common.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. #include <linux/init.h>
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/string.h>
  5. #include <linux/bootmem.h>
  6. #include <linux/bitops.h>
  7. #include <linux/module.h>
  8. #include <linux/kgdb.h>
  9. #include <linux/topology.h>
  10. #include <linux/delay.h>
  11. #include <linux/smp.h>
  12. #include <linux/percpu.h>
  13. #include <asm/i387.h>
  14. #include <asm/msr.h>
  15. #include <asm/io.h>
  16. #include <asm/linkage.h>
  17. #include <asm/mmu_context.h>
  18. #include <asm/mtrr.h>
  19. #include <asm/mce.h>
  20. #include <asm/pat.h>
  21. #include <asm/asm.h>
  22. #include <asm/numa.h>
  23. #include <asm/smp.h>
  24. #include <asm/cpu.h>
  25. #include <asm/cpumask.h>
  26. #ifdef CONFIG_X86_LOCAL_APIC
  27. #include <asm/mpspec.h>
  28. #include <asm/apic.h>
  29. #include <asm/genapic.h>
  30. #include <asm/genapic.h>
  31. #include <asm/uv/uv.h>
  32. #endif
  33. #include <asm/pgtable.h>
  34. #include <asm/processor.h>
  35. #include <asm/desc.h>
  36. #include <asm/atomic.h>
  37. #include <asm/proto.h>
  38. #include <asm/sections.h>
  39. #include <asm/setup.h>
  40. #include <asm/hypervisor.h>
  41. #include "cpu.h"
  42. #ifdef CONFIG_X86_64
  43. /* all of these masks are initialized in setup_cpu_local_masks() */
  44. cpumask_var_t cpu_callin_mask;
  45. cpumask_var_t cpu_callout_mask;
  46. cpumask_var_t cpu_initialized_mask;
  47. /* representing cpus for which sibling maps can be computed */
  48. cpumask_var_t cpu_sibling_setup_mask;
  49. /* correctly size the local cpu masks */
  50. void __init setup_cpu_local_masks(void)
  51. {
  52. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  53. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  54. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  55. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  56. }
  57. #else /* CONFIG_X86_32 */
  58. cpumask_t cpu_callin_map;
  59. cpumask_t cpu_callout_map;
  60. cpumask_t cpu_initialized;
  61. cpumask_t cpu_sibling_setup_map;
  62. #endif /* CONFIG_X86_32 */
  63. static struct cpu_dev *this_cpu __cpuinitdata;
  64. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  65. #ifdef CONFIG_X86_64
  66. /*
  67. * We need valid kernel segments for data and code in long mode too
  68. * IRET will check the segment types kkeil 2000/10/28
  69. * Also sysret mandates a special GDT layout
  70. *
  71. * The TLS descriptors are currently at a different place compared to i386.
  72. * Hopefully nobody expects them at a fixed place (Wine?)
  73. */
  74. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  75. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  76. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  77. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  78. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  79. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  80. #else
  81. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  82. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  83. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  84. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  85. /*
  86. * Segments used for calling PnP BIOS have byte granularity.
  87. * They code segments and data segments have fixed 64k limits,
  88. * the transfer segment sizes are set at run time.
  89. */
  90. /* 32-bit code */
  91. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  92. /* 16-bit code */
  93. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  94. /* 16-bit data */
  95. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  96. /* 16-bit data */
  97. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  98. /* 16-bit data */
  99. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  100. /*
  101. * The APM segments have byte granularity and their bases
  102. * are set at run time. All have 64k limits.
  103. */
  104. /* 32-bit code */
  105. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  106. /* 16-bit code */
  107. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  108. /* data */
  109. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  110. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  111. [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
  112. #endif
  113. } };
  114. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  115. #ifdef CONFIG_X86_32
  116. static int cachesize_override __cpuinitdata = -1;
  117. static int disable_x86_serial_nr __cpuinitdata = 1;
  118. static int __init cachesize_setup(char *str)
  119. {
  120. get_option(&str, &cachesize_override);
  121. return 1;
  122. }
  123. __setup("cachesize=", cachesize_setup);
  124. static int __init x86_fxsr_setup(char *s)
  125. {
  126. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  127. setup_clear_cpu_cap(X86_FEATURE_XMM);
  128. return 1;
  129. }
  130. __setup("nofxsr", x86_fxsr_setup);
  131. static int __init x86_sep_setup(char *s)
  132. {
  133. setup_clear_cpu_cap(X86_FEATURE_SEP);
  134. return 1;
  135. }
  136. __setup("nosep", x86_sep_setup);
  137. /* Standard macro to see if a specific flag is changeable */
  138. static inline int flag_is_changeable_p(u32 flag)
  139. {
  140. u32 f1, f2;
  141. /*
  142. * Cyrix and IDT cpus allow disabling of CPUID
  143. * so the code below may return different results
  144. * when it is executed before and after enabling
  145. * the CPUID. Add "volatile" to not allow gcc to
  146. * optimize the subsequent calls to this function.
