mv_udc_core.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529
  1. /*
  2. * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
  3. * Author: Chao Xie <chao.xie@marvell.com>
  4. * Neil Zhang <zhangwm@marvell.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or (at your
  9. * option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/dmapool.h>
  15. #include <linux/kernel.h>
  16. #include <linux/delay.h>
  17. #include <linux/ioport.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/errno.h>
  21. #include <linux/err.h>
  22. #include <linux/init.h>
  23. #include <linux/timer.h>
  24. #include <linux/list.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/device.h>
  28. #include <linux/usb/ch9.h>
  29. #include <linux/usb/gadget.h>
  30. #include <linux/usb/otg.h>
  31. #include <linux/pm.h>
  32. #include <linux/io.h>
  33. #include <linux/irq.h>
  34. #include <linux/platform_device.h>
  35. #include <linux/clk.h>
  36. #include <linux/platform_data/mv_usb.h>
  37. #include <asm/unaligned.h>
  38. #include "mv_udc.h"
  39. #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
  40. #define DRIVER_VERSION "8 Nov 2010"
  41. #define ep_dir(ep) (((ep)->ep_num == 0) ? \
  42. ((ep)->udc->ep0_dir) : ((ep)->direction))
  43. /* timeout value -- usec */
  44. #define RESET_TIMEOUT 10000
  45. #define FLUSH_TIMEOUT 10000
  46. #define EPSTATUS_TIMEOUT 10000
  47. #define PRIME_TIMEOUT 10000
  48. #define READSAFE_TIMEOUT 1000
  49. #define LOOPS_USEC_SHIFT 1
  50. #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
  51. #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
  52. static DECLARE_COMPLETION(release_done);
  53. static const char driver_name[] = "mv_udc";
  54. static const char driver_desc[] = DRIVER_DESC;
  55. /* controller device global variable */
  56. static struct mv_udc *the_controller;
  57. static void nuke(struct mv_ep *ep, int status);
  58. static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
  59. /* for endpoint 0 operations */
  60. static const struct usb_endpoint_descriptor mv_ep0_desc = {
  61. .bLength = USB_DT_ENDPOINT_SIZE,
  62. .bDescriptorType = USB_DT_ENDPOINT,
  63. .bEndpointAddress = 0,
  64. .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
  65. .wMaxPacketSize = EP0_MAX_PKT_SIZE,
  66. };
  67. static void ep0_reset(struct mv_udc *udc)
  68. {
  69. struct mv_ep *ep;
  70. u32 epctrlx;
  71. int i = 0;
  72. /* ep0 in and out */
  73. for (i = 0; i < 2; i++) {
  74. ep = &udc->eps[i];
  75. ep->udc = udc;
  76. /* ep0 dQH */
  77. ep->dqh = &udc->ep_dqh[i];
  78. /* configure ep0 endpoint capabilities in dQH */
  79. ep->dqh->max_packet_length =
  80. (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
  81. | EP_QUEUE_HEAD_IOS;
  82. ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
  83. epctrlx = readl(&udc->op_regs->epctrlx[0]);
  84. if (i) { /* TX */
  85. epctrlx |= EPCTRL_TX_ENABLE
  86. | (USB_ENDPOINT_XFER_CONTROL
  87. << EPCTRL_TX_EP_TYPE_SHIFT);
  88. } else { /* RX */
  89. epctrlx |= EPCTRL_RX_ENABLE
  90. | (USB_ENDPOINT_XFER_CONTROL
  91. << EPCTRL_RX_EP_TYPE_SHIFT);
  92. }
  93. writel(epctrlx, &udc->op_regs->epctrlx[0]);
  94. }
  95. }
  96. /* protocol ep0 stall, will automatically be cleared on new transaction */
  97. static void ep0_stall(struct mv_udc *udc)
  98. {
  99. u32 epctrlx;
  100. /* set TX and RX to stall */
  101. epctrlx = readl(&udc->op_regs->epctrlx[0]);
  102. epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
  103. writel(epctrlx, &udc->op_regs->epctrlx[0]);
  104. /* update ep0 state */
  105. udc->ep0_state = WAIT_FOR_SETUP;
  106. udc->ep0_dir = EP_DIR_OUT;
  107. }
  108. static int process_ep_req(struct mv_udc *udc, int index,
  109. struct mv_req *curr_req)
  110. {
  111. struct mv_dtd *curr_dtd;
  112. struct mv_dqh *curr_dqh;
  113. int td_complete, actual, remaining_length;
  114. int i, direction;
  115. int retval = 0;
  116. u32 errors;
  117. u32 bit_pos;
  118. curr_dqh = &udc->ep_dqh[index];
  119. direction = index % 2;
  120. curr_dtd = curr_req->head;
  121. td_complete = 0;
  122. actual = curr_req->req.length;
  123. for (i = 0; i < curr_req->dtd_count; i++) {
  124. if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
  125. dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
  126. udc->eps[index].name);
  127. return 1;
  128. }
  129. errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
  130. if (!errors) {
  131. remaining_length =
  132. (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
  133. >> DTD_LENGTH_BIT_POS;
  134. actual -= remaining_length;
  135. if (remaining_length) {
  136. if (direction) {
  137. dev_dbg(&udc->dev->dev,
  138. "TX dTD remains data\n");
  139. retval = -EPROTO;
  140. break;
  141. } else
  142. break;
  143. }
  144. } else {
  145. dev_info(&udc->dev->dev,
  146. "complete_tr error: ep=%d %s: error = 0x%x\n",
  147. index >> 1, direction ? "SEND" : "RECV",
  148. errors);
  149. if (errors & DTD_STATUS_HALTED) {
  150. /* Clear the errors and Halt condition */
  151. curr_dqh->size_ioc_int_sts &= ~errors;
  152. retval = -EPIPE;
  153. } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
  154. retval = -EPROTO;
  155. } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
  156. retval = -EILSEQ;
  157. }
  158. }
  159. if (i != curr_req->dtd_count - 1)
  160. curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
  161. }
  162. if (retval)
  163. return retval;
  164. if (direction == EP_DIR_OUT)
  165. bit_pos = 1 << curr_req->ep->ep_num;
  166. else
  167. bit_pos = 1 << (16 + curr_req->ep->ep_num);
  168. while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
  169. if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
  170. while (readl(&udc->op_regs->epstatus) & bit_pos)
  171. udelay(1);
  172. break;
  173. }
  174. udelay(1);
  175. }
  176. curr_req->req.actual = actual;
  177. return 0;
  178. }
  179. /*
  180. * done() - retire a request; caller blocked irqs
  181. * @status : request status to be set, only works when
  182. * request is still in progress.
  183. */
  184. static void done(struct mv_ep *ep, struct mv_req *req, int status)
  185. {
  186. struct mv_udc *udc = NULL;
  187. unsigned char stopped = ep->stopped;
  188. struct mv_dtd *curr_td, *next_td;
  189. int j;
  190. udc = (struct mv_udc *)ep->udc;
  191. /* Removed the req from fsl_ep->queue */
  192. list_del_init(&req->queue);
  193. /* req.status should be set as -EINPROGRESS in ep_queue() */
  194. if (req->req.status == -EINPROGRESS)
  195. req->req.status = status;
  196. else
  197. status = req->req.status;
  198. /* Free dtd for the request */
  199. next_td = req->head;
  200. for (j = 0; j < req->dtd_count; j++) {
  201. curr_td = next_td;
  202. if (j != req->dtd_count - 1)
  203. next_td = curr_td->next_dtd_virt;
  204. dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
  205. }
  206. if (req->mapped) {
  207. dma_unmap_single(ep->udc->gadget.dev.parent,
  208. req->req.dma, req->req.length,
  209. ((ep_dir(ep) == EP_DIR_IN) ?
  210. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  211. req->req.dma = DMA_ADDR_INVALID;
  212. req->mapped = 0;
  213. } else
  214. dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
  215. req->req.dma, req->req.length,
  216. ((ep_dir(ep) == EP_DIR_IN) ?
  217. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  218. if (status && (status != -ESHUTDOWN))
  219. dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
  220. ep->ep.name, &req->req, status,
  221. req->req.actual, req->req.length);
  222. ep->stopped = 1;
  223. spin_unlock(&ep->udc->lock);
  224. /*
  225. * complete() is from gadget layer,
  226. * eg fsg->bulk_in_complete()
  227. */
  228. if (req->req.complete)
  229. req->req.complete(&ep->ep, &req->req);
  230. spin_lock(&ep->udc->lock);
  231. ep->stopped = stopped;
  232. }
  233. static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
  234. {
  235. struct mv_udc *udc;
  236. struct mv_dqh *dqh;
  237. u32 bit_pos, direction;
  238. u32 usbcmd, epstatus;
  239. unsigned int loops;
  240. int retval = 0;
  241. udc = ep->udc;
  242. direction = ep_dir(ep);
  243. dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
  244. bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
  245. /* check if the pipe is empty */
  246. if (!(list_empty(&ep->queue))) {
  247. struct mv_req *lastreq;
  248. lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
  249. lastreq->tail->dtd_next =
  250. req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
  251. wmb();
  252. if (readl(&udc->op_regs->epprime) & bit_pos)
  253. goto done;
  254. loops = LOOPS(READSAFE_TIMEOUT);
  255. while (1) {
  256. /* start with setting the semaphores */
  257. usbcmd = readl(&udc->op_regs->usbcmd);
  258. usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
  259. writel(usbcmd, &udc->op_regs->usbcmd);
  260. /* read the endpoint status */
  261. epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
  262. /*
  263. * Reread the ATDTW semaphore bit to check if it is
  264. * cleared. When hardware see a hazard, it will clear
  265. * the bit or else we remain set to 1 and we can
  266. * proceed with priming of endpoint if not already
  267. * primed.
