookup_page_cgroup(page);
  3995. /*
  3996. * Can be NULL while feeding pages into the page allocator for
  3997. * the first time, i.e. during boot or memory hotplug;
  3998. * or when mem_cgroup_disabled().
  3999. */
  4000. if (likely(pc) && PageCgroupUsed(pc))
  4001. return pc;
  4002. return NULL;
  4003. }
  4004. bool mem_cgroup_bad_page_check(struct page *page)
  4005. {
  4006. if (mem_cgroup_disabled())
  4007. return false;
  4008. return lookup_page_cgroup_used(page) != NULL;
  4009. }
  4010. void mem_cgroup_print_bad_page(struct page *page)
  4011. {
  4012. struct page_cgroup *pc;
  4013. pc = lookup_page_cgroup_used(page);
  4014. if (pc) {
  4015. pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
  4016. pc, pc->flags, pc->mem_cgroup);
  4017. }
  4018. }
  4019. #endif
  4020. static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
  4021. unsigned long long val)
  4022. {
  4023. int retry_count;
  4024. u64 memswlimit, memlimit;
  4025. int ret = 0;
  4026. int children = mem_cgroup_count_children(memcg);
  4027. u64 curusage, oldusage;
  4028. int enlarge;
  4029. /*
  4030. * For keeping hierarchical_reclaim simple, how long we should retry
  4031. * is depends on callers. We set our retry-count to be function
  4032. * of # of children which we should visit in this loop.
  4033. */
  4034. retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
  4035. oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
  4036. enlarge = 0;
  4037. while (retry_count) {
  4038. if (signal_pending(current)) {
  4039. ret = -EINTR;
  4040. break;
  4041. }
  4042. /*
  4043. * Rather than hide all in some function, I do this in
  4044. * open coded manner. You see what this really does.
  4045. * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
  4046. */
  4047. mutex_lock(&set_limit_mutex);
  4048. memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  4049. if (memswlimit < val) {
  4050. ret = -EINVAL;
  4051. mutex_unlock(&set_limit_mutex);
  4052. break;
  4053. }
  4054. memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  4055. if (memlimit < val)
  4056. enlarge = 1;
  4057. ret = res_counter_set_limit(&memcg->res, val);
  4058. if (!ret) {
  4059. if (memswlimit == val)
  4060. memcg->memsw_is_minimum = true;
  4061. else
  4062. memcg->memsw_is_minimum = false;
  4063. }
  4064. mutex_unlock(&set_limit_mutex);
  4065. if (!ret)
  4066. break;
  4067. mem_cgroup_reclaim(memcg, GFP_KERNEL,
  4068. MEM_CGROUP_RECLAIM_SHRINK);
  4069. curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
  4070. /* Usage is reduced ? */
  4071. if (curusage >= oldusage)
  4072. retry_count--;
  4073. else
  4074. oldusage = curusage;
  4075. }
  4076. if (!ret && enlarge)
  4077. memcg_oom_recover(memcg);
  4078. return ret;
  4079. }
  4080. static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
  4081. unsigned long long val)
  4082. {
  4083. int retry_count;
  4084. u64 memlimit, memswlimit, oldusage, curusage;
  4085. int children = mem_cgroup_count_children(memcg);
  4086. int ret = -EBUSY;
  4087. int enlarge = 0;
  4088. /* see mem_cgroup_resize_res_limit */
  4089. retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
  4090. oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
  4091. while (retry_count) {
  4092. if (signal_pending(current)) {
  4093. ret = -EINTR;
  4094. break;
  4095. }
  4096. /*
  4097. * Rather than hide all in some function, I do this in
  4098. * open coded manner. You see what this really does.
  4099. * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
  4100. */
  4101. mutex_lock(&set_limit_mutex);
  4102. memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  4103. if (memlimit > val) {
  4104. ret = -EINVAL;
  4105. mutex_unlock(&set_limit_mutex);
  4106. break;
  4107. }
  4108. memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  4109. if (memswlimit < val)
  4110. enlarge = 1;
  4111. ret = res_counter_set_limit(&memcg->memsw, val);
  4112. if (!ret) {
  4113. if (memlimit == val)
  4114. memcg->memsw_is_minimum = true;
  4115. else
  4116. memcg->memsw_is_minimum = false;
  4117. }
  4118. mutex_unlock(&set_limit_mutex);
  4119. if (!ret)
  4120. break;
  4121. mem_cgroup_reclaim(memcg, GFP_KERNEL,
  4122. MEM_CGROUP_RECLAIM_NOSWAP |
  4123. MEM_CGROUP_RECLAIM_SHRINK);
  4124. curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
  4125. /* Usage is reduced ? */
  4126. if (curusage >= oldusage)
  4127. retry_count--;
  4128. else
  4129. oldusage = curusage;
  4130. }
  4131. if (!ret && enlarge)
  4132. memcg_oom_recover(memcg);
  4133. return ret;
  4134. }
  4135. unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
  4136. gfp_t gfp_mask,
  4137. unsigned long *total_scanned)
  4138. {
  4139. unsigned long nr_reclaimed = 0;
  4140. struct mem_cgroup_per_zone *mz, *next_mz = NULL;
  4141. unsigned long reclaimed;
  4142. int loop = 0;
  4143. struct mem_cgroup_tree_per_zone *mctz;
  4144. unsigned long long excess;
  4145. unsigned long nr_scanned;
  4146. if (order > 0)
  4147. return 0;
  4148. mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
  4149. /*
  4150. * This loop can run a while, specially if mem_cgroup's continuously
  4151. * keep exceeding their soft limit and putting the system under
  4152. * pressure
  4153. */
  4154. do {
  4155. if (next_mz)
  4156. mz = next_mz;
  4157. else
  4158. mz = mem_cgroup_largest_soft_limit_node(mctz);
  4159. if (!mz)
  4160. break;
  4161. nr_scanned = 0;
  4162. reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
  4163. gfp_mask, &nr_scanned);
  4164. nr_reclaimed += reclaimed;
  4165. *total_scanned += nr_scanned;
  4166. spin_lock(&mctz->lock);
  4167. /*
  4168. * If we failed to reclaim anything from this memory cgroup
  4169. * it is time to move on to the next cgroup
  4170. */
  4171. next_mz = NULL;
  4172. if (!reclaimed) {
  4173. do {
  4174. /*
  4175. * Loop until we find yet another one.
  4176. *
  4177. * By the time we get the soft_limit lock
  4178. * again, someone might have aded the
  4179. * group back on the RB tree. Iterate to
  4180. * make sure we get a different mem.
  4181. * mem_cgroup_largest_soft_limit_node returns
  4182. * NULL if no other cgroup is present on
  4183. * the tree
  4184. */
  4185. next_mz =
  4186. __mem_cgroup_largest_soft_limit_node(mctz);
  4187. if (next_mz == mz)
  4188. css_put(&next_mz->memcg->css);
  4189. else /* next_mz == NULL or other memcg */
  4190. break;
  4191. } while (1);
  4192. }
  4193. __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
  4194. excess = res_counter_soft_limit_excess(&mz->memcg->res);
  4195. /*
  4196. * One school of thought says that we should not add
  4197. * back the node to the tree if reclaim returns 0.
  4198. * But our reclaim could return 0, simply because due
  4199. * to priority we are exposing a smaller subset of
  4200. * memory to reclaim from. Consider this as a longer
  4201. * term TODO.
  4202. */
  4203. /* If excess == 0, no tree ops */
  4204. __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
  4205. spin_unlock(&mctz->lock);
  4206. css_put(&mz->memcg->css);
  4207. loop++;
  4208. /*
  4209. * Could not reclaim anything and there are no more
  4210. * mem cgroups to try or we seem to be looping without
  4211. * reclaiming anything.
  4212. */
  4213. if (!nr_reclaimed &&
  4214. (next_mz == NULL ||
  4215. loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
  4216. break;
  4217. } while (!nr_reclaimed);
  4218. if (next_mz)
  4219. css_put(&next_mz->memcg->css);
  4220. return nr_reclaimed;
  4221. }
  4222. /**
  4223. * mem_cgroup_force_empty_list - clears LRU of a group
  4224. * @memcg: group to clear
  4225. * @node: NUMA node
  4226. * @zid: zone id
  4227. * @lru: lru to to clear
  4228. *
  4229. * Traverse a specified page_cgroup list and try to drop them all. This doesn't
  4230. * reclaim the pages page themselves - pages are moved to the parent (or root)
  4231. * group.
  4232. */
  4233. static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
  4234. int node, int zid, enum lru_list lru)
  4235. {
  4236. struct lruvec *lruvec;
  4237. unsigned long flags;
  4238. struct list_head *list;
  4239. struct page *busy;
  4240. struct zone *zone;
  4241. zone = &NODE_DATA(node)->node_zones[zid];
  4242. lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  4243. list = &lruvec->lists[lru];
  4244. busy = NULL;
  4245. do {
  4246. struct page_cgroup *pc;
  4247. struct page *page;
  4248. spin_lock_irqsave(&zone->lru_lock, flags);
  4249. if (list_empty(list)) {
  4250. spin_unlock_irqrestore(&zone->lru_lock, flags);
  4251. break;
  4252. }
  4253. page = list_entry(list->prev, struct page, lru);
  4254. if (busy == page) {
  4255. list_move(&page->lru, list);
  4256. busy = NULL;
  4257. spin_unlock_irqrestore(&zone->lru_lock, flags);
  4258. continue;
  4259. }
  4260. spin_unlock_irqrestore(&zone->lru_lock, flags);
  4261. pc = lookup_page_cgroup(page);
  4262. if (mem_cgroup_move_parent(page, pc, memcg)) {
  4263. /* found lock contention or "pc" is obsolete. */
  4264. busy = page;
  4265. cond_resched();
  4266. } else
  4267. busy = NULL;
  4268. } while (!list_empty(list));
  4269. }
  4270. /*
  4271. * make mem_cgroup's charge to be 0 if there is no task by moving
  4272. * all the charges and pages to the parent.
  4273. * This enables deleting this mem_cgroup.
