core.c 160 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/idr.h>
  16. #include <linux/file.h>
  17. #include <linux/poll.h>
  18. #include <linux/slab.h>
  19. #include <linux/hash.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/dcache.h>
  22. #include <linux/percpu.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/reboot.h>
  25. #include <linux/vmstat.h>
  26. #include <linux/device.h>
  27. #include <linux/export.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/hardirq.h>
  30. #include <linux/rculist.h>
  31. #include <linux/uaccess.h>
  32. #include <linux/syscalls.h>
  33. #include <linux/anon_inodes.h>
  34. #include <linux/kernel_stat.h>
  35. #include <linux/perf_event.h>
  36. #include <linux/ftrace_event.h>
  37. #include <linux/hw_breakpoint.h>
  38. #include "internal.h"
  39. #include <asm/irq_regs.h>
  40. struct remote_function_call {
  41. struct task_struct *p;
  42. int (*func)(void *info);
  43. void *info;
  44. int ret;
  45. };
  46. static void remote_function(void *data)
  47. {
  48. struct remote_function_call *tfc = data;
  49. struct task_struct *p = tfc->p;
  50. if (p) {
  51. tfc->ret = -EAGAIN;
  52. if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  53. return;
  54. }
  55. tfc->ret = tfc->func(tfc->info);
  56. }
  57. /**
  58. * task_function_call - call a function on the cpu on which a task runs
  59. * @p: the task to evaluate
  60. * @func: the function to be called
  61. * @info: the function call argument
  62. *
  63. * Calls the function @func when the task is currently running. This might
  64. * be on the current CPU, which just calls the function directly
  65. *
  66. * returns: @func return value, or
  67. * -ESRCH - when the process isn't running
  68. * -EAGAIN - when the process moved away
  69. */
  70. static int
  71. task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  72. {
  73. struct remote_function_call data = {
  74. .p = p,
  75. .func = func,
  76. .info = info,
  77. .ret = -ESRCH, /* No such (running) process */
  78. };
  79. if (task_curr(p))
  80. smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  81. return data.ret;
  82. }
  83. /**
  84. * cpu_function_call - call a function on the cpu
  85. * @func: the function to be called
  86. * @info: the function call argument
  87. *
  88. * Calls the function @func on the remote cpu.
  89. *
  90. * returns: @func return value or -ENXIO when the cpu is offline
  91. */
  92. static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
  93. {
  94. struct remote_function_call data = {
  95. .p = NULL,
  96. .func = func,
  97. .info = info,
  98. .ret = -ENXIO, /* No such CPU */
  99. };
  100. smp_call_function_single(cpu, remote_function, &data, 1);
  101. return data.ret;
  102. }
  103. #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
  104. PERF_FLAG_FD_OUTPUT |\
  105. PERF_FLAG_PID_CGROUP)
  106. enum event_type_t {
  107. EVENT_FLEXIBLE = 0x1,
  108. EVENT_PINNED = 0x2,
  109. EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  110. };
  111. /*
  112. * perf_sched_events : >0 events exist
  113. * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
  114. */
  115. struct jump_label_key perf_sched_events __read_mostly;
  116. static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
  117. static atomic_t nr_mmap_events __read_mostly;
  118. static atomic_t nr_comm_events __read_mostly;
  119. static atomic_t nr_task_events __read_mostly;
  120. static LIST_HEAD(pmus);
  121. static DEFINE_MUTEX(pmus_lock);
  122. static struct srcu_struct pmus_srcu;
  123. /*
  124. * perf event paranoia level:
  125. * -1 - not paranoid at all
  126. * 0 - disallow raw tracepoint access for unpriv
  127. * 1 - disallow cpu events for unpriv
  128. * 2 - disallow kernel profiling for unpriv
  129. */
  130. int sysctl_perf_event_paranoid __read_mostly = 1;
  131. /* Minimum for 512 kiB + 1 user control page */
  132. int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
  133. /*
  134. * max perf event sample rate
  135. */
  136. #define DEFAULT_MAX_SAMPLE_RATE 100000
  137. int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
  138. static int max_samples_per_tick __read_mostly =
  139. DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
  140. int perf_proc_update_handler(struct ctl_table *table, int write,
  141. void __user *buffer, size_t *lenp,
  142. loff_t *ppos)
  143. {
  144. int ret = proc_dointvec(table, write, buffer, lenp, ppos);
  145. if (ret || !write)
  146. return ret;
  147. max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
  148. return 0;
  149. }
  150. static atomic64_t perf_event_id;
  151. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  152. enum event_type_t event_type);
  153. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  154. enum event_type_t event_type,
  155. struct task_struct *task);
  156. static void update_context_time(struct perf_event_context *ctx);
  157. static u64 perf_event_time(struct perf_event *event);
  158. static void ring_buffer_attach(struct perf_event *event,
  159. struct ring_buffer *rb);
  160. void __weak perf_event_print_debug(void) { }
  161. extern __weak const char *perf_pmu_name(void)
  162. {
  163. return "pmu";
  164. }
  165. static inline u64 perf_clock(void)
  166. {
  167. return local_clock();
  168. }
  169. static inline struct perf_cpu_context *
  170. __get_cpu_context(struct perf_event_context *ctx)
  171. {
  172. return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
  173. }
  174. static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
  175. struct perf_event_context *ctx)
  176. {
  177. raw_spin_lock(&cpuctx->ctx.lock);
  178. if (ctx)
  179. raw_spin_lock(&ctx->lock);
  180. }
  181. static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
  182. struct perf_event_context *ctx)
  183. {
  184. if (ctx)
  185. raw_spin_unlock(&ctx->lock);
  186. raw_spin_unlock(&cpuctx->ctx.lock);
  187. }
  188. #ifdef CONFIG_CGROUP_PERF
  189. /*
  190. * Must ensure cgroup is pinned (css_get) before calling
  191. * this function. In other words, we cannot call this function
  192. * if there is no cgroup event for the current CPU context.