  268. */
  269. if (readl(&udc->op_regs->usbcmd)
  270. & USBCMD_ATDTW_TRIPWIRE_SET)
  271. break;
  272. loops--;
  273. if (loops == 0) {
  274. dev_err(&udc->dev->dev,
  275. "Timeout for ATDTW_TRIPWIRE...\n");
  276. retval = -ETIME;
  277. goto done;
  278. }
  279. udelay(LOOPS_USEC);
  280. }
  281. /* Clear the semaphore */
  282. usbcmd = readl(&udc->op_regs->usbcmd);
  283. usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
  284. writel(usbcmd, &udc->op_regs->usbcmd);
  285. if (epstatus)
  286. goto done;
  287. }
  288. /* Write dQH next pointer and terminate bit to 0 */
  289. dqh->next_dtd_ptr = req->head->td_dma
  290. & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
  291. /* clear active and halt bit, in case set from a previous error */
  292. dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
  293. /* Ensure that updates to the QH will occure before priming. */
  294. wmb();
  295. /* Prime the Endpoint */
  296. writel(bit_pos, &udc->op_regs->epprime);
  297. done:
  298. return retval;
  299. }
  300. static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
  301. dma_addr_t *dma, int *is_last)
  302. {
  303. struct mv_dtd *dtd;
  304. struct mv_udc *udc;
  305. struct mv_dqh *dqh;
  306. u32 temp, mult = 0;
  307. /* how big will this transfer be? */
  308. if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
  309. dqh = req->ep->dqh;
  310. mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
  311. & 0x3;
  312. *length = min(req->req.length - req->req.actual,
  313. (unsigned)(mult * req->ep->ep.maxpacket));
  314. } else
  315. *length = min(req->req.length - req->req.actual,
  316. (unsigned)EP_MAX_LENGTH_TRANSFER);
  317. udc = req->ep->udc;
  318. /*
  319. * Be careful that no _GFP_HIGHMEM is set,
  320. * or we can not use dma_to_virt
  321. */
  322. dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
  323. if (dtd == NULL)
  324. return dtd;
  325. dtd->td_dma = *dma;
  326. /* initialize buffer page pointers */
  327. temp = (u32)(req->req.dma + req->req.actual);
  328. dtd->buff_ptr0 = cpu_to_le32(temp);
  329. temp &= ~0xFFF;
  330. dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
  331. dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
  332. dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
  333. dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
  334. req->req.actual += *length;
  335. /* zlp is needed if req->req.zero is set */
  336. if (req->req.zero) {
  337. if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
  338. *is_last = 1;
  339. else
  340. *is_last = 0;
  341. } else if (req->req.length == req->req.actual)
  342. *is_last = 1;
  343. else
  344. *is_last = 0;
  345. /* Fill in the transfer size; set active bit */
  346. temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
  347. /* Enable interrupt for the last dtd of a request */
  348. if (*is_last && !req->req.no_interrupt)
  349. temp |= DTD_IOC;
  350. temp |= mult << 10;
  351. dtd->size_ioc_sts = temp;
  352. mb();
  353. return dtd;
  354. }
  355. /* generate dTD linked list for a request */
  356. static int req_to_dtd(struct mv_req *req)
  357. {
  358. unsigned count;
  359. int is_last, is_first = 1;
  360. struct mv_dtd *dtd, *last_dtd = NULL;
  361. struct mv_udc *udc;
  362. dma_addr_t dma;
  363. udc = req->ep->udc;
  364. do {
  365. dtd = build_dtd(req, &count, &dma, &is_last);
  366. if (dtd == NULL)
  367. return -ENOMEM;
  368. if (is_first) {
  369. is_first = 0;
  370. req->head = dtd;
  371. } else {
  372. last_dtd->dtd_next = dma;
  373. last_dtd->next_dtd_virt = dtd;
  374. }
  375. last_dtd = dtd;
  376. req->dtd_count++;
  377. } while (!is_last);
  378. /* set terminate bit to 1 for the last dTD */
  379. dtd->dtd_next = DTD_NEXT_TERMINATE;
  380. req->tail = dtd;
  381. return 0;
  382. }
  383. static int mv_ep_enable(struct usb_ep *_ep,
  384. const struct usb_endpoint_descriptor *desc)
  385. {
  386. struct mv_udc *udc;
  387. struct mv_ep *ep;
  388. struct mv_dqh *dqh;
  389. u16 max = 0;
  390. u32 bit_pos, epctrlx, direction;
  391. unsigned char zlt = 0, ios = 0, mult = 0;
  392. unsigned long flags;
  393. ep = container_of(_ep, struct mv_ep, ep);
  394. udc = ep->udc;
  395. if (!_ep || !desc
  396. || desc->bDescriptorType != USB_DT_ENDPOINT)
  397. return -EINVAL;
  398. if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
  399. return -ESHUTDOWN;
  400. direction = ep_dir(ep);
  401. max = usb_endpoint_maxp(desc);
  402. /*
  403. * disable HW zero length termination select
  404. * driver handles zero length packet through req->req.zero
  405. */
  406. zlt = 1;
  407. bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
  408. /* Check if the Endpoint is Primed */
  409. if ((readl(&udc->op_regs->epprime) & bit_pos)
  410. || (readl(&udc->op_regs->epstatus) & bit_pos)) {
  411. dev_info(&udc->dev->dev,
  412. "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
  413. " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
  414. (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
  415. (unsigned)readl(&udc->op_regs->epprime),
  416. (unsigned)readl(&udc->op_regs->epstatus),
  417. (unsigned)bit_pos);
  418. goto en_done;
  419. }
  420. /* Set the max packet length, interrupt on Setup and Mult fields */
  421. switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
  422. case USB_ENDPOINT_XFER_BULK:
  423. zlt = 1;
  424. mult = 0;
  425. break;
  426. case USB_ENDPOINT_XFER_CONTROL:
  427. ios = 1;
  428. case USB_ENDPOINT_XFER_INT:
  429. mult = 0;
  430. break;
  431. case USB_ENDPOINT_XFER_ISOC:
  432. /* Calculate transactions needed for high bandwidth iso */
  433. mult = (unsigned char)(1 + ((max >> 11) & 0x03));
  434. max = max & 0x7ff; /* bit 0~10 */
  435. /* 3 transactions at most */
  436. if (mult > 3)
  437. goto en_done;
  438. break;
  439. default:
  440. goto en_done;
  441. }
  442. spin_lock_irqsave(&udc->lock, flags);
  443. /* Get the endpoint queue head address */
  444. dqh = ep->dqh;
  445. dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
  446. | (mult << EP_QUEUE_HEAD_MULT_POS)
  447. | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
  448. | (ios ? EP_QUEUE_HEAD_IOS : 0);
  449. dqh->next_dtd_ptr = 1;
  450. dqh->size_ioc_int_sts = 0;
  451. ep->ep.maxpacket = max;
  452. ep->ep.desc = desc;
  453. ep->stopped = 0;
  454. /* Enable the endpoint for Rx or Tx and set the endpoint type */
  455. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  456. if (direction == EP_DIR_IN) {
  457. epctrlx &= ~EPCTRL_TX_ALL_MASK;
  458. epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
  459. | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
  460. << EPCTRL_TX_EP_TYPE_SHIFT);
  461. } else {
  462. epctrlx &= ~EPCTRL_RX_ALL_MASK;
  463. epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
  464. | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
  465. << EPCTRL_RX_EP_TYPE_SHIFT);
  466. }
  467. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  468. /*
  469. * Implement Guideline (GL# USB-7) The unused endpoint type must
  470. * be programmed to bulk.
  471. */
  472. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  473. if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
  474. epctrlx |= (USB_ENDPOINT_XFER_BULK
  475. << EPCTRL_RX_EP_TYPE_SHIFT);
  476. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  477. }
  478. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  479. if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
  480. epctrlx |= (USB_ENDPOINT_XFER_BULK
  481. << EPCTRL_TX_EP_TYPE_SHIFT);
  482. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  483. }
  484. spin_unlock_irqrestore(&udc->lock, flags);
  485. return 0;
  486. en_done:
  487. return -EINVAL;
  488. }
  489. static int mv_ep_disable(struct usb_ep *_ep)
  490. {
  491. struct mv_udc *udc;
  492. struct mv_ep *ep;
  493. struct mv_dqh *dqh;
  494. u32 bit_pos, epctrlx, direction;
  495. unsigned long flags;
  496. ep = container_of(_ep, struct mv_ep, ep);
  497. if ((_ep == NULL) || !ep->ep.desc)
  498. return -EINVAL;
  499. udc = ep->udc;
  500. /* Get the endpoint queue head address */
  501. dqh = ep->dqh;
  502. spin_lock_irqsave(&udc->lock, flags);
  503. direction = ep_dir(ep);
  504. bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
  505. /* Reset the max packet length and the interrupt on Setup */
  506. dqh->max_packet_length = 0;
  507. /* Disable the endpoint for Rx or Tx and reset the endpoint type */
  508. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  509. epctrlx &= ~((direction == EP_DIR_IN)