  147. */
  148. asm volatile ("pushfl\n\t"
  149. "pushfl\n\t"
  150. "popl %0\n\t"
  151. "movl %0,%1\n\t"
  152. "xorl %2,%0\n\t"
  153. "pushl %0\n\t"
  154. "popfl\n\t"
  155. "pushfl\n\t"
  156. "popl %0\n\t"
  157. "popfl\n\t"
  158. : "=&r" (f1), "=&r" (f2)
  159. : "ir" (flag));
  160. return ((f1^f2) & flag) != 0;
  161. }
  162. /* Probe for the CPUID instruction */
  163. static int __cpuinit have_cpuid_p(void)
  164. {
  165. return flag_is_changeable_p(X86_EFLAGS_ID);
  166. }
  167. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  168. {
  169. if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
  170. /* Disable processor serial number */
  171. unsigned long lo, hi;
  172. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  173. lo |= 0x200000;
  174. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  175. printk(KERN_NOTICE "CPU serial number disabled.\n");
  176. clear_cpu_cap(c, X86_FEATURE_PN);
  177. /* Disabling the serial number may affect the cpuid level */
  178. c->cpuid_level = cpuid_eax(0);
  179. }
  180. }
  181. static int __init x86_serial_nr_setup(char *s)
  182. {
  183. disable_x86_serial_nr = 0;
  184. return 1;
  185. }
  186. __setup("serialnumber", x86_serial_nr_setup);
  187. #else
  188. static inline int flag_is_changeable_p(u32 flag)
  189. {
  190. return 1;
  191. }
  192. /* Probe for the CPUID instruction */
  193. static inline int have_cpuid_p(void)
  194. {
  195. return 1;
  196. }
  197. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  198. {
  199. }
  200. #endif
  201. /*
  202. * Some CPU features depend on higher CPUID levels, which may not always
  203. * be available due to CPUID level capping or broken virtualization
  204. * software. Add those features to this table to auto-disable them.
  205. */
  206. struct cpuid_dependent_feature {
  207. u32 feature;
  208. u32 level;
  209. };
  210. static const struct cpuid_dependent_feature __cpuinitconst
  211. cpuid_dependent_features[] = {
  212. { X86_FEATURE_MWAIT, 0x00000005 },
  213. { X86_FEATURE_DCA, 0x00000009 },
  214. { X86_FEATURE_XSAVE, 0x0000000d },
  215. { 0, 0 }
  216. };
  217. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  218. {
  219. const struct cpuid_dependent_feature *df;
  220. for (df = cpuid_dependent_features; df->feature; df++) {
  221. /*
  222. * Note: cpuid_level is set to -1 if unavailable, but
  223. * extended_extended_level is set to 0 if unavailable
  224. * and the legitimate extended levels are all negative
  225. * when signed; hence the weird messing around with
  226. * signs here...
  227. */
  228. if (cpu_has(c, df->feature) &&
  229. ((s32)df->feature < 0 ?
