mmu.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "x86.h"
  21. #include "kvm_cache_regs.h"
  22. #include <linux/kvm_host.h>
  23. #include <linux/types.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/module.h>
  28. #include <linux/swap.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/compiler.h>
  31. #include <linux/srcu.h>
  32. #include <linux/slab.h>
  33. #include <linux/uaccess.h>
  34. #include <asm/page.h>
  35. #include <asm/cmpxchg.h>
  36. #include <asm/io.h>
  37. #include <asm/vmx.h>
  38. /*
  39. * When setting this variable to true it enables Two-Dimensional-Paging
  40. * where the hardware walks 2 page tables:
  41. * 1. the guest-virtual to guest-physical
  42. * 2. while doing 1. it walks guest-physical to host-physical
  43. * If the hardware supports that we don't need to do shadow paging.
  44. */
  45. bool tdp_enabled = false;
  46. #undef MMU_DEBUG
  47. #undef AUDIT
  48. #ifdef AUDIT
  49. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  50. #else
  51. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  52. #endif
  53. #ifdef MMU_DEBUG
  54. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  55. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  56. #else
  57. #define pgprintk(x...) do { } while (0)
  58. #define rmap_printk(x...) do { } while (0)
  59. #endif
  60. #if defined(MMU_DEBUG) || defined(AUDIT)
  61. static int dbg = 0;
  62. module_param(dbg, bool, 0644);
  63. #endif
  64. static int oos_shadow = 1;
  65. module_param(oos_shadow, bool, 0644);
  66. #ifndef MMU_DEBUG
  67. #define ASSERT(x) do { } while (0)
  68. #else
  69. #define ASSERT(x) \
  70. if (!(x)) { \
  71. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  72. __FILE__, __LINE__, #x); \
  73. }
  74. #endif
  75. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  76. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  77. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef int (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. #ifdef CONFIG_X86_64
  227. set_64bit((unsigned long *)sptep, spte);
  228. #else
  229. set_64bit((unsigned long long *)sptep, spte);
  230. #endif
  231. }
  232. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  233. struct kmem_cache *base_cache, int min)
  234. {
  235. void *obj;
  236. if (cache->nobjs >= min)
  237. return 0;
  238. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  239. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  240. if (!obj)
  241. return -ENOMEM;
  242. cache->objects[cache->nobjs++] = obj;
  243. }
  244. return 0;
  245. }
  246. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  247. struct kmem_cache *cache)
  248. {
  249. while (mc->nobjs)
  250. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  251. }
  252. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  253. int min)
  254. {
  255. struct page *page;
  256. if (cache->nobjs >= min)
  257. return 0;
  258. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  259. page = alloc_page(GFP_KERNEL);
  260. if (!page)
  261. return -ENOMEM;
  262. cache->objects[cache->nobjs++] = page_address(page);
  263. }
  264. return 0;
  265. }
  266. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  267. {
  268. while (mc->nobjs)
  269. free_page((unsigned long)mc->objects[--mc->nobjs]);
  270. }
  271. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  272. {
  273. int r;
  274. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  275. pte_chain_cache, 4);
  276. if (r)
  277. goto out;
  278. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  279. rmap_desc_cache, 4);
  280. if (r)
  281. goto out;
  282. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  283. if (r)
  284. goto out;
  285. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  286. mmu_page_header_cache, 4);
  287. out:
  288. return r;
  289. }
  290. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  291. {
  292. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  293. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  294. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  295. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  296. mmu_page_header_cache);
  297. }
  298. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  299. size_t size)
  300. {
  301. void *p;
  302. BUG_ON(!mc->nobjs);
  303. p = mc->objects[--mc->nobjs];
  304. return p;
  305. }
  306. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  307. {
  308. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  309. sizeof(struct kvm_pte_chain));
  310. }
  311. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  312. {
  313. kmem_cache_free(pte_chain_cache, pc);
  314. }
  315. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  316. {
  317. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  318. sizeof(struct kvm_rmap_desc));
  319. }
  320. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  321. {
  322. kmem_cache_free(rmap_desc_cache, rd);
  323. }
  324. /*
  325. * Return the pointer to the largepage write count for a given
  326. * gfn, handling slots that are not large page aligned.
  327. */
  328. static int *slot_largepage_idx(gfn_t gfn,
  329. struct kvm_memory_slot *slot,
  330. int level)
  331. {
  332. unsigned long idx;
  333. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  334. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  335. return &slot->lpage_info[level - 2][idx].write_count;
  336. }
  337. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  338. {
  339. struct kvm_memory_slot *slot;
  340. int *write_count;
  341. int i;
  342. gfn = unalias_gfn(kvm, gfn);
  343. slot = gfn_to_memslot_unaliased(kvm, gfn);
  344. for (i = PT_DIRECTORY_LEVEL;
  345. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  346. write_count = slot_largepage_idx(gfn, slot, i);
  347. *write_count += 1;
  348. }
  349. }
  350. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  351. {
  352. struct kvm_memory_slot *slot;
  353. int *write_count;
  354. int i;
  355. gfn = unalias_gfn(kvm, gfn);
  356. slot = gfn_to_memslot_unaliased(kvm, gfn);
  357. for (i = PT_DIRECTORY_LEVEL;
  358. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  359. write_count = slot_largepage_idx(gfn, slot, i);
  360. *write_count -= 1;
  361. WARN_ON(*write_count < 0);
  362. }
  363. }
  364. static int has_wrprotected_page(struct kvm *kvm,
  365. gfn_t gfn,
  366. int level)
  367. {
  368. struct kvm_memory_slot *slot;
  369. int *largepage_idx;
  370. gfn = unalias_gfn(kvm, gfn);
  371. slot = gfn_to_memslot_unaliased(kvm, gfn);
  372. if (slot) {
  373. largepage_idx = slot_largepage_idx(gfn, slot, level);
  374. return *largepage_idx;
  375. }
  376. return 1;
  377. }
  378. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  379. {
  380. unsigned long page_size;
  381. int i, ret = 0;
  382. page_size = kvm_host_page_size(kvm, gfn);
  383. for (i = PT_PAGE_TABLE_LEVEL;
  384. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  385. if (page_size >= KVM_HPAGE_SIZE(i))
  386. ret = i;
  387. else
  388. break;
  389. }
  390. return ret;
  391. }
  392. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  393. {
  394. struct kvm_memory_slot *slot;
  395. int host_level, level, max_level;
  396. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  397. if (slot && slot->dirty_bitmap)
  398. return PT_PAGE_TABLE_LEVEL;
  399. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  400. if (host_level == PT_PAGE_TABLE_LEVEL)
  401. return host_level;
  402. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  403. kvm_x86_ops->get_lpage_level() : host_level;
  404. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  405. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  406. break;
  407. return level - 1;
  408. }
  409. /*
  410. * Take gfn and return the reverse mapping to it.
  411. * Note: gfn must be unaliased before this function get called
  412. */
  413. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  414. {
  415. struct kvm_memory_slot *slot;
  416. unsigned long idx;
  417. slot = gfn_to_memslot(kvm, gfn);
  418. if (likely(level == PT_PAGE_TABLE_LEVEL))
  419. return &slot->rmap[gfn - slot->base_gfn];
  420. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  421. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  422. return &slot->lpage_info[level - 2][idx].rmap_pde;
  423. }
  424. /*
  425. * Reverse mapping data structures:
  426. *
  427. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  428. * that points to page_address(page).
  429. *
  430. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  431. * containing more mappings.
  432. *
  433. * Returns the number of rmap entries before the spte was added or zero if
  434. * the spte was not added.
  435. *
  436. */
  437. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  438. {
  439. struct kvm_mmu_page *sp;
  440. struct kvm_rmap_desc *desc;
  441. unsigned long *rmapp;
  442. int i, count = 0;
  443. if (!is_rmap_spte(*spte))
  444. return count;
  445. gfn = unalias_gfn(vcpu->kvm, gfn);
  446. sp = page_header(__pa(spte));
  447. sp->gfns[spte - sp->spt] = gfn;
  448. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  449. if (!*rmapp) {
  450. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  451. *rmapp = (unsigned long)spte;
  452. } else if (!(*rmapp & 1)) {
  453. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  454. desc = mmu_alloc_rmap_desc(vcpu);
  455. desc->sptes[0] = (u64 *)*rmapp;
  456. desc->sptes[1] = spte;
  457. *rmapp = (unsigned long)desc | 1;
  458. } else {
  459. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  460. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  461. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  462. desc = desc->more;
  463. count += RMAP_EXT;
  464. }
  465. if (desc->sptes[RMAP_EXT-1]) {
  466. desc->more = mmu_alloc_rmap_desc(vcpu);
  467. desc = desc->more;
  468. }
  469. for (i = 0; desc->sptes[i]; ++i)
  470. ;
  471. desc->sptes[i] = spte;
  472. }
  473. return count;
  474. }
  475. static void rmap_desc_remove_entry(unsigned long *rmapp,
  476. struct kvm_rmap_desc *desc,
  477. int i,
  478. struct kvm_rmap_desc *prev_desc)
  479. {
  480. int j;
  481. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  482. ;
  483. desc->sptes[i] = desc->sptes[j];
  484. desc->sptes[j] = NULL;
  485. if (j != 0)
  486. return;
  487. if (!prev_desc && !desc->more)
  488. *rmapp = (unsigned long)desc->sptes[0];
  489. else
  490. if (prev_desc)
  491. prev_desc->more = desc->more;
  492. else
  493. *rmapp = (unsigned long)desc->more | 1;
  494. mmu_free_rmap_desc(desc);
  495. }
  496. static void rmap_remove(struct kvm *kvm, u64 *spte)
  497. {
  498. struct kvm_rmap_desc *desc;
  499. struct kvm_rmap_desc *prev_desc;
  500. struct kvm_mmu_page *sp;
  501. pfn_t pfn;
  502. unsigned long *rmapp;
  503. int i;
  504. if (!is_rmap_spte(*spte))
  505. return;
  506. sp = page_header(__pa(spte));
  507. pfn = spte_to_pfn(*spte);
  508. if (*spte & shadow_accessed_mask)
  509. kvm_set_pfn_accessed(pfn);
  510. if (is_writable_pte(*spte))
  511. kvm_set_pfn_dirty(pfn);
  512. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  513. if (!*rmapp) {
  514. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  515. BUG();
  516. } else if (!(*rmapp & 1)) {
  517. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  518. if ((u64 *)*rmapp != spte) {
  519. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  520. spte, *spte);
  521. BUG();