  193. */
  194. static inline struct perf_cgroup *
  195. perf_cgroup_from_task(struct task_struct *task)
  196. {
  197. return container_of(task_subsys_state(task, perf_subsys_id),
  198. struct perf_cgroup, css);
  199. }
  200. static inline bool
  201. perf_cgroup_match(struct perf_event *event)
  202. {
  203. struct perf_event_context *ctx = event->ctx;
  204. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  205. return !event->cgrp || event->cgrp == cpuctx->cgrp;
  206. }
  207. static inline void perf_get_cgroup(struct perf_event *event)
  208. {
  209. css_get(&event->cgrp->css);
  210. }
  211. static inline void perf_put_cgroup(struct perf_event *event)
  212. {
  213. css_put(&event->cgrp->css);
  214. }
  215. static inline void perf_detach_cgroup(struct perf_event *event)
  216. {
  217. perf_put_cgroup(event);
  218. event->cgrp = NULL;
  219. }
  220. static inline int is_cgroup_event(struct perf_event *event)
  221. {
  222. return event->cgrp != NULL;
  223. }
  224. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  225. {
  226. struct perf_cgroup_info *t;
  227. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  228. return t->time;
  229. }
  230. static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
  231. {
  232. struct perf_cgroup_info *info;
  233. u64 now;
  234. now = perf_clock();
  235. info = this_cpu_ptr(cgrp->info);
  236. info->time += now - info->timestamp;
  237. info->timestamp = now;
  238. }
  239. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  240. {
  241. struct perf_cgroup *cgrp_out = cpuctx->cgrp;
  242. if (cgrp_out)
  243. __update_cgrp_time(cgrp_out);
  244. }
  245. static inline void update_cgrp_time_from_event(struct perf_event *event)
  246. {
  247. struct perf_cgroup *cgrp;
  248. /*
  249. * ensure we access cgroup data only when needed and
  250. * when we know the cgroup is pinned (css_get)
  251. */
  252. if (!is_cgroup_event(event))
  253. return;
  254. cgrp = perf_cgroup_from_task(current);
  255. /*
  256. * Do not update time when cgroup is not active
  257. */
  258. if (cgrp == event->cgrp)
  259. __update_cgrp_time(event->cgrp);
  260. }
  261. static inline void
  262. perf_cgroup_set_timestamp(struct task_struct *task,
  263. struct perf_event_context *ctx)
  264. {
  265. struct perf_cgroup *cgrp;
  266. struct perf_cgroup_info *info;
  267. /*
  268. * ctx->lock held by caller
  269. * ensure we do not access cgroup data
  270. * unless we have the cgroup pinned (css_get)
  271. */
  272. if (!task || !ctx->nr_cgroups)
  273. return;
  274. cgrp = perf_cgroup_from_task(task);
  275. info = this_cpu_ptr(cgrp->info);
  276. info->timestamp = ctx->timestamp;
  277. }
  278. #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
  279. #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
  280. /*
  281. * reschedule events based on the cgroup constraint of task.
  282. *
  283. * mode SWOUT : schedule out everything
  284. * mode SWIN : schedule in based on cgroup for next
  285. */
  286. void perf_cgroup_switch(struct task_struct *task, int mode)
  287. {
  288. struct perf_cpu_context *cpuctx;
  289. struct pmu *pmu;
  290. unsigned long flags;
  291. /*
  292. * disable interrupts to avoid geting nr_cgroup
  293. * changes via __perf_event_disable(). Also
  294. * avoids preemption.