  4274. *
  4275. * Caller is responsible for holding css reference on the memcg.
  4276. */
  4277. static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
  4278. {
  4279. int node, zid;
  4280. u64 usage;
  4281. do {
  4282. /* This is for making all *used* pages to be on LRU. */
  4283. lru_add_drain_all();
  4284. drain_all_stock_sync(memcg);
  4285. mem_cgroup_start_move(memcg);
  4286. for_each_node_state(node, N_MEMORY) {
  4287. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  4288. enum lru_list lru;
  4289. for_each_lru(lru) {
  4290. mem_cgroup_force_empty_list(memcg,
  4291. node, zid, lru);
  4292. }
  4293. }
  4294. }
  4295. mem_cgroup_end_move(memcg);
  4296. memcg_oom_recover(memcg);
  4297. cond_resched();
  4298. /*
  4299. * Kernel memory may not necessarily be trackable to a specific
  4300. * process. So they are not migrated, and therefore we can't
  4301. * expect their value to drop to 0 here.
  4302. * Having res filled up with kmem only is enough.
  4303. *
  4304. * This is a safety check because mem_cgroup_force_empty_list
  4305. * could have raced with mem_cgroup_replace_page_cache callers
  4306. * so the lru seemed empty but the page could have been added
  4307. * right after the check. RES_USAGE should be safe as we always
  4308. * charge before adding to the LRU.
  4309. */
  4310. usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
  4311. res_counter_read_u64(&memcg->kmem, RES_USAGE);
  4312. } while (usage > 0);
  4313. }
  4314. /*
  4315. * This mainly exists for tests during the setting of set of use_hierarchy.
  4316. * Since this is the very setting we are changing, the current hierarchy value
  4317. * is meaningless
  4318. */
  4319. static inline bool __memcg_has_children(struct mem_cgroup *memcg)
  4320. {
  4321. struct cgroup *pos;
  4322. /* bounce at first found */
  4323. cgroup_for_each_child(pos, memcg->css.cgroup)
  4324. return true;
  4325. return false;
  4326. }
  4327. /*
  4328. * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
  4329. * to be already dead (as in mem_cgroup_force_empty, for instance). This is
  4330. * from mem_cgroup_count_children(), in the sense that we don't really care how
  4331. * many children we have; we only need to know if we have any. It also counts
  4332. * any memcg without hierarchy as infertile.
  4333. */
  4334. static inline bool memcg_has_children(struct mem_cgroup *memcg)
  4335. {
  4336. return memcg->use_hierarchy && __memcg_has_children(memcg);
  4337. }
  4338. /*
  4339. * Reclaims as many pages from the given memcg as possible and moves
  4340. * the rest to the parent.
  4341. *
  4342. * Caller is responsible for holding css reference for memcg.
  4343. */
  4344. static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
  4345. {
  4346. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  4347. struct cgroup *cgrp = memcg->css.cgroup;
  4348. /* returns EBUSY if there is a task or if we come here twice. */
  4349. if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
  4350. return -EBUSY;
  4351. /* we call try-to-free pages for make this cgroup empty */
  4352. lru_add_drain_all();
  4353. /* try to free all pages in this cgroup */
  4354. while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
  4355. int progress;
  4356. if (signal_pending(current))
  4357. return -EINTR;
  4358. progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
  4359. false);
  4360. if (!progress) {
  4361. nr_retries--;
  4362. /* maybe some writeback is necessary */
  4363. congestion_wait(BLK_RW_ASYNC, HZ/10);
  4364. }
  4365. }
  4366. lru_add_drain();
  4367. mem_cgroup_reparent_charges(memcg);
  4368. return 0;
  4369. }
  4370. static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
  4371. {
  4372. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4373. int ret;
  4374. if (mem_cgroup_is_root(memcg))
  4375. return -EINVAL;
  4376. css_get(&memcg->css);
  4377. ret = mem_cgroup_force_empty(memcg);
  4378. css_put(&memcg->css);
  4379. return ret;
  4380. }
  4381. static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
  4382. {
  4383. return mem_cgroup_from_cont(cont)->use_hierarchy;
  4384. }
  4385. static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
  4386. u64 val)
  4387. {
  4388. int retval = 0;
  4389. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4390. struct cgroup *parent = cont->parent;
  4391. struct mem_cgroup *parent_memcg = NULL;
  4392. if (parent)
  4393. parent_memcg = mem_cgroup_from_cont(parent);
  4394. mutex_lock(&memcg_create_mutex);
  4395. if (memcg->use_hierarchy == val)
  4396. goto out;
  4397. /*
  4398. * If parent's use_hierarchy is set, we can't make any modifications
  4399. * in the child subtrees. If it is unset, then the change can
  4400. * occur, provided the current cgroup has no children.
  4401. *
  4402. * For the root cgroup, parent_mem is NULL, we allow value to be
  4403. * set if there are no children.
  4404. */
  4405. if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
  4406. (val == 1 || val == 0)) {
  4407. if (!__memcg_has_children(memcg))
  4408. memcg->use_hierarchy = val;
  4409. else
  4410. retval = -EBUSY;
  4411. } else
  4412. retval = -EINVAL;
  4413. out:
  4414. mutex_unlock(&memcg_create_mutex);
  4415. return retval;
  4416. }
  4417. static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
  4418. enum mem_cgroup_stat_index idx)
  4419. {
  4420. struct mem_cgroup *iter;
  4421. long val = 0;
  4422. /* Per-cpu values can be negative, use a signed accumulator */
  4423. for_each_mem_cgroup_tree(iter, memcg)
  4424. val += mem_cgroup_read_stat(iter, idx);
  4425. if (val < 0) /* race ? */
  4426. val = 0;
  4427. return val;
  4428. }
  4429. static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
  4430. {
  4431. u64 val;
  4432. if (!mem_cgroup_is_root(memcg)) {
  4433. if (!swap)
  4434. return res_counter_read_u64(&memcg->res, RES_USAGE);
  4435. else
  4436. return res_counter_read_u64(&memcg->memsw, RES_USAGE);
  4437. }
  4438. /*
  4439. * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
  4440. * as well as in MEM_CGROUP_STAT_RSS_HUGE.
  4441. */
  4442. val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
  4443. val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
  4444. if (swap)
  4445. val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
  4446. return val << PAGE_SHIFT;
  4447. }
  4448. static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
  4449. struct file *file, char __user *buf,
  4450. size_t nbytes, loff_t *ppos)
  4451. {
  4452. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4453. char str[64];
  4454. u64 val;
  4455. int name, len;
  4456. enum res_type type;
  4457. type = MEMFILE_TYPE(cft->private);
  4458. name = MEMFILE_ATTR(cft->private);
  4459. switch (type) {
  4460. case _MEM:
  4461. if (name == RES_USAGE)
  4462. val = mem_cgroup_usage(memcg, false);
  4463. else
  4464. val = res_counter_read_u64(&memcg->res, name);
  4465. break;
  4466. case _MEMSWAP:
  4467. if (name == RES_USAGE)
  4468. val = mem_cgroup_usage(memcg, true);
  4469. else
  4470. val = res_counter_read_u64(&memcg->memsw, name);
  4471. break;
  4472. case _KMEM:
  4473. val = res_counter_read_u64(&memcg->kmem, name);
  4474. break;
  4475. default:
  4476. BUG();
  4477. }
  4478. len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
  4479. return simple_read_from_buffer(buf, nbytes, ppos, str, len);
  4480. }
  4481. static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
  4482. {
  4483. int ret = -EINVAL;
  4484. #ifdef CONFIG_MEMCG_KMEM
  4485. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4486. /*
  4487. * For simplicity, we won't allow this to be disabled. It also can't
  4488. * be changed if the cgroup has children already, or if tasks had
  4489. * already joined.
  4490. *
  4491. * If tasks join before we set the limit, a person looking at
  4492. * kmem.usage_in_bytes will have no way to determine when it took
  4493. * place, which makes the value quite meaningless.
  4494. *
  4495. * After it first became limited, changes in the value of the limit are
  4496. * of course permitted.
  4497. */
  4498. mutex_lock(&memcg_create_mutex);
  4499. mutex_lock(&set_limit_mutex);
  4500. if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
  4501. if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
  4502. ret = -EBUSY;
  4503. goto out;
  4504. }
  4505. ret = res_counter_set_limit(&memcg->kmem, val);
  4506. VM_BUG_ON(ret);
  4507. ret = memcg_update_cache_sizes(memcg);
  4508. if (ret) {
  4509. res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
  4510. goto out;
  4511. }
  4512. static_key_slow_inc(&memcg_kmem_enabled_key);
  4513. /*
  4514. * setting the active bit after the inc will guarantee no one
  4515. * starts accounting before all call sites are patched
  4516. */
  4517. memcg_kmem_set_active(memcg);
  4518. /*
  4519. * kmem charges can outlive the cgroup. In the case of slab
  4520. * pages, for instance, a page contain objects from various
  4521. * processes, so it is unfeasible to migrate them away. We
  4522. * need to reference count the memcg because of that.
  4523. */
  4524. mem_cgroup_get(memcg);
  4525. } else
  4526. ret = res_counter_set_limit(&memcg->kmem, val);
  4527. out:
  4528. mutex_unlock(&set_limit_mutex);
  4529. mutex_unlock(&memcg_create_mutex);
  4530. #endif
  4531. return ret;
  4532. }
  4533. #ifdef CONFIG_MEMCG_KMEM
  4534. static int memcg_propagate_kmem(struct mem_cgroup *memcg)
  4535. {
  4536. int ret = 0;
  4537. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  4538. if (!parent)
  4539. goto out;
  4540. memcg->kmem_account_flags = parent->kmem_account_flags;
  4541. /*
  4542. * When that happen, we need to disable the static branch only on those
  4543. * memcgs that enabled it. To achieve this, we would be forced to
  4544. * complicate the code by keeping track of which memcgs were the ones
  4545. * that actually enabled limits, and which ones got it from its
  4546. * parents.
  4547. *
  4548. * It is a lot simpler just to do static_key_slow_inc() on every child
  4549. * that is accounted.