  522. }
  523. *rmapp = 0;
  524. } else {
  525. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  526. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  527. prev_desc = NULL;
  528. while (desc) {
  529. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  530. if (desc->sptes[i] == spte) {
  531. rmap_desc_remove_entry(rmapp,
  532. desc, i,
  533. prev_desc);
  534. return;
  535. }
  536. prev_desc = desc;
  537. desc = desc->more;
  538. }
  539. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  540. BUG();
  541. }
  542. }
  543. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  544. {
  545. struct kvm_rmap_desc *desc;
  546. u64 *prev_spte;
  547. int i;
  548. if (!*rmapp)
  549. return NULL;
  550. else if (!(*rmapp & 1)) {
  551. if (!spte)
  552. return (u64 *)*rmapp;
  553. return NULL;
  554. }
  555. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  556. prev_spte = NULL;
  557. while (desc) {
  558. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  559. if (prev_spte == spte)
  560. return desc->sptes[i];
  561. prev_spte = desc->sptes[i];
  562. }
  563. desc = desc->more;
  564. }
  565. return NULL;
  566. }
  567. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  568. {
  569. unsigned long *rmapp;
  570. u64 *spte;
  571. int i, write_protected = 0;
  572. gfn = unalias_gfn(kvm, gfn);
  573. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  574. spte = rmap_next(kvm, rmapp, NULL);
  575. while (spte) {
  576. BUG_ON(!spte);
  577. BUG_ON(!(*spte & PT_PRESENT_MASK));
  578. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  579. if (is_writable_pte(*spte)) {
  580. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  581. write_protected = 1;
  582. }
  583. spte = rmap_next(kvm, rmapp, spte);
  584. }
  585. if (write_protected) {
  586. pfn_t pfn;
  587. spte = rmap_next(kvm, rmapp, NULL);
  588. pfn = spte_to_pfn(*spte);
  589. kvm_set_pfn_dirty(pfn);
  590. }
  591. /* check for huge page mappings */
  592. for (i = PT_DIRECTORY_LEVEL;
  593. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  594. rmapp = gfn_to_rmap(kvm, gfn, i);
  595. spte = rmap_next(kvm, rmapp, NULL);
  596. while (spte) {
  597. BUG_ON(!spte);
  598. BUG_ON(!(*spte & PT_PRESENT_MASK));
  599. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  600. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  601. if (is_writable_pte(*spte)) {
  602. rmap_remove(kvm, spte);
  603. --kvm->stat.lpages;
  604. __set_spte(spte, shadow_trap_nonpresent_pte);
  605. spte = NULL;
  606. write_protected = 1;
  607. }
  608. spte = rmap_next(kvm, rmapp, spte);
  609. }
  610. }
  611. return write_protected;
  612. }
  613. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  614. unsigned long data)
  615. {
  616. u64 *spte;
  617. int need_tlb_flush = 0;
  618. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  619. BUG_ON(!(*spte & PT_PRESENT_MASK));
  620. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  621. rmap_remove(kvm, spte);
  622. __set_spte(spte, shadow_trap_nonpresent_pte);
  623. need_tlb_flush = 1;
  624. }
  625. return need_tlb_flush;
  626. }
  627. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  628. unsigned long data)
  629. {
  630. int need_flush = 0;
  631. u64 *spte, new_spte;
  632. pte_t *ptep = (pte_t *)data;
  633. pfn_t new_pfn;
  634. WARN_ON(pte_huge(*ptep));
  635. new_pfn = pte_pfn(*ptep);
  636. spte = rmap_next(kvm, rmapp, NULL);
  637. while (spte) {
  638. BUG_ON(!is_shadow_present_pte(*spte));
  639. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  640. need_flush = 1;
  641. if (pte_write(*ptep)) {
  642. rmap_remove(kvm, spte);
  643. __set_spte(spte, shadow_trap_nonpresent_pte);
  644. spte = rmap_next(kvm, rmapp, NULL);
  645. } else {
  646. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  647. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  648. new_spte &= ~PT_WRITABLE_MASK;
  649. new_spte &= ~SPTE_HOST_WRITEABLE;
  650. if (is_writable_pte(*spte))
  651. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  652. __set_spte(spte, new_spte);
  653. spte = rmap_next(kvm, rmapp, spte);
  654. }
  655. }
  656. if (need_flush)
  657. kvm_flush_remote_tlbs(kvm);
  658. return 0;
  659. }
  660. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  661. unsigned long data,
  662. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  663. unsigned long data))
  664. {
  665. int i, j;
  666. int ret;
  667. int retval = 0;
  668. struct kvm_memslots *slots;
  669. slots = kvm_memslots(kvm);
  670. for (i = 0; i < slots->nmemslots; i++) {
  671. struct kvm_memory_slot *memslot = &slots->memslots[i];
  672. unsigned long start = memslot->userspace_addr;
  673. unsigned long end;
  674. end = start + (memslot->npages << PAGE_SHIFT);
  675. if (hva >= start && hva < end) {
  676. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  677. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  678. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  679. int idx = gfn_offset;
  680. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  681. ret |= handler(kvm,
  682. &memslot->lpage_info[j][idx].rmap_pde,
  683. data);
  684. }
  685. trace_kvm_age_page(hva, memslot, ret);
  686. retval |= ret;
  687. }
  688. }
  689. return retval;
  690. }
  691. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  692. {
  693. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  694. }
  695. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  696. {
  697. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  698. }
  699. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  700. unsigned long data)
  701. {
  702. u64 *spte;
  703. int young = 0;
  704. /*
  705. * Emulate the accessed bit for EPT, by checking if this page has
  706. * an EPT mapping, and clearing it if it does. On the next access,
  707. * a new EPT mapping will be established.
  708. * This has some overhead, but not as much as the cost of swapping
  709. * out actively used pages or breaking up actively used hugepages.
  710. */
  711. if (!shadow_accessed_mask)
  712. return kvm_unmap_rmapp(kvm, rmapp, data);
  713. spte = rmap_next(kvm, rmapp, NULL);
  714. while (spte) {
  715. int _young;
  716. u64 _spte = *spte;
  717. BUG_ON(!(_spte & PT_PRESENT_MASK));
  718. _young = _spte & PT_ACCESSED_MASK;
  719. if (_young) {
  720. young = 1;
  721. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  722. }
  723. spte = rmap_next(kvm, rmapp, spte);
  724. }
  725. return young;
  726. }
  727. #define RMAP_RECYCLE_THRESHOLD 1000
  728. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  729. {
  730. unsigned long *rmapp;
  731. struct kvm_mmu_page *sp;
  732. sp = page_header(__pa(spte));
  733. gfn = unalias_gfn(vcpu->kvm, gfn);
  734. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  735. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  736. kvm_flush_remote_tlbs(vcpu->kvm);
  737. }
  738. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  739. {
  740. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  741. }
  742. #ifdef MMU_DEBUG
  743. static int is_empty_shadow_page(u64 *spt)
  744. {
  745. u64 *pos;
  746. u64 *end;
  747. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  748. if (is_shadow_present_pte(*pos)) {
  749. printk(KERN_ERR "%s: %p %llx\n", __func__,
  750. pos, *pos);
  751. return 0;
  752. }
  753. return 1;
  754. }
  755. #endif
  756. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  757. {
  758. ASSERT(is_empty_shadow_page(sp->spt));
  759. list_del(&sp->link);
  760. __free_page(virt_to_page(sp->spt));
  761. __free_page(virt_to_page(sp->gfns));
  762. kmem_cache_free(mmu_page_header_cache, sp);
  763. ++kvm->arch.n_free_mmu_pages;
  764. }
  765. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  766. {
  767. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  768. }
  769. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  770. u64 *parent_pte)
  771. {
  772. struct kvm_mmu_page *sp;
  773. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  774. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  775. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  776. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  777. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  778. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  779. sp->multimapped = 0;
  780. sp->parent_pte = parent_pte;
  781. --vcpu->kvm->arch.n_free_mmu_pages;
  782. return sp;
  783. }
  784. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  785. struct kvm_mmu_page *sp, u64 *parent_pte)
  786. {
  787. struct kvm_pte_chain *pte_chain;
  788. struct hlist_node *node;
  789. int i;
  790. if (!parent_pte)
  791. return;
  792. if (!sp->multimapped) {
  793. u64 *old = sp->parent_pte;
  794. if (!old) {
  795. sp->parent_pte = parent_pte;
  796. return;
  797. }
  798. sp->multimapped = 1;
  799. pte_chain = mmu_alloc_pte_chain(vcpu);
  800. INIT_HLIST_HEAD(&sp->parent_ptes);
  801. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  802. pte_chain->parent_ptes[0] = old;
  803. }
  804. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  805. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  806. continue;
  807. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  808. if (!pte_chain->parent_ptes[i]) {
  809. pte_chain->parent_ptes[i] = parent_pte;
  810. return;
  811. }
  812. }
  813. pte_chain = mmu_alloc_pte_chain(vcpu);
  814. BUG_ON(!pte_chain);
  815. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  816. pte_chain->parent_ptes[0] = parent_pte;
  817. }
  818. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  819. u64 *parent_pte)
  820. {
  821. struct kvm_pte_chain *pte_chain;
  822. struct hlist_node *node;
  823. int i;
  824. if (!sp->multimapped) {
  825. BUG_ON(sp->parent_pte != parent_pte);
  826. sp->parent_pte = NULL;
  827. return;
  828. }
  829. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  830. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  831. if (!pte_chain->parent_ptes[i])
  832. break;
  833. if (pte_chain->parent_ptes[i] != parent_pte)
  834. continue;
  835. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  836. && pte_chain->parent_ptes[i + 1]) {
  837. pte_chain->parent_ptes[i]
  838. = pte_chain->parent_ptes[i + 1];
  839. ++i;
  840. }
  841. pte_chain->parent_ptes[i] = NULL;
  842. if (i == 0) {
  843. hlist_del(&pte_chain->link);
  844. mmu_free_pte_chain(pte_chain);
  845. if (hlist_empty(&sp->parent_ptes)) {
  846. sp->multimapped = 0;
  847. sp->parent_pte = NULL;
  848. }
  849. }
  850. return;
  851. }
  852. BUG();
  853. }
  854. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  855. {
  856. struct kvm_pte_chain *pte_chain;
  857. struct hlist_node *node;
  858. struct kvm_mmu_page *parent_sp;
  859. int i;
  860. if (!sp->multimapped && sp->parent_pte) {
  861. parent_sp = page_header(__pa(sp->parent_pte));
  862. fn(parent_sp);
  863. mmu_parent_walk(parent_sp, fn);
  864. return;
  865. }
  866. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  867. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  868. if (!pte_chain->parent_ptes[i])
  869. break;
  870. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  871. fn(parent_sp);
  872. mmu_parent_walk(parent_sp, fn);
  873. }
  874. }
  875. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  876. {
  877. unsigned int index;
  878. struct kvm_mmu_page *sp = page_header(__pa(spte));
  879. index = spte - sp->spt;