  295. */
  296. local_irq_save(flags);
  297. /*
  298. * we reschedule only in the presence of cgroup
  299. * constrained events.
  300. */
  301. rcu_read_lock();
  302. list_for_each_entry_rcu(pmu, &pmus, entry) {
  303. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  304. /*
  305. * perf_cgroup_events says at least one
  306. * context on this CPU has cgroup events.
  307. *
  308. * ctx->nr_cgroups reports the number of cgroup
  309. * events for a context.
  310. */
  311. if (cpuctx->ctx.nr_cgroups > 0) {
  312. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  313. perf_pmu_disable(cpuctx->ctx.pmu);
  314. if (mode & PERF_CGROUP_SWOUT) {
  315. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  316. /*
  317. * must not be done before ctxswout due
  318. * to event_filter_match() in event_sched_out()
  319. */
  320. cpuctx->cgrp = NULL;
  321. }
  322. if (mode & PERF_CGROUP_SWIN) {
  323. WARN_ON_ONCE(cpuctx->cgrp);
  324. /* set cgrp before ctxsw in to
  325. * allow event_filter_match() to not
  326. * have to pass task around
  327. */
  328. cpuctx->cgrp = perf_cgroup_from_task(task);
  329. cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
  330. }
  331. perf_pmu_enable(cpuctx->ctx.pmu);
  332. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  333. }
  334. }
  335. rcu_read_unlock();
  336. local_irq_restore(flags);
  337. }
  338. static inline void perf_cgroup_sched_out(struct task_struct *task,
  339. struct task_struct *next)
  340. {
  341. struct perf_cgroup *cgrp1;
  342. struct perf_cgroup *cgrp2 = NULL;
  343. /*
  344. * we come here when we know perf_cgroup_events > 0
  345. */
  346. cgrp1 = perf_cgroup_from_task(task);
  347. /*
  348. * next is NULL when called from perf_event_enable_on_exec()
  349. * that will systematically cause a cgroup_switch()
  350. */
  351. if (next)
  352. cgrp2 = perf_cgroup_from_task(next);
  353. /*
  354. * only schedule out current cgroup events if we know
  355. * that we are switching to a different cgroup. Otherwise,
  356. * do no touch the cgroup events.
  357. */
  358. if (cgrp1 != cgrp2)
  359. perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
  360. }
  361. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  362. struct task_struct *task)
  363. {
  364. struct perf_cgroup *cgrp1;
  365. struct perf_cgroup *cgrp2 = NULL;
  366. /*
  367. * we come here when we know perf_cgroup_events > 0
  368. */
  369. cgrp1 = perf_cgroup_from_task(task);
  370. /* prev can never be NULL */
  371. cgrp2 = perf_cgroup_from_task(prev);
  372. /*
  373. * only need to schedule in cgroup events if we are changing
  374. * cgroup during ctxsw. Cgroup events were not scheduled
  375. * out of ctxsw out if that was not the case.
  376. */
  377. if (cgrp1 != cgrp2)
  378. perf_cgroup_switch(task, PERF_CGROUP_SWIN);
  379. }
  380. static inline int perf_cgroup_connect(int fd, struct perf_event *event,
  381. struct perf_event_attr *attr,
  382. struct perf_event *group_leader)
  383. {
  384. struct perf_cgroup *cgrp;
  385. struct cgroup_subsys_state *css;
  386. struct file *file;
  387. int ret = 0, fput_needed;
  388. file = fget_light(fd, &fput_needed);
  389. if (!file)
  390. return -EBADF;
  391. css = cgroup_css_from_dir(file, perf_subsys_id);
  392. if (IS_ERR(css)) {
  393. ret = PTR_ERR(css);
  394. goto out;
  395. }
  396. cgrp = container_of(css, struct perf_cgroup, css);
  397. event->cgrp = cgrp;
  398. /* must be done before we fput() the file */
  399. perf_get_cgroup(event);
  400. /*
  401. * all events in a group must monitor
  402. * the same cgroup because a task belongs
  403. * to only one perf cgroup at a time
  404. */
  405. if (group_leader && group_leader->cgrp != cgrp) {
  406. perf_detach_cgroup(event);
  407. ret = -EINVAL;
  408. }
  409. out:
  410. fput_light(file, fput_needed);
  411. return ret;
  412. }
  413. static inline void
  414. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  415. {
  416. struct perf_cgroup_info *t;
  417. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  418. event->shadow_ctx_time = now - t->timestamp;
  419. }
  420. static inline void
  421. perf_cgroup_defer_enabled(struct perf_event *event)
  422. {
  423. /*
  424. * when the current task's perf cgroup does not match
  425. * the event's, we need to remember to call the
  426. * perf_mark_enable() function the first time a task with
  427. * a matching perf cgroup is scheduled in.