  230. (u32)df->feature > (u32)c->extended_cpuid_level :
  231. (s32)df->feature > (s32)c->cpuid_level)) {
  232. clear_cpu_cap(c, df->feature);
  233. if (warn)
  234. printk(KERN_WARNING
  235. "CPU: CPU feature %s disabled "
  236. "due to lack of CPUID level 0x%x\n",
  237. x86_cap_flags[df->feature],
  238. df->level);
  239. }
  240. }
  241. }
  242. /*
  243. * Naming convention should be: <Name> [(<Codename>)]
  244. * This table only is used unless init_<vendor>() below doesn't set it;
  245. * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
  246. *
  247. */
  248. /* Look up CPU names by table lookup. */
  249. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  250. {
  251. struct cpu_model_info *info;
  252. if (c->x86_model >= 16)
  253. return NULL; /* Range check */
  254. if (!this_cpu)
  255. return NULL;
  256. info = this_cpu->c_models;
  257. while (info && info->family) {
  258. if (info->family == c->x86)
  259. return info->model_names[c->x86_model];
  260. info++;
  261. }
  262. return NULL; /* Not found */
  263. }
  264. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  265. /* Current gdt points %fs at the "master" per-cpu area: after this,
  266. * it's on the real one. */
  267. void switch_to_new_gdt(void)
  268. {
  269. struct desc_ptr gdt_descr;
  270. int cpu = smp_processor_id();
  271. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  272. gdt_descr.size = GDT_SIZE - 1;
  273. load_gdt(&gdt_descr);
  274. /* Reload the per-cpu base */
  275. #ifdef CONFIG_X86_32
  276. loadsegment(fs, __KERNEL_PERCPU);
  277. #else
  278. loadsegment(gs, 0);
  279. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  280. #endif
  281. }
  282. static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  283. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  284. {
  285. #ifdef CONFIG_X86_64
  286. display_cacheinfo(c);
  287. #else
  288. /* Not much we can do here... */
  289. /* Check if at least it has cpuid */
  290. if (c->cpuid_level == -1) {
  291. /* No cpuid. It must be an ancient CPU */
  292. if (c->x86 == 4)
  293. strcpy(c->x86_model_id, "486");
  294. else if (c->x86 == 3)
  295. strcpy(c->x86_model_id, "386");
  296. }
  297. #endif
  298. }
  299. static struct cpu_dev __cpuinitdata default_cpu = {
  300. .c_init = default_init,
  301. .c_vendor = "Unknown",
  302. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  303. };
  304. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  305. {
  306. unsigned int *v;
  307. char *p, *q;
  308. if (c->extended_cpuid_level < 0x80000004)
  309. return;
  310. v = (unsigned int *) c->x86_model_id;
  311. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  312. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  313. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  314. c->x86_model_id[48] = 0;
  315. /* Intel chips right-justify this string for some dumb reason;
  316. undo that brain damage */
  317. p = q = &c->x86_model_id[0];
  318. while (*p == ' ')
  319. p++;
  320. if (p != q) {
  321. while (*p)
  322. *q++ = *p++;
  323. while (q <= &c->x86_model_id[48])
  324. *q++ = '\0'; /* Zero-pad the rest */
  325. }
  326. }
  327. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  328. {
  329. unsigned int n, dummy, ebx, ecx, edx, l2size;
  330. n = c->extended_cpuid_level;
  331. if (n >= 0x80000005) {
  332. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  333. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  334. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  335. c->x86_cache_size = (ecx>>24) + (edx>>24);
  336. #ifdef CONFIG_X86_64
  337. /* On K8 L1 TLB is inclusive, so don't count it */
  338. c->x86_tlbsize = 0;
  339. #endif
  340. }
  341. if (n < 0x80000006) /* Some chips just has a large L1. */
  342. return;
  343. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  344. l2size = ecx >> 16;
  345. #ifdef CONFIG_X86_64
  346. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  347. #else
  348. /* do processor-specific cache resizing */
  349. if (this_cpu->c_size_cache)
  350. l2size = this_cpu->c_size_cache(c, l2size);
  351. /* Allow user to override all this if necessary. */
  352. if (cachesize_override != -1)
  353. l2size = cachesize_override;
  354. if (l2size == 0)
  355. return; /* Again, no L2 cache is possible */
  356. #endif
  357. c->x86_cache_size = l2size;
  358. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  359. l2size, ecx & 0xFF);
  360. }
  361. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  362. {
  363. #ifdef CONFIG_X86_HT
  364. u32 eax, ebx, ecx, edx;
  365. int index_msb, core_bits;