  880. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  881. sp->unsync_children++;
  882. WARN_ON(!sp->unsync_children);
  883. }
  884. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  885. {
  886. struct kvm_pte_chain *pte_chain;
  887. struct hlist_node *node;
  888. int i;
  889. if (!sp->parent_pte)
  890. return;
  891. if (!sp->multimapped) {
  892. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  893. return;
  894. }
  895. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  896. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  897. if (!pte_chain->parent_ptes[i])
  898. break;
  899. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  900. }
  901. }
  902. static int unsync_walk_fn(struct kvm_mmu_page *sp)
  903. {
  904. kvm_mmu_update_parents_unsync(sp);
  905. return 1;
  906. }
  907. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  908. {
  909. mmu_parent_walk(sp, unsync_walk_fn);
  910. kvm_mmu_update_parents_unsync(sp);
  911. }
  912. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  913. struct kvm_mmu_page *sp)
  914. {
  915. int i;
  916. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  917. sp->spt[i] = shadow_trap_nonpresent_pte;
  918. }
  919. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  920. struct kvm_mmu_page *sp)
  921. {
  922. return 1;
  923. }
  924. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  925. {
  926. }
  927. #define KVM_PAGE_ARRAY_NR 16
  928. struct kvm_mmu_pages {
  929. struct mmu_page_and_offset {
  930. struct kvm_mmu_page *sp;
  931. unsigned int idx;
  932. } page[KVM_PAGE_ARRAY_NR];
  933. unsigned int nr;
  934. };
  935. #define for_each_unsync_children(bitmap, idx) \
  936. for (idx = find_first_bit(bitmap, 512); \
  937. idx < 512; \
  938. idx = find_next_bit(bitmap, 512, idx+1))
  939. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  940. int idx)
  941. {
  942. int i;
  943. if (sp->unsync)
  944. for (i=0; i < pvec->nr; i++)
  945. if (pvec->page[i].sp == sp)
  946. return 0;
  947. pvec->page[pvec->nr].sp = sp;
  948. pvec->page[pvec->nr].idx = idx;
  949. pvec->nr++;
  950. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  951. }
  952. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  953. struct kvm_mmu_pages *pvec)
  954. {
  955. int i, ret, nr_unsync_leaf = 0;
  956. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  957. u64 ent = sp->spt[i];
  958. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  959. struct kvm_mmu_page *child;
  960. child = page_header(ent & PT64_BASE_ADDR_MASK);
  961. if (child->unsync_children) {
  962. if (mmu_pages_add(pvec, child, i))
  963. return -ENOSPC;
  964. ret = __mmu_unsync_walk(child, pvec);
  965. if (!ret)
  966. __clear_bit(i, sp->unsync_child_bitmap);
  967. else if (ret > 0)
  968. nr_unsync_leaf += ret;
  969. else
  970. return ret;
  971. }
  972. if (child->unsync) {
  973. nr_unsync_leaf++;
  974. if (mmu_pages_add(pvec, child, i))
  975. return -ENOSPC;
  976. }
  977. }
  978. }
  979. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  980. sp->unsync_children = 0;
  981. return nr_unsync_leaf;
  982. }
  983. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  984. struct kvm_mmu_pages *pvec)
  985. {
  986. if (!sp->unsync_children)
  987. return 0;
  988. mmu_pages_add(pvec, sp, 0);
  989. return __mmu_unsync_walk(sp, pvec);
  990. }
  991. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  992. {
  993. unsigned index;
  994. struct hlist_head *bucket;
  995. struct kvm_mmu_page *sp;
  996. struct hlist_node *node;
  997. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  998. index = kvm_page_table_hashfn(gfn);
  999. bucket = &kvm->arch.mmu_page_hash[index];
  1000. hlist_for_each_entry(sp, node, bucket, hash_link)
  1001. if (sp->gfn == gfn && !sp->role.direct
  1002. && !sp->role.invalid) {
  1003. pgprintk("%s: found role %x\n",
  1004. __func__, sp->role.word);
  1005. return sp;
  1006. }
  1007. return NULL;
  1008. }
  1009. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1010. {
  1011. WARN_ON(!sp->unsync);
  1012. trace_kvm_mmu_sync_page(sp);
  1013. sp->unsync = 0;
  1014. --kvm->stat.mmu_unsync;
  1015. }
  1016. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1017. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1018. bool clear_unsync)
  1019. {
  1020. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1021. kvm_mmu_zap_page(vcpu->kvm, sp);
  1022. return 1;
  1023. }
  1024. if (clear_unsync) {
  1025. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1026. kvm_flush_remote_tlbs(vcpu->kvm);
  1027. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1028. }
  1029. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1030. kvm_mmu_zap_page(vcpu->kvm, sp);
  1031. return 1;
  1032. }
  1033. kvm_mmu_flush_tlb(vcpu);
  1034. return 0;
  1035. }
  1036. static void mmu_convert_notrap(struct kvm_mmu_page *sp);
  1037. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1038. struct kvm_mmu_page *sp)
  1039. {
  1040. int ret;
  1041. ret = __kvm_sync_page(vcpu, sp, false);
  1042. if (!ret)
  1043. mmu_convert_notrap(sp);
  1044. return ret;
  1045. }
  1046. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1047. {
  1048. return __kvm_sync_page(vcpu, sp, true);
  1049. }
  1050. struct mmu_page_path {
  1051. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1052. unsigned int idx[PT64_ROOT_LEVEL-1];
  1053. };
  1054. #define for_each_sp(pvec, sp, parents, i) \
  1055. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1056. sp = pvec.page[i].sp; \
  1057. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1058. i = mmu_pages_next(&pvec, &parents, i))
  1059. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1060. struct mmu_page_path *parents,
  1061. int i)
  1062. {
  1063. int n;
  1064. for (n = i+1; n < pvec->nr; n++) {
  1065. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1066. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1067. parents->idx[0] = pvec->page[n].idx;
  1068. return n;
  1069. }
  1070. parents->parent[sp->role.level-2] = sp;
  1071. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1072. }
  1073. return n;
  1074. }
  1075. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1076. {
  1077. struct kvm_mmu_page *sp;
  1078. unsigned int level = 0;
  1079. do {
  1080. unsigned int idx = parents->idx[level];
  1081. sp = parents->parent[level];
  1082. if (!sp)
  1083. return;
  1084. --sp->unsync_children;
  1085. WARN_ON((int)sp->unsync_children < 0);
  1086. __clear_bit(idx, sp->unsync_child_bitmap);
  1087. level++;
  1088. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1089. }
  1090. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1091. struct mmu_page_path *parents,
  1092. struct kvm_mmu_pages *pvec)
  1093. {
  1094. parents->parent[parent->role.level-1] = NULL;
  1095. pvec->nr = 0;
  1096. }
  1097. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1098. struct kvm_mmu_page *parent)
  1099. {
  1100. int i;
  1101. struct kvm_mmu_page *sp;
  1102. struct mmu_page_path parents;
  1103. struct kvm_mmu_pages pages;
  1104. kvm_mmu_pages_init(parent, &parents, &pages);
  1105. while (mmu_unsync_walk(parent, &pages)) {
  1106. int protected = 0;
  1107. for_each_sp(pages, sp, parents, i)
  1108. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1109. if (protected)
  1110. kvm_flush_remote_tlbs(vcpu->kvm);
  1111. for_each_sp(pages, sp, parents, i) {
  1112. kvm_sync_page(vcpu, sp);
  1113. mmu_pages_clear_parents(&parents);
  1114. }
  1115. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1116. kvm_mmu_pages_init(parent, &parents, &pages);
  1117. }
  1118. }
  1119. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1120. gfn_t gfn,
  1121. gva_t gaddr,
  1122. unsigned level,
  1123. int direct,
  1124. unsigned access,
  1125. u64 *parent_pte)
  1126. {
  1127. union kvm_mmu_page_role role;
  1128. unsigned index;
  1129. unsigned quadrant;
  1130. struct hlist_head *bucket;
  1131. struct kvm_mmu_page *sp;
  1132. struct hlist_node *node, *tmp;
  1133. role = vcpu->arch.mmu.base_role;
  1134. role.level = level;
  1135. role.direct = direct;
  1136. if (role.direct)
  1137. role.cr4_pae = 0;
  1138. role.access = access;
  1139. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1140. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1141. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1142. role.quadrant = quadrant;
  1143. }
  1144. index = kvm_page_table_hashfn(gfn);
  1145. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1146. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1147. if (sp->gfn == gfn) {
  1148. if (sp->unsync)
  1149. if (kvm_sync_page(vcpu, sp))
  1150. continue;
  1151. if (sp->role.word != role.word)
  1152. continue;
  1153. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1154. if (sp->unsync_children) {
  1155. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1156. kvm_mmu_mark_parents_unsync(sp);
  1157. }
  1158. trace_kvm_mmu_get_page(sp, false);
  1159. return sp;
  1160. }
  1161. ++vcpu->kvm->stat.mmu_cache_miss;
  1162. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1163. if (!sp)
  1164. return sp;
  1165. sp->gfn = gfn;
  1166. sp->role = role;
  1167. hlist_add_head(&sp->hash_link, bucket);
  1168. if (!direct) {
  1169. if (rmap_write_protect(vcpu->kvm, gfn))
  1170. kvm_flush_remote_tlbs(vcpu->kvm);
  1171. account_shadowed(vcpu->kvm, gfn);
  1172. }
  1173. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1174. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1175. else
  1176. nonpaging_prefetch_page(vcpu, sp);
  1177. trace_kvm_mmu_get_page(sp, true);
  1178. return sp;
  1179. }
  1180. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1181. struct kvm_vcpu *vcpu, u64 addr)
  1182. {
  1183. iterator->addr = addr;
  1184. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1185. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1186. if (iterator->level == PT32E_ROOT_LEVEL) {
  1187. iterator->shadow_addr
  1188. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1189. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1190. --iterator->level;
  1191. if (!iterator->shadow_addr)
  1192. iterator->level = 0;
  1193. }
  1194. }
  1195. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1196. {
  1197. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1198. return false;
  1199. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1200. if (is_large_pte(*iterator->sptep))
  1201. return false;
  1202. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1203. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1204. return true;
  1205. }
  1206. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1207. {
  1208. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1209. --iterator->level;
  1210. }
  1211. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1212. struct kvm_mmu_page *sp)
  1213. {
  1214. unsigned i;
  1215. u64 *pt;
  1216. u64 ent;
  1217. pt = sp->spt;
  1218. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1219. ent = pt[i];
  1220. if (is_shadow_present_pte(ent)) {
  1221. if (!is_last_spte(ent, sp->role.level)) {
  1222. ent &= PT64_BASE_ADDR_MASK;
  1223. mmu_page_remove_parent_pte(page_header(ent),
  1224. &pt[i]);
  1225. } else {
  1226. if (is_large_pte(ent))
  1227. --kvm->stat.lpages;
  1228. rmap_remove(kvm, &pt[i]);
  1229. }
  1230. }
  1231. pt[i] = shadow_trap_nonpresent_pte;
  1232. }
  1233. }
  1234. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1235. {