  428. */
  429. if (is_cgroup_event(event) && !perf_cgroup_match(event))
  430. event->cgrp_defer_enabled = 1;
  431. }
  432. static inline void
  433. perf_cgroup_mark_enabled(struct perf_event *event,
  434. struct perf_event_context *ctx)
  435. {
  436. struct perf_event *sub;
  437. u64 tstamp = perf_event_time(event);
  438. if (!event->cgrp_defer_enabled)
  439. return;
  440. event->cgrp_defer_enabled = 0;
  441. event->tstamp_enabled = tstamp - event->total_time_enabled;
  442. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  443. if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
  444. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  445. sub->cgrp_defer_enabled = 0;
  446. }
  447. }
  448. }
  449. #else /* !CONFIG_CGROUP_PERF */
  450. static inline bool
  451. perf_cgroup_match(struct perf_event *event)
  452. {
  453. return true;
  454. }
  455. static inline void perf_detach_cgroup(struct perf_event *event)
  456. {}
  457. static inline int is_cgroup_event(struct perf_event *event)
  458. {
  459. return 0;
  460. }
  461. static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
  462. {
  463. return 0;
  464. }
  465. static inline void update_cgrp_time_from_event(struct perf_event *event)
  466. {
  467. }
  468. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  469. {
  470. }
  471. static inline void perf_cgroup_sched_out(struct task_struct *task,
  472. struct task_struct *next)
  473. {
  474. }
  475. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  476. struct task_struct *task)
  477. {
  478. }
  479. static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
  480. struct perf_event_attr *attr,
  481. struct perf_event *group_leader)
  482. {
  483. return -EINVAL;
  484. }
  485. static inline void
  486. perf_cgroup_set_timestamp(struct task_struct *task,
  487. struct perf_event_context *ctx)
  488. {
  489. }
  490. void
  491. perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
  492. {
  493. }
  494. static inline void
  495. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  496. {
  497. }
  498. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  499. {
  500. return 0;
  501. }
  502. static inline void
  503. perf_cgroup_defer_enabled(struct perf_event *event)
  504. {
  505. }
  506. static inline void
  507. perf_cgroup_mark_enabled(struct perf_event *event,
  508. struct perf_event_context *ctx)
  509. {
  510. }
  511. #endif
  512. void perf_pmu_disable(struct pmu *pmu)
  513. {
  514. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  515. if (!(*count)++)
  516. pmu->pmu_disable(pmu);
  517. }
  518. void perf_pmu_enable(struct pmu *pmu)
  519. {
  520. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  521. if (!--(*count))
  522. pmu->pmu_enable(pmu);
  523. }
  524. static DEFINE_PER_CPU(struct list_head, rotation_list);
  525. /*
  526. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  527. * because they're strictly cpu affine and rotate_start is called with IRQs
  528. * disabled, while rotate_context is called from IRQ context.
  529. */
  530. static void perf_pmu_rotate_start(struct pmu *pmu)
  531. {
  532. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  533. struct list_head *head = &__get_cpu_var(rotation_list);
  534. WARN_ON(!irqs_disabled());
  535. if (list_empty(&cpuctx->rotation_list))
  536. list_add(&cpuctx->rotation_list, head);
  537. }
  538. static void get_ctx(struct perf_event_context *ctx)
  539. {
  540. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  541. }
  542. static void put_ctx(struct perf_event_context *ctx)
  543. {
  544. if (atomic_dec_and_test(&ctx->refcount)) {
  545. if (ctx->parent_ctx)
  546. put_ctx(ctx->parent_ctx);
  547. if (ctx->task)
  548. put_task_struct(ctx->task);
  549. kfree_rcu(ctx, rcu_head);
  550. }
  551. }
  552. static void unclone_ctx(struct perf_event_context *ctx)
  553. {
  554. if (ctx->parent_ctx) {
  555. put_ctx(ctx->parent_ctx);
  556. ctx->parent_ctx = NULL;
  557. }
  558. }
  559. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  560. {
  561. /*
  562. * only top level events have the pid namespace they were created in
  563. */
  564. if (event->parent)
  565. event = event->parent;
  566. return task_tgid_nr_ns(p, event->ns);
  567. }
  568. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  569. {
  570. /*
  571. * only top level events have the pid namespace they were created in
  572. */
  573. if (event->parent)
  574. event = event->parent;
  575. return task_pid_nr_ns(p, event->ns);
  576. }
  577. /*
  578. * If we inherit events we want to return the parent event id
  579. * to userspace.
  580. */
  581. static u64 primary_event_id(struct perf_event *event)
  582. {
  583. u64 id = event->id;
  584. if (event->parent)
  585. id = event->parent->id;
  586. return id;
  587. }
  588. /*
  589. * Get the perf_event_context for a task and lock it.