  366. if (!cpu_has(c, X86_FEATURE_HT))
  367. return;
  368. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  369. goto out;
  370. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  371. return;
  372. cpuid(1, &eax, &ebx, &ecx, &edx);
  373. smp_num_siblings = (ebx & 0xff0000) >> 16;
  374. if (smp_num_siblings == 1) {
  375. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  376. } else if (smp_num_siblings > 1) {
  377. if (smp_num_siblings > nr_cpu_ids) {
  378. printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
  379. smp_num_siblings);
  380. smp_num_siblings = 1;
  381. return;
  382. }
  383. index_msb = get_count_order(smp_num_siblings);
  384. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  385. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  386. index_msb = get_count_order(smp_num_siblings);
  387. core_bits = get_count_order(c->x86_max_cores);
  388. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  389. ((1 << core_bits) - 1);
  390. }
  391. out:
  392. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  393. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  394. c->phys_proc_id);
  395. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  396. c->cpu_core_id);
  397. }
  398. #endif
  399. }
  400. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  401. {
  402. char *v = c->x86_vendor_id;
  403. int i;
  404. static int printed;
  405. for (i = 0; i < X86_VENDOR_NUM; i++) {
  406. if (!cpu_devs[i])
  407. break;
  408. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  409. (cpu_devs[i]->c_ident[1] &&
  410. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  411. this_cpu = cpu_devs[i];
  412. c->x86_vendor = this_cpu->c_x86_vendor;
  413. return;
  414. }
  415. }
  416. if (!printed) {
  417. printed++;
  418. printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
  419. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  420. }
  421. c->x86_vendor = X86_VENDOR_UNKNOWN;
  422. this_cpu = &default_cpu;
  423. }
  424. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  425. {
  426. /* Get vendor name */
  427. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  428. (unsigned int *)&c->x86_vendor_id[0],
  429. (unsigned int *)&c->x86_vendor_id[8],
  430. (unsigned int *)&c->x86_vendor_id[4]);
  431. c->x86 = 4;
  432. /* Intel-defined flags: level 0x00000001 */
  433. if (c->cpuid_level >= 0x00000001) {
  434. u32 junk, tfms, cap0, misc;
  435. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  436. c->x86 = (tfms >> 8) & 0xf;
  437. c->x86_model = (tfms >> 4) & 0xf;
  438. c->x86_mask = tfms & 0xf;
  439. if (c->x86 == 0xf)
  440. c->x86 += (tfms >> 20) & 0xff;
  441. if (c->x86 >= 0x6)
  442. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  443. if (cap0 & (1<<19)) {
  444. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  445. c->x86_cache_alignment = c->x86_clflush_size;
  446. }
  447. }
  448. }
  449. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  450. {
  451. u32 tfms, xlvl;
  452. u32 ebx;
  453. /* Intel-defined flags: level 0x00000001 */
  454. if (c->cpuid_level >= 0x00000001) {
  455. u32 capability, excap;
  456. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  457. c->x86_capability[0] = capability;
  458. c->x86_capability[4] = excap;
  459. }
  460. /* AMD-defined flags: level 0x80000001 */
  461. xlvl = cpuid_eax(0x80000000);
  462. c->extended_cpuid_level = xlvl;
  463. if ((xlvl & 0xffff0000) == 0x80000000) {
  464. if (xlvl >= 0x80000001) {
  465. c->x86_capability[1] = cpuid_edx(0x80000001);
  466. c->x86_capability[6] = cpuid_ecx(0x80000001);
  467. }
  468. }
  469. #ifdef CONFIG_X86_64
  470. if (c->extended_cpuid_level >= 0x80000008) {
  471. u32 eax = cpuid_eax(0x80000008);
  472. c->x86_virt_bits = (eax >> 8) & 0xff;
  473. c->x86_phys_bits = eax & 0xff;
  474. }
  475. #endif
  476. if (c->extended_cpuid_level >= 0x80000007)
  477. c->x86_power = cpuid_edx(0x80000007);
  478. }
  479. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  480. {
  481. #ifdef CONFIG_X86_32
  482. int i;
  483. /*
  484. * First of all, decide if this is a 486 or higher
  485. * It's a 486 if we can modify the AC flag
  486. */
  487. if (flag_is_changeable_p(X86_EFLAGS_AC))
  488. c->x86 = 4;
  489. else
  490. c->x86 = 3;
  491. for (i = 0; i < X86_VENDOR_NUM; i++)
  492. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  493. c->x86_vendor_id[0] = 0;
  494. cpu_devs[i]->c_identify(c);
  495. if (c->x86_vendor_id[0]) {
  496. get_cpu_vendor(c);
  497. break;
  498. }
  499. }
  500. #endif
  501. }
  502. /*
  503. * Do minimum CPU detection early.