  1236. mmu_page_remove_parent_pte(sp, parent_pte);
  1237. }
  1238. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1239. {
  1240. int i;
  1241. struct kvm_vcpu *vcpu;
  1242. kvm_for_each_vcpu(i, vcpu, kvm)
  1243. vcpu->arch.last_pte_updated = NULL;
  1244. }
  1245. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1246. {
  1247. u64 *parent_pte;
  1248. while (sp->multimapped || sp->parent_pte) {
  1249. if (!sp->multimapped)
  1250. parent_pte = sp->parent_pte;
  1251. else {
  1252. struct kvm_pte_chain *chain;
  1253. chain = container_of(sp->parent_ptes.first,
  1254. struct kvm_pte_chain, link);
  1255. parent_pte = chain->parent_ptes[0];
  1256. }
  1257. BUG_ON(!parent_pte);
  1258. kvm_mmu_put_page(sp, parent_pte);
  1259. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1260. }
  1261. }
  1262. static int mmu_zap_unsync_children(struct kvm *kvm,
  1263. struct kvm_mmu_page *parent)
  1264. {
  1265. int i, zapped = 0;
  1266. struct mmu_page_path parents;
  1267. struct kvm_mmu_pages pages;
  1268. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1269. return 0;
  1270. kvm_mmu_pages_init(parent, &parents, &pages);
  1271. while (mmu_unsync_walk(parent, &pages)) {
  1272. struct kvm_mmu_page *sp;
  1273. for_each_sp(pages, sp, parents, i) {
  1274. kvm_mmu_zap_page(kvm, sp);
  1275. mmu_pages_clear_parents(&parents);
  1276. zapped++;
  1277. }
  1278. kvm_mmu_pages_init(parent, &parents, &pages);
  1279. }
  1280. return zapped;
  1281. }
  1282. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1283. {
  1284. int ret;
  1285. trace_kvm_mmu_zap_page(sp);
  1286. ++kvm->stat.mmu_shadow_zapped;
  1287. ret = mmu_zap_unsync_children(kvm, sp);
  1288. kvm_mmu_page_unlink_children(kvm, sp);
  1289. kvm_mmu_unlink_parents(kvm, sp);
  1290. kvm_flush_remote_tlbs(kvm);
  1291. if (!sp->role.invalid && !sp->role.direct)
  1292. unaccount_shadowed(kvm, sp->gfn);
  1293. if (sp->unsync)
  1294. kvm_unlink_unsync_page(kvm, sp);
  1295. if (!sp->root_count) {
  1296. /* Count self */
  1297. ret++;
  1298. hlist_del(&sp->hash_link);
  1299. kvm_mmu_free_page(kvm, sp);
  1300. } else {
  1301. sp->role.invalid = 1;
  1302. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1303. kvm_reload_remote_mmus(kvm);
  1304. }
  1305. kvm_mmu_reset_last_pte_updated(kvm);
  1306. return ret;
  1307. }
  1308. /*
  1309. * Changing the number of mmu pages allocated to the vm
  1310. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1311. */
  1312. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1313. {
  1314. int used_pages;
  1315. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1316. used_pages = max(0, used_pages);
  1317. /*
  1318. * If we set the number of mmu pages to be smaller be than the
  1319. * number of actived pages , we must to free some mmu pages before we
  1320. * change the value
  1321. */
  1322. if (used_pages > kvm_nr_mmu_pages) {
  1323. while (used_pages > kvm_nr_mmu_pages &&
  1324. !list_empty(&kvm->arch.active_mmu_pages)) {
  1325. struct kvm_mmu_page *page;
  1326. page = container_of(kvm->arch.active_mmu_pages.prev,
  1327. struct kvm_mmu_page, link);
  1328. used_pages -= kvm_mmu_zap_page(kvm, page);
  1329. }
  1330. kvm_nr_mmu_pages = used_pages;
  1331. kvm->arch.n_free_mmu_pages = 0;
  1332. }
  1333. else
  1334. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1335. - kvm->arch.n_alloc_mmu_pages;
  1336. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1337. }
  1338. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1339. {
  1340. unsigned index;
  1341. struct hlist_head *bucket;
  1342. struct kvm_mmu_page *sp;
  1343. struct hlist_node *node, *n;
  1344. int r;
  1345. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1346. r = 0;
  1347. index = kvm_page_table_hashfn(gfn);
  1348. bucket = &kvm->arch.mmu_page_hash[index];
  1349. restart:
  1350. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1351. if (sp->gfn == gfn && !sp->role.direct) {
  1352. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1353. sp->role.word);
  1354. r = 1;
  1355. if (kvm_mmu_zap_page(kvm, sp))
  1356. goto restart;
  1357. }
  1358. return r;
  1359. }
  1360. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1361. {
  1362. unsigned index;
  1363. struct hlist_head *bucket;
  1364. struct kvm_mmu_page *sp;
  1365. struct hlist_node *node, *nn;
  1366. index = kvm_page_table_hashfn(gfn);
  1367. bucket = &kvm->arch.mmu_page_hash[index];
  1368. restart:
  1369. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1370. if (sp->gfn == gfn && !sp->role.direct
  1371. && !sp->role.invalid) {
  1372. pgprintk("%s: zap %lx %x\n",
  1373. __func__, gfn, sp->role.word);
  1374. if (kvm_mmu_zap_page(kvm, sp))
  1375. goto restart;
  1376. }
  1377. }
  1378. }
  1379. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1380. {
  1381. int slot = memslot_id(kvm, gfn);
  1382. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1383. __set_bit(slot, sp->slot_bitmap);
  1384. }
  1385. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1386. {
  1387. int i;
  1388. u64 *pt = sp->spt;
  1389. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1390. return;
  1391. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1392. if (pt[i] == shadow_notrap_nonpresent_pte)
  1393. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1394. }
  1395. }
  1396. /*
  1397. * The function is based on mtrr_type_lookup() in
  1398. * arch/x86/kernel/cpu/mtrr/generic.c
  1399. */
  1400. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1401. u64 start, u64 end)
  1402. {
  1403. int i;
  1404. u64 base, mask;
  1405. u8 prev_match, curr_match;
  1406. int num_var_ranges = KVM_NR_VAR_MTRR;
  1407. if (!mtrr_state->enabled)
  1408. return 0xFF;
  1409. /* Make end inclusive end, instead of exclusive */
  1410. end--;
  1411. /* Look in fixed ranges. Just return the type as per start */
  1412. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1413. int idx;
  1414. if (start < 0x80000) {
  1415. idx = 0;
  1416. idx += (start >> 16);
  1417. return mtrr_state->fixed_ranges[idx];
  1418. } else if (start < 0xC0000) {
  1419. idx = 1 * 8;
  1420. idx += ((start - 0x80000) >> 14);
  1421. return mtrr_state->fixed_ranges[idx];
  1422. } else if (start < 0x1000000) {
  1423. idx = 3 * 8;
  1424. idx += ((start - 0xC0000) >> 12);
  1425. return mtrr_state->fixed_ranges[idx];
  1426. }
  1427. }
  1428. /*
  1429. * Look in variable ranges
  1430. * Look of multiple ranges matching this address and pick type
  1431. * as per MTRR precedence
  1432. */
  1433. if (!(mtrr_state->enabled & 2))
  1434. return mtrr_state->def_type;
  1435. prev_match = 0xFF;
  1436. for (i = 0; i < num_var_ranges; ++i) {
  1437. unsigned short start_state, end_state;
  1438. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1439. continue;
  1440. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1441. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1442. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1443. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1444. start_state = ((start & mask) == (base & mask));
  1445. end_state = ((end & mask) == (base & mask));
  1446. if (start_state != end_state)
  1447. return 0xFE;
  1448. if ((start & mask) != (base & mask))
  1449. continue;
  1450. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1451. if (prev_match == 0xFF) {
  1452. prev_match = curr_match;
  1453. continue;
  1454. }
  1455. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1456. curr_match == MTRR_TYPE_UNCACHABLE)
  1457. return MTRR_TYPE_UNCACHABLE;
  1458. if ((prev_match == MTRR_TYPE_WRBACK &&
  1459. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1460. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1461. curr_match == MTRR_TYPE_WRBACK)) {
  1462. prev_match = MTRR_TYPE_WRTHROUGH;
  1463. curr_match = MTRR_TYPE_WRTHROUGH;
  1464. }
  1465. if (prev_match != curr_match)
  1466. return MTRR_TYPE_UNCACHABLE;
  1467. }
  1468. if (prev_match != 0xFF)
  1469. return prev_match;
  1470. return mtrr_state->def_type;
  1471. }
  1472. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1473. {
  1474. u8 mtrr;
  1475. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1476. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1477. if (mtrr == 0xfe || mtrr == 0xff)
  1478. mtrr = MTRR_TYPE_WRBACK;
  1479. return mtrr;
  1480. }
  1481. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1482. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1483. {
  1484. unsigned index;
  1485. struct hlist_head *bucket;
  1486. struct kvm_mmu_page *s;
  1487. struct hlist_node *node, *n;
  1488. index = kvm_page_table_hashfn(sp->gfn);
  1489. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1490. /* don't unsync if pagetable is shadowed with multiple roles */
  1491. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1492. if (s->gfn != sp->gfn || s->role.direct)
  1493. continue;
  1494. if (s->role.word != sp->role.word)
  1495. return 1;
  1496. }
  1497. trace_kvm_mmu_unsync_page(sp);
  1498. ++vcpu->kvm->stat.mmu_unsync;
  1499. sp->unsync = 1;
  1500. kvm_mmu_mark_parents_unsync(sp);
  1501. mmu_convert_notrap(sp);
  1502. return 0;
  1503. }
  1504. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1505. bool can_unsync)
  1506. {
  1507. struct kvm_mmu_page *shadow;
  1508. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1509. if (shadow) {
  1510. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1511. return 1;
  1512. if (shadow->unsync)
  1513. return 0;
  1514. if (can_unsync && oos_shadow)
  1515. return kvm_unsync_page(vcpu, shadow);
  1516. return 1;
  1517. }
  1518. return 0;
  1519. }
  1520. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1521. unsigned pte_access, int user_fault,
  1522. int write_fault, int dirty, int level,
  1523. gfn_t gfn, pfn_t pfn, bool speculative,
  1524. bool can_unsync, bool reset_host_protection)
  1525. {
  1526. u64 spte;
  1527. int ret = 0;
  1528. /*
  1529. * We don't set the accessed bit, since we sometimes want to see
  1530. * whether the guest actually used the pte (in order to detect
  1531. * demand paging).
  1532. */
  1533. spte = shadow_base_present_pte | shadow_dirty_mask;
  1534. if (!speculative)
  1535. spte |= shadow_accessed_mask;
  1536. if (!dirty)
  1537. pte_access &= ~ACC_WRITE_MASK;
  1538. if (pte_access & ACC_EXEC_MASK)
  1539. spte |= shadow_x_mask;
  1540. else
  1541. spte |= shadow_nx_mask;
  1542. if (pte_access & ACC_USER_MASK)
  1543. spte |= shadow_user_mask;
  1544. if (level > PT_PAGE_TABLE_LEVEL)
  1545. spte |= PT_PAGE_SIZE_MASK;
  1546. if (tdp_enabled)
  1547. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1548. kvm_is_mmio_pfn(pfn));
  1549. if (reset_host_protection)
  1550. spte |= SPTE_HOST_WRITEABLE;
  1551. spte |= (u64)pfn << PAGE_SHIFT;
  1552. if ((pte_access & ACC_WRITE_MASK)
  1553. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1554. if (level > PT_PAGE_TABLE_LEVEL &&
  1555. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1556. ret = 1;
  1557. rmap_remove(vcpu->kvm, sptep);
  1558. spte = shadow_trap_nonpresent_pte;
  1559. goto set_pte;
  1560. }
  1561. spte |= PT_WRITABLE_MASK;
  1562. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1563. spte &= ~PT_USER_MASK;
  1564. /*
  1565. * Optimization: for pte sync, if spte was writable the hash
  1566. * lookup is unnecessary (and expensive). Write protection
  1567. * is responsibility of mmu_get_page / kvm_sync_page.
  1568. * Same reasoning can be applied to dirty page accounting.