  590. * This has to cope with with the fact that until it is locked,
  591. * the context could get moved to another task.
  592. */
  593. static struct perf_event_context *
  594. perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
  595. {
  596. struct perf_event_context *ctx;
  597. rcu_read_lock();
  598. retry:
  599. ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
  600. if (ctx) {
  601. /*
  602. * If this context is a clone of another, it might
  603. * get swapped for another underneath us by
  604. * perf_event_task_sched_out, though the
  605. * rcu_read_lock() protects us from any context
  606. * getting freed. Lock the context and check if it
  607. * got swapped before we could get the lock, and retry
  608. * if so. If we locked the right context, then it
  609. * can't get swapped on us any more.
  610. */
  611. raw_spin_lock_irqsave(&ctx->lock, *flags);
  612. if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
  613. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  614. goto retry;
  615. }
  616. if (!atomic_inc_not_zero(&ctx->refcount)) {
  617. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  618. ctx = NULL;
  619. }
  620. }
  621. rcu_read_unlock();
  622. return ctx;
  623. }
  624. /*
  625. * Get the context for a task and increment its pin_count so it
  626. * can't get swapped to another task. This also increments its
  627. * reference count so that the context can't get freed.
  628. */
  629. static struct perf_event_context *
  630. perf_pin_task_context(struct task_struct *task, int ctxn)
  631. {
  632. struct perf_event_context *ctx;
  633. unsigned long flags;
  634. ctx = perf_lock_task_context(task, ctxn, &flags);
  635. if (ctx) {
  636. ++ctx->pin_count;
  637. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  638. }
  639. return ctx;
  640. }
  641. static void perf_unpin_context(struct perf_event_context *ctx)
  642. {
  643. unsigned long flags;
  644. raw_spin_lock_irqsave(&ctx->lock, flags);
  645. --ctx->pin_count;
  646. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  647. }
  648. /*
  649. * Update the record of the current time in a context.
  650. */
  651. static void update_context_time(struct perf_event_context *ctx)
  652. {
  653. u64 now = perf_clock();
  654. ctx->time += now - ctx->timestamp;
  655. ctx->timestamp = now;
  656. }
  657. static u64 perf_event_time(struct perf_event *event)
  658. {
  659. struct perf_event_context *ctx = event->ctx;
  660. if (is_cgroup_event(event))
  661. return perf_cgroup_event_time(event);
  662. return ctx ? ctx->time : 0;
  663. }
  664. /*
  665. * Update the total_time_enabled and total_time_running fields for a event.
  666. * The caller of this function needs to hold the ctx->lock.
  667. */
  668. static void update_event_times(struct perf_event *event)
  669. {
  670. struct perf_event_context *ctx = event->ctx;
  671. u64 run_end;
  672. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  673. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  674. return;
  675. /*
  676. * in cgroup mode, time_enabled represents
  677. * the time the event was enabled AND active
  678. * tasks were in the monitored cgroup. This is
  679. * independent of the activity of the context as
  680. * there may be a mix of cgroup and non-cgroup events.
  681. *
  682. * That is why we treat cgroup events differently
  683. * here.
  684. */
  685. if (is_cgroup_event(event))
  686. run_end = perf_event_time(event);
  687. else if (ctx->is_active)
  688. run_end = ctx->time;
  689. else
  690. run_end = event->tstamp_stopped;
  691. event->total_time_enabled = run_end - event->tstamp_enabled;
  692. if (event->state == PERF_EVENT_STATE_INACTIVE)
  693. run_end = event->tstamp_stopped;
  694. else
  695. run_end = perf_event_time(event);
  696. event->total_time_running = run_end - event->tstamp_running;
  697. }
  698. /*
  699. * Update total_time_enabled and total_time_running for all events in a group.
  700. */
  701. static void update_group_times(struct perf_event *leader)
  702. {
  703. struct perf_event *event;
  704. update_event_times(leader);
  705. list_for_each_entry(event, &leader->sibling_list, group_entry)
  706. update_event_times(event);
  707. }
  708. static struct list_head *
  709. ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
  710. {
  711. if (event->attr.pinned)
  712. return &ctx->pinned_groups;
  713. else
  714. return &ctx->flexible_groups;
  715. }
  716. /*
  717. * Add a event from the lists for its context.
  718. * Must be called with ctx->mutex and ctx->lock held.
  719. */
  720. static void
  721. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  722. {
  723. WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
  724. event->attach_state |= PERF_ATTACH_CONTEXT;
  725. /*
  726. * If we're a stand alone event or group leader, we go to the context
  727. * list, group events are kept attached to the group so that
  728. * perf_group_detach can, at all times, locate all siblings.