  4550. */
  4551. if (!memcg_kmem_is_active(memcg))
  4552. goto out;
  4553. /*
  4554. * destroy(), called if we fail, will issue static_key_slow_inc() and
  4555. * mem_cgroup_put() if kmem is enabled. We have to either call them
  4556. * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
  4557. * this more consistent, since it always leads to the same destroy path
  4558. */
  4559. mem_cgroup_get(memcg);
  4560. static_key_slow_inc(&memcg_kmem_enabled_key);
  4561. mutex_lock(&set_limit_mutex);
  4562. ret = memcg_update_cache_sizes(memcg);
  4563. mutex_unlock(&set_limit_mutex);
  4564. out:
  4565. return ret;
  4566. }
  4567. #endif /* CONFIG_MEMCG_KMEM */
  4568. /*
  4569. * The user of this function is...
  4570. * RES_LIMIT.
  4571. */
  4572. static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
  4573. const char *buffer)
  4574. {
  4575. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4576. enum res_type type;
  4577. int name;
  4578. unsigned long long val;
  4579. int ret;
  4580. type = MEMFILE_TYPE(cft->private);
  4581. name = MEMFILE_ATTR(cft->private);
  4582. switch (name) {
  4583. case RES_LIMIT:
  4584. if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
  4585. ret = -EINVAL;
  4586. break;
  4587. }
  4588. /* This function does all necessary parse...reuse it */
  4589. ret = res_counter_memparse_write_strategy(buffer, &val);
  4590. if (ret)
  4591. break;
  4592. if (type == _MEM)
  4593. ret = mem_cgroup_resize_limit(memcg, val);
  4594. else if (type == _MEMSWAP)
  4595. ret = mem_cgroup_resize_memsw_limit(memcg, val);
  4596. else if (type == _KMEM)
  4597. ret = memcg_update_kmem_limit(cont, val);
  4598. else
  4599. return -EINVAL;
  4600. break;
  4601. case RES_SOFT_LIMIT:
  4602. ret = res_counter_memparse_write_strategy(buffer, &val);
  4603. if (ret)
  4604. break;
  4605. /*
  4606. * For memsw, soft limits are hard to implement in terms
  4607. * of semantics, for now, we support soft limits for
  4608. * control without swap
  4609. */
  4610. if (type == _MEM)
  4611. ret = res_counter_set_soft_limit(&memcg->res, val);
  4612. else
  4613. ret = -EINVAL;
  4614. break;
  4615. default:
  4616. ret = -EINVAL; /* should be BUG() ? */
  4617. break;
  4618. }
  4619. return ret;
  4620. }
  4621. static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
  4622. unsigned long long *mem_limit, unsigned long long *memsw_limit)
  4623. {
  4624. struct cgroup *cgroup;
  4625. unsigned long long min_limit, min_memsw_limit, tmp;
  4626. min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  4627. min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  4628. cgroup = memcg->css.cgroup;
  4629. if (!memcg->use_hierarchy)
  4630. goto out;
  4631. while (cgroup->parent) {
  4632. cgroup = cgroup->parent;
  4633. memcg = mem_cgroup_from_cont(cgroup);
  4634. if (!memcg->use_hierarchy)
  4635. break;
  4636. tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
  4637. min_limit = min(min_limit, tmp);
  4638. tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  4639. min_memsw_limit = min(min_memsw_limit, tmp);
  4640. }
  4641. out:
  4642. *mem_limit = min_limit;
  4643. *memsw_limit = min_memsw_limit;
  4644. }
  4645. static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
  4646. {
  4647. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4648. int name;
  4649. enum res_type type;
  4650. type = MEMFILE_TYPE(event);
  4651. name = MEMFILE_ATTR(event);
  4652. switch (name) {
  4653. case RES_MAX_USAGE:
  4654. if (type == _MEM)
  4655. res_counter_reset_max(&memcg->res);
  4656. else if (type == _MEMSWAP)
  4657. res_counter_reset_max(&memcg->memsw);
  4658. else if (type == _KMEM)
  4659. res_counter_reset_max(&memcg->kmem);
  4660. else
  4661. return -EINVAL;
  4662. break;
  4663. case RES_FAILCNT:
  4664. if (type == _MEM)
  4665. res_counter_reset_failcnt(&memcg->res);
  4666. else if (type == _MEMSWAP)
  4667. res_counter_reset_failcnt(&memcg->memsw);
  4668. else if (type == _KMEM)
  4669. res_counter_reset_failcnt(&memcg->kmem);
  4670. else
  4671. return -EINVAL;
  4672. break;
  4673. }
  4674. return 0;
  4675. }
  4676. static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
  4677. struct cftype *cft)
  4678. {
  4679. return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
  4680. }
  4681. #ifdef CONFIG_MMU
  4682. static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
  4683. struct cftype *cft, u64 val)
  4684. {
  4685. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4686. if (val >= (1 << NR_MOVE_TYPE))
  4687. return -EINVAL;
  4688. /*
  4689. * No kind of locking is needed in here, because ->can_attach() will
  4690. * check this value once in the beginning of the process, and then carry
  4691. * on with stale data. This means that changes to this value will only
  4692. * affect task migrations starting after the change.
  4693. */
  4694. memcg->move_charge_at_immigrate = val;
  4695. return 0;
  4696. }
  4697. #else
  4698. static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
  4699. struct cftype *cft, u64 val)
  4700. {
  4701. return -ENOSYS;
  4702. }
  4703. #endif
  4704. #ifdef CONFIG_NUMA
  4705. static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
  4706. struct seq_file *m)
  4707. {
  4708. int nid;
  4709. unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
  4710. unsigned long node_nr;
  4711. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4712. total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
  4713. seq_printf(m, "total=%lu", total_nr);
  4714. for_each_node_state(nid, N_MEMORY) {
  4715. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
  4716. seq_printf(m, " N%d=%lu", nid, node_nr);
  4717. }
  4718. seq_putc(m, '\n');
  4719. file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
  4720. seq_printf(m, "file=%lu", file_nr);
  4721. for_each_node_state(nid, N_MEMORY) {
  4722. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  4723. LRU_ALL_FILE);
  4724. seq_printf(m, " N%d=%lu", nid, node_nr);
  4725. }
  4726. seq_putc(m, '\n');
  4727. anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
  4728. seq_printf(m, "anon=%lu", anon_nr);
  4729. for_each_node_state(nid, N_MEMORY) {
  4730. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  4731. LRU_ALL_ANON);
  4732. seq_printf(m, " N%d=%lu", nid, node_nr);
  4733. }
  4734. seq_putc(m, '\n');
  4735. unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
  4736. seq_printf(m, "unevictable=%lu", unevictable_nr);
  4737. for_each_node_state(nid, N_MEMORY) {
  4738. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  4739. BIT(LRU_UNEVICTABLE));
  4740. seq_printf(m, " N%d=%lu", nid, node_nr);
  4741. }
  4742. seq_putc(m, '\n');
  4743. return 0;
  4744. }
  4745. #endif /* CONFIG_NUMA */
  4746. static inline void mem_cgroup_lru_names_not_uptodate(void)
  4747. {
  4748. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
  4749. }
  4750. static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
  4751. struct seq_file *m)
  4752. {
  4753. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4754. struct mem_cgroup *mi;
  4755. unsigned int i;
  4756. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  4757. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  4758. continue;
  4759. seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
  4760. mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
  4761. }
  4762. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
  4763. seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
  4764. mem_cgroup_read_events(memcg, i));
  4765. for (i = 0; i < NR_LRU_LISTS; i++)
  4766. seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
  4767. mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
  4768. /* Hierarchical information */
  4769. {
  4770. unsigned long long limit, memsw_limit;
  4771. memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
  4772. seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
  4773. if (do_swap_account)
  4774. seq_printf(m, "hierarchical_memsw_limit %llu\n",
  4775. memsw_limit);
  4776. }
  4777. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  4778. long long val = 0;
  4779. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  4780. continue;
  4781. for_each_mem_cgroup_tree(mi, memcg)
  4782. val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
  4783. seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
  4784. }
  4785. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  4786. unsigned long long val = 0;
  4787. for_each_mem_cgroup_tree(mi, memcg)
  4788. val += mem_cgroup_read_events(mi, i);
  4789. seq_printf(m, "total_%s %llu\n",
  4790. mem_cgroup_events_names[i], val);
  4791. }
  4792. for (i = 0; i < NR_LRU_LISTS; i++) {
  4793. unsigned long long val = 0;
  4794. for_each_mem_cgroup_tree(mi, memcg)
  4795. val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
  4796. seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
  4797. }
  4798. #ifdef CONFIG_DEBUG_VM
  4799. {
  4800. int nid, zid;
  4801. struct mem_cgroup_per_zone *mz;
  4802. struct zone_reclaim_stat *rstat;
  4803. unsigned long recent_rotated[2] = {0, 0};
  4804. unsigned long recent_scanned[2] = {0, 0};
  4805. for_each_online_node(nid)
  4806. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  4807. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  4808. rstat = &mz->lruvec.reclaim_stat;
  4809. recent_rotated[0] += rstat->recent_rotated[0];
  4810. recent_rotated[1] += rstat->recent_rotated[1];
  4811. recent_scanned[0] += rstat->recent_scanned[0];
  4812. recent_scanned[1] += rstat->recent_scanned[1];
  4813. }
  4814. seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
  4815. seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
  4816. seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
  4817. seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
  4818. }
  4819. #endif
  4820. return 0;
  4821. }
  4822. static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
  4823. {
  4824. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4825. return mem_cgroup_swappiness(memcg);
  4826. }
  4827. static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
  4828. u64 val)
  4829. {
  4830. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4831. struct mem_cgroup *parent;
  4832. if (val > 100)
  4833. return -EINVAL;
  4834. if (cgrp->parent == NULL)
  4835. return -EINVAL;
  4836. parent = mem_cgroup_from_cont(cgrp->parent);
  4837. mutex_lock(&memcg_create_mutex);
  4838. /* If under hierarchy, only empty-root can set this value */
  4839. if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
  4840. mutex_unlock(&memcg_create_mutex);
  4841. return -EINVAL;
  4842. }
  4843. memcg->swappiness = val;
  4844. mutex_unlock(&memcg_create_mutex);
  4845. return 0;
  4846. }
  4847. static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
  4848. {
  4849. struct mem_cgroup_threshold_ary *t;
  4850. u64 usage;
  4851. int i;
  4852. rcu_read_lock();
  4853. if (!swap)
  4854. t = rcu_dereference(memcg->thresholds.primary);
  4855. else
  4856. t = rcu_dereference(memcg->memsw_thresholds.primary);
  4857. if (!t)
  4858. goto unlock;
  4859. usage = mem_cgroup_usage(memcg, swap);
  4860. /*
  4861. * current_threshold points to threshold just below or equal to usage.