  1569. */
  1570. if (!can_unsync && is_writable_pte(*sptep))
  1571. goto set_pte;
  1572. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1573. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1574. __func__, gfn);
  1575. ret = 1;
  1576. pte_access &= ~ACC_WRITE_MASK;
  1577. if (is_writable_pte(spte))
  1578. spte &= ~PT_WRITABLE_MASK;
  1579. }
  1580. }
  1581. if (pte_access & ACC_WRITE_MASK)
  1582. mark_page_dirty(vcpu->kvm, gfn);
  1583. set_pte:
  1584. __set_spte(sptep, spte);
  1585. return ret;
  1586. }
  1587. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1588. unsigned pt_access, unsigned pte_access,
  1589. int user_fault, int write_fault, int dirty,
  1590. int *ptwrite, int level, gfn_t gfn,
  1591. pfn_t pfn, bool speculative,
  1592. bool reset_host_protection)
  1593. {
  1594. int was_rmapped = 0;
  1595. int was_writable = is_writable_pte(*sptep);
  1596. int rmap_count;
  1597. pgprintk("%s: spte %llx access %x write_fault %d"
  1598. " user_fault %d gfn %lx\n",
  1599. __func__, *sptep, pt_access,
  1600. write_fault, user_fault, gfn);
  1601. if (is_rmap_spte(*sptep)) {
  1602. /*
  1603. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1604. * the parent of the now unreachable PTE.
  1605. */
  1606. if (level > PT_PAGE_TABLE_LEVEL &&
  1607. !is_large_pte(*sptep)) {
  1608. struct kvm_mmu_page *child;
  1609. u64 pte = *sptep;
  1610. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1611. mmu_page_remove_parent_pte(child, sptep);
  1612. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1613. kvm_flush_remote_tlbs(vcpu->kvm);
  1614. } else if (pfn != spte_to_pfn(*sptep)) {
  1615. pgprintk("hfn old %lx new %lx\n",
  1616. spte_to_pfn(*sptep), pfn);
  1617. rmap_remove(vcpu->kvm, sptep);
  1618. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1619. kvm_flush_remote_tlbs(vcpu->kvm);
  1620. } else
  1621. was_rmapped = 1;
  1622. }
  1623. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1624. dirty, level, gfn, pfn, speculative, true,
  1625. reset_host_protection)) {
  1626. if (write_fault)
  1627. *ptwrite = 1;
  1628. kvm_x86_ops->tlb_flush(vcpu);
  1629. }
  1630. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1631. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1632. is_large_pte(*sptep)? "2MB" : "4kB",
  1633. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1634. *sptep, sptep);
  1635. if (!was_rmapped && is_large_pte(*sptep))
  1636. ++vcpu->kvm->stat.lpages;
  1637. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1638. if (!was_rmapped) {
  1639. rmap_count = rmap_add(vcpu, sptep, gfn);
  1640. kvm_release_pfn_clean(pfn);
  1641. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1642. rmap_recycle(vcpu, sptep, gfn);
  1643. } else {
  1644. if (was_writable)
  1645. kvm_release_pfn_dirty(pfn);
  1646. else
  1647. kvm_release_pfn_clean(pfn);
  1648. }
  1649. if (speculative) {
  1650. vcpu->arch.last_pte_updated = sptep;
  1651. vcpu->arch.last_pte_gfn = gfn;
  1652. }
  1653. }
  1654. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1655. {
  1656. }
  1657. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1658. int level, gfn_t gfn, pfn_t pfn)
  1659. {
  1660. struct kvm_shadow_walk_iterator iterator;
  1661. struct kvm_mmu_page *sp;
  1662. int pt_write = 0;
  1663. gfn_t pseudo_gfn;
  1664. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1665. if (iterator.level == level) {
  1666. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1667. 0, write, 1, &pt_write,
  1668. level, gfn, pfn, false, true);
  1669. ++vcpu->stat.pf_fixed;
  1670. break;
  1671. }
  1672. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1673. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1674. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1675. iterator.level - 1,
  1676. 1, ACC_ALL, iterator.sptep);
  1677. if (!sp) {
  1678. pgprintk("nonpaging_map: ENOMEM\n");
  1679. kvm_release_pfn_clean(pfn);
  1680. return -ENOMEM;
  1681. }
  1682. __set_spte(iterator.sptep,
  1683. __pa(sp->spt)
  1684. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1685. | shadow_user_mask | shadow_x_mask);
  1686. }
  1687. }
  1688. return pt_write;
  1689. }
  1690. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1691. {
  1692. char buf[1];
  1693. void __user *hva;
  1694. int r;
  1695. /* Touch the page, so send SIGBUS */
  1696. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1697. r = copy_from_user(buf, hva, 1);
  1698. }
  1699. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1700. {
  1701. kvm_release_pfn_clean(pfn);
  1702. if (is_hwpoison_pfn(pfn)) {
  1703. kvm_send_hwpoison_signal(kvm, gfn);
  1704. return 0;
  1705. }
  1706. return 1;
  1707. }
  1708. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1709. {
  1710. int r;
  1711. int level;
  1712. pfn_t pfn;
  1713. unsigned long mmu_seq;
  1714. level = mapping_level(vcpu, gfn);
  1715. /*
  1716. * This path builds a PAE pagetable - so we can map 2mb pages at
  1717. * maximum. Therefore check if the level is larger than that.
  1718. */
  1719. if (level > PT_DIRECTORY_LEVEL)
  1720. level = PT_DIRECTORY_LEVEL;
  1721. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1722. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1723. smp_rmb();
  1724. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1725. /* mmio */
  1726. if (is_error_pfn(pfn))
  1727. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1728. spin_lock(&vcpu->kvm->mmu_lock);
  1729. if (mmu_notifier_retry(vcpu, mmu_seq))
  1730. goto out_unlock;
  1731. kvm_mmu_free_some_pages(vcpu);
  1732. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1733. spin_unlock(&vcpu->kvm->mmu_lock);
  1734. return r;
  1735. out_unlock:
  1736. spin_unlock(&vcpu->kvm->mmu_lock);
  1737. kvm_release_pfn_clean(pfn);
  1738. return 0;
  1739. }
  1740. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1741. {
  1742. int i;
  1743. struct kvm_mmu_page *sp;
  1744. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1745. return;
  1746. spin_lock(&vcpu->kvm->mmu_lock);
  1747. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1748. hpa_t root = vcpu->arch.mmu.root_hpa;
  1749. sp = page_header(root);
  1750. --sp->root_count;
  1751. if (!sp->root_count && sp->role.invalid)
  1752. kvm_mmu_zap_page(vcpu->kvm, sp);
  1753. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1754. spin_unlock(&vcpu->kvm->mmu_lock);
  1755. return;
  1756. }
  1757. for (i = 0; i < 4; ++i) {
  1758. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1759. if (root) {
  1760. root &= PT64_BASE_ADDR_MASK;
  1761. sp = page_header(root);
  1762. --sp->root_count;
  1763. if (!sp->root_count && sp->role.invalid)
  1764. kvm_mmu_zap_page(vcpu->kvm, sp);
  1765. }
  1766. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1767. }
  1768. spin_unlock(&vcpu->kvm->mmu_lock);
  1769. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1770. }
  1771. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1772. {
  1773. int ret = 0;
  1774. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1775. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1776. ret = 1;
  1777. }
  1778. return ret;
  1779. }
  1780. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1781. {
  1782. int i;
  1783. gfn_t root_gfn;
  1784. struct kvm_mmu_page *sp;
  1785. int direct = 0;
  1786. u64 pdptr;
  1787. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1788. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1789. hpa_t root = vcpu->arch.mmu.root_hpa;
  1790. ASSERT(!VALID_PAGE(root));
  1791. if (mmu_check_root(vcpu, root_gfn))
  1792. return 1;
  1793. if (tdp_enabled) {
  1794. direct = 1;
  1795. root_gfn = 0;
  1796. }
  1797. spin_lock(&vcpu->kvm->mmu_lock);
  1798. kvm_mmu_free_some_pages(vcpu);
  1799. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1800. PT64_ROOT_LEVEL, direct,
  1801. ACC_ALL, NULL);
  1802. root = __pa(sp->spt);
  1803. ++sp->root_count;
  1804. spin_unlock(&vcpu->kvm->mmu_lock);
  1805. vcpu->arch.mmu.root_hpa = root;
  1806. return 0;
  1807. }
  1808. direct = !is_paging(vcpu);
  1809. for (i = 0; i < 4; ++i) {
  1810. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1811. ASSERT(!VALID_PAGE(root));
  1812. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1813. pdptr = kvm_pdptr_read(vcpu, i);
  1814. if (!is_present_gpte(pdptr)) {
  1815. vcpu->arch.mmu.pae_root[i] = 0;
  1816. continue;
  1817. }
  1818. root_gfn = pdptr >> PAGE_SHIFT;
  1819. } else if (vcpu->arch.mmu.root_level == 0)
  1820. root_gfn = 0;
  1821. if (mmu_check_root(vcpu, root_gfn))
  1822. return 1;
  1823. if (tdp_enabled) {
  1824. direct = 1;
  1825. root_gfn = i << 30;
  1826. }
  1827. spin_lock(&vcpu->kvm->mmu_lock);
  1828. kvm_mmu_free_some_pages(vcpu);
  1829. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1830. PT32_ROOT_LEVEL, direct,
  1831. ACC_ALL, NULL);
  1832. root = __pa(sp->spt);
  1833. ++sp->root_count;
  1834. spin_unlock(&vcpu->kvm->mmu_lock);
  1835. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1836. }
  1837. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1838. return 0;
  1839. }
  1840. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1841. {
  1842. int i;
  1843. struct kvm_mmu_page *sp;
  1844. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1845. return;
  1846. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1847. hpa_t root = vcpu->arch.mmu.root_hpa;
  1848. sp = page_header(root);
  1849. mmu_sync_children(vcpu, sp);
  1850. return;
  1851. }
  1852. for (i = 0; i < 4; ++i) {
  1853. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1854. if (root && VALID_PAGE(root)) {
  1855. root &= PT64_BASE_ADDR_MASK;
  1856. sp = page_header(root);
  1857. mmu_sync_children(vcpu, sp);
  1858. }
  1859. }
  1860. }
  1861. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1862. {
  1863. spin_lock(&vcpu->kvm->mmu_lock);
  1864. mmu_sync_roots(vcpu);
  1865. spin_unlock(&vcpu->kvm->mmu_lock);
  1866. }
  1867. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1868. u32 access, u32 *error)
  1869. {
  1870. if (error)
  1871. *error = 0;
  1872. return vaddr;
  1873. }
  1874. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1875. u32 error_code)
  1876. {
  1877. gfn_t gfn;
  1878. int r;
  1879. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1880. r = mmu_topup_memory_caches(vcpu);
  1881. if (r)
  1882. return r;
  1883. ASSERT(vcpu);
  1884. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1885. gfn = gva >> PAGE_SHIFT;
  1886. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1887. error_code & PFERR_WRITE_MASK, gfn);
  1888. }
  1889. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1890. u32 error_code)
  1891. {
  1892. pfn_t pfn;
  1893. int r;
  1894. int level;
  1895. gfn_t gfn = gpa >> PAGE_SHIFT;
  1896. unsigned long mmu_seq;
  1897. ASSERT(vcpu);
  1898. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1899. r = mmu_topup_memory_caches(vcpu);
  1900. if (r)
  1901. return r;
  1902. level = mapping_level(vcpu, gfn);
  1903. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1904. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1905. smp_rmb();
  1906. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1907. if (is_error_pfn(pfn))
  1908. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1909. spin_lock(&vcpu->kvm->mmu_lock);
  1910. if (mmu_notifier_retry(vcpu, mmu_seq))
  1911. goto out_unlock;
  1912. kvm_mmu_free_some_pages(vcpu);
  1913. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1914. level, gfn, pfn);
  1915. spin_unlock(&vcpu->kvm->mmu_lock);
  1916. return r;
  1917. out_unlock:
  1918. spin_unlock(&vcpu->kvm->mmu_lock);
  1919. kvm_release_pfn_clean(pfn);
  1920. return 0;
  1921. }
  1922. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1923. {
  1924. mmu_free_roots(vcpu);
  1925. }
  1926. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1927. {
  1928. struct kvm_mmu *context = &vcpu->arch.mmu;
  1929. context->new_cr3 = nonpaging_new_cr3;
  1930. context->page_fault = nonpaging_page_fault;
  1931. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1932. context->free = nonpaging_free;