  504. * Fields really needed: vendor, cpuid_level, family, model, mask,
  505. * cache alignment.
  506. * The others are not touched to avoid unwanted side effects.
  507. *
  508. * WARNING: this function is only called on the BP. Don't add code here
  509. * that is supposed to run on all CPUs.
  510. */
  511. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  512. {
  513. #ifdef CONFIG_X86_64
  514. c->x86_clflush_size = 64;
  515. #else
  516. c->x86_clflush_size = 32;
  517. #endif
  518. c->x86_cache_alignment = c->x86_clflush_size;
  519. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  520. c->extended_cpuid_level = 0;
  521. if (!have_cpuid_p())
  522. identify_cpu_without_cpuid(c);
  523. /* cyrix could have cpuid enabled via c_identify()*/
  524. if (!have_cpuid_p())
  525. return;
  526. cpu_detect(c);
  527. get_cpu_vendor(c);
  528. get_cpu_cap(c);
  529. if (this_cpu->c_early_init)
  530. this_cpu->c_early_init(c);
  531. #ifdef CONFIG_SMP
  532. c->cpu_index = boot_cpu_id;
  533. #endif
  534. filter_cpuid_features(c, false);
  535. }
  536. void __init early_cpu_init(void)
  537. {
  538. struct cpu_dev **cdev;
  539. int count = 0;
  540. printk("KERNEL supported cpus:\n");
  541. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  542. struct cpu_dev *cpudev = *cdev;
  543. unsigned int j;
  544. if (count >= X86_VENDOR_NUM)
  545. break;
  546. cpu_devs[count] = cpudev;
  547. count++;
  548. for (j = 0; j < 2; j++) {
  549. if (!cpudev->c_ident[j])
  550. continue;
  551. printk(" %s %s\n", cpudev->c_vendor,
  552. cpudev->c_ident[j]);
  553. }
  554. }
  555. early_identify_cpu(&boot_cpu_data);
  556. }
  557. /*
  558. * The NOPL instruction is supposed to exist on all CPUs with
  559. * family >= 6; unfortunately, that's not true in practice because
  560. * of early VIA chips and (more importantly) broken virtualizers that
  561. * are not easy to detect. In the latter case it doesn't even *fail*
  562. * reliably, so probing for it doesn't even work. Disable it completely
  563. * unless we can find a reliable way to detect all the broken cases.
  564. */
  565. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  566. {
  567. clear_cpu_cap(c, X86_FEATURE_NOPL);
  568. }
  569. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  570. {
  571. c->extended_cpuid_level = 0;
  572. if (!have_cpuid_p())
  573. identify_cpu_without_cpuid(c);
  574. /* cyrix could have cpuid enabled via c_identify()*/
  575. if (!have_cpuid_p())
  576. return;
  577. cpu_detect(c);
  578. get_cpu_vendor(c);
  579. get_cpu_cap(c);
  580. if (c->cpuid_level >= 0x00000001) {
  581. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  582. #ifdef CONFIG_X86_32
  583. # ifdef CONFIG_X86_HT
  584. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  585. # else
  586. c->apicid = c->initial_apicid;
  587. # endif
  588. #endif
  589. #ifdef CONFIG_X86_HT
  590. c->phys_proc_id = c->initial_apicid;
  591. #endif
  592. }
  593. get_model_name(c); /* Default name */
  594. init_scattered_cpuid_features(c);
  595. detect_nopl(c);
  596. }
  597. /*
  598. * This does the hard work of actually picking apart the CPU stuff...
  599. */
  600. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  601. {
  602. int i;
  603. c->loops_per_jiffy = loops_per_jiffy;
  604. c->x86_cache_size = -1;
  605. c->x86_vendor = X86_VENDOR_UNKNOWN;
  606. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  607. c->x86_vendor_id[0] = '\0'; /* Unset */
  608. c->x86_model_id[0] = '\0'; /* Unset */
  609. c->x86_max_cores = 1;
  610. c->x86_coreid_bits = 0;
  611. #ifdef CONFIG_X86_64
  612. c->x86_clflush_size = 64;
  613. #else
  614. c->cpuid_level = -1; /* CPUID not detected */
  615. c->x86_clflush_size = 32;
  616. #endif
  617. c->x86_cache_alignment = c->x86_clflush_size;
  618. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  619. generic_identify(c);
  620. if (this_cpu->c_identify)
  621. this_cpu->c_identify(c);
  622. #ifdef CONFIG_X86_64
  623. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  624. #endif
  625. /*
  626. * Vendor-specific initialization. In this section we
  627. * canonicalize the feature flags, meaning if there are
  628. * features a certain CPU supports which CPUID doesn't
  629. * tell us, CPUID claiming incorrect flags, or other bugs,
  630. * we handle them here.