  4862. * If it's not true, a threshold was crossed after last
  4863. * call of __mem_cgroup_threshold().
  4864. */
  4865. i = t->current_threshold;
  4866. /*
  4867. * Iterate backward over array of thresholds starting from
  4868. * current_threshold and check if a threshold is crossed.
  4869. * If none of thresholds below usage is crossed, we read
  4870. * only one element of the array here.
  4871. */
  4872. for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
  4873. eventfd_signal(t->entries[i].eventfd, 1);
  4874. /* i = current_threshold + 1 */
  4875. i++;
  4876. /*
  4877. * Iterate forward over array of thresholds starting from
  4878. * current_threshold+1 and check if a threshold is crossed.
  4879. * If none of thresholds above usage is crossed, we read
  4880. * only one element of the array here.
  4881. */
  4882. for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
  4883. eventfd_signal(t->entries[i].eventfd, 1);
  4884. /* Update current_threshold */
  4885. t->current_threshold = i - 1;
  4886. unlock:
  4887. rcu_read_unlock();
  4888. }
  4889. static void mem_cgroup_threshold(struct mem_cgroup *memcg)
  4890. {
  4891. while (memcg) {
  4892. __mem_cgroup_threshold(memcg, false);
  4893. if (do_swap_account)
  4894. __mem_cgroup_threshold(memcg, true);
  4895. memcg = parent_mem_cgroup(memcg);
  4896. }
  4897. }
  4898. static int compare_thresholds(const void *a, const void *b)
  4899. {
  4900. const struct mem_cgroup_threshold *_a = a;
  4901. const struct mem_cgroup_threshold *_b = b;
  4902. return _a->threshold - _b->threshold;
  4903. }
  4904. static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
  4905. {
  4906. struct mem_cgroup_eventfd_list *ev;
  4907. list_for_each_entry(ev, &memcg->oom_notify, list)
  4908. eventfd_signal(ev->eventfd, 1);
  4909. return 0;
  4910. }
  4911. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
  4912. {
  4913. struct mem_cgroup *iter;
  4914. for_each_mem_cgroup_tree(iter, memcg)
  4915. mem_cgroup_oom_notify_cb(iter);
  4916. }
  4917. static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
  4918. struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
  4919. {
  4920. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4921. struct mem_cgroup_thresholds *thresholds;
  4922. struct mem_cgroup_threshold_ary *new;
  4923. enum res_type type = MEMFILE_TYPE(cft->private);
  4924. u64 threshold, usage;
  4925. int i, size, ret;
  4926. ret = res_counter_memparse_write_strategy(args, &threshold);
  4927. if (ret)
  4928. return ret;
  4929. mutex_lock(&memcg->thresholds_lock);
  4930. if (type == _MEM)
  4931. thresholds = &memcg->thresholds;
  4932. else if (type == _MEMSWAP)
  4933. thresholds = &memcg->memsw_thresholds;
  4934. else
  4935. BUG();
  4936. usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
  4937. /* Check if a threshold crossed before adding a new one */
  4938. if (thresholds->primary)
  4939. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  4940. size = thresholds->primary ? thresholds->primary->size + 1 : 1;
  4941. /* Allocate memory for new array of thresholds */
  4942. new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
  4943. GFP_KERNEL);
  4944. if (!new) {
  4945. ret = -ENOMEM;
  4946. goto unlock;
  4947. }
  4948. new->size = size;
  4949. /* Copy thresholds (if any) to new array */
  4950. if (thresholds->primary) {
  4951. memcpy(new->entries, thresholds->primary->entries, (size - 1) *
  4952. sizeof(struct mem_cgroup_threshold));
  4953. }
  4954. /* Add new threshold */
  4955. new->entries[size - 1].eventfd = eventfd;
  4956. new->entries[size - 1].threshold = threshold;
  4957. /* Sort thresholds. Registering of new threshold isn't time-critical */
  4958. sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
  4959. compare_thresholds, NULL);
  4960. /* Find current threshold */
  4961. new->current_threshold = -1;
  4962. for (i = 0; i < size; i++) {
  4963. if (new->entries[i].threshold <= usage) {
  4964. /*
  4965. * new->current_threshold will not be used until
  4966. * rcu_assign_pointer(), so it's safe to increment
  4967. * it here.
  4968. */
  4969. ++new->current_threshold;
  4970. } else
  4971. break;
  4972. }
  4973. /* Free old spare buffer and save old primary buffer as spare */
  4974. kfree(thresholds->spare);
  4975. thresholds->spare = thresholds->primary;
  4976. rcu_assign_pointer(thresholds->primary, new);
  4977. /* To be sure that nobody uses thresholds */
  4978. synchronize_rcu();
  4979. unlock:
  4980. mutex_unlock(&memcg->thresholds_lock);
  4981. return ret;
  4982. }
  4983. static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
  4984. struct cftype *cft, struct eventfd_ctx *eventfd)
  4985. {
  4986. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4987. struct mem_cgroup_thresholds *thresholds;
  4988. struct mem_cgroup_threshold_ary *new;
  4989. enum res_type type = MEMFILE_TYPE(cft->private);
  4990. u64 usage;
  4991. int i, j, size;
  4992. mutex_lock(&memcg->thresholds_lock);
  4993. if (type == _MEM)
  4994. thresholds = &memcg->thresholds;
  4995. else if (type == _MEMSWAP)
  4996. thresholds = &memcg->memsw_thresholds;
  4997. else
  4998. BUG();
  4999. if (!thresholds->primary)
  5000. goto unlock;
  5001. usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
  5002. /* Check if a threshold crossed before removing */
  5003. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  5004. /* Calculate new number of threshold */
  5005. size = 0;
  5006. for (i = 0; i < thresholds->primary->size; i++) {
  5007. if (thresholds->primary->entries[i].eventfd != eventfd)
  5008. size++;
  5009. }
  5010. new = thresholds->spare;
  5011. /* Set thresholds array to NULL if we don't have thresholds */
  5012. if (!size) {
  5013. kfree(new);
  5014. new = NULL;
  5015. goto swap_buffers;
  5016. }
  5017. new->size = size;
  5018. /* Copy thresholds and find current threshold */
  5019. new->current_threshold = -1;
  5020. for (i = 0, j = 0; i < thresholds->primary->size; i++) {
  5021. if (thresholds->primary->entries[i].eventfd == eventfd)
  5022. continue;
  5023. new->entries[j] = thresholds->primary->entries[i];
  5024. if (new->entries[j].threshold <= usage) {
  5025. /*
  5026. * new->current_threshold will not be used
  5027. * until rcu_assign_pointer(), so it's safe to increment
  5028. * it here.