  510. ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
  511. : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
  512. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  513. /* nuke all pending requests (does flush) */
  514. nuke(ep, -ESHUTDOWN);
  515. ep->ep.desc = NULL;
  516. ep->stopped = 1;
  517. spin_unlock_irqrestore(&udc->lock, flags);
  518. return 0;
  519. }
  520. static struct usb_request *
  521. mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
  522. {
  523. struct mv_req *req = NULL;
  524. req = kzalloc(sizeof *req, gfp_flags);
  525. if (!req)
  526. return NULL;
  527. req->req.dma = DMA_ADDR_INVALID;
  528. INIT_LIST_HEAD(&req->queue);
  529. return &req->req;
  530. }
  531. static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
  532. {
  533. struct mv_req *req = NULL;
  534. req = container_of(_req, struct mv_req, req);
  535. if (_req)
  536. kfree(req);
  537. }
  538. static void mv_ep_fifo_flush(struct usb_ep *_ep)
  539. {
  540. struct mv_udc *udc;
  541. u32 bit_pos, direction;
  542. struct mv_ep *ep;
  543. unsigned int loops;
  544. if (!_ep)
  545. return;
  546. ep = container_of(_ep, struct mv_ep, ep);
  547. if (!ep->ep.desc)
  548. return;
  549. udc = ep->udc;
  550. direction = ep_dir(ep);
  551. if (ep->ep_num == 0)
  552. bit_pos = (1 << 16) | 1;
  553. else if (direction == EP_DIR_OUT)
  554. bit_pos = 1 << ep->ep_num;
  555. else
  556. bit_pos = 1 << (16 + ep->ep_num);
  557. loops = LOOPS(EPSTATUS_TIMEOUT);
  558. do {
  559. unsigned int inter_loops;
  560. if (loops == 0) {
  561. dev_err(&udc->dev->dev,
  562. "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
  563. (unsigned)readl(&udc->op_regs->epstatus),
  564. (unsigned)bit_pos);
  565. return;
  566. }
  567. /* Write 1 to the Flush register */
  568. writel(bit_pos, &udc->op_regs->epflush);
  569. /* Wait until flushing completed */
  570. inter_loops = LOOPS(FLUSH_TIMEOUT);
  571. while (readl(&udc->op_regs->epflush)) {
  572. /*
  573. * ENDPTFLUSH bit should be cleared to indicate this
  574. * operation is complete
  575. */
  576. if (inter_loops == 0) {
  577. dev_err(&udc->dev->dev,
  578. "TIMEOUT for ENDPTFLUSH=0x%x,"
  579. "bit_pos=0x%x\n",
  580. (unsigned)readl(&udc->op_regs->epflush),
  581. (unsigned)bit_pos);
  582. return;
  583. }
  584. inter_loops--;
  585. udelay(LOOPS_USEC);
  586. }
  587. loops--;
  588. } while (readl(&udc->op_regs->epstatus) & bit_pos);
  589. }
  590. /* queues (submits) an I/O request to an endpoint */
  591. static int
  592. mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
  593. {
  594. struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
  595. struct mv_req *req = container_of(_req, struct mv_req, req);
  596. struct mv_udc *udc = ep->udc;
  597. unsigned long flags;
  598. int retval;
  599. /* catch various bogus parameters */
  600. if (!_req || !req->req.complete || !req->req.buf
  601. || !list_empty(&req->queue)) {
  602. dev_err(&udc->dev->dev, "%s, bad params", __func__);
  603. return -EINVAL;
  604. }
  605. if (unlikely(!_ep || !ep->ep.desc)) {
  606. dev_err(&udc->dev->dev, "%s, bad ep", __func__);
  607. return -EINVAL;
  608. }
  609. udc = ep->udc;
  610. if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
  611. return -ESHUTDOWN;
  612. req->ep = ep;
  613. /* map virtual address to hardware */
  614. if (req->req.dma == DMA_ADDR_INVALID) {
  615. req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
  616. req->req.buf,
  617. req->req.length, ep_dir(ep)
  618. ? DMA_TO_DEVICE
  619. : DMA_FROM_DEVICE);
  620. req->mapped = 1;
  621. } else {
  622. dma_sync_single_for_device(ep->udc->gadget.dev.parent,
  623. req->req.dma, req->req.length,
  624. ep_dir(ep)
  625. ? DMA_TO_DEVICE
  626. : DMA_FROM_DEVICE);
  627. req->mapped = 0;
  628. }
  629. req->req.status = -EINPROGRESS;
  630. req->req.actual = 0;
  631. req->dtd_count = 0;
  632. spin_lock_irqsave(&udc->lock, flags);
  633. /* build dtds and push them to device queue */
  634. if (!req_to_dtd(req)) {
  635. retval = queue_dtd(ep, req);
  636. if (retval) {
  637. spin_unlock_irqrestore(&udc->lock, flags);
  638. dev_err(&udc->dev->dev, "Failed to queue dtd\n");
  639. goto err_unmap_dma;
  640. }
  641. } else {
  642. spin_unlock_irqrestore(&udc->lock, flags);
  643. dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
  644. retval = -ENOMEM;
  645. goto err_unmap_dma;
  646. }
  647. /* Update ep0 state */
  648. if (ep->ep_num == 0)
  649. udc->ep0_state = DATA_STATE_XMIT;
  650. /* irq handler advances the queue */
  651. list_add_tail(&req->queue, &ep->queue);
  652. spin_unlock_irqrestore(&udc->lock, flags);
  653. return 0;
  654. err_unmap_dma:
  655. if (req->mapped) {
  656. dma_unmap_single(ep->udc->gadget.dev.parent,
  657. req->req.dma, req->req.length,
  658. ((ep_dir(ep) == EP_DIR_IN) ?
  659. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  660. req->req.dma = DMA_ADDR_INVALID;
  661. req->mapped = 0;
  662. } else
  663. dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
  664. req->req.dma, req->req.length,
  665. ((ep_dir(ep) == EP_DIR_IN) ?
  666. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  667. return retval;
  668. }
  669. static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
  670. {
  671. struct mv_dqh *dqh = ep->dqh;
  672. u32 bit_pos;
  673. /* Write dQH next pointer and terminate bit to 0 */
  674. dqh->next_dtd_ptr = req->head->td_dma
  675. & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
  676. /* clear active and halt bit, in case set from a previous error */
  677. dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
  678. /* Ensure that updates to the QH will occure before priming. */
  679. wmb();
  680. bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
  681. /* Prime the Endpoint */
  682. writel(bit_pos, &ep->udc->op_regs->epprime);
  683. }
  684. /* dequeues (cancels, unlinks) an I/O request from an endpoint */
  685. static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
  686. {
  687. struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
  688. struct mv_req *req;
  689. struct mv_udc *udc = ep->udc;
  690. unsigned long flags;
  691. int stopped, ret = 0;
  692. u32 epctrlx;
  693. if (!_ep || !_req)
  694. return -EINVAL;
  695. spin_lock_irqsave(&ep->udc->lock, flags);
  696. stopped = ep->stopped;
  697. /* Stop the ep before we deal with the queue */
  698. ep->stopped = 1;
  699. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  700. if (ep_dir(ep) == EP_DIR_IN)
  701. epctrlx &= ~EPCTRL_TX_ENABLE;
  702. else
  703. epctrlx &= ~EPCTRL_RX_ENABLE;
  704. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  705. /* make sure it's actually queued on this endpoint */
  706. list_for_each_entry(req, &ep->queue, queue) {
  707. if (&req->req == _req)
  708. break;
  709. }
  710. if (&req->req != _req) {
  711. ret = -EINVAL;
  712. goto out;
  713. }
  714. /* The request is in progress, or completed but not dequeued */
  715. if (ep->queue.next == &req->queue) {
  716. _req->status = -ECONNRESET;
  717. mv_ep_fifo_flush(_ep); /* flush current transfer */
  718. /* The request isn't the last request in this ep queue */
  719. if (req->queue.next != &ep->queue) {
  720. struct mv_req *next_req;
  721. next_req = list_entry(req->queue.next,
  722. struct mv_req, queue);
  723. /* Point the QH to the first TD of next request */
  724. mv_prime_ep(ep, next_req);
  725. } else {
  726. struct mv_dqh *qh;
  727. qh = ep->dqh;
  728. qh->next_dtd_ptr = 1;
  729. qh->size_ioc_int_sts = 0;
  730. }
  731. /* The request hasn't been processed, patch up the TD chain */
  732. } else {
  733. struct mv_req *prev_req;
  734. prev_req = list_entry(req->queue.prev, struct mv_req, queue);
  735. writel(readl(&req->tail->dtd_next),
  736. &prev_req->tail->dtd_next);
  737. }
  738. done(ep, req, -ECONNRESET);
  739. /* Enable EP */
  740. out:
  741. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  742. if (ep_dir(ep) == EP_DIR_IN)
  743. epctrlx |= EPCTRL_TX_ENABLE;
  744. else
  745. epctrlx |= EPCTRL_RX_ENABLE;
  746. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  747. ep->stopped = stopped;
  748. spin_unlock_irqrestore(&ep->udc->lock, flags);
  749. return ret;
  750. }
  751. static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
  752. {
  753. u32 epctrlx;
  754. epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
  755. if (stall) {
  756. if (direction == EP_DIR_IN)
  757. epctrlx |= EPCTRL_TX_EP_STALL;
  758. else
  759. epctrlx |= EPCTRL_RX_EP_STALL;
  760. } else {