  631. *
  632. * At the end of this section, c->x86_capability better
  633. * indicate the features this CPU genuinely supports!
  634. */
  635. if (this_cpu->c_init)
  636. this_cpu->c_init(c);
  637. /* Disable the PN if appropriate */
  638. squash_the_stupid_serial_number(c);
  639. /*
  640. * The vendor-specific functions might have changed features. Now
  641. * we do "generic changes."
  642. */
  643. /* Filter out anything that depends on CPUID levels we don't have */
  644. filter_cpuid_features(c, true);
  645. /* If the model name is still unset, do table lookup. */
  646. if (!c->x86_model_id[0]) {
  647. char *p;
  648. p = table_lookup_model(c);
  649. if (p)
  650. strcpy(c->x86_model_id, p);
  651. else
  652. /* Last resort... */
  653. sprintf(c->x86_model_id, "%02x/%02x",
  654. c->x86, c->x86_model);
  655. }
  656. #ifdef CONFIG_X86_64
  657. detect_ht(c);
  658. #endif
  659. init_hypervisor(c);
  660. /*
  661. * On SMP, boot_cpu_data holds the common feature set between
  662. * all CPUs; so make sure that we indicate which features are
  663. * common between the CPUs. The first time this routine gets
  664. * executed, c == &boot_cpu_data.
  665. */
  666. if (c != &boot_cpu_data) {
  667. /* AND the already accumulated flags with these */
  668. for (i = 0; i < NCAPINTS; i++)
  669. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  670. }
  671. /* Clear all flags overriden by options */
  672. for (i = 0; i < NCAPINTS; i++)
  673. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  674. #ifdef CONFIG_X86_MCE
  675. /* Init Machine Check Exception if available. */
  676. mcheck_init(c);
  677. #endif
  678. select_idle_routine(c);
  679. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  680. numa_add_cpu(smp_processor_id());
  681. #endif
  682. }
  683. #ifdef CONFIG_X86_64
  684. static void vgetcpu_set_mode(void)
  685. {
  686. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  687. vgetcpu_mode = VGETCPU_RDTSCP;
  688. else
  689. vgetcpu_mode = VGETCPU_LSL;
  690. }
  691. #endif
  692. void __init identify_boot_cpu(void)
  693. {
  694. identify_cpu(&boot_cpu_data);
  695. #ifdef CONFIG_X86_32
  696. sysenter_setup();
  697. enable_sep_cpu();
  698. #else
  699. vgetcpu_set_mode();
  700. #endif
  701. }
  702. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  703. {
  704. BUG_ON(c == &boot_cpu_data);
  705. identify_cpu(c);
  706. #ifdef CONFIG_X86_32
  707. enable_sep_cpu();
  708. #endif
  709. mtrr_ap_init();
  710. }
  711. struct msr_range {
  712. unsigned min;
  713. unsigned max;
  714. };
  715. static struct msr_range msr_range_array[] __cpuinitdata = {
  716. { 0x00000000, 0x00000418},
  717. { 0xc0000000, 0xc000040b},
  718. { 0xc0010000, 0xc0010142},
  719. { 0xc0011000, 0xc001103b},
  720. };
  721. static void __cpuinit print_cpu_msr(void)
  722. {
  723. unsigned index;
  724. u64 val;
  725. int i;
  726. unsigned index_min, index_max;
  727. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  728. index_min = msr_range_array[i].min;
  729. index_max = msr_range_array[i].max;
  730. for (index = index_min; index < index_max; index++) {
  731. if (rdmsrl_amd_safe(index, &val))
  732. continue;
  733. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  734. }
  735. }
  736. }
  737. static int show_msr __cpuinitdata;
  738. static __init int setup_show_msr(char *arg)
  739. {
  740. int num;
  741. get_option(&arg, &num);
  742. if (num > 0)
  743. show_msr = num;
  744. return 1;
  745. }
  746. __setup("show_msr=", setup_show_msr);
  747. static __init int setup_noclflush(char *arg)
  748. {
  749. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  750. return 1;
  751. }
  752. __setup("noclflush", setup_noclflush);
  753. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  754. {
  755. char *vendor = NULL;
  756. if (c->x86_vendor < X86_VENDOR_NUM)
  757. vendor = this_cpu->c_vendor;
  758. else if (c->cpuid_level >= 0)
  759. vendor = c->x86_vendor_id;
  760. if (vendor && !strstr(c->x86_model_id, vendor))
  761. printk(KERN_CONT "%s ", vendor);
  762. if (c->x86_model_id[0])
  763. printk(KERN_CONT "%s", c->x86_model_id);
  764. else
  765. printk(KERN_CONT "%d86", c->x86);
  766. if (c->x86_mask || c->cpuid_level >= 0)
  767. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  768. else
  769. printk(KERN_CONT "\n");
  770. #ifdef CONFIG_SMP
  771. if (c->cpu_index < show_msr)
  772. print_cpu_msr();
  773. #else
  774. if (show_msr)
  775. print_cpu_msr();
  776. #endif
  777. }
  778. static __init int setup_disablecpuid(char *arg)