  5029. */
  5030. ++new->current_threshold;
  5031. }
  5032. j++;
  5033. }
  5034. swap_buffers:
  5035. /* Swap primary and spare array */
  5036. thresholds->spare = thresholds->primary;
  5037. /* If all events are unregistered, free the spare array */
  5038. if (!new) {
  5039. kfree(thresholds->spare);
  5040. thresholds->spare = NULL;
  5041. }
  5042. rcu_assign_pointer(thresholds->primary, new);
  5043. /* To be sure that nobody uses thresholds */
  5044. synchronize_rcu();
  5045. unlock:
  5046. mutex_unlock(&memcg->thresholds_lock);
  5047. }
  5048. static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
  5049. struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
  5050. {
  5051. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  5052. struct mem_cgroup_eventfd_list *event;
  5053. enum res_type type = MEMFILE_TYPE(cft->private);
  5054. BUG_ON(type != _OOM_TYPE);
  5055. event = kmalloc(sizeof(*event), GFP_KERNEL);
  5056. if (!event)
  5057. return -ENOMEM;
  5058. spin_lock(&memcg_oom_lock);
  5059. event->eventfd = eventfd;
  5060. list_add(&event->list, &memcg->oom_notify);
  5061. /* already in OOM ? */
  5062. if (atomic_read(&memcg->under_oom))
  5063. eventfd_signal(eventfd, 1);
  5064. spin_unlock(&memcg_oom_lock);
  5065. return 0;
  5066. }
  5067. static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
  5068. struct cftype *cft, struct eventfd_ctx *eventfd)
  5069. {
  5070. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  5071. struct mem_cgroup_eventfd_list *ev, *tmp;
  5072. enum res_type type = MEMFILE_TYPE(cft->private);
  5073. BUG_ON(type != _OOM_TYPE);
  5074. spin_lock(&memcg_oom_lock);
  5075. list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
  5076. if (ev->eventfd == eventfd) {
  5077. list_del(&ev->list);
  5078. kfree(ev);
  5079. }
  5080. }
  5081. spin_unlock(&memcg_oom_lock);
  5082. }
  5083. static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
  5084. struct cftype *cft, struct cgroup_map_cb *cb)
  5085. {
  5086. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  5087. cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
  5088. if (atomic_read(&memcg->under_oom))
  5089. cb->fill(cb, "under_oom", 1);
  5090. else
  5091. cb->fill(cb, "under_oom", 0);
  5092. return 0;
  5093. }
  5094. static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
  5095. struct cftype *cft, u64 val)
  5096. {
  5097. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  5098. struct mem_cgroup *parent;
  5099. /* cannot set to root cgroup and only 0 and 1 are allowed */
  5100. if (!cgrp->parent || !((val == 0) || (val == 1)))
  5101. return -EINVAL;
  5102. parent = mem_cgroup_from_cont(cgrp->parent);
  5103. mutex_lock(&memcg_create_mutex);
  5104. /* oom-kill-disable is a flag for subhierarchy. */
  5105. if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
  5106. mutex_unlock(&memcg_create_mutex);
  5107. return -EINVAL;
  5108. }
  5109. memcg->oom_kill_disable = val;
  5110. if (!val)
  5111. memcg_oom_recover(memcg);
  5112. mutex_unlock(&memcg_create_mutex);
  5113. return 0;
  5114. }
  5115. #ifdef CONFIG_MEMCG_KMEM
  5116. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  5117. {
  5118. int ret;
  5119. memcg->kmemcg_id = -1;
  5120. ret = memcg_propagate_kmem(memcg);
  5121. if (ret)
  5122. return ret;
  5123. return mem_cgroup_sockets_init(memcg, ss);
  5124. }
  5125. static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
  5126. {
  5127. mem_cgroup_sockets_destroy(memcg);
  5128. memcg_kmem_mark_dead(memcg);
  5129. if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
  5130. return;
  5131. /*
  5132. * Charges already down to 0, undo mem_cgroup_get() done in the charge
  5133. * path here, being careful not to race with memcg_uncharge_kmem: it is
  5134. * possible that the charges went down to 0 between mark_dead and the
  5135. * res_counter read, so in that case, we don't need the put
  5136. */
  5137. if (memcg_kmem_test_and_clear_dead(memcg))
  5138. mem_cgroup_put(memcg);
  5139. }
  5140. #else
  5141. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  5142. {
  5143. return 0;
  5144. }
  5145. static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
  5146. {
  5147. }
  5148. #endif
  5149. static struct cftype mem_cgroup_files[] = {
  5150. {
  5151. .name = "usage_in_bytes",
  5152. .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
  5153. .read = mem_cgroup_read,
  5154. .register_event = mem_cgroup_usage_register_event,
  5155. .unregister_event = mem_cgroup_usage_unregister_event,
  5156. },
  5157. {
  5158. .name = "max_usage_in_bytes",
  5159. .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
  5160. .trigger = mem_cgroup_reset,
  5161. .read = mem_cgroup_read,
  5162. },
  5163. {
  5164. .name = "limit_in_bytes",
  5165. .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
  5166. .write_string = mem_cgroup_write,
  5167. .read = mem_cgroup_read,
  5168. },
  5169. {
  5170. .name = "soft_limit_in_bytes",
  5171. .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
  5172. .write_string = mem_cgroup_write,
  5173. .read = mem_cgroup_read,
  5174. },
  5175. {
  5176. .name = "failcnt",
  5177. .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
  5178. .trigger = mem_cgroup_reset,
  5179. .read = mem_cgroup_read,
  5180. },
  5181. {
  5182. .name = "stat",
  5183. .read_seq_string = memcg_stat_show,
  5184. },
  5185. {
  5186. .name = "force_empty",
  5187. .trigger = mem_cgroup_force_empty_write,
  5188. },
  5189. {
  5190. .name = "use_hierarchy",
  5191. .flags = CFTYPE_INSANE,
  5192. .write_u64 = mem_cgroup_hierarchy_write,
  5193. .read_u64 = mem_cgroup_hierarchy_read,
  5194. },
  5195. {
  5196. .name = "swappiness",
  5197. .read_u64 = mem_cgroup_swappiness_read,
  5198. .write_u64 = mem_cgroup_swappiness_write,
  5199. },
  5200. {
  5201. .name = "move_charge_at_immigrate",
  5202. .read_u64 = mem_cgroup_move_charge_read,
  5203. .write_u64 = mem_cgroup_move_charge_write,
  5204. },
  5205. {
  5206. .name = "oom_control",
  5207. .read_map = mem_cgroup_oom_control_read,
  5208. .write_u64 = mem_cgroup_oom_control_write,
  5209. .register_event = mem_cgroup_oom_register_event,
  5210. .unregister_event = mem_cgroup_oom_unregister_event,
  5211. .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
  5212. },
  5213. {
  5214. .name = "pressure_level",
  5215. .register_event = vmpressure_register_event,
  5216. .unregister_event = vmpressure_unregister_event,
  5217. },
  5218. #ifdef CONFIG_NUMA
  5219. {
  5220. .name = "numa_stat",
  5221. .read_seq_string = memcg_numa_stat_show,
  5222. },
  5223. #endif
  5224. #ifdef CONFIG_MEMCG_KMEM
  5225. {
  5226. .name = "kmem.limit_in_bytes",
  5227. .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
  5228. .write_string = mem_cgroup_write,
  5229. .read = mem_cgroup_read,
  5230. },
  5231. {
  5232. .name = "kmem.usage_in_bytes",
  5233. .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
  5234. .read = mem_cgroup_read,
  5235. },
  5236. {
  5237. .name = "kmem.failcnt",
  5238. .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
  5239. .trigger = mem_cgroup_reset,
  5240. .read = mem_cgroup_read,
  5241. },
  5242. {
  5243. .name = "kmem.max_usage_in_bytes",
  5244. .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
  5245. .trigger = mem_cgroup_reset,
  5246. .read = mem_cgroup_read,
  5247. },
  5248. #ifdef CONFIG_SLABINFO
  5249. {
  5250. .name = "kmem.slabinfo",
  5251. .read_seq_string = mem_cgroup_slabinfo_read,
  5252. },
  5253. #endif
  5254. #endif
  5255. { }, /* terminate */
  5256. };
  5257. #ifdef CONFIG_MEMCG_SWAP
  5258. static struct cftype memsw_cgroup_files[] = {
  5259. {
  5260. .name = "memsw.usage_in_bytes",
  5261. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
  5262. .read = mem_cgroup_read,
  5263. .register_event = mem_cgroup_usage_register_event,
  5264. .unregister_event = mem_cgroup_usage_unregister_event,
  5265. },
  5266. {
  5267. .name = "memsw.max_usage_in_bytes",
  5268. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
  5269. .trigger = mem_cgroup_reset,
  5270. .read = mem_cgroup_read,
  5271. },
  5272. {
  5273. .name = "memsw.limit_in_bytes",
  5274. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
  5275. .write_string = mem_cgroup_write,
  5276. .read = mem_cgroup_read,
  5277. },
  5278. {
  5279. .name = "memsw.failcnt",
  5280. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
  5281. .trigger = mem_cgroup_reset,
  5282. .read = mem_cgroup_read,
  5283. },
  5284. { }, /* terminate */
  5285. };
  5286. #endif
  5287. static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  5288. {
  5289. struct mem_cgroup_per_node *pn;
  5290. struct mem_cgroup_per_zone *mz;
  5291. int zone, tmp = node;
  5292. /*
  5293. * This routine is called against possible nodes.
  5294. * But it's BUG to call kmalloc() against offline node.
  5295. *
  5296. * TODO: this routine can waste much memory for nodes which will
  5297. * never be onlined. It's better to use memory hotplug callback
  5298. * function.
  5299. */
  5300. if (!node_state(node, N_NORMAL_MEMORY))
  5301. tmp = -1;
  5302. pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  5303. if (!pn)
  5304. return 1;
  5305. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  5306. mz = &pn->zoneinfo[zone];
  5307. lruvec_init(&mz->lruvec);
  5308. mz->usage_in_excess = 0;
  5309. mz->on_tree = false;
  5310. mz->memcg = memcg;
  5311. }
  5312. memcg->info.nodeinfo[node] = pn;
  5313. return 0;
  5314. }
  5315. static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  5316. {
  5317. kfree(memcg->info.nodeinfo[node]);
  5318. }
  5319. static struct mem_cgroup *mem_cgroup_alloc(void)
  5320. {
  5321. struct mem_cgroup *memcg;
  5322. size_t size = memcg_size();
  5323. /* Can be very big if nr_node_ids is very big */
  5324. if (size < PAGE_SIZE)
  5325. memcg = kzalloc(size, GFP_KERNEL);
  5326. else
  5327. memcg = vzalloc(size);
  5328. if (!memcg)
  5329. return NULL;
  5330. memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
  5331. if (!memcg->stat)
  5332. goto out_free;
  5333. spin_lock_init(&memcg->pcp_counter_lock);
  5334. return memcg;
  5335. out_free:
  5336. if (size < PAGE_SIZE)
  5337. kfree(memcg);
  5338. else
  5339. vfree(memcg);
  5340. return NULL;
  5341. }
  5342. /*
  5343. * At destroying mem_cgroup, references from swap_cgroup can remain.
  5344. * (scanning all at force_empty is too costly...)
  5345. *
  5346. * Instead of clearing all references at force_empty, we remember
  5347. * the number of reference from swap_cgroup and free mem_cgroup when
  5348. * it goes down to 0.
  5349. *
  5350. * Removal of cgroup itself succeeds regardless of refs from swap.
  5351. */
  5352. static void __mem_cgroup_free(struct mem_cgroup *memcg)
  5353. {
  5354. int node;
  5355. size_t size = memcg_size();
  5356. mem_cgroup_remove_from_trees(memcg);
  5357. free_css_id(&mem_cgroup_subsys, &memcg->css);
  5358. for_each_node(node)
  5359. free_mem_cgroup_per_zone_info(memcg, node);
  5360. free_percpu(memcg->stat);
  5361. /*
  5362. * We need to make sure that (at least for now), the jump label
  5363. * destruction code runs outside of the cgroup lock. This is because
  5364. * get_online_cpus(), which is called from the static_branch update,
  5365. * can't be called inside the cgroup_lock. cpusets are the ones
  5366. * enforcing this dependency, so if they ever change, we might as well.
  5367. *
  5368. * schedule_work() will guarantee this happens. Be careful if you need
  5369. * to move this code around, and make sure it is outside
  5370. * the cgroup_lock.