  1933. context->prefetch_page = nonpaging_prefetch_page;
  1934. context->sync_page = nonpaging_sync_page;
  1935. context->invlpg = nonpaging_invlpg;
  1936. context->root_level = 0;
  1937. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1938. context->root_hpa = INVALID_PAGE;
  1939. return 0;
  1940. }
  1941. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1942. {
  1943. ++vcpu->stat.tlb_flush;
  1944. kvm_x86_ops->tlb_flush(vcpu);
  1945. }
  1946. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1947. {
  1948. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1949. mmu_free_roots(vcpu);
  1950. }
  1951. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1952. u64 addr,
  1953. u32 err_code)
  1954. {
  1955. kvm_inject_page_fault(vcpu, addr, err_code);
  1956. }
  1957. static void paging_free(struct kvm_vcpu *vcpu)
  1958. {
  1959. nonpaging_free(vcpu);
  1960. }
  1961. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1962. {
  1963. int bit7;
  1964. bit7 = (gpte >> 7) & 1;
  1965. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1966. }
  1967. #define PTTYPE 64
  1968. #include "paging_tmpl.h"
  1969. #undef PTTYPE
  1970. #define PTTYPE 32
  1971. #include "paging_tmpl.h"
  1972. #undef PTTYPE
  1973. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1974. {
  1975. struct kvm_mmu *context = &vcpu->arch.mmu;
  1976. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1977. u64 exb_bit_rsvd = 0;
  1978. if (!is_nx(vcpu))
  1979. exb_bit_rsvd = rsvd_bits(63, 63);
  1980. switch (level) {
  1981. case PT32_ROOT_LEVEL:
  1982. /* no rsvd bits for 2 level 4K page table entries */
  1983. context->rsvd_bits_mask[0][1] = 0;
  1984. context->rsvd_bits_mask[0][0] = 0;
  1985. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1986. if (!is_pse(vcpu)) {
  1987. context->rsvd_bits_mask[1][1] = 0;
  1988. break;
  1989. }
  1990. if (is_cpuid_PSE36())
  1991. /* 36bits PSE 4MB page */
  1992. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1993. else
  1994. /* 32 bits PSE 4MB page */
  1995. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1996. break;
  1997. case PT32E_ROOT_LEVEL:
  1998. context->rsvd_bits_mask[0][2] =
  1999. rsvd_bits(maxphyaddr, 63) |
  2000. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2001. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2002. rsvd_bits(maxphyaddr, 62); /* PDE */
  2003. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2004. rsvd_bits(maxphyaddr, 62); /* PTE */
  2005. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2006. rsvd_bits(maxphyaddr, 62) |
  2007. rsvd_bits(13, 20); /* large page */
  2008. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2009. break;
  2010. case PT64_ROOT_LEVEL:
  2011. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2012. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2013. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2014. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2015. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2016. rsvd_bits(maxphyaddr, 51);
  2017. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2018. rsvd_bits(maxphyaddr, 51);
  2019. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2020. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2021. rsvd_bits(maxphyaddr, 51) |
  2022. rsvd_bits(13, 29);
  2023. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2024. rsvd_bits(maxphyaddr, 51) |
  2025. rsvd_bits(13, 20); /* large page */
  2026. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2027. break;
  2028. }
  2029. }
  2030. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2031. {
  2032. struct kvm_mmu *context = &vcpu->arch.mmu;
  2033. ASSERT(is_pae(vcpu));
  2034. context->new_cr3 = paging_new_cr3;
  2035. context->page_fault = paging64_page_fault;
  2036. context->gva_to_gpa = paging64_gva_to_gpa;
  2037. context->prefetch_page = paging64_prefetch_page;
  2038. context->sync_page = paging64_sync_page;
  2039. context->invlpg = paging64_invlpg;
  2040. context->free = paging_free;
  2041. context->root_level = level;
  2042. context->shadow_root_level = level;
  2043. context->root_hpa = INVALID_PAGE;
  2044. return 0;
  2045. }
  2046. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2047. {
  2048. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2049. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2050. }
  2051. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2052. {
  2053. struct kvm_mmu *context = &vcpu->arch.mmu;
  2054. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2055. context->new_cr3 = paging_new_cr3;
  2056. context->page_fault = paging32_page_fault;
  2057. context->gva_to_gpa = paging32_gva_to_gpa;
  2058. context->free = paging_free;
  2059. context->prefetch_page = paging32_prefetch_page;
  2060. context->sync_page = paging32_sync_page;
  2061. context->invlpg = paging32_invlpg;
  2062. context->root_level = PT32_ROOT_LEVEL;
  2063. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2064. context->root_hpa = INVALID_PAGE;
  2065. return 0;
  2066. }
  2067. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2068. {
  2069. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2070. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2071. }
  2072. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2073. {
  2074. struct kvm_mmu *context = &vcpu->arch.mmu;
  2075. context->new_cr3 = nonpaging_new_cr3;
  2076. context->page_fault = tdp_page_fault;
  2077. context->free = nonpaging_free;
  2078. context->prefetch_page = nonpaging_prefetch_page;
  2079. context->sync_page = nonpaging_sync_page;
  2080. context->invlpg = nonpaging_invlpg;
  2081. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2082. context->root_hpa = INVALID_PAGE;
  2083. if (!is_paging(vcpu)) {
  2084. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2085. context->root_level = 0;
  2086. } else if (is_long_mode(vcpu)) {
  2087. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2088. context->gva_to_gpa = paging64_gva_to_gpa;
  2089. context->root_level = PT64_ROOT_LEVEL;
  2090. } else if (is_pae(vcpu)) {
  2091. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2092. context->gva_to_gpa = paging64_gva_to_gpa;
  2093. context->root_level = PT32E_ROOT_LEVEL;
  2094. } else {
  2095. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2096. context->gva_to_gpa = paging32_gva_to_gpa;
  2097. context->root_level = PT32_ROOT_LEVEL;
  2098. }
  2099. return 0;
  2100. }
  2101. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2102. {
  2103. int r;
  2104. ASSERT(vcpu);
  2105. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2106. if (!is_paging(vcpu))
  2107. r = nonpaging_init_context(vcpu);
  2108. else if (is_long_mode(vcpu))
  2109. r = paging64_init_context(vcpu);
  2110. else if (is_pae(vcpu))
  2111. r = paging32E_init_context(vcpu);
  2112. else
  2113. r = paging32_init_context(vcpu);
  2114. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2115. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2116. return r;
  2117. }
  2118. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2119. {
  2120. vcpu->arch.update_pte.pfn = bad_pfn;
  2121. if (tdp_enabled)
  2122. return init_kvm_tdp_mmu(vcpu);
  2123. else
  2124. return init_kvm_softmmu(vcpu);
  2125. }
  2126. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2127. {
  2128. ASSERT(vcpu);
  2129. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2130. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2131. vcpu->arch.mmu.free(vcpu);
  2132. }
  2133. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2134. {
  2135. destroy_kvm_mmu(vcpu);
  2136. return init_kvm_mmu(vcpu);
  2137. }
  2138. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2139. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2140. {
  2141. int r;
  2142. r = mmu_topup_memory_caches(vcpu);
  2143. if (r)
  2144. goto out;
  2145. r = mmu_alloc_roots(vcpu);
  2146. spin_lock(&vcpu->kvm->mmu_lock);
  2147. mmu_sync_roots(vcpu);
  2148. spin_unlock(&vcpu->kvm->mmu_lock);
  2149. if (r)
  2150. goto out;
  2151. /* set_cr3() should ensure TLB has been flushed */
  2152. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2153. out:
  2154. return r;
  2155. }
  2156. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2157. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2158. {
  2159. mmu_free_roots(vcpu);
  2160. }
  2161. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2162. struct kvm_mmu_page *sp,
  2163. u64 *spte)
  2164. {
  2165. u64 pte;
  2166. struct kvm_mmu_page *child;
  2167. pte = *spte;
  2168. if (is_shadow_present_pte(pte)) {
  2169. if (is_last_spte(pte, sp->role.level))
  2170. rmap_remove(vcpu->kvm, spte);
  2171. else {
  2172. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2173. mmu_page_remove_parent_pte(child, spte);
  2174. }
  2175. }
  2176. __set_spte(spte, shadow_trap_nonpresent_pte);
  2177. if (is_large_pte(pte))
  2178. --vcpu->kvm->stat.lpages;
  2179. }
  2180. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2181. struct kvm_mmu_page *sp,
  2182. u64 *spte,
  2183. const void *new)
  2184. {
  2185. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2186. ++vcpu->kvm->stat.mmu_pde_zapped;
  2187. return;
  2188. }
  2189. ++vcpu->kvm->stat.mmu_pte_updated;
  2190. if (!sp->role.cr4_pae)
  2191. paging32_update_pte(vcpu, sp, spte, new);
  2192. else
  2193. paging64_update_pte(vcpu, sp, spte, new);
  2194. }
  2195. static bool need_remote_flush(u64 old, u64 new)
  2196. {
  2197. if (!is_shadow_present_pte(old))
  2198. return false;
  2199. if (!is_shadow_present_pte(new))
  2200. return true;
  2201. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2202. return true;
  2203. old ^= PT64_NX_MASK;
  2204. new ^= PT64_NX_MASK;
  2205. return (old & ~new & PT64_PERM_MASK) != 0;
  2206. }
  2207. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2208. {
  2209. if (need_remote_flush(old, new))
  2210. kvm_flush_remote_tlbs(vcpu->kvm);
  2211. else
  2212. kvm_mmu_flush_tlb(vcpu);
  2213. }
  2214. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2215. {
  2216. u64 *spte = vcpu->arch.last_pte_updated;
  2217. return !!(spte && (*spte & shadow_accessed_mask));
  2218. }
  2219. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2220. u64 gpte)
  2221. {
  2222. gfn_t gfn;
  2223. pfn_t pfn;
  2224. if (!is_present_gpte(gpte))
  2225. return;
  2226. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2227. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2228. smp_rmb();
  2229. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2230. if (is_error_pfn(pfn)) {
  2231. kvm_release_pfn_clean(pfn);
  2232. return;
  2233. }
  2234. vcpu->arch.update_pte.gfn = gfn;
  2235. vcpu->arch.update_pte.pfn = pfn;
  2236. }
  2237. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2238. {
  2239. u64 *spte = vcpu->arch.last_pte_updated;
  2240. if (spte
  2241. && vcpu->arch.last_pte_gfn == gfn
  2242. && shadow_accessed_mask
  2243. && !(*spte & shadow_accessed_mask)
  2244. && is_shadow_present_pte(*spte))
  2245. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2246. }
  2247. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2248. const u8 *new, int bytes,
  2249. bool guest_initiated)
  2250. {
  2251. gfn_t gfn = gpa >> PAGE_SHIFT;
  2252. struct kvm_mmu_page *sp;
  2253. struct hlist_node *node, *n;
  2254. struct hlist_head *bucket;
  2255. unsigned index;
  2256. u64 entry, gentry;
  2257. u64 *spte;
  2258. unsigned offset = offset_in_page(gpa);
  2259. unsigned pte_size;
  2260. unsigned page_offset;
  2261. unsigned misaligned;
  2262. unsigned quadrant;
  2263. int level;
  2264. int flooded = 0;
  2265. int npte;
  2266. int r;
  2267. int invlpg_counter;
  2268. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2269. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2270. /*
  2271. * Assume that the pte write on a page table of the same type
  2272. * as the current vcpu paging mode. This is nearly always true
  2273. * (might be false while changing modes). Note it is verified later
  2274. * by update_pte().