  779. {
  780. int bit;
  781. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  782. setup_clear_cpu_cap(bit);
  783. else
  784. return 0;
  785. return 1;
  786. }
  787. __setup("clearcpuid=", setup_disablecpuid);
  788. #ifdef CONFIG_X86_64
  789. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  790. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  791. irq_stack_union) __aligned(PAGE_SIZE);
  792. #ifdef CONFIG_SMP
  793. DEFINE_PER_CPU(char *, irq_stack_ptr); /* will be set during per cpu init */
  794. #else
  795. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  796. per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  797. #endif
  798. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  799. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  800. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  801. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  802. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  803. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
  804. __aligned(PAGE_SIZE);
  805. extern asmlinkage void ignore_sysret(void);
  806. /* May not be marked __init: used by software suspend */
  807. void syscall_init(void)
  808. {
  809. /*
  810. * LSTAR and STAR live in a bit strange symbiosis.
  811. * They both write to the same internal register. STAR allows to
  812. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  813. */
  814. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  815. wrmsrl(MSR_LSTAR, system_call);
  816. wrmsrl(MSR_CSTAR, ignore_sysret);
  817. #ifdef CONFIG_IA32_EMULATION
  818. syscall32_cpu_init();
  819. #endif
  820. /* Flags to clear on syscall */
  821. wrmsrl(MSR_SYSCALL_MASK,
  822. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  823. }
  824. unsigned long kernel_eflags;
  825. /*
  826. * Copies of the original ist values from the tss are only accessed during
  827. * debugging, no special alignment required.
  828. */
  829. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  830. #else
  831. /* Make sure %fs is initialized properly in idle threads */
  832. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  833. {
  834. memset(regs, 0, sizeof(struct pt_regs));
  835. regs->fs = __KERNEL_PERCPU;
  836. return regs;
  837. }
  838. #endif
  839. /*
  840. * cpu_init() initializes state that is per-CPU. Some data is already
  841. * initialized (naturally) in the bootstrap process, such as the GDT
  842. * and IDT. We reload them nevertheless, this function acts as a
  843. * 'CPU state barrier', nothing should get across.
  844. * A lot of state is already set up in PDA init for 64 bit
  845. */
  846. #ifdef CONFIG_X86_64
  847. void __cpuinit cpu_init(void)
  848. {
  849. int cpu = stack_smp_processor_id();
  850. struct tss_struct *t = &per_cpu(init_tss, cpu);
  851. struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
  852. unsigned long v;
  853. struct task_struct *me;
  854. int i;
  855. #ifdef CONFIG_NUMA
  856. if (cpu != 0 && percpu_read(node_number) == 0 &&
  857. cpu_to_node(cpu) != NUMA_NO_NODE)
  858. percpu_write(node_number, cpu_to_node(cpu));
  859. #endif
  860. me = current;
  861. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  862. panic("CPU#%d already initialized!\n", cpu);
  863. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  864. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  865. /*
  866. * Initialize the per-CPU GDT with the boot GDT,
  867. * and set up the GDT descriptor:
  868. */
  869. switch_to_new_gdt();
  870. loadsegment(fs, 0);
  871. load_idt((const struct desc_ptr *)&idt_descr);
  872. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  873. syscall_init();
  874. wrmsrl(MSR_FS_BASE, 0);
  875. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  876. barrier();
  877. check_efer();
  878. if (cpu != 0 && x2apic)
  879. enable_x2apic();
  880. /*
  881. * set up and load the per-CPU TSS
  882. */
  883. if (!orig_ist->ist[0]) {
  884. static const unsigned int sizes[N_EXCEPTION_STACKS] = {
  885. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  886. [DEBUG_STACK - 1] = DEBUG_STKSZ
  887. };
  888. char *estacks = per_cpu(exception_stacks, cpu);
  889. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  890. estacks += sizes[v];
  891. orig_ist->ist[v] = t->x86_tss.ist[v] =
  892. (unsigned long)estacks;
  893. }
  894. }
  895. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  896. /*
  897. * <= is required because the CPU will access up to
  898. * 8 bits beyond the end of the IO permission bitmap.