  761. if (direction == EP_DIR_IN) {
  762. epctrlx &= ~EPCTRL_TX_EP_STALL;
  763. epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
  764. } else {
  765. epctrlx &= ~EPCTRL_RX_EP_STALL;
  766. epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
  767. }
  768. }
  769. writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
  770. }
  771. static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
  772. {
  773. u32 epctrlx;
  774. epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
  775. if (direction == EP_DIR_OUT)
  776. return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
  777. else
  778. return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
  779. }
  780. static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
  781. {
  782. struct mv_ep *ep;
  783. unsigned long flags = 0;
  784. int status = 0;
  785. struct mv_udc *udc;
  786. ep = container_of(_ep, struct mv_ep, ep);
  787. udc = ep->udc;
  788. if (!_ep || !ep->ep.desc) {
  789. status = -EINVAL;
  790. goto out;
  791. }
  792. if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
  793. status = -EOPNOTSUPP;
  794. goto out;
  795. }
  796. /*
  797. * Attempt to halt IN ep will fail if any transfer requests
  798. * are still queue
  799. */
  800. if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
  801. status = -EAGAIN;
  802. goto out;
  803. }
  804. spin_lock_irqsave(&ep->udc->lock, flags);
  805. ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
  806. if (halt && wedge)
  807. ep->wedge = 1;
  808. else if (!halt)
  809. ep->wedge = 0;
  810. spin_unlock_irqrestore(&ep->udc->lock, flags);
  811. if (ep->ep_num == 0) {
  812. udc->ep0_state = WAIT_FOR_SETUP;
  813. udc->ep0_dir = EP_DIR_OUT;
  814. }
  815. out:
  816. return status;
  817. }
  818. static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
  819. {
  820. return mv_ep_set_halt_wedge(_ep, halt, 0);
  821. }
  822. static int mv_ep_set_wedge(struct usb_ep *_ep)
  823. {
  824. return mv_ep_set_halt_wedge(_ep, 1, 1);
  825. }
  826. static struct usb_ep_ops mv_ep_ops = {
  827. .enable = mv_ep_enable,
  828. .disable = mv_ep_disable,
  829. .alloc_request = mv_alloc_request,
  830. .free_request = mv_free_request,
  831. .queue = mv_ep_queue,
  832. .dequeue = mv_ep_dequeue,
  833. .set_wedge = mv_ep_set_wedge,
  834. .set_halt = mv_ep_set_halt,
  835. .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
  836. };
  837. static void udc_clock_enable(struct mv_udc *udc)
  838. {
  839. unsigned int i;
  840. for (i = 0; i < udc->clknum; i++)
  841. clk_enable(udc->clk[i]);
  842. }
  843. static void udc_clock_disable(struct mv_udc *udc)
  844. {
  845. unsigned int i;
  846. for (i = 0; i < udc->clknum; i++)
  847. clk_disable(udc->clk[i]);
  848. }
  849. static void udc_stop(struct mv_udc *udc)
  850. {
  851. u32 tmp;
  852. /* Disable interrupts */
  853. tmp = readl(&udc->op_regs->usbintr);
  854. tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
  855. USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
  856. writel(tmp, &udc->op_regs->usbintr);
  857. udc->stopped = 1;
  858. /* Reset the Run the bit in the command register to stop VUSB */
  859. tmp = readl(&udc->op_regs->usbcmd);
  860. tmp &= ~USBCMD_RUN_STOP;
  861. writel(tmp, &udc->op_regs->usbcmd);
  862. }
  863. static void udc_start(struct mv_udc *udc)
  864. {
  865. u32 usbintr;
  866. usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
  867. | USBINTR_PORT_CHANGE_DETECT_EN
  868. | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
  869. /* Enable interrupts */
  870. writel(usbintr, &udc->op_regs->usbintr);
  871. udc->stopped = 0;
  872. /* Set the Run bit in the command register */
  873. writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
  874. }
  875. static int udc_reset(struct mv_udc *udc)
  876. {
  877. unsigned int loops;
  878. u32 tmp, portsc;
  879. /* Stop the controller */
  880. tmp = readl(&udc->op_regs->usbcmd);
  881. tmp &= ~USBCMD_RUN_STOP;
  882. writel(tmp, &udc->op_regs->usbcmd);
  883. /* Reset the controller to get default values */
  884. writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
  885. /* wait for reset to complete */
  886. loops = LOOPS(RESET_TIMEOUT);
  887. while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
  888. if (loops == 0) {
  889. dev_err(&udc->dev->dev,
  890. "Wait for RESET completed TIMEOUT\n");
  891. return -ETIMEDOUT;
  892. }
  893. loops--;
  894. udelay(LOOPS_USEC);
  895. }
  896. /* set controller to device mode */
  897. tmp = readl(&udc->op_regs->usbmode);
  898. tmp |= USBMODE_CTRL_MODE_DEVICE;
  899. /* turn setup lockout off, require setup tripwire in usbcmd */
  900. tmp |= USBMODE_SETUP_LOCK_OFF;
  901. writel(tmp, &udc->op_regs->usbmode);
  902. writel(0x0, &udc->op_regs->epsetupstat);
  903. /* Configure the Endpoint List Address */
  904. writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
  905. &udc->op_regs->eplistaddr);
  906. portsc = readl(&udc->op_regs->portsc[0]);
  907. if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
  908. portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
  909. if (udc->force_fs)
  910. portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
  911. else
  912. portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
  913. writel(portsc, &udc->op_regs->portsc[0]);
  914. tmp = readl(&udc->op_regs->epctrlx[0]);
  915. tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
  916. writel(tmp, &udc->op_regs->epctrlx[0]);
  917. return 0;
  918. }
  919. static int mv_udc_enable_internal(struct mv_udc *udc)
  920. {
  921. int retval;
  922. if (udc->active)
  923. return 0;
  924. dev_dbg(&udc->dev->dev, "enable udc\n");
  925. udc_clock_enable(udc);
  926. if (udc->pdata->phy_init) {
  927. retval = udc->pdata->phy_init(udc->phy_regs);
  928. if (retval) {
  929. dev_err(&udc->dev->dev,
  930. "init phy error %d\n", retval);
  931. udc_clock_disable(udc);
  932. return retval;
  933. }
  934. }
  935. udc->active = 1;
  936. return 0;
  937. }
  938. static int mv_udc_enable(struct mv_udc *udc)
  939. {
  940. if (udc->clock_gating)
  941. return mv_udc_enable_internal(udc);
  942. return 0;
  943. }
  944. static void mv_udc_disable_internal(struct mv_udc *udc)
  945. {
  946. if (udc->active) {
  947. dev_dbg(&udc->dev->dev, "disable udc\n");
  948. if (udc->pdata->phy_deinit)
  949. udc->pdata->phy_deinit(udc->phy_regs);
  950. udc_clock_disable(udc);
  951. udc->active = 0;
  952. }
  953. }
  954. static void mv_udc_disable(struct mv_udc *udc)
  955. {
  956. if (udc->clock_gating)
  957. mv_udc_disable_internal(udc);
  958. }
  959. static int mv_udc_get_frame(struct usb_gadget *gadget)
  960. {
  961. struct mv_udc *udc;
  962. u16 retval;
  963. if (!gadget)
  964. return -ENODEV;
  965. udc = container_of(gadget, struct mv_udc, gadget);
  966. retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
  967. return retval;
  968. }
  969. /* Tries to wake up the host connected to this gadget */
  970. static int mv_udc_wakeup(struct usb_gadget *gadget)
  971. {
  972. struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
  973. u32 portsc;
  974. /* Remote wakeup feature not enabled by host */
  975. if (!udc->remote_wakeup)
  976. return -ENOTSUPP;
  977. portsc = readl(&udc->op_regs->portsc);
  978. /* not suspended? */
  979. if (!(portsc & PORTSCX_PORT_SUSPEND))
  980. return 0;
  981. /* trigger force resume */
  982. portsc |= PORTSCX_PORT_FORCE_RESUME;
  983. writel(portsc, &udc->op_regs->portsc[0]);
  984. return 0;
  985. }
  986. static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
  987. {
  988. struct mv_udc *udc;
  989. unsigned long flags;
  990. int retval = 0;
  991. udc = container_of(gadget, struct mv_udc, gadget);
  992. spin_lock_irqsave(&udc->lock, flags);
  993. udc->vbus_active = (is_active != 0);
  994. dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
  995. __func__, udc->softconnect, udc->vbus_active);
  996. if (udc->driver && udc->softconnect && udc->vbus_active) {
  997. retval = mv_udc_enable(udc);
  998. if (retval == 0) {
  999. /* Clock is disabled, need re-init registers */
  1000. udc_reset(udc);
  1001. ep0_reset(udc);
  1002. udc_start(udc);
  1003. }
  1004. } else if (udc->driver && udc->softconnect) {
  1005. /* stop all the transfer in queue*/
  1006. stop_activity(udc, udc->driver);
  1007. udc_stop(udc);
  1008. mv_udc_disable(udc);
  1009. }
  1010. spin_unlock_irqrestore(&udc->lock, flags);
  1011. return retval;
  1012. }
  1013. static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
  1014. {
  1015. struct mv_udc *udc;