  2275. */
  2276. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2277. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2278. if (is_pae(vcpu)) {
  2279. gpa &= ~(gpa_t)7;
  2280. bytes = 8;
  2281. }
  2282. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2283. if (r)
  2284. gentry = 0;
  2285. new = (const u8 *)&gentry;
  2286. }
  2287. switch (bytes) {
  2288. case 4:
  2289. gentry = *(const u32 *)new;
  2290. break;
  2291. case 8:
  2292. gentry = *(const u64 *)new;
  2293. break;
  2294. default:
  2295. gentry = 0;
  2296. break;
  2297. }
  2298. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2299. spin_lock(&vcpu->kvm->mmu_lock);
  2300. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2301. gentry = 0;
  2302. kvm_mmu_access_page(vcpu, gfn);
  2303. kvm_mmu_free_some_pages(vcpu);
  2304. ++vcpu->kvm->stat.mmu_pte_write;
  2305. kvm_mmu_audit(vcpu, "pre pte write");
  2306. if (guest_initiated) {
  2307. if (gfn == vcpu->arch.last_pt_write_gfn
  2308. && !last_updated_pte_accessed(vcpu)) {
  2309. ++vcpu->arch.last_pt_write_count;
  2310. if (vcpu->arch.last_pt_write_count >= 3)
  2311. flooded = 1;
  2312. } else {
  2313. vcpu->arch.last_pt_write_gfn = gfn;
  2314. vcpu->arch.last_pt_write_count = 1;
  2315. vcpu->arch.last_pte_updated = NULL;
  2316. }
  2317. }
  2318. index = kvm_page_table_hashfn(gfn);
  2319. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2320. restart:
  2321. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2322. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2323. continue;
  2324. pte_size = sp->role.cr4_pae ? 8 : 4;
  2325. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2326. misaligned |= bytes < 4;
  2327. if (misaligned || flooded) {
  2328. /*
  2329. * Misaligned accesses are too much trouble to fix
  2330. * up; also, they usually indicate a page is not used
  2331. * as a page table.
  2332. *
  2333. * If we're seeing too many writes to a page,
  2334. * it may no longer be a page table, or we may be
  2335. * forking, in which case it is better to unmap the
  2336. * page.
  2337. */
  2338. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2339. gpa, bytes, sp->role.word);
  2340. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2341. goto restart;
  2342. ++vcpu->kvm->stat.mmu_flooded;
  2343. continue;
  2344. }
  2345. page_offset = offset;
  2346. level = sp->role.level;
  2347. npte = 1;
  2348. if (!sp->role.cr4_pae) {
  2349. page_offset <<= 1; /* 32->64 */
  2350. /*
  2351. * A 32-bit pde maps 4MB while the shadow pdes map
  2352. * only 2MB. So we need to double the offset again
  2353. * and zap two pdes instead of one.
  2354. */
  2355. if (level == PT32_ROOT_LEVEL) {
  2356. page_offset &= ~7; /* kill rounding error */
  2357. page_offset <<= 1;
  2358. npte = 2;
  2359. }
  2360. quadrant = page_offset >> PAGE_SHIFT;
  2361. page_offset &= ~PAGE_MASK;
  2362. if (quadrant != sp->role.quadrant)
  2363. continue;
  2364. }
  2365. spte = &sp->spt[page_offset / sizeof(*spte)];
  2366. while (npte--) {
  2367. entry = *spte;
  2368. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2369. if (gentry)
  2370. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2371. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2372. ++spte;
  2373. }
  2374. }
  2375. kvm_mmu_audit(vcpu, "post pte write");
  2376. spin_unlock(&vcpu->kvm->mmu_lock);
  2377. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2378. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2379. vcpu->arch.update_pte.pfn = bad_pfn;
  2380. }
  2381. }
  2382. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2383. {
  2384. gpa_t gpa;
  2385. int r;
  2386. if (tdp_enabled)
  2387. return 0;
  2388. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2389. spin_lock(&vcpu->kvm->mmu_lock);
  2390. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2391. spin_unlock(&vcpu->kvm->mmu_lock);
  2392. return r;
  2393. }
  2394. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2395. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2396. {
  2397. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2398. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2399. struct kvm_mmu_page *sp;
  2400. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2401. struct kvm_mmu_page, link);
  2402. kvm_mmu_zap_page(vcpu->kvm, sp);
  2403. ++vcpu->kvm->stat.mmu_recycled;
  2404. }
  2405. }
  2406. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2407. {
  2408. int r;
  2409. enum emulation_result er;
  2410. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2411. if (r < 0)
  2412. goto out;
  2413. if (!r) {
  2414. r = 1;
  2415. goto out;
  2416. }
  2417. r = mmu_topup_memory_caches(vcpu);
  2418. if (r)
  2419. goto out;
  2420. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2421. switch (er) {
  2422. case EMULATE_DONE:
  2423. return 1;
  2424. case EMULATE_DO_MMIO:
  2425. ++vcpu->stat.mmio_exits;
  2426. /* fall through */
  2427. case EMULATE_FAIL:
  2428. return 0;
  2429. default:
  2430. BUG();
  2431. }
  2432. out:
  2433. return r;
  2434. }
  2435. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2436. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2437. {
  2438. vcpu->arch.mmu.invlpg(vcpu, gva);
  2439. kvm_mmu_flush_tlb(vcpu);
  2440. ++vcpu->stat.invlpg;
  2441. }
  2442. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2443. void kvm_enable_tdp(void)
  2444. {
  2445. tdp_enabled = true;
  2446. }
  2447. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2448. void kvm_disable_tdp(void)
  2449. {
  2450. tdp_enabled = false;
  2451. }
  2452. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2453. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2454. {
  2455. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2456. }
  2457. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2458. {
  2459. struct page *page;
  2460. int i;
  2461. ASSERT(vcpu);
  2462. /*
  2463. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2464. * Therefore we need to allocate shadow page tables in the first
  2465. * 4GB of memory, which happens to fit the DMA32 zone.
  2466. */
  2467. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2468. if (!page)
  2469. return -ENOMEM;
  2470. vcpu->arch.mmu.pae_root = page_address(page);
  2471. for (i = 0; i < 4; ++i)
  2472. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2473. return 0;
  2474. }
  2475. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2476. {
  2477. ASSERT(vcpu);
  2478. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2479. return alloc_mmu_pages(vcpu);
  2480. }
  2481. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2482. {
  2483. ASSERT(vcpu);
  2484. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2485. return init_kvm_mmu(vcpu);
  2486. }
  2487. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2488. {
  2489. ASSERT(vcpu);
  2490. destroy_kvm_mmu(vcpu);
  2491. free_mmu_pages(vcpu);
  2492. mmu_free_memory_caches(vcpu);
  2493. }
  2494. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2495. {
  2496. struct kvm_mmu_page *sp;
  2497. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2498. int i;
  2499. u64 *pt;
  2500. if (!test_bit(slot, sp->slot_bitmap))
  2501. continue;
  2502. pt = sp->spt;
  2503. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2504. /* avoid RMW */
  2505. if (pt[i] & PT_WRITABLE_MASK)
  2506. pt[i] &= ~PT_WRITABLE_MASK;
  2507. }
  2508. kvm_flush_remote_tlbs(kvm);
  2509. }
  2510. void kvm_mmu_zap_all(struct kvm *kvm)
  2511. {
  2512. struct kvm_mmu_page *sp, *node;
  2513. spin_lock(&kvm->mmu_lock);
  2514. restart:
  2515. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2516. if (kvm_mmu_zap_page(kvm, sp))
  2517. goto restart;
  2518. spin_unlock(&kvm->mmu_lock);
  2519. kvm_flush_remote_tlbs(kvm);
  2520. }
  2521. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm)
  2522. {
  2523. struct kvm_mmu_page *page;
  2524. page = container_of(kvm->arch.active_mmu_pages.prev,
  2525. struct kvm_mmu_page, link);
  2526. return kvm_mmu_zap_page(kvm, page);
  2527. }
  2528. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2529. {
  2530. struct kvm *kvm;
  2531. struct kvm *kvm_freed = NULL;
  2532. int cache_count = 0;
  2533. spin_lock(&kvm_lock);
  2534. list_for_each_entry(kvm, &vm_list, vm_list) {
  2535. int npages, idx, freed_pages;
  2536. idx = srcu_read_lock(&kvm->srcu);
  2537. spin_lock(&kvm->mmu_lock);
  2538. npages = kvm->arch.n_alloc_mmu_pages -
  2539. kvm->arch.n_free_mmu_pages;
  2540. cache_count += npages;
  2541. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2542. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm);
  2543. cache_count -= freed_pages;
  2544. kvm_freed = kvm;
  2545. }
  2546. nr_to_scan--;
  2547. spin_unlock(&kvm->mmu_lock);
  2548. srcu_read_unlock(&kvm->srcu, idx);
  2549. }
  2550. if (kvm_freed)
  2551. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2552. spin_unlock(&kvm_lock);
  2553. return cache_count;
  2554. }
  2555. static struct shrinker mmu_shrinker = {
  2556. .shrink = mmu_shrink,
  2557. .seeks = DEFAULT_SEEKS * 10,
  2558. };
  2559. static void mmu_destroy_caches(void)
  2560. {
  2561. if (pte_chain_cache)
  2562. kmem_cache_destroy(pte_chain_cache);
  2563. if (rmap_desc_cache)
  2564. kmem_cache_destroy(rmap_desc_cache);
  2565. if (mmu_page_header_cache)
  2566. kmem_cache_destroy(mmu_page_header_cache);
  2567. }
  2568. void kvm_mmu_module_exit(void)
  2569. {
  2570. mmu_destroy_caches();
  2571. unregister_shrinker(&mmu_shrinker);
  2572. }
  2573. int kvm_mmu_module_init(void)
  2574. {
  2575. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2576. sizeof(struct kvm_pte_chain),
  2577. 0, 0, NULL);
  2578. if (!pte_chain_cache)
  2579. goto nomem;
  2580. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2581. sizeof(struct kvm_rmap_desc),
  2582. 0, 0, NULL);
  2583. if (!rmap_desc_cache)
  2584. goto nomem;
  2585. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2586. sizeof(struct kvm_mmu_page),
  2587. 0, 0, NULL);
  2588. if (!mmu_page_header_cache)
  2589. goto nomem;
  2590. register_shrinker(&mmu_shrinker);
  2591. return 0;
  2592. nomem:
  2593. mmu_destroy_caches();
  2594. return -ENOMEM;
  2595. }
  2596. /*
  2597. * Caculate mmu pages needed for kvm.