  5371. */
  5372. disarm_static_keys(memcg);
  5373. if (size < PAGE_SIZE)
  5374. kfree(memcg);
  5375. else
  5376. vfree(memcg);
  5377. }
  5378. /*
  5379. * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
  5380. * but in process context. The work_freeing structure is overlaid
  5381. * on the rcu_freeing structure, which itself is overlaid on memsw.
  5382. */
  5383. static void free_work(struct work_struct *work)
  5384. {
  5385. struct mem_cgroup *memcg;
  5386. memcg = container_of(work, struct mem_cgroup, work_freeing);
  5387. __mem_cgroup_free(memcg);
  5388. }
  5389. static void free_rcu(struct rcu_head *rcu_head)
  5390. {
  5391. struct mem_cgroup *memcg;
  5392. memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
  5393. INIT_WORK(&memcg->work_freeing, free_work);
  5394. schedule_work(&memcg->work_freeing);
  5395. }
  5396. static void mem_cgroup_get(struct mem_cgroup *memcg)
  5397. {
  5398. atomic_inc(&memcg->refcnt);
  5399. }
  5400. static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
  5401. {
  5402. if (atomic_sub_and_test(count, &memcg->refcnt)) {
  5403. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  5404. call_rcu(&memcg->rcu_freeing, free_rcu);
  5405. if (parent)
  5406. mem_cgroup_put(parent);
  5407. }
  5408. }
  5409. static void mem_cgroup_put(struct mem_cgroup *memcg)
  5410. {
  5411. __mem_cgroup_put(memcg, 1);
  5412. }
  5413. /*
  5414. * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
  5415. */
  5416. struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
  5417. {
  5418. if (!memcg->res.parent)
  5419. return NULL;
  5420. return mem_cgroup_from_res_counter(memcg->res.parent, res);
  5421. }
  5422. EXPORT_SYMBOL(parent_mem_cgroup);
  5423. static void __init mem_cgroup_soft_limit_tree_init(void)
  5424. {
  5425. struct mem_cgroup_tree_per_node *rtpn;
  5426. struct mem_cgroup_tree_per_zone *rtpz;
  5427. int tmp, node, zone;
  5428. for_each_node(node) {
  5429. tmp = node;
  5430. if (!node_state(node, N_NORMAL_MEMORY))
  5431. tmp = -1;
  5432. rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
  5433. BUG_ON(!rtpn);
  5434. soft_limit_tree.rb_tree_per_node[node] = rtpn;
  5435. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  5436. rtpz = &rtpn->rb_tree_per_zone[zone];
  5437. rtpz->rb_root = RB_ROOT;
  5438. spin_lock_init(&rtpz->lock);
  5439. }
  5440. }
  5441. }
  5442. static struct cgroup_subsys_state * __ref
  5443. mem_cgroup_css_alloc(struct cgroup *cont)
  5444. {
  5445. struct mem_cgroup *memcg;
  5446. long error = -ENOMEM;
  5447. int node;
  5448. memcg = mem_cgroup_alloc();
  5449. if (!memcg)
  5450. return ERR_PTR(error);
  5451. for_each_node(node)
  5452. if (alloc_mem_cgroup_per_zone_info(memcg, node))
  5453. goto free_out;
  5454. /* root ? */
  5455. if (cont->parent == NULL) {
  5456. root_mem_cgroup = memcg;
  5457. res_counter_init(&memcg->res, NULL);
  5458. res_counter_init(&memcg->memsw, NULL);
  5459. res_counter_init(&memcg->kmem, NULL);
  5460. }
  5461. memcg->last_scanned_node = MAX_NUMNODES;
  5462. INIT_LIST_HEAD(&memcg->oom_notify);
  5463. atomic_set(&memcg->refcnt, 1);
  5464. memcg->move_charge_at_immigrate = 0;
  5465. mutex_init(&memcg->thresholds_lock);
  5466. spin_lock_init(&memcg->move_lock);
  5467. vmpressure_init(&memcg->vmpressure);
  5468. return &memcg->css;
  5469. free_out:
  5470. __mem_cgroup_free(memcg);
  5471. return ERR_PTR(error);
  5472. }
  5473. static int
  5474. mem_cgroup_css_online(struct cgroup *cont)
  5475. {
  5476. struct mem_cgroup *memcg, *parent;
  5477. int error = 0;
  5478. if (!cont->parent)
  5479. return 0;
  5480. mutex_lock(&memcg_create_mutex);
  5481. memcg = mem_cgroup_from_cont(cont);
  5482. parent = mem_cgroup_from_cont(cont->parent);
  5483. memcg->use_hierarchy = parent->use_hierarchy;
  5484. memcg->oom_kill_disable = parent->oom_kill_disable;
  5485. memcg->swappiness = mem_cgroup_swappiness(parent);
  5486. if (parent->use_hierarchy) {
  5487. res_counter_init(&memcg->res, &parent->res);
  5488. res_counter_init(&memcg->memsw, &parent->memsw);
  5489. res_counter_init(&memcg->kmem, &parent->kmem);
  5490. /*
  5491. * We increment refcnt of the parent to ensure that we can
  5492. * safely access it on res_counter_charge/uncharge.
  5493. * This refcnt will be decremented when freeing this
  5494. * mem_cgroup(see mem_cgroup_put).
  5495. */
  5496. mem_cgroup_get(parent);
  5497. } else {
  5498. res_counter_init(&memcg->res, NULL);
  5499. res_counter_init(&memcg->memsw, NULL);
  5500. res_counter_init(&memcg->kmem, NULL);
  5501. /*
  5502. * Deeper hierachy with use_hierarchy == false doesn't make
  5503. * much sense so let cgroup subsystem know about this
  5504. * unfortunate state in our controller.
  5505. */
  5506. if (parent != root_mem_cgroup)
  5507. mem_cgroup_subsys.broken_hierarchy = true;
  5508. }
  5509. error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
  5510. mutex_unlock(&memcg_create_mutex);
  5511. if (error) {
  5512. /*
  5513. * We call put now because our (and parent's) refcnts
  5514. * are already in place. mem_cgroup_put() will internally
  5515. * call __mem_cgroup_free, so return directly
  5516. */
  5517. mem_cgroup_put(memcg);
  5518. if (parent->use_hierarchy)
  5519. mem_cgroup_put(parent);
  5520. }
  5521. return error;
  5522. }
  5523. /*
  5524. * Announce all parents that a group from their hierarchy is gone.
  5525. */
  5526. static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
  5527. {
  5528. struct mem_cgroup *parent = memcg;
  5529. while ((parent = parent_mem_cgroup(parent)))
  5530. atomic_inc(&parent->dead_count);
  5531. /*
  5532. * if the root memcg is not hierarchical we have to check it
  5533. * explicitely.
  5534. */
  5535. if (!root_mem_cgroup->use_hierarchy)
  5536. atomic_inc(&root_mem_cgroup->dead_count);
  5537. }
  5538. static void mem_cgroup_css_offline(struct cgroup *cont)
  5539. {
  5540. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  5541. mem_cgroup_invalidate_reclaim_iterators(memcg);
  5542. mem_cgroup_reparent_charges(memcg);
  5543. mem_cgroup_destroy_all_caches(memcg);
  5544. }
  5545. static void mem_cgroup_css_free(struct cgroup *cont)
  5546. {
  5547. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  5548. kmem_cgroup_destroy(memcg);
  5549. mem_cgroup_put(memcg);
  5550. }
  5551. #ifdef CONFIG_MMU
  5552. /* Handlers for move charge at task migration. */
  5553. #define PRECHARGE_COUNT_AT_ONCE 256
  5554. static int mem_cgroup_do_precharge(unsigned long count)
  5555. {
  5556. int ret = 0;
  5557. int batch_count = PRECHARGE_COUNT_AT_ONCE;
  5558. struct mem_cgroup *memcg = mc.to;
  5559. if (mem_cgroup_is_root(memcg)) {
  5560. mc.precharge += count;
  5561. /* we don't need css_get for root */
  5562. return ret;
  5563. }
  5564. /* try to charge at once */
  5565. if (count > 1) {
  5566. struct res_counter *dummy;
  5567. /*
  5568. * "memcg" cannot be under rmdir() because we've already checked
  5569. * by cgroup_lock_live_cgroup() that it is not removed and we
  5570. * are still under the same cgroup_mutex. So we can postpone
  5571. * css_get().
  5572. */
  5573. if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
  5574. goto one_by_one;
  5575. if (do_swap_account && res_counter_charge(&memcg->memsw,
  5576. PAGE_SIZE * count, &dummy)) {
  5577. res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
  5578. goto one_by_one;
  5579. }
  5580. mc.precharge += count;
  5581. return ret;
  5582. }
  5583. one_by_one:
  5584. /* fall back to one by one charge */
  5585. while (count--) {
  5586. if (signal_pending(current)) {
  5587. ret = -EINTR;
  5588. break;
  5589. }
  5590. if (!batch_count--) {
  5591. batch_count = PRECHARGE_COUNT_AT_ONCE;
  5592. cond_resched();
  5593. }
  5594. ret = __mem_cgroup_try_charge(NULL,
  5595. GFP_KERNEL, 1, &memcg, false);
  5596. if (ret)
  5597. /* mem_cgroup_clear_mc() will do uncharge later */
  5598. return ret;
  5599. mc.precharge++;
  5600. }
  5601. return ret;
  5602. }
  5603. /**
  5604. * get_mctgt_type - get target type of moving charge
  5605. * @vma: the vma the pte to be checked belongs
  5606. * @addr: the address corresponding to the pte to be checked
  5607. * @ptent: the pte to be checked
  5608. * @target: the pointer the target page or swap ent will be stored(can be NULL)
  5609. *
  5610. * Returns
  5611. * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
  5612. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
  5613. * move charge. if @target is not NULL, the page is stored in target->page
  5614. * with extra refcnt got(Callers should handle it).
  5615. * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
  5616. * target for charge migration. if @target is not NULL, the entry is stored
  5617. * in target->ent.
  5618. *
  5619. * Called with pte lock held.