  1016. unsigned long flags;
  1017. int retval = 0;
  1018. udc = container_of(gadget, struct mv_udc, gadget);
  1019. spin_lock_irqsave(&udc->lock, flags);
  1020. udc->softconnect = (is_on != 0);
  1021. dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
  1022. __func__, udc->softconnect, udc->vbus_active);
  1023. if (udc->driver && udc->softconnect && udc->vbus_active) {
  1024. retval = mv_udc_enable(udc);
  1025. if (retval == 0) {
  1026. /* Clock is disabled, need re-init registers */
  1027. udc_reset(udc);
  1028. ep0_reset(udc);
  1029. udc_start(udc);
  1030. }
  1031. } else if (udc->driver && udc->vbus_active) {
  1032. /* stop all the transfer in queue*/
  1033. stop_activity(udc, udc->driver);
  1034. udc_stop(udc);
  1035. mv_udc_disable(udc);
  1036. }
  1037. spin_unlock_irqrestore(&udc->lock, flags);
  1038. return retval;
  1039. }
  1040. static int mv_udc_start(struct usb_gadget_driver *driver,
  1041. int (*bind)(struct usb_gadget *));
  1042. static int mv_udc_stop(struct usb_gadget_driver *driver);
  1043. /* device controller usb_gadget_ops structure */
  1044. static const struct usb_gadget_ops mv_ops = {
  1045. /* returns the current frame number */
  1046. .get_frame = mv_udc_get_frame,
  1047. /* tries to wake up the host connected to this gadget */
  1048. .wakeup = mv_udc_wakeup,
  1049. /* notify controller that VBUS is powered or not */
  1050. .vbus_session = mv_udc_vbus_session,
  1051. /* D+ pullup, software-controlled connect/disconnect to USB host */
  1052. .pullup = mv_udc_pullup,
  1053. .start = mv_udc_start,
  1054. .stop = mv_udc_stop,
  1055. };
  1056. static int eps_init(struct mv_udc *udc)
  1057. {
  1058. struct mv_ep *ep;
  1059. char name[14];
  1060. int i;
  1061. /* initialize ep0 */
  1062. ep = &udc->eps[0];
  1063. ep->udc = udc;
  1064. strncpy(ep->name, "ep0", sizeof(ep->name));
  1065. ep->ep.name = ep->name;
  1066. ep->ep.ops = &mv_ep_ops;
  1067. ep->wedge = 0;
  1068. ep->stopped = 0;
  1069. ep->ep.maxpacket = EP0_MAX_PKT_SIZE;
  1070. ep->ep_num = 0;
  1071. ep->ep.desc = &mv_ep0_desc;
  1072. INIT_LIST_HEAD(&ep->queue);
  1073. ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
  1074. /* initialize other endpoints */
  1075. for (i = 2; i < udc->max_eps * 2; i++) {
  1076. ep = &udc->eps[i];
  1077. if (i % 2) {
  1078. snprintf(name, sizeof(name), "ep%din", i / 2);
  1079. ep->direction = EP_DIR_IN;
  1080. } else {
  1081. snprintf(name, sizeof(name), "ep%dout", i / 2);
  1082. ep->direction = EP_DIR_OUT;
  1083. }
  1084. ep->udc = udc;
  1085. strncpy(ep->name, name, sizeof(ep->name));
  1086. ep->ep.name = ep->name;
  1087. ep->ep.ops = &mv_ep_ops;
  1088. ep->stopped = 0;
  1089. ep->ep.maxpacket = (unsigned short) ~0;
  1090. ep->ep_num = i / 2;
  1091. INIT_LIST_HEAD(&ep->queue);
  1092. list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
  1093. ep->dqh = &udc->ep_dqh[i];
  1094. }
  1095. return 0;
  1096. }
  1097. /* delete all endpoint requests, called with spinlock held */
  1098. static void nuke(struct mv_ep *ep, int status)
  1099. {
  1100. /* called with spinlock held */
  1101. ep->stopped = 1;
  1102. /* endpoint fifo flush */
  1103. mv_ep_fifo_flush(&ep->ep);
  1104. while (!list_empty(&ep->queue)) {
  1105. struct mv_req *req = NULL;
  1106. req = list_entry(ep->queue.next, struct mv_req, queue);
  1107. done(ep, req, status);
  1108. }
  1109. }
  1110. /* stop all USB activities */
  1111. static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
  1112. {
  1113. struct mv_ep *ep;
  1114. nuke(&udc->eps[0], -ESHUTDOWN);
  1115. list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
  1116. nuke(ep, -ESHUTDOWN);
  1117. }
  1118. /* report disconnect; the driver is already quiesced */
  1119. if (driver) {
  1120. spin_unlock(&udc->lock);
  1121. driver->disconnect(&udc->gadget);
  1122. spin_lock(&udc->lock);
  1123. }
  1124. }
  1125. static int mv_udc_start(struct usb_gadget_driver *driver,
  1126. int (*bind)(struct usb_gadget *))
  1127. {
  1128. struct mv_udc *udc = the_controller;
  1129. int retval = 0;
  1130. unsigned long flags;
  1131. if (!udc)
  1132. return -ENODEV;
  1133. if (udc->driver)
  1134. return -EBUSY;
  1135. spin_lock_irqsave(&udc->lock, flags);
  1136. /* hook up the driver ... */
  1137. driver->driver.bus = NULL;
  1138. udc->driver = driver;
  1139. udc->gadget.dev.driver = &driver->driver;
  1140. udc->usb_state = USB_STATE_ATTACHED;
  1141. udc->ep0_state = WAIT_FOR_SETUP;
  1142. udc->ep0_dir = EP_DIR_OUT;
  1143. spin_unlock_irqrestore(&udc->lock, flags);
  1144. retval = bind(&udc->gadget);
  1145. if (retval) {
  1146. dev_err(&udc->dev->dev, "bind to driver %s --> %d\n",
  1147. driver->driver.name, retval);
  1148. udc->driver = NULL;
  1149. udc->gadget.dev.driver = NULL;
  1150. return retval;
  1151. }
  1152. if (!IS_ERR_OR_NULL(udc->transceiver)) {
  1153. retval = otg_set_peripheral(udc->transceiver->otg,
  1154. &udc->gadget);
  1155. if (retval) {
  1156. dev_err(&udc->dev->dev,
  1157. "unable to register peripheral to otg\n");
  1158. if (driver->unbind) {
  1159. driver->unbind(&udc->gadget);
  1160. udc->gadget.dev.driver = NULL;
  1161. udc->driver = NULL;
  1162. }
  1163. return retval;
  1164. }
  1165. }
  1166. /* pullup is always on */
  1167. mv_udc_pullup(&udc->gadget, 1);
  1168. /* When boot with cable attached, there will be no vbus irq occurred */
  1169. if (udc->qwork)
  1170. queue_work(udc->qwork, &udc->vbus_work);
  1171. return 0;
  1172. }
  1173. static int mv_udc_stop(struct usb_gadget_driver *driver)
  1174. {
  1175. struct mv_udc *udc = the_controller;
  1176. unsigned long flags;
  1177. if (!udc)
  1178. return -ENODEV;
  1179. spin_lock_irqsave(&udc->lock, flags);
  1180. mv_udc_enable(udc);
  1181. udc_stop(udc);
  1182. /* stop all usb activities */
  1183. udc->gadget.speed = USB_SPEED_UNKNOWN;
  1184. stop_activity(udc, driver);
  1185. mv_udc_disable(udc);
  1186. spin_unlock_irqrestore(&udc->lock, flags);
  1187. /* unbind gadget driver */
  1188. driver->unbind(&udc->gadget);
  1189. udc->gadget.dev.driver = NULL;
  1190. udc->driver = NULL;
  1191. return 0;
  1192. }
  1193. static void mv_set_ptc(struct mv_udc *udc, u32 mode)
  1194. {
  1195. u32 portsc;
  1196. portsc = readl(&udc->op_regs->portsc[0]);
  1197. portsc |= mode << 16;
  1198. writel(portsc, &udc->op_regs->portsc[0]);
  1199. }
  1200. static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
  1201. {
  1202. struct mv_udc *udc = the_controller;
  1203. struct mv_req *req = container_of(_req, struct mv_req, req);
  1204. unsigned long flags;
  1205. dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
  1206. spin_lock_irqsave(&udc->lock, flags);
  1207. if (req->test_mode) {
  1208. mv_set_ptc(udc, req->test_mode);
  1209. req->test_mode = 0;
  1210. }
  1211. spin_unlock_irqrestore(&udc->lock, flags);
  1212. }
  1213. static int
  1214. udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
  1215. {
  1216. int retval = 0;
  1217. struct mv_req *req;
  1218. struct mv_ep *ep;
  1219. ep = &udc->eps[0];
  1220. udc->ep0_dir = direction;
  1221. udc->ep0_state = WAIT_FOR_OUT_STATUS;
  1222. req = udc->status_req;
  1223. /* fill in the reqest structure */
  1224. if (empty == false) {
  1225. *((u16 *) req->req.buf) = cpu_to_le16(status);
  1226. req->req.length = 2;
  1227. } else
  1228. req->req.length = 0;
  1229. req->ep = ep;
  1230. req->req.status = -EINPROGRESS;
  1231. req->req.actual = 0;
  1232. if (udc->test_mode) {
  1233. req->req.complete = prime_status_complete;
  1234. req->test_mode = udc->test_mode;
  1235. udc->test_mode = 0;
  1236. } else
  1237. req->req.complete = NULL;
  1238. req->dtd_count = 0;
  1239. if (req->req.dma == DMA_ADDR_INVALID) {
  1240. req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
  1241. req->req.buf, req->req.length,
  1242. ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1243. req->mapped = 1;
  1244. }
  1245. /* prime the data phase */
  1246. if (!req_to_dtd(req)) {
  1247. retval = queue_dtd(ep, req);
  1248. if (retval) {
  1249. dev_err(&udc->dev->dev,
  1250. "Failed to queue dtd when prime status\n");
  1251. goto out;
  1252. }
  1253. } else{ /* no mem */
  1254. retval = -ENOMEM;
  1255. dev_err(&udc->dev->dev,
  1256. "Failed to dma_pool_alloc when prime status\n");
  1257. goto out;
  1258. }
  1259. list_add_tail(&req->queue, &ep->queue);
  1260. return 0;
  1261. out:
  1262. if (req->mapped) {
  1263. dma_unmap_single(ep->udc->gadget.dev.parent,
  1264. req->req.dma, req->req.length,
  1265. ((ep_dir(ep) == EP_DIR_IN) ?