  2598. */
  2599. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2600. {
  2601. int i;
  2602. unsigned int nr_mmu_pages;
  2603. unsigned int nr_pages = 0;
  2604. struct kvm_memslots *slots;
  2605. slots = kvm_memslots(kvm);
  2606. for (i = 0; i < slots->nmemslots; i++)
  2607. nr_pages += slots->memslots[i].npages;
  2608. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2609. nr_mmu_pages = max(nr_mmu_pages,
  2610. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2611. return nr_mmu_pages;
  2612. }
  2613. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2614. unsigned len)
  2615. {
  2616. if (len > buffer->len)
  2617. return NULL;
  2618. return buffer->ptr;
  2619. }
  2620. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2621. unsigned len)
  2622. {
  2623. void *ret;
  2624. ret = pv_mmu_peek_buffer(buffer, len);
  2625. if (!ret)
  2626. return ret;
  2627. buffer->ptr += len;
  2628. buffer->len -= len;
  2629. buffer->processed += len;
  2630. return ret;
  2631. }
  2632. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2633. gpa_t addr, gpa_t value)
  2634. {
  2635. int bytes = 8;
  2636. int r;
  2637. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2638. bytes = 4;
  2639. r = mmu_topup_memory_caches(vcpu);
  2640. if (r)
  2641. return r;
  2642. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2643. return -EFAULT;
  2644. return 1;
  2645. }
  2646. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2647. {
  2648. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2649. return 1;
  2650. }
  2651. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2652. {
  2653. spin_lock(&vcpu->kvm->mmu_lock);
  2654. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2655. spin_unlock(&vcpu->kvm->mmu_lock);
  2656. return 1;
  2657. }
  2658. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2659. struct kvm_pv_mmu_op_buffer *buffer)
  2660. {
  2661. struct kvm_mmu_op_header *header;
  2662. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2663. if (!header)
  2664. return 0;
  2665. switch (header->op) {
  2666. case KVM_MMU_OP_WRITE_PTE: {
  2667. struct kvm_mmu_op_write_pte *wpte;
  2668. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2669. if (!wpte)
  2670. return 0;
  2671. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2672. wpte->pte_val);
  2673. }
  2674. case KVM_MMU_OP_FLUSH_TLB: {
  2675. struct kvm_mmu_op_flush_tlb *ftlb;
  2676. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2677. if (!ftlb)
  2678. return 0;
  2679. return kvm_pv_mmu_flush_tlb(vcpu);
  2680. }
  2681. case KVM_MMU_OP_RELEASE_PT: {
  2682. struct kvm_mmu_op_release_pt *rpt;
  2683. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2684. if (!rpt)
  2685. return 0;
  2686. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2687. }
  2688. default: return 0;
  2689. }
  2690. }
  2691. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2692. gpa_t addr, unsigned long *ret)
  2693. {
  2694. int r;
  2695. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2696. buffer->ptr = buffer->buf;
  2697. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2698. buffer->processed = 0;
  2699. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2700. if (r)
  2701. goto out;
  2702. while (buffer->len) {
  2703. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2704. if (r < 0)
  2705. goto out;
  2706. if (r == 0)
  2707. break;
  2708. }
  2709. r = 1;
  2710. out:
  2711. *ret = buffer->processed;
  2712. return r;
  2713. }
  2714. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2715. {
  2716. struct kvm_shadow_walk_iterator iterator;
  2717. int nr_sptes = 0;
  2718. spin_lock(&vcpu->kvm->mmu_lock);
  2719. for_each_shadow_entry(vcpu, addr, iterator) {
  2720. sptes[iterator.level-1] = *iterator.sptep;
  2721. nr_sptes++;
  2722. if (!is_shadow_present_pte(*iterator.sptep))
  2723. break;
  2724. }
  2725. spin_unlock(&vcpu->kvm->mmu_lock);
  2726. return nr_sptes;
  2727. }
  2728. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2729. #ifdef AUDIT
  2730. static const char *audit_msg;
  2731. static gva_t canonicalize(gva_t gva)
  2732. {
  2733. #ifdef CONFIG_X86_64
  2734. gva = (long long)(gva << 16) >> 16;
  2735. #endif
  2736. return gva;
  2737. }
  2738. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2739. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2740. inspect_spte_fn fn)
  2741. {
  2742. int i;
  2743. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2744. u64 ent = sp->spt[i];
  2745. if (is_shadow_present_pte(ent)) {
  2746. if (!is_last_spte(ent, sp->role.level)) {
  2747. struct kvm_mmu_page *child;
  2748. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2749. __mmu_spte_walk(kvm, child, fn);
  2750. } else
  2751. fn(kvm, &sp->spt[i]);
  2752. }
  2753. }
  2754. }
  2755. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2756. {
  2757. int i;
  2758. struct kvm_mmu_page *sp;
  2759. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2760. return;
  2761. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2762. hpa_t root = vcpu->arch.mmu.root_hpa;
  2763. sp = page_header(root);
  2764. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2765. return;
  2766. }
  2767. for (i = 0; i < 4; ++i) {
  2768. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2769. if (root && VALID_PAGE(root)) {
  2770. root &= PT64_BASE_ADDR_MASK;
  2771. sp = page_header(root);
  2772. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2773. }
  2774. }
  2775. return;
  2776. }
  2777. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2778. gva_t va, int level)
  2779. {
  2780. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2781. int i;
  2782. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2783. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2784. u64 ent = pt[i];
  2785. if (ent == shadow_trap_nonpresent_pte)
  2786. continue;
  2787. va = canonicalize(va);
  2788. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2789. audit_mappings_page(vcpu, ent, va, level - 1);
  2790. else {
  2791. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2792. gfn_t gfn = gpa >> PAGE_SHIFT;
  2793. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2794. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2795. if (is_error_pfn(pfn)) {
  2796. kvm_release_pfn_clean(pfn);
  2797. continue;
  2798. }
  2799. if (is_shadow_present_pte(ent)
  2800. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2801. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2802. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2803. audit_msg, vcpu->arch.mmu.root_level,
  2804. va, gpa, hpa, ent,
  2805. is_shadow_present_pte(ent));
  2806. else if (ent == shadow_notrap_nonpresent_pte
  2807. && !is_error_hpa(hpa))
  2808. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2809. " valid guest gva %lx\n", audit_msg, va);
  2810. kvm_release_pfn_clean(pfn);
  2811. }
  2812. }
  2813. }
  2814. static void audit_mappings(struct kvm_vcpu *vcpu)
  2815. {
  2816. unsigned i;
  2817. if (vcpu->arch.mmu.root_level == 4)
  2818. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2819. else
  2820. for (i = 0; i < 4; ++i)
  2821. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2822. audit_mappings_page(vcpu,
  2823. vcpu->arch.mmu.pae_root[i],
  2824. i << 30,
  2825. 2);
  2826. }
  2827. static int count_rmaps(struct kvm_vcpu *vcpu)
  2828. {
  2829. struct kvm *kvm = vcpu->kvm;
  2830. struct kvm_memslots *slots;
  2831. int nmaps = 0;
  2832. int i, j, k, idx;
  2833. idx = srcu_read_lock(&kvm->srcu);
  2834. slots = kvm_memslots(kvm);
  2835. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2836. struct kvm_memory_slot *m = &slots->memslots[i];
  2837. struct kvm_rmap_desc *d;
  2838. for (j = 0; j < m->npages; ++j) {
  2839. unsigned long *rmapp = &m->rmap[j];
  2840. if (!*rmapp)
  2841. continue;
  2842. if (!(*rmapp & 1)) {
  2843. ++nmaps;
  2844. continue;
  2845. }
  2846. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2847. while (d) {
  2848. for (k = 0; k < RMAP_EXT; ++k)
  2849. if (d->sptes[k])
  2850. ++nmaps;
  2851. else
  2852. break;
  2853. d = d->more;
  2854. }
  2855. }
  2856. }
  2857. srcu_read_unlock(&kvm->srcu, idx);
  2858. return nmaps;
  2859. }
  2860. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2861. {
  2862. unsigned long *rmapp;
  2863. struct kvm_mmu_page *rev_sp;
  2864. gfn_t gfn;
  2865. if (*sptep & PT_WRITABLE_MASK) {
  2866. rev_sp = page_header(__pa(sptep));
  2867. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2868. if (!gfn_to_memslot(kvm, gfn)) {
  2869. if (!printk_ratelimit())
  2870. return;
  2871. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2872. audit_msg, gfn);
  2873. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2874. audit_msg, (long int)(sptep - rev_sp->spt),
  2875. rev_sp->gfn);
  2876. dump_stack();
  2877. return;
  2878. }
  2879. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2880. rev_sp->role.level);
  2881. if (!*rmapp) {
  2882. if (!printk_ratelimit())
  2883. return;
  2884. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2885. audit_msg, *sptep);
  2886. dump_stack();
  2887. }
  2888. }
  2889. }
  2890. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2891. {
  2892. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2893. }
  2894. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2895. {
  2896. struct kvm_mmu_page *sp;
  2897. int i;
  2898. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2899. u64 *pt = sp->spt;
  2900. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2901. continue;
  2902. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2903. u64 ent = pt[i];
  2904. if (!(ent & PT_PRESENT_MASK))
  2905. continue;
  2906. if (!(ent & PT_WRITABLE_MASK))
  2907. continue;
  2908. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  2909. }
  2910. }
  2911. return;
  2912. }
  2913. static void audit_rmap(struct kvm_vcpu *vcpu)
  2914. {
  2915. check_writable_mappings_rmap(vcpu);
  2916. count_rmaps(vcpu);
  2917. }
  2918. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2919. {
  2920. struct kvm_mmu_page *sp;
  2921. struct kvm_memory_slot *slot;
  2922. unsigned long *rmapp;
  2923. u64 *spte;
  2924. gfn_t gfn;
  2925. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2926. if (sp->role.direct)
  2927. continue;
  2928. if (sp->unsync)
  2929. continue;
  2930. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2931. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2932. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2933. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2934. while (spte) {
  2935. if (*spte & PT_WRITABLE_MASK)
  2936. printk(KERN_ERR "%s: (%s) shadow page has "
  2937. "writable mappings: gfn %lx role %x\n",
  2938. __func__, audit_msg, sp->gfn,
  2939. sp->role.word);
  2940. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2941. }
  2942. }
  2943. }
  2944. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2945. {
  2946. int olddbg = dbg;
  2947. dbg = 0;
  2948. audit_msg = msg;
  2949. audit_rmap(vcpu);
  2950. audit_write_protection(vcpu);
  2951. if (strcmp("pre pte write", audit_msg) != 0)
  2952. audit_mappings(vcpu);
  2953. audit_writable_sptes_have_rmaps(vcpu);
  2954. dbg = olddbg;
  2955. }
  2956. #endif