  5620. */
  5621. union mc_target {
  5622. struct page *page;
  5623. swp_entry_t ent;
  5624. };
  5625. enum mc_target_type {
  5626. MC_TARGET_NONE = 0,
  5627. MC_TARGET_PAGE,
  5628. MC_TARGET_SWAP,
  5629. };
  5630. static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
  5631. unsigned long addr, pte_t ptent)
  5632. {
  5633. struct page *page = vm_normal_page(vma, addr, ptent);
  5634. if (!page || !page_mapped(page))
  5635. return NULL;
  5636. if (PageAnon(page)) {
  5637. /* we don't move shared anon */
  5638. if (!move_anon())
  5639. return NULL;
  5640. } else if (!move_file())
  5641. /* we ignore mapcount for file pages */
  5642. return NULL;
  5643. if (!get_page_unless_zero(page))
  5644. return NULL;
  5645. return page;
  5646. }
  5647. #ifdef CONFIG_SWAP
  5648. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  5649. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  5650. {
  5651. struct page *page = NULL;
  5652. swp_entry_t ent = pte_to_swp_entry(ptent);
  5653. if (!move_anon() || non_swap_entry(ent))
  5654. return NULL;
  5655. /*
  5656. * Because lookup_swap_cache() updates some statistics counter,
  5657. * we call find_get_page() with swapper_space directly.
  5658. */
  5659. page = find_get_page(swap_address_space(ent), ent.val);
  5660. if (do_swap_account)
  5661. entry->val = ent.val;
  5662. return page;
  5663. }
  5664. #else
  5665. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  5666. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  5667. {
  5668. return NULL;
  5669. }
  5670. #endif
  5671. static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
  5672. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  5673. {
  5674. struct page *page = NULL;
  5675. struct address_space *mapping;
  5676. pgoff_t pgoff;
  5677. if (!vma->vm_file) /* anonymous vma */
  5678. return NULL;
  5679. if (!move_file())
  5680. return NULL;
  5681. mapping = vma->vm_file->f_mapping;
  5682. if (pte_none(ptent))
  5683. pgoff = linear_page_index(vma, addr);
  5684. else /* pte_file(ptent) is true */
  5685. pgoff = pte_to_pgoff(ptent);
  5686. /* page is moved even if it's not RSS of this task(page-faulted). */
  5687. page = find_get_page(mapping, pgoff);
  5688. #ifdef CONFIG_SWAP
  5689. /* shmem/tmpfs may report page out on swap: account for that too. */
  5690. if (radix_tree_exceptional_entry(page)) {
  5691. swp_entry_t swap = radix_to_swp_entry(page);
  5692. if (do_swap_account)
  5693. *entry = swap;
  5694. page = find_get_page(swap_address_space(swap), swap.val);
  5695. }
  5696. #endif
  5697. return page;
  5698. }
  5699. static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
  5700. unsigned long addr, pte_t ptent, union mc_target *target)
  5701. {
  5702. struct page *page = NULL;
  5703. struct page_cgroup *pc;
  5704. enum mc_target_type ret = MC_TARGET_NONE;
  5705. swp_entry_t ent = { .val = 0 };
  5706. if (pte_present(ptent))
  5707. page = mc_handle_present_pte(vma, addr, ptent);
  5708. else if (is_swap_pte(ptent))
  5709. page = mc_handle_swap_pte(vma, addr, ptent, &ent);
  5710. else if (pte_none(ptent) || pte_file(ptent))
  5711. page = mc_handle_file_pte(vma, addr, ptent, &ent);
  5712. if (!page && !ent.val)
  5713. return ret;
  5714. if (page) {
  5715. pc = lookup_page_cgroup(page);
  5716. /*
  5717. * Do only loose check w/o page_cgroup lock.
  5718. * mem_cgroup_move_account() checks the pc is valid or not under
  5719. * the lock.
  5720. */
  5721. if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
  5722. ret = MC_TARGET_PAGE;
  5723. if (target)
  5724. target->page = page;
  5725. }
  5726. if (!ret || !target)
  5727. put_page(page);
  5728. }
  5729. /* There is a swap entry and a page doesn't exist or isn't charged */
  5730. if (ent.val && !ret &&
  5731. css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
  5732. ret = MC_TARGET_SWAP;
  5733. if (target)
  5734. target->ent = ent;
  5735. }
  5736. return ret;
  5737. }
  5738. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5739. /*
  5740. * We don't consider swapping or file mapped pages because THP does not
  5741. * support them for now.
  5742. * Caller should make sure that pmd_trans_huge(pmd) is true.
  5743. */
  5744. static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  5745. unsigned long addr, pmd_t pmd, union mc_target *target)
  5746. {
  5747. struct page *page = NULL;
  5748. struct page_cgroup *pc;
  5749. enum mc_target_type ret = MC_TARGET_NONE;
  5750. page = pmd_page(pmd);
  5751. VM_BUG_ON(!page || !PageHead(page));
  5752. if (!move_anon())
  5753. return ret;
  5754. pc = lookup_page_cgroup(page);
  5755. if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
  5756. ret = MC_TARGET_PAGE;
  5757. if (target) {
  5758. get_page(page);
  5759. target->page = page;
  5760. }
  5761. }
  5762. return ret;
  5763. }
  5764. #else
  5765. static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  5766. unsigned long addr, pmd_t pmd, union mc_target *target)
  5767. {
  5768. return MC_TARGET_NONE;
  5769. }
  5770. #endif
  5771. static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
  5772. unsigned long addr, unsigned long end,
  5773. struct mm_walk *walk)
  5774. {
  5775. struct vm_area_struct *vma = walk->private;
  5776. pte_t *pte;
  5777. spinlock_t *ptl;
  5778. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  5779. if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
  5780. mc.precharge += HPAGE_PMD_NR;
  5781. spin_unlock(&vma->vm_mm->page_table_lock);
  5782. return 0;
  5783. }
  5784. if (pmd_trans_unstable(pmd))
  5785. return 0;
  5786. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  5787. for (; addr != end; pte++, addr += PAGE_SIZE)
  5788. if (get_mctgt_type(vma, addr, *pte, NULL))
  5789. mc.precharge++; /* increment precharge temporarily */
  5790. pte_unmap_unlock(pte - 1, ptl);
  5791. cond_resched();
  5792. return 0;
  5793. }
  5794. static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
  5795. {
  5796. unsigned long precharge;
  5797. struct vm_area_struct *vma;
  5798. down_read(&mm->mmap_sem);
  5799. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  5800. struct mm_walk mem_cgroup_count_precharge_walk = {
  5801. .pmd_entry = mem_cgroup_count_precharge_pte_range,
  5802. .mm = mm,
  5803. .private = vma,
  5804. };
  5805. if (is_vm_hugetlb_page(vma))
  5806. continue;
  5807. walk_page_range(vma->vm_start, vma->vm_end,
  5808. &mem_cgroup_count_precharge_walk);
  5809. }
  5810. up_read(&mm->mmap_sem);
  5811. precharge = mc.precharge;
  5812. mc.precharge = 0;
  5813. return precharge;
  5814. }
  5815. static int mem_cgroup_precharge_mc(struct mm_struct *mm)
  5816. {
  5817. unsigned long precharge = mem_cgroup_count_precharge(mm);
  5818. VM_BUG_ON(mc.moving_task);
  5819. mc.moving_task = current;
  5820. return mem_cgroup_do_precharge(precharge);
  5821. }
  5822. /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
  5823. static void __mem_cgroup_clear_mc(void)
  5824. {
  5825. struct mem_cgroup *from = mc.from;
  5826. struct mem_cgroup *to = mc.to;
  5827. /* we must uncharge all the leftover precharges from mc.to */
  5828. if (mc.precharge) {
  5829. __mem_cgroup_cancel_charge(mc.to, mc.precharge);
  5830. mc.precharge = 0;
  5831. }
  5832. /*
  5833. * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
  5834. * we must uncharge here.
  5835. */
  5836. if (mc.moved_charge) {
  5837. __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
  5838. mc.moved_charge = 0;
  5839. }
  5840. /* we must fixup refcnts and charges */
  5841. if (mc.moved_swap) {
  5842. /* uncharge swap account from the old cgroup */
  5843. if (!mem_cgroup_is_root(mc.from))
  5844. res_counter_uncharge(&mc.from->memsw,
  5845. PAGE_SIZE * mc.moved_swap);
  5846. __mem_cgroup_put(mc.from, mc.moved_swap);
  5847. if (!mem_cgroup_is_root(mc.to)) {
  5848. /*
  5849. * we charged both to->res and to->memsw, so we should
  5850. * uncharge to->res.
  5851. */
  5852. res_counter_uncharge(&mc.to->res,
  5853. PAGE_SIZE * mc.moved_swap);
  5854. }
  5855. /* we've already done mem_cgroup_get(mc.to) */
  5856. mc.moved_swap = 0;
  5857. }
  5858. memcg_oom_recover(from);
  5859. memcg_oom_recover(to);
  5860. wake_up_all(&mc.waitq);
  5861. }
  5862. static void mem_cgroup_clear_mc(void)
  5863. {
  5864. struct mem_cgroup *from = mc.from;
  5865. /*
  5866. * we must clear moving_task before waking up waiters at the end of
  5867. * task migration.
  5868. */
  5869. mc.moving_task = NULL;
  5870. __mem_cgroup_clear_mc();
  5871. spin_lock(&mc.lock);
  5872. mc.from = NULL;
  5873. mc.to = NULL;
  5874. spin_unlock(&mc.lock);
  5875. mem_cgroup_end_move(from);
  5876. }
  5877. static int mem_cgroup_can_attach(struct cgroup *cgroup,
  5878. struct cgroup_taskset *tset)
  5879. {
  5880. struct task_struct *p = cgroup_taskset_first(tset);
  5881. int ret = 0;
  5882. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
  5883. unsigned long move_charge_at_immigrate;
  5884. /*
  5885. * We are now commited to this value whatever it is. Changes in this
  5886. * tunable will only affect upcoming migrations, not the current one.
  5887. * So we need to save it, and keep it going.