  729. */
  730. if (event->group_leader == event) {
  731. struct list_head *list;
  732. if (is_software_event(event))
  733. event->group_flags |= PERF_GROUP_SOFTWARE;
  734. list = ctx_group_list(event, ctx);
  735. list_add_tail(&event->group_entry, list);
  736. }
  737. if (is_cgroup_event(event))
  738. ctx->nr_cgroups++;
  739. list_add_rcu(&event->event_entry, &ctx->event_list);
  740. if (!ctx->nr_events)
  741. perf_pmu_rotate_start(ctx->pmu);
  742. ctx->nr_events++;
  743. if (event->attr.inherit_stat)
  744. ctx->nr_stat++;
  745. }
  746. /*
  747. * Called at perf_event creation and when events are attached/detached from a
  748. * group.
  749. */
  750. static void perf_event__read_size(struct perf_event *event)
  751. {
  752. int entry = sizeof(u64); /* value */
  753. int size = 0;
  754. int nr = 1;
  755. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  756. size += sizeof(u64);
  757. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  758. size += sizeof(u64);
  759. if (event->attr.read_format & PERF_FORMAT_ID)
  760. entry += sizeof(u64);
  761. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  762. nr += event->group_leader->nr_siblings;
  763. size += sizeof(u64);
  764. }
  765. size += entry * nr;
  766. event->read_size = size;
  767. }
  768. static void perf_event__header_size(struct perf_event *event)
  769. {
  770. struct perf_sample_data *data;
  771. u64 sample_type = event->attr.sample_type;
  772. u16 size = 0;
  773. perf_event__read_size(event);
  774. if (sample_type & PERF_SAMPLE_IP)
  775. size += sizeof(data->ip);
  776. if (sample_type & PERF_SAMPLE_ADDR)
  777. size += sizeof(data->addr);
  778. if (sample_type & PERF_SAMPLE_PERIOD)
  779. size += sizeof(data->period);
  780. if (sample_type & PERF_SAMPLE_READ)
  781. size += event->read_size;
  782. event->header_size = size;
  783. }
  784. static void perf_event__id_header_size(struct perf_event *event)
  785. {
  786. struct perf_sample_data *data;
  787. u64 sample_type = event->attr.sample_type;
  788. u16 size = 0;
  789. if (sample_type & PERF_SAMPLE_TID)
  790. size += sizeof(data->tid_entry);
  791. if (sample_type & PERF_SAMPLE_TIME)
  792. size += sizeof(data->time);
  793. if (sample_type & PERF_SAMPLE_ID)
  794. size += sizeof(data->id);
  795. if (sample_type & PERF_SAMPLE_STREAM_ID)
  796. size += sizeof(data->stream_id);
  797. if (sample_type & PERF_SAMPLE_CPU)
  798. size += sizeof(data->cpu_entry);
  799. event->id_header_size = size;
  800. }
  801. static void perf_group_attach(struct perf_event *event)
  802. {
  803. struct perf_event *group_leader = event->group_leader, *pos;
  804. /*
  805. * We can have double attach due to group movement in perf_event_open.
  806. */
  807. if (event->attach_state & PERF_ATTACH_GROUP)
  808. return;
  809. event->attach_state |= PERF_ATTACH_GROUP;
  810. if (group_leader == event)
  811. return;
  812. if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
  813. !is_software_event(event))
  814. group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
  815. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  816. group_leader->nr_siblings++;
  817. perf_event__header_size(group_leader);
  818. list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
  819. perf_event__header_size(pos);
  820. }
  821. /*
  822. * Remove a event from the lists for its context.
  823. * Must be called with ctx->mutex and ctx->lock held.
  824. */
  825. static void
  826. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  827. {
  828. struct perf_cpu_context *cpuctx;
  829. /*
  830. * We can have double detach due to exit/hot-unplug + close.
  831. */
  832. if (!(event->attach_state & PERF_ATTACH_CONTEXT))
  833. return;
  834. event->attach_state &= ~PERF_ATTACH_CONTEXT;
  835. if (is_cgroup_event(event)) {
  836. ctx->nr_cgroups--;
  837. cpuctx = __get_cpu_context(ctx);
  838. /*
  839. * if there are no more cgroup events
  840. * then cler cgrp to avoid stale pointer
  841. * in update_cgrp_time_from_cpuctx()
  842. */
  843. if (!ctx->nr_cgroups)
  844. cpuctx->cgrp = NULL;
  845. }
  846. ctx->nr_events--;
  847. if (event->attr.inherit_stat)
  848. ctx->nr_stat--;
  849. list_del_rcu(&event->event_entry);
  850. if (event->group_leader == event)
  851. list_del_init(&event->group_entry);
  852. update_group_times(event);
  853. /*
  854. * If event was in error state, then keep it
  855. * that way, otherwise bogus counts will be
  856. * returned on read(). The only way to get out
  857. * of error state is by explicit re-enabling
  858. * of the event
  859. */
  860. if (event->state > PERF_EVENT_STATE_OFF)
  861. event->state = PERF_EVENT_STATE_OFF;
  862. }
  863. static void perf_group_detach(struct perf_event *event)
  864. {
  865. struct perf_event *sibling, *tmp;
  866. struct list_head *list = NULL;
  867. /*
  868. * We can have double detach due to exit/hot-unplug + close.