  1266. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  1267. req->req.dma = DMA_ADDR_INVALID;
  1268. req->mapped = 0;
  1269. }
  1270. return retval;
  1271. }
  1272. static void mv_udc_testmode(struct mv_udc *udc, u16 index)
  1273. {
  1274. if (index <= TEST_FORCE_EN) {
  1275. udc->test_mode = index;
  1276. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1277. ep0_stall(udc);
  1278. } else
  1279. dev_err(&udc->dev->dev,
  1280. "This test mode(%d) is not supported\n", index);
  1281. }
  1282. static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1283. {
  1284. udc->dev_addr = (u8)setup->wValue;
  1285. /* update usb state */
  1286. udc->usb_state = USB_STATE_ADDRESS;
  1287. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1288. ep0_stall(udc);
  1289. }
  1290. static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
  1291. struct usb_ctrlrequest *setup)
  1292. {
  1293. u16 status = 0;
  1294. int retval;
  1295. if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
  1296. != (USB_DIR_IN | USB_TYPE_STANDARD))
  1297. return;
  1298. if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
  1299. status = 1 << USB_DEVICE_SELF_POWERED;
  1300. status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
  1301. } else if ((setup->bRequestType & USB_RECIP_MASK)
  1302. == USB_RECIP_INTERFACE) {
  1303. /* get interface status */
  1304. status = 0;
  1305. } else if ((setup->bRequestType & USB_RECIP_MASK)
  1306. == USB_RECIP_ENDPOINT) {
  1307. u8 ep_num, direction;
  1308. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1309. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1310. ? EP_DIR_IN : EP_DIR_OUT;
  1311. status = ep_is_stall(udc, ep_num, direction)
  1312. << USB_ENDPOINT_HALT;
  1313. }
  1314. retval = udc_prime_status(udc, EP_DIR_IN, status, false);
  1315. if (retval)
  1316. ep0_stall(udc);
  1317. else
  1318. udc->ep0_state = DATA_STATE_XMIT;
  1319. }
  1320. static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1321. {
  1322. u8 ep_num;
  1323. u8 direction;
  1324. struct mv_ep *ep;
  1325. if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1326. == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
  1327. switch (setup->wValue) {
  1328. case USB_DEVICE_REMOTE_WAKEUP:
  1329. udc->remote_wakeup = 0;
  1330. break;
  1331. default:
  1332. goto out;
  1333. }
  1334. } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1335. == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
  1336. switch (setup->wValue) {
  1337. case USB_ENDPOINT_HALT:
  1338. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1339. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1340. ? EP_DIR_IN : EP_DIR_OUT;
  1341. if (setup->wValue != 0 || setup->wLength != 0
  1342. || ep_num > udc->max_eps)
  1343. goto out;
  1344. ep = &udc->eps[ep_num * 2 + direction];
  1345. if (ep->wedge == 1)
  1346. break;
  1347. spin_unlock(&udc->lock);
  1348. ep_set_stall(udc, ep_num, direction, 0);
  1349. spin_lock(&udc->lock);
  1350. break;
  1351. default:
  1352. goto out;
  1353. }
  1354. } else
  1355. goto out;
  1356. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1357. ep0_stall(udc);
  1358. out:
  1359. return;
  1360. }
  1361. static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1362. {
  1363. u8 ep_num;
  1364. u8 direction;
  1365. if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1366. == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
  1367. switch (setup->wValue) {
  1368. case USB_DEVICE_REMOTE_WAKEUP:
  1369. udc->remote_wakeup = 1;
  1370. break;
  1371. case USB_DEVICE_TEST_MODE:
  1372. if (setup->wIndex & 0xFF
  1373. || udc->gadget.speed != USB_SPEED_HIGH)
  1374. ep0_stall(udc);
  1375. if (udc->usb_state != USB_STATE_CONFIGURED
  1376. && udc->usb_state != USB_STATE_ADDRESS
  1377. && udc->usb_state != USB_STATE_DEFAULT)
  1378. ep0_stall(udc);
  1379. mv_udc_testmode(udc, (setup->wIndex >> 8));
  1380. goto out;
  1381. default:
  1382. goto out;
  1383. }
  1384. } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1385. == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
  1386. switch (setup->wValue) {
  1387. case USB_ENDPOINT_HALT:
  1388. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1389. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1390. ? EP_DIR_IN : EP_DIR_OUT;
  1391. if (setup->wValue != 0 || setup->wLength != 0
  1392. || ep_num > udc->max_eps)
  1393. goto out;
  1394. spin_unlock(&udc->lock);
  1395. ep_set_stall(udc, ep_num, direction, 1);
  1396. spin_lock(&udc->lock);
  1397. break;
  1398. default:
  1399. goto out;
  1400. }
  1401. } else
  1402. goto out;
  1403. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1404. ep0_stall(udc);
  1405. out:
  1406. return;
  1407. }
  1408. static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
  1409. struct usb_ctrlrequest *setup)
  1410. {
  1411. bool delegate = false;
  1412. nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
  1413. dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
  1414. setup->bRequestType, setup->bRequest,
  1415. setup->wValue, setup->wIndex, setup->wLength);
  1416. /* We process some stardard setup requests here */
  1417. if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
  1418. switch (setup->bRequest) {
  1419. case USB_REQ_GET_STATUS:
  1420. ch9getstatus(udc, ep_num, setup);
  1421. break;
  1422. case USB_REQ_SET_ADDRESS:
  1423. ch9setaddress(udc, setup);
  1424. break;
  1425. case USB_REQ_CLEAR_FEATURE:
  1426. ch9clearfeature(udc, setup);
  1427. break;
  1428. case USB_REQ_SET_FEATURE:
  1429. ch9setfeature(udc, setup);
  1430. break;
  1431. default:
  1432. delegate = true;
  1433. }
  1434. } else
  1435. delegate = true;
  1436. /* delegate USB standard requests to the gadget driver */
  1437. if (delegate == true) {
  1438. /* USB requests handled by gadget */
  1439. if (setup->wLength) {
  1440. /* DATA phase from gadget, STATUS phase from udc */
  1441. udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
  1442. ? EP_DIR_IN : EP_DIR_OUT;
  1443. spin_unlock(&udc->lock);
  1444. if (udc->driver->setup(&udc->gadget,
  1445. &udc->local_setup_buff) < 0)
  1446. ep0_stall(udc);
  1447. spin_lock(&udc->lock);
  1448. udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
  1449. ? DATA_STATE_XMIT : DATA_STATE_RECV;
  1450. } else {
  1451. /* no DATA phase, IN STATUS phase from gadget */
  1452. udc->ep0_dir = EP_DIR_IN;
  1453. spin_unlock(&udc->lock);
  1454. if (udc->driver->setup(&udc->gadget,
  1455. &udc->local_setup_buff) < 0)
  1456. ep0_stall(udc);
  1457. spin_lock(&udc->lock);
  1458. udc->ep0_state = WAIT_FOR_OUT_STATUS;
  1459. }
  1460. }
  1461. }
  1462. /* complete DATA or STATUS phase of ep0 prime status phase if needed */
  1463. static void ep0_req_complete(struct mv_udc *udc,
  1464. struct mv_ep *ep0, struct mv_req *req)
  1465. {
  1466. u32 new_addr;
  1467. if (udc->usb_state == USB_STATE_ADDRESS) {
  1468. /* set the new address */
  1469. new_addr = (u32)udc->dev_addr;
  1470. writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
  1471. &udc->op_regs->deviceaddr);
  1472. }
  1473. done(ep0, req, 0);
  1474. switch (udc->ep0_state) {
  1475. case DATA_STATE_XMIT:
  1476. /* receive status phase */
  1477. if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
  1478. ep0_stall(udc);
  1479. break;
  1480. case DATA_STATE_RECV:
  1481. /* send status phase */
  1482. if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
  1483. ep0_stall(udc);
  1484. break;
  1485. case WAIT_FOR_OUT_STATUS:
  1486. udc->ep0_state = WAIT_FOR_SETUP;
  1487. break;
  1488. case WAIT_FOR_SETUP:
  1489. dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
  1490. break;
  1491. default:
  1492. ep0_stall(udc);
  1493. break;
  1494. }
  1495. }
  1496. static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
  1497. {
  1498. u32 temp;
  1499. struct mv_dqh *dqh;
  1500. dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
  1501. /* Clear bit in ENDPTSETUPSTAT */
  1502. writel((1 << ep_num), &udc->op_regs->epsetupstat);
  1503. /* while a hazard exists when setup package arrives */
  1504. do {
  1505. /* Set Setup Tripwire */
  1506. temp = readl(&udc->op_regs->usbcmd);
  1507. writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
  1508. /* Copy the setup packet to local buffer */
  1509. memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
  1510. } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
  1511. /* Clear Setup Tripwire */
  1512. temp = readl(&udc->op_regs->usbcmd);
  1513. writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
  1514. }
  1515. static void irq_process_tr_complete(struct mv_udc *udc)
  1516. {
  1517. u32 tmp, bit_pos;
  1518. int i, ep_num = 0, direction = 0;
  1519. struct mv_ep *curr_ep;
  1520. struct mv_req *curr_req, *temp_req;
  1521. int status;
  1522. /*
  1523. * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
  1524. * because the setup packets are to be read ASAP
  1525. */
  1526. /* Process all Setup packet received interrupts */
  1527. tmp = readl(&udc->op_regs->epsetupstat);
  1528. if (tmp) {
  1529. for (i = 0; i < udc->max_eps; i++) {
  1530. if (tmp & (1 << i)) {
  1531. get_setup_data(udc, i,
  1532. (u8 *)(&udc->local_setup_buff));
  1533. handle_setup_packet(udc, i,
  1534. &udc->local_setup_buff);
  1535. }
  1536. }
  1537. }
  1538. /* Don't clear the endpoint setup status register here.
  1539. * It is cleared as a setup packet is read out of the buffer
  1540. */
  1541. /* Process non-setup transaction complete interrupts */
  1542. tmp = readl(&udc->op_regs->epcomplete);
  1543. if (!tmp)
  1544. return;
  1545. writel(tmp, &udc->op_regs->epcomplete);
  1546. for (i = 0; i < udc->max_eps * 2; i++) {
  1547. ep_num = i >> 1;
  1548. direction = i % 2;
  1549. bit_pos = 1 << (ep_num + 16 * direction);
  1550. if (!(bit_pos & tmp))
  1551. continue;
  1552. if (i == 1)
  1553. curr_ep = &udc->eps[0];
  1554. else
  1555. curr_ep = &udc->eps[i];
  1556. /* process the req queue until an uncomplete request */
  1557. list_for_each_entry_safe(curr_req, temp_req,
  1558. &curr_ep->queue, queue) {
  1559. status = process_ep_req(udc, i, curr_req);
  1560. if (status)
  1561. break;
  1562. /* write back status to req */
  1563. curr_req->req.status = status;
  1564. /* ep0 request completion */
  1565. if (ep_num == 0) {