  899. */
  900. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  901. t->io_bitmap[i] = ~0UL;
  902. atomic_inc(&init_mm.mm_count);
  903. me->active_mm = &init_mm;
  904. if (me->mm)
  905. BUG();
  906. enter_lazy_tlb(&init_mm, me);
  907. load_sp0(t, &current->thread);
  908. set_tss_desc(cpu, t);
  909. load_TR_desc();
  910. load_LDT(&init_mm.context);
  911. #ifdef CONFIG_KGDB
  912. /*
  913. * If the kgdb is connected no debug regs should be altered. This
  914. * is only applicable when KGDB and a KGDB I/O module are built
  915. * into the kernel and you are using early debugging with
  916. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  917. */
  918. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  919. arch_kgdb_ops.correct_hw_break();
  920. else
  921. #endif
  922. {
  923. /*
  924. * Clear all 6 debug registers:
  925. */
  926. set_debugreg(0UL, 0);
  927. set_debugreg(0UL, 1);
  928. set_debugreg(0UL, 2);
  929. set_debugreg(0UL, 3);
  930. set_debugreg(0UL, 6);
  931. set_debugreg(0UL, 7);
  932. }
  933. fpu_init();
  934. raw_local_save_flags(kernel_eflags);
  935. if (is_uv_system())
  936. uv_cpu_init();
  937. }
  938. #else
  939. void __cpuinit cpu_init(void)
  940. {
  941. int cpu = smp_processor_id();
  942. struct task_struct *curr = current;
  943. struct tss_struct *t = &per_cpu(init_tss, cpu);
  944. struct thread_struct *thread = &curr->thread;
  945. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  946. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  947. for (;;) local_irq_enable();
  948. }
  949. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  950. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  951. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  952. load_idt(&idt_descr);
  953. switch_to_new_gdt();
  954. /*
  955. * Set up and load the per-CPU TSS and LDT
  956. */
  957. atomic_inc(&init_mm.mm_count);
  958. curr->active_mm = &init_mm;
  959. if (curr->mm)
  960. BUG();
  961. enter_lazy_tlb(&init_mm, curr);
  962. load_sp0(t, thread);
  963. set_tss_desc(cpu, t);
  964. load_TR_desc();
  965. load_LDT(&init_mm.context);
  966. #ifdef CONFIG_DOUBLEFAULT
  967. /* Set up doublefault TSS pointer in the GDT */
  968. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  969. #endif
  970. /* Clear %gs. */
  971. asm volatile ("mov %0, %%gs" : : "r" (0));
  972. /* Clear all 6 debug registers: */
  973. set_debugreg(0, 0);
  974. set_debugreg(0, 1);
  975. set_debugreg(0, 2);
  976. set_debugreg(0, 3);
  977. set_debugreg(0, 6);
  978. set_debugreg(0, 7);
  979. /*
  980. * Force FPU initialization:
  981. */
  982. if (cpu_has_xsave)
  983. current_thread_info()->status = TS_XSAVE;
  984. else
  985. current_thread_info()->status = 0;
  986. clear_used_math();
  987. mxcsr_feature_mask_init();
  988. /*
  989. * Boot processor to setup the FP and extended state context info.
  990. */
  991. if (smp_processor_id() == boot_cpu_id)
  992. init_thread_xstate();
  993. xsave_init();
  994. }
  995. #endif