  869. */
  870. if (!(event->attach_state & PERF_ATTACH_GROUP))
  871. return;
  872. event->attach_state &= ~PERF_ATTACH_GROUP;
  873. /*
  874. * If this is a sibling, remove it from its group.
  875. */
  876. if (event->group_leader != event) {
  877. list_del_init(&event->group_entry);
  878. event->group_leader->nr_siblings--;
  879. goto out;
  880. }
  881. if (!list_empty(&event->group_entry))
  882. list = &event->group_entry;
  883. /*
  884. * If this was a group event with sibling events then
  885. * upgrade the siblings to singleton events by adding them
  886. * to whatever list we are on.
  887. */
  888. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  889. if (list)
  890. list_move_tail(&sibling->group_entry, list);
  891. sibling->group_leader = sibling;
  892. /* Inherit group flags from the previous leader */
  893. sibling->group_flags = event->group_flags;
  894. }
  895. out:
  896. perf_event__header_size(event->group_leader);
  897. list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
  898. perf_event__header_size(tmp);
  899. }
  900. static inline int
  901. event_filter_match(struct perf_event *event)
  902. {
  903. return (event->cpu == -1 || event->cpu == smp_processor_id())
  904. && perf_cgroup_match(event);
  905. }
  906. static void
  907. event_sched_out(struct perf_event *event,
  908. struct perf_cpu_context *cpuctx,
  909. struct perf_event_context *ctx)
  910. {
  911. u64 tstamp = perf_event_time(event);
  912. u64 delta;
  913. /*
  914. * An event which could not be activated because of
  915. * filter mismatch still needs to have its timings
  916. * maintained, otherwise bogus information is return
  917. * via read() for time_enabled, time_running:
  918. */
  919. if (event->state == PERF_EVENT_STATE_INACTIVE
  920. && !event_filter_match(event)) {
  921. delta = tstamp - event->tstamp_stopped;
  922. event->tstamp_running += delta;
  923. event->tstamp_stopped = tstamp;
  924. }
  925. if (event->state != PERF_EVENT_STATE_ACTIVE)
  926. return;
  927. event->state = PERF_EVENT_STATE_INACTIVE;
  928. if (event->pending_disable) {
  929. event->pending_disable = 0;
  930. event->state = PERF_EVENT_STATE_OFF;
  931. }
  932. event->tstamp_stopped = tstamp;
  933. event->pmu->del(event, 0);
  934. event->oncpu = -1;
  935. if (!is_software_event(event))
  936. cpuctx->active_oncpu--;
  937. ctx->nr_active--;
  938. if (event->attr.freq && event->attr.sample_freq)
  939. ctx->nr_freq--;
  940. if (event->attr.exclusive || !cpuctx->active_oncpu)
  941. cpuctx->exclusive = 0;
  942. }
  943. static void
  944. group_sched_out(struct perf_event *group_event,
  945. struct perf_cpu_context *cpuctx,
  946. struct perf_event_context *ctx)
  947. {
  948. struct perf_event *event;
  949. int state = group_event->state;
  950. event_sched_out(group_event, cpuctx, ctx);
  951. /*
  952. * Schedule out siblings (if any):
  953. */
  954. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  955. event_sched_out(event, cpuctx, ctx);
  956. if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
  957. cpuctx->exclusive = 0;
  958. }
  959. /*
  960. * Cross CPU call to remove a performance event
  961. *
  962. * We disable the event on the hardware level first. After that we
  963. * remove it from the context list.
  964. */
  965. static int __perf_remove_from_context(void *info)
  966. {
  967. struct perf_event *event = info;
  968. struct perf_event_context *ctx = event->ctx;
  969. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  970. raw_spin_lock(&ctx->lock);
  971. event_sched_out(event, cpuctx, ctx);
  972. list_del_event(event, ctx);
  973. if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
  974. ctx->is_active = 0;
  975. cpuctx->task_ctx = NULL;
  976. }
  977. raw_spin_unlock(&ctx->lock);
  978. return 0;
  979. }
  980. /*
  981. * Remove the event from a task's (or a CPU's) list of events.
  982. *
  983. * CPU events are removed with a smp call. For task events we only
  984. * call when the task is on a CPU.