  1566. ep0_req_complete(udc, curr_ep, curr_req);
  1567. break;
  1568. } else {
  1569. done(curr_ep, curr_req, status);
  1570. }
  1571. }
  1572. }
  1573. }
  1574. void irq_process_reset(struct mv_udc *udc)
  1575. {
  1576. u32 tmp;
  1577. unsigned int loops;
  1578. udc->ep0_dir = EP_DIR_OUT;
  1579. udc->ep0_state = WAIT_FOR_SETUP;
  1580. udc->remote_wakeup = 0; /* default to 0 on reset */
  1581. /* The address bits are past bit 25-31. Set the address */
  1582. tmp = readl(&udc->op_regs->deviceaddr);
  1583. tmp &= ~(USB_DEVICE_ADDRESS_MASK);
  1584. writel(tmp, &udc->op_regs->deviceaddr);
  1585. /* Clear all the setup token semaphores */
  1586. tmp = readl(&udc->op_regs->epsetupstat);
  1587. writel(tmp, &udc->op_regs->epsetupstat);
  1588. /* Clear all the endpoint complete status bits */
  1589. tmp = readl(&udc->op_regs->epcomplete);
  1590. writel(tmp, &udc->op_regs->epcomplete);
  1591. /* wait until all endptprime bits cleared */
  1592. loops = LOOPS(PRIME_TIMEOUT);
  1593. while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
  1594. if (loops == 0) {
  1595. dev_err(&udc->dev->dev,
  1596. "Timeout for ENDPTPRIME = 0x%x\n",
  1597. readl(&udc->op_regs->epprime));
  1598. break;
  1599. }
  1600. loops--;
  1601. udelay(LOOPS_USEC);
  1602. }
  1603. /* Write 1s to the Flush register */
  1604. writel((u32)~0, &udc->op_regs->epflush);
  1605. if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
  1606. dev_info(&udc->dev->dev, "usb bus reset\n");
  1607. udc->usb_state = USB_STATE_DEFAULT;
  1608. /* reset all the queues, stop all USB activities */
  1609. stop_activity(udc, udc->driver);
  1610. } else {
  1611. dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
  1612. readl(&udc->op_regs->portsc));
  1613. /*
  1614. * re-initialize
  1615. * controller reset
  1616. */
  1617. udc_reset(udc);
  1618. /* reset all the queues, stop all USB activities */
  1619. stop_activity(udc, udc->driver);
  1620. /* reset ep0 dQH and endptctrl */
  1621. ep0_reset(udc);
  1622. /* enable interrupt and set controller to run state */
  1623. udc_start(udc);
  1624. udc->usb_state = USB_STATE_ATTACHED;
  1625. }
  1626. }
  1627. static void handle_bus_resume(struct mv_udc *udc)
  1628. {
  1629. udc->usb_state = udc->resume_state;
  1630. udc->resume_state = 0;
  1631. /* report resume to the driver */
  1632. if (udc->driver) {
  1633. if (udc->driver->resume) {
  1634. spin_unlock(&udc->lock);
  1635. udc->driver->resume(&udc->gadget);
  1636. spin_lock(&udc->lock);
  1637. }
  1638. }
  1639. }
  1640. static void irq_process_suspend(struct mv_udc *udc)
  1641. {
  1642. udc->resume_state = udc->usb_state;
  1643. udc->usb_state = USB_STATE_SUSPENDED;
  1644. if (udc->driver->suspend) {
  1645. spin_unlock(&udc->lock);
  1646. udc->driver->suspend(&udc->gadget);
  1647. spin_lock(&udc->lock);
  1648. }
  1649. }
  1650. static void irq_process_port_change(struct mv_udc *udc)
  1651. {
  1652. u32 portsc;
  1653. portsc = readl(&udc->op_regs->portsc[0]);
  1654. if (!(portsc & PORTSCX_PORT_RESET)) {
  1655. /* Get the speed */
  1656. u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
  1657. switch (speed) {
  1658. case PORTSCX_PORT_SPEED_HIGH:
  1659. udc->gadget.speed = USB_SPEED_HIGH;
  1660. break;
  1661. case PORTSCX_PORT_SPEED_FULL:
  1662. udc->gadget.speed = USB_SPEED_FULL;
  1663. break;
  1664. case PORTSCX_PORT_SPEED_LOW:
  1665. udc->gadget.speed = USB_SPEED_LOW;
  1666. break;
  1667. default:
  1668. udc->gadget.speed = USB_SPEED_UNKNOWN;
  1669. break;
  1670. }
  1671. }
  1672. if (portsc & PORTSCX_PORT_SUSPEND) {
  1673. udc->resume_state = udc->usb_state;
  1674. udc->usb_state = USB_STATE_SUSPENDED;
  1675. if (udc->driver->suspend) {
  1676. spin_unlock(&udc->lock);
  1677. udc->driver->suspend(&udc->gadget);
  1678. spin_lock(&udc->lock);
  1679. }
  1680. }
  1681. if (!(portsc & PORTSCX_PORT_SUSPEND)
  1682. && udc->usb_state == USB_STATE_SUSPENDED) {
  1683. handle_bus_resume(udc);
  1684. }
  1685. if (!udc->resume_state)
  1686. udc->usb_state = USB_STATE_DEFAULT;
  1687. }
  1688. static void irq_process_error(struct mv_udc *udc)
  1689. {
  1690. /* Increment the error count */
  1691. udc->errors++;
  1692. }
  1693. static irqreturn_t mv_udc_irq(int irq, void *dev)
  1694. {
  1695. struct mv_udc *udc = (struct mv_udc *)dev;
  1696. u32 status, intr;
  1697. /* Disable ISR when stopped bit is set */
  1698. if (udc->stopped)
  1699. return IRQ_NONE;
  1700. spin_lock(&udc->lock);
  1701. status = readl(&udc->op_regs->usbsts);
  1702. intr = readl(&udc->op_regs->usbintr);
  1703. status &= intr;
  1704. if (status == 0) {
  1705. spin_unlock(&udc->lock);
  1706. return IRQ_NONE;
  1707. }
  1708. /* Clear all the interrupts occurred */
  1709. writel(status, &udc->op_regs->usbsts);
  1710. if (status & USBSTS_ERR)
  1711. irq_process_error(udc);
  1712. if (status & USBSTS_RESET)
  1713. irq_process_reset(udc);
  1714. if (status & USBSTS_PORT_CHANGE)
  1715. irq_process_port_change(udc);
  1716. if (status & USBSTS_INT)
  1717. irq_process_tr_complete(udc);
  1718. if (status & USBSTS_SUSPEND)
  1719. irq_process_suspend(udc);
  1720. spin_unlock(&udc->lock);
  1721. return IRQ_HANDLED;
  1722. }
  1723. static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
  1724. {
  1725. struct mv_udc *udc = (struct mv_udc *)dev;
  1726. /* polling VBUS and init phy may cause too much time*/
  1727. if (udc->qwork)
  1728. queue_work(udc->qwork, &udc->vbus_work);
  1729. return IRQ_HANDLED;
  1730. }
  1731. static void mv_udc_vbus_work(struct work_struct *work)
  1732. {
  1733. struct mv_udc *udc;
  1734. unsigned int vbus;
  1735. udc = container_of(work, struct mv_udc, vbus_work);
  1736. if (!udc->pdata->vbus)
  1737. return;
  1738. vbus = udc->pdata->vbus->poll();
  1739. dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
  1740. if (vbus == VBUS_HIGH)
  1741. mv_udc_vbus_session(&udc->gadget, 1);
  1742. else if (vbus == VBUS_LOW)
  1743. mv_udc_vbus_session(&udc->gadget, 0);
  1744. }
  1745. /* release device structure */
  1746. static void gadget_release(struct device *_dev)
  1747. {
  1748. struct mv_udc *udc = the_controller;
  1749. complete(udc->done);
  1750. }
  1751. static int __devexit mv_udc_remove(struct platform_device *dev)
  1752. {
  1753. struct mv_udc *udc = the_controller;
  1754. int clk_i;
  1755. usb_del_gadget_udc(&udc->gadget);
  1756. if (udc->qwork) {
  1757. flush_workqueue(udc->qwork);
  1758. destroy_workqueue(udc->qwork);
  1759. }
  1760. /*
  1761. * If we have transceiver inited,
  1762. * then vbus irq will not be requested in udc driver.
  1763. */
  1764. if (udc->pdata && udc->pdata->vbus
  1765. && udc->clock_gating && IS_ERR_OR_NULL(udc->transceiver))
  1766. free_irq(udc->pdata->vbus->irq, &dev->dev);
  1767. /* free memory allocated in probe */
  1768. if (udc->dtd_pool)
  1769. dma_pool_destroy(udc->dtd_pool);
  1770. if (udc->ep_dqh)
  1771. dma_free_coherent(&dev->dev, udc->ep_dqh_size,
  1772. udc->ep_dqh, udc->ep_dqh_dma);
  1773. kfree(udc->eps);
  1774. if (udc->irq)
  1775. free_irq(udc->irq, &dev->dev);
  1776. mv_udc_disable(udc);
  1777. if (udc->cap_regs)
  1778. iounmap(udc->cap_regs);
  1779. if (udc->phy_regs)
  1780. iounmap(udc->phy_regs);
  1781. if (udc->status_req) {
  1782. kfree(udc->status_req->req.buf);
  1783. kfree(udc->status_req);
  1784. }
  1785. for (clk_i = 0; clk_i <= udc->clknum; clk_i++)
  1786. clk_put(udc->clk[clk_i]);
  1787. device_unregister(&udc->gadget.dev);
  1788. /* free dev, wait for the release() finished */
  1789. wait_for_completion(udc->done);
  1790. kfree(udc);
  1791. the_controller = NULL;
  1792. return 0;
  1793. }
  1794. static int __devinit mv_udc_probe(struct platform_device *dev)
  1795. {
  1796. struct mv_usb_platform_data *pdata = dev->dev.platform_data;
  1797. struct mv_udc *udc;
  1798. int retval = 0;
  1799. int clk_i = 0;
  1800. struct resource *r;
  1801. size_t size;
  1802. if (pdata == NULL) {
  1803. dev_err(&dev->dev, "missing platform_data\n");
  1804. return -ENODEV;
  1805. }
  1806. size = sizeof(*udc) + sizeof(struct clk *) * pdata->clknum;
  1807. udc = kzalloc(size, GFP_KERNEL);
  1808. if (udc == NULL) {
  1809. dev_err(&dev->dev, "failed to allocate memory for udc\n");
  1810. return -ENOMEM;
  1811. }
  1812. the_controller = udc;
  1813. udc->done = &release_done;
  1814. udc->pdata = dev->dev.platform_data;
  1815. spin_lock_init(&udc->lock);
  1816. udc->dev = dev;
  1817. #ifdef CONFIG_USB_OTG_UTILS
  1818. if (pdata->mode == MV_USB_MODE_OTG)
  1819. udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
  1820. #endif
  1821. udc->clknum = pdata->clknum;
  1822. for (clk_i = 0; clk_i < udc->clknum; clk_i++) {
  1823. udc->clk[clk_i] = clk_get(&dev->dev, pdata->clkname[clk_i]);
  1824. if (IS_ERR(udc->clk[clk_i])) {
  1825. retval = PTR_ERR(udc->clk[clk_i]);
  1826. goto err_put_clk;
  1827. }
  1828. }
  1829. r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
  1830. if (r == NULL) {
  1831. dev_err(&dev->dev, "no I/O memory resource defined\n");
  1832. retval = -ENODEV;
  1833. goto err_put_clk;
  1834. }
  1835. udc->cap_regs = (struct mv_cap_regs __iomem *)
  1836. ioremap(r->start, resource_size(r));
  1837. if (udc->cap_regs == NULL) {
  1838. dev_err(&dev->dev, "failed to map I/O memory\n");
  1839. retval = -EBUSY;
  1840. goto err_put_clk;
  1841. }
  1842. r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
  1843. if (r == NULL) {
  1844. dev_err(&dev->dev, "no phy I/O memory resource defined\n");
  1845. retval = -ENODEV;
  1846. goto err_iounmap_capreg;
  1847. }
  1848. udc->phy_regs = ioremap(r->start, resource_size(r));
  1849. if (udc->phy_regs == NULL) {
  1850. dev_err(&dev->dev, "failed to map phy I/O memory\n");
  1851. retval = -EBUSY;
  1852. goto err_iounmap_capreg;
  1853. }
  1854. /* we will acces controller register, so enable the clk */
  1855. retval = mv_udc_enable_internal(udc);
  1856. if (retval)
  1857. goto err_iounmap_phyreg;
  1858. udc->op_regs =
  1859. (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
  1860. + (readl(&udc->cap_regs->caplength_hciversion)
  1861. & CAPLENGTH_MASK));
  1862. udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
  1863. /*
  1864. * some platform will use usb to download image, it may not disconnect
  1865. * usb gadget before loading kernel. So first stop udc here.