  5888. */
  5889. move_charge_at_immigrate = memcg->move_charge_at_immigrate;
  5890. if (move_charge_at_immigrate) {
  5891. struct mm_struct *mm;
  5892. struct mem_cgroup *from = mem_cgroup_from_task(p);
  5893. VM_BUG_ON(from == memcg);
  5894. mm = get_task_mm(p);
  5895. if (!mm)
  5896. return 0;
  5897. /* We move charges only when we move a owner of the mm */
  5898. if (mm->owner == p) {
  5899. VM_BUG_ON(mc.from);
  5900. VM_BUG_ON(mc.to);
  5901. VM_BUG_ON(mc.precharge);
  5902. VM_BUG_ON(mc.moved_charge);
  5903. VM_BUG_ON(mc.moved_swap);
  5904. mem_cgroup_start_move(from);
  5905. spin_lock(&mc.lock);
  5906. mc.from = from;
  5907. mc.to = memcg;
  5908. mc.immigrate_flags = move_charge_at_immigrate;
  5909. spin_unlock(&mc.lock);
  5910. /* We set mc.moving_task later */
  5911. ret = mem_cgroup_precharge_mc(mm);
  5912. if (ret)
  5913. mem_cgroup_clear_mc();
  5914. }
  5915. mmput(mm);
  5916. }
  5917. return ret;
  5918. }
  5919. static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
  5920. struct cgroup_taskset *tset)
  5921. {
  5922. mem_cgroup_clear_mc();
  5923. }
  5924. static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
  5925. unsigned long addr, unsigned long end,
  5926. struct mm_walk *walk)
  5927. {
  5928. int ret = 0;
  5929. struct vm_area_struct *vma = walk->private;
  5930. pte_t *pte;
  5931. spinlock_t *ptl;
  5932. enum mc_target_type target_type;
  5933. union mc_target target;
  5934. struct page *page;
  5935. struct page_cgroup *pc;
  5936. /*
  5937. * We don't take compound_lock() here but no race with splitting thp
  5938. * happens because:
  5939. * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
  5940. * under splitting, which means there's no concurrent thp split,
  5941. * - if another thread runs into split_huge_page() just after we
  5942. * entered this if-block, the thread must wait for page table lock
  5943. * to be unlocked in __split_huge_page_splitting(), where the main
  5944. * part of thp split is not executed yet.
  5945. */
  5946. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  5947. if (mc.precharge < HPAGE_PMD_NR) {
  5948. spin_unlock(&vma->vm_mm->page_table_lock);
  5949. return 0;
  5950. }
  5951. target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
  5952. if (target_type == MC_TARGET_PAGE) {
  5953. page = target.page;
  5954. if (!isolate_lru_page(page)) {
  5955. pc = lookup_page_cgroup(page);
  5956. if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
  5957. pc, mc.from, mc.to)) {
  5958. mc.precharge -= HPAGE_PMD_NR;
  5959. mc.moved_charge += HPAGE_PMD_NR;
  5960. }
  5961. putback_lru_page(page);
  5962. }
  5963. put_page(page);
  5964. }
  5965. spin_unlock(&vma->vm_mm->page_table_lock);
  5966. return 0;
  5967. }
  5968. if (pmd_trans_unstable(pmd))
  5969. return 0;
  5970. retry:
  5971. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  5972. for (; addr != end; addr += PAGE_SIZE) {
  5973. pte_t ptent = *(pte++);
  5974. swp_entry_t ent;
  5975. if (!mc.precharge)
  5976. break;
  5977. switch (get_mctgt_type(vma, addr, ptent, &target)) {
  5978. case MC_TARGET_PAGE:
  5979. page = target.page;
  5980. if (isolate_lru_page(page))
  5981. goto put;
  5982. pc = lookup_page_cgroup(page);
  5983. if (!mem_cgroup_move_account(page, 1, pc,
  5984. mc.from, mc.to)) {
  5985. mc.precharge--;
  5986. /* we uncharge from mc.from later. */
  5987. mc.moved_charge++;
  5988. }
  5989. putback_lru_page(page);
  5990. put: /* get_mctgt_type() gets the page */
  5991. put_page(page);
  5992. break;
  5993. case MC_TARGET_SWAP:
  5994. ent = target.ent;
  5995. if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
  5996. mc.precharge--;
  5997. /* we fixup refcnts and charges later. */
  5998. mc.moved_swap++;
  5999. }
  6000. break;
  6001. default:
  6002. break;
  6003. }
  6004. }
  6005. pte_unmap_unlock(pte - 1, ptl);
  6006. cond_resched();
  6007. if (addr != end) {
  6008. /*
  6009. * We have consumed all precharges we got in can_attach().
  6010. * We try charge one by one, but don't do any additional
  6011. * charges to mc.to if we have failed in charge once in attach()
  6012. * phase.
  6013. */
  6014. ret = mem_cgroup_do_precharge(1);
  6015. if (!ret)
  6016. goto retry;
  6017. }
  6018. return ret;
  6019. }
  6020. static void mem_cgroup_move_charge(struct mm_struct *mm)
  6021. {
  6022. struct vm_area_struct *vma;
  6023. lru_add_drain_all();
  6024. retry:
  6025. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  6026. /*
  6027. * Someone who are holding the mmap_sem might be waiting in
  6028. * waitq. So we cancel all extra charges, wake up all waiters,
  6029. * and retry. Because we cancel precharges, we might not be able
  6030. * to move enough charges, but moving charge is a best-effort
  6031. * feature anyway, so it wouldn't be a big problem.
  6032. */
  6033. __mem_cgroup_clear_mc();
  6034. cond_resched();
  6035. goto retry;
  6036. }
  6037. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  6038. int ret;
  6039. struct mm_walk mem_cgroup_move_charge_walk = {
  6040. .pmd_entry = mem_cgroup_move_charge_pte_range,
  6041. .mm = mm,
  6042. .private = vma,
  6043. };
  6044. if (is_vm_hugetlb_page(vma))
  6045. continue;
  6046. ret = walk_page_range(vma->vm_start, vma->vm_end,
  6047. &mem_cgroup_move_charge_walk);
  6048. if (ret)
  6049. /*
  6050. * means we have consumed all precharges and failed in
  6051. * doing additional charge. Just abandon here.
  6052. */
  6053. break;
  6054. }
  6055. up_read(&mm->mmap_sem);
  6056. }
  6057. static void mem_cgroup_move_task(struct cgroup *cont,
  6058. struct cgroup_taskset *tset)
  6059. {
  6060. struct task_struct *p = cgroup_taskset_first(tset);
  6061. struct mm_struct *mm = get_task_mm(p);
  6062. if (mm) {
  6063. if (mc.to)
  6064. mem_cgroup_move_charge(mm);
  6065. mmput(mm);
  6066. }
  6067. if (mc.to)
  6068. mem_cgroup_clear_mc();
  6069. }
  6070. #else /* !CONFIG_MMU */
  6071. static int mem_cgroup_can_attach(struct cgroup *cgroup,
  6072. struct cgroup_taskset *tset)
  6073. {
  6074. return 0;
  6075. }
  6076. static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
  6077. struct cgroup_taskset *tset)
  6078. {
  6079. }
  6080. static void mem_cgroup_move_task(struct cgroup *cont,
  6081. struct cgroup_taskset *tset)
  6082. {
  6083. }
  6084. #endif
  6085. /*
  6086. * Cgroup retains root cgroups across [un]mount cycles making it necessary
  6087. * to verify sane_behavior flag on each mount attempt.
  6088. */
  6089. static void mem_cgroup_bind(struct cgroup *root)
  6090. {
  6091. /*
  6092. * use_hierarchy is forced with sane_behavior. cgroup core
  6093. * guarantees that @root doesn't have any children, so turning it
  6094. * on for the root memcg is enough.
  6095. */
  6096. if (cgroup_sane_behavior(root))
  6097. mem_cgroup_from_cont(root)->use_hierarchy = true;
  6098. }
  6099. struct cgroup_subsys mem_cgroup_subsys = {
  6100. .name = "memory",
  6101. .subsys_id = mem_cgroup_subsys_id,
  6102. .css_alloc = mem_cgroup_css_alloc,
  6103. .css_online = mem_cgroup_css_online,
  6104. .css_offline = mem_cgroup_css_offline,
  6105. .css_free = mem_cgroup_css_free,
  6106. .can_attach = mem_cgroup_can_attach,
  6107. .cancel_attach = mem_cgroup_cancel_attach,
  6108. .attach = mem_cgroup_move_task,
  6109. .bind = mem_cgroup_bind,
  6110. .base_cftypes = mem_cgroup_files,
  6111. .early_init = 0,
  6112. .use_id = 1,
  6113. };
  6114. #ifdef CONFIG_MEMCG_SWAP
  6115. static int __init enable_swap_account(char *s)
  6116. {
  6117. /* consider enabled if no parameter or 1 is given */
  6118. if (!strcmp(s, "1"))
  6119. really_do_swap_account = 1;
  6120. else if (!strcmp(s, "0"))
  6121. really_do_swap_account = 0;
  6122. return 1;
  6123. }
  6124. __setup("swapaccount=", enable_swap_account);
  6125. static void __init memsw_file_init(void)
  6126. {
  6127. WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
  6128. }
  6129. static void __init enable_swap_cgroup(void)
  6130. {
  6131. if (!mem_cgroup_disabled() && really_do_swap_account) {
  6132. do_swap_account = 1;
  6133. memsw_file_init();
  6134. }
  6135. }
  6136. #else
  6137. static void __init enable_swap_cgroup(void)
  6138. {
  6139. }
  6140. #endif
  6141. /*
  6142. * subsys_initcall() for memory controller.
  6143. *
  6144. * Some parts like hotcpu_notifier() have to be initialized from this context
  6145. * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
  6146. * everything that doesn't depend on a specific mem_cgroup structure should
  6147. * be initialized from here.
  6148. */
  6149. static int __init mem_cgroup_init(void)
  6150. {
  6151. hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
  6152. enable_swap_cgroup();
  6153. mem_cgroup_soft_limit_tree_init();
  6154. memcg_stock_init();
  6155. return 0;
  6156. }
  6157. subsys_initcall(mem_cgroup_init);