  1866. */
  1867. udc_stop(udc);
  1868. writel(0xFFFFFFFF, &udc->op_regs->usbsts);
  1869. size = udc->max_eps * sizeof(struct mv_dqh) *2;
  1870. size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
  1871. udc->ep_dqh = dma_alloc_coherent(&dev->dev, size,
  1872. &udc->ep_dqh_dma, GFP_KERNEL);
  1873. if (udc->ep_dqh == NULL) {
  1874. dev_err(&dev->dev, "allocate dQH memory failed\n");
  1875. retval = -ENOMEM;
  1876. goto err_disable_clock;
  1877. }
  1878. udc->ep_dqh_size = size;
  1879. /* create dTD dma_pool resource */
  1880. udc->dtd_pool = dma_pool_create("mv_dtd",
  1881. &dev->dev,
  1882. sizeof(struct mv_dtd),
  1883. DTD_ALIGNMENT,
  1884. DMA_BOUNDARY);
  1885. if (!udc->dtd_pool) {
  1886. retval = -ENOMEM;
  1887. goto err_free_dma;
  1888. }
  1889. size = udc->max_eps * sizeof(struct mv_ep) *2;
  1890. udc->eps = kzalloc(size, GFP_KERNEL);
  1891. if (udc->eps == NULL) {
  1892. dev_err(&dev->dev, "allocate ep memory failed\n");
  1893. retval = -ENOMEM;
  1894. goto err_destroy_dma;
  1895. }
  1896. /* initialize ep0 status request structure */
  1897. udc->status_req = kzalloc(sizeof(struct mv_req), GFP_KERNEL);
  1898. if (!udc->status_req) {
  1899. dev_err(&dev->dev, "allocate status_req memory failed\n");
  1900. retval = -ENOMEM;
  1901. goto err_free_eps;
  1902. }
  1903. INIT_LIST_HEAD(&udc->status_req->queue);
  1904. /* allocate a small amount of memory to get valid address */
  1905. udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
  1906. udc->status_req->req.dma = DMA_ADDR_INVALID;
  1907. udc->resume_state = USB_STATE_NOTATTACHED;
  1908. udc->usb_state = USB_STATE_POWERED;
  1909. udc->ep0_dir = EP_DIR_OUT;
  1910. udc->remote_wakeup = 0;
  1911. r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
  1912. if (r == NULL) {
  1913. dev_err(&dev->dev, "no IRQ resource defined\n");
  1914. retval = -ENODEV;
  1915. goto err_free_status_req;
  1916. }
  1917. udc->irq = r->start;
  1918. if (request_irq(udc->irq, mv_udc_irq,
  1919. IRQF_SHARED, driver_name, udc)) {
  1920. dev_err(&dev->dev, "Request irq %d for UDC failed\n",
  1921. udc->irq);
  1922. retval = -ENODEV;
  1923. goto err_free_status_req;
  1924. }
  1925. /* initialize gadget structure */
  1926. udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
  1927. udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
  1928. INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
  1929. udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
  1930. udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
  1931. /* the "gadget" abstracts/virtualizes the controller */
  1932. dev_set_name(&udc->gadget.dev, "gadget");
  1933. udc->gadget.dev.parent = &dev->dev;
  1934. udc->gadget.dev.dma_mask = dev->dev.dma_mask;
  1935. udc->gadget.dev.release = gadget_release;
  1936. udc->gadget.name = driver_name; /* gadget name */
  1937. retval = device_register(&udc->gadget.dev);
  1938. if (retval)
  1939. goto err_free_irq;
  1940. eps_init(udc);
  1941. /* VBUS detect: we can disable/enable clock on demand.*/
  1942. if (!IS_ERR_OR_NULL(udc->transceiver))
  1943. udc->clock_gating = 1;
  1944. else if (pdata->vbus) {
  1945. udc->clock_gating = 1;
  1946. retval = request_threaded_irq(pdata->vbus->irq, NULL,
  1947. mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
  1948. if (retval) {
  1949. dev_info(&dev->dev,
  1950. "Can not request irq for VBUS, "
  1951. "disable clock gating\n");
  1952. udc->clock_gating = 0;
  1953. }
  1954. udc->qwork = create_singlethread_workqueue("mv_udc_queue");
  1955. if (!udc->qwork) {
  1956. dev_err(&dev->dev, "cannot create workqueue\n");
  1957. retval = -ENOMEM;
  1958. goto err_unregister;
  1959. }
  1960. INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
  1961. }
  1962. /*
  1963. * When clock gating is supported, we can disable clk and phy.
  1964. * If not, it means that VBUS detection is not supported, we
  1965. * have to enable vbus active all the time to let controller work.
  1966. */
  1967. if (udc->clock_gating)
  1968. mv_udc_disable_internal(udc);
  1969. else
  1970. udc->vbus_active = 1;
  1971. retval = usb_add_gadget_udc(&dev->dev, &udc->gadget);
  1972. if (retval)
  1973. goto err_unregister;
  1974. dev_info(&dev->dev, "successful probe UDC device %s clock gating.\n",
  1975. udc->clock_gating ? "with" : "without");
  1976. return 0;
  1977. err_unregister:
  1978. if (udc->pdata && udc->pdata->vbus
  1979. && udc->clock_gating && IS_ERR_OR_NULL(udc->transceiver))
  1980. free_irq(pdata->vbus->irq, &dev->dev);
  1981. device_unregister(&udc->gadget.dev);
  1982. err_free_irq:
  1983. free_irq(udc->irq, &dev->dev);
  1984. err_free_status_req:
  1985. kfree(udc->status_req->req.buf);
  1986. kfree(udc->status_req);
  1987. err_free_eps:
  1988. kfree(udc->eps);
  1989. err_destroy_dma:
  1990. dma_pool_destroy(udc->dtd_pool);
  1991. err_free_dma:
  1992. dma_free_coherent(&dev->dev, udc->ep_dqh_size,
  1993. udc->ep_dqh, udc->ep_dqh_dma);
  1994. err_disable_clock:
  1995. mv_udc_disable_internal(udc);
  1996. err_iounmap_phyreg:
  1997. iounmap(udc->phy_regs);
  1998. err_iounmap_capreg:
  1999. iounmap(udc->cap_regs);
  2000. err_put_clk:
  2001. for (clk_i--; clk_i >= 0; clk_i--)
  2002. clk_put(udc->clk[clk_i]);
  2003. the_controller = NULL;
  2004. kfree(udc);
  2005. return retval;
  2006. }
  2007. #ifdef CONFIG_PM
  2008. static int mv_udc_suspend(struct device *_dev)
  2009. {
  2010. struct mv_udc *udc = the_controller;
  2011. /* if OTG is enabled, the following will be done in OTG driver*/
  2012. if (!IS_ERR_OR_NULL(udc->transceiver))
  2013. return 0;
  2014. if (udc->pdata->vbus && udc->pdata->vbus->poll)
  2015. if (udc->pdata->vbus->poll() == VBUS_HIGH) {
  2016. dev_info(&udc->dev->dev, "USB cable is connected!\n");
  2017. return -EAGAIN;
  2018. }
  2019. /*
  2020. * only cable is unplugged, udc can suspend.
  2021. * So do not care about clock_gating == 1.
  2022. */
  2023. if (!udc->clock_gating) {
  2024. udc_stop(udc);
  2025. spin_lock_irq(&udc->lock);
  2026. /* stop all usb activities */
  2027. stop_activity(udc, udc->driver);
  2028. spin_unlock_irq(&udc->lock);
  2029. mv_udc_disable_internal(udc);
  2030. }
  2031. return 0;
  2032. }
  2033. static int mv_udc_resume(struct device *_dev)
  2034. {
  2035. struct mv_udc *udc = the_controller;
  2036. int retval;
  2037. /* if OTG is enabled, the following will be done in OTG driver*/
  2038. if (!IS_ERR_OR_NULL(udc->transceiver))
  2039. return 0;
  2040. if (!udc->clock_gating) {
  2041. retval = mv_udc_enable_internal(udc);
  2042. if (retval)
  2043. return retval;
  2044. if (udc->driver && udc->softconnect) {
  2045. udc_reset(udc);
  2046. ep0_reset(udc);
  2047. udc_start(udc);
  2048. }
  2049. }
  2050. return 0;
  2051. }
  2052. static const struct dev_pm_ops mv_udc_pm_ops = {
  2053. .suspend = mv_udc_suspend,
  2054. .resume = mv_udc_resume,
  2055. };
  2056. #endif
  2057. static void mv_udc_shutdown(struct platform_device *dev)
  2058. {
  2059. struct mv_udc *udc = the_controller;
  2060. u32 mode;
  2061. /* reset controller mode to IDLE */
  2062. mv_udc_enable(udc);
  2063. mode = readl(&udc->op_regs->usbmode);
  2064. mode &= ~3;
  2065. writel(mode, &udc->op_regs->usbmode);
  2066. mv_udc_disable(udc);
  2067. }
  2068. static struct platform_driver udc_driver = {
  2069. .probe = mv_udc_probe,
  2070. .remove = __exit_p(mv_udc_remove),
  2071. .shutdown = mv_udc_shutdown,
  2072. .driver = {
  2073. .owner = THIS_MODULE,
  2074. .name = "mv-udc",
  2075. #ifdef CONFIG_PM
  2076. .pm = &mv_udc_pm_ops,
  2077. #endif
  2078. },
  2079. };
  2080. module_platform_driver(udc_driver);
  2081. MODULE_ALIAS("platform:mv-udc");
  2082. MODULE_DESCRIPTION(DRIVER_DESC);
  2083. MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
  2084. MODULE_VERSION(DRIVER_VERSION);
  2085. MODULE_LICENSE("GPL");