  985. *
  986. * If event->ctx is a cloned context, callers must make sure that
  987. * every task struct that event->ctx->task could possibly point to
  988. * remains valid. This is OK when called from perf_release since
  989. * that only calls us on the top-level context, which can't be a clone.
  990. * When called from perf_event_exit_task, it's OK because the
  991. * context has been detached from its task.
  992. */
  993. static void perf_remove_from_context(struct perf_event *event)
  994. {
  995. struct perf_event_context *ctx = event->ctx;
  996. struct task_struct *task = ctx->task;
  997. lockdep_assert_held(&ctx->mutex);
  998. if (!task) {
  999. /*
  1000. * Per cpu events are removed via an smp call and
  1001. * the removal is always successful.
  1002. */
  1003. cpu_function_call(event->cpu, __perf_remove_from_context, event);
  1004. return;
  1005. }
  1006. retry:
  1007. if (!task_function_call(task, __perf_remove_from_context, event))
  1008. return;
  1009. raw_spin_lock_irq(&ctx->lock);
  1010. /*
  1011. * If we failed to find a running task, but find the context active now
  1012. * that we've acquired the ctx->lock, retry.
  1013. */
  1014. if (ctx->is_active) {
  1015. raw_spin_unlock_irq(&ctx->lock);
  1016. goto retry;
  1017. }
  1018. /*
  1019. * Since the task isn't running, its safe to remove the event, us
  1020. * holding the ctx->lock ensures the task won't get scheduled in.
  1021. */
  1022. list_del_event(event, ctx);
  1023. raw_spin_unlock_irq(&ctx->lock);
  1024. }
  1025. /*
  1026. * Cross CPU call to disable a performance event
  1027. */
  1028. static int __perf_event_disable(void *info)
  1029. {
  1030. struct perf_event *event = info;
  1031. struct perf_event_context *ctx = event->ctx;
  1032. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1033. /*
  1034. * If this is a per-task event, need to check whether this
  1035. * event's task is the current task on this cpu.
  1036. *
  1037. * Can trigger due to concurrent perf_event_context_sched_out()
  1038. * flipping contexts around.
  1039. */
  1040. if (ctx->task && cpuctx->task_ctx != ctx)
  1041. return -EINVAL;
  1042. raw_spin_lock(&ctx->lock);
  1043. /*
  1044. * If the event is on, turn it off.
  1045. * If it is in error state, leave it in error state.
  1046. */
  1047. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  1048. update_context_time(ctx);
  1049. update_cgrp_time_from_event(event);
  1050. update_group_times(event);
  1051. if (event == event->group_leader)
  1052. group_sched_out(event, cpuctx, ctx);
  1053. else
  1054. event_sched_out(event, cpuctx, ctx);
  1055. event->state = PERF_EVENT_STATE_OFF;
  1056. }
  1057. raw_spin_unlock(&ctx->lock);
  1058. return 0;
  1059. }
  1060. /*
  1061. * Disable a event.
  1062. *
  1063. * If event->ctx is a cloned context, callers must make sure that
  1064. * every task struct that event->ctx->task could possibly point to
  1065. * remains valid. This condition is satisifed when called through
  1066. * perf_event_for_each_child or perf_event_for_each because they
  1067. * hold the top-level event's child_mutex, so any descendant that
  1068. * goes to exit will block in sync_child_event.
  1069. * When called from perf_pending_event it's OK because event->ctx
  1070. * is the current context on this CPU and preemption is disabled,
  1071. * hence we can't get into perf_event_task_sched_out for this context.
  1072. */
  1073. void perf_event_disable(struct perf_event *event)
  1074. {
  1075. struct perf_event_context *ctx = event->ctx;
  1076. struct task_struct *task = ctx->task;
  1077. if (!task) {
  1078. /*
  1079. * Disable the event on the cpu that it's on
  1080. */
  1081. cpu_function_call(event->cpu, __perf_event_disable, event);
  1082. return;
  1083. }
  1084. retry:
  1085. if (!task_function_call(task, __perf_event_disable, event))
  1086. return;
  1087. raw_spin_lock_irq(&ctx->lock);
  1088. /*
  1089. * If the event is still active, we need to retry the cross-call.
  1090. */
  1091. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1092. raw_spin_unlock_irq(&ctx->lock);
  1093. /*
  1094. * Reload the task pointer, it might have been changed by
  1095. * a concurrent perf_event_context_sched_out().
  1096. */
  1097. task = ctx->task;
  1098. goto retry;
  1099. }
  1100. /*
  1101. * Since we have the lock this context can't be scheduled
  1102. * in, so we can change the state safely.
  1103. */
  1104. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1105. update_group_times(event);
  1106. event->state = PERF_EVENT_STATE_OFF;
  1107. }
  1108. raw_spin_unlock_irq(&ctx->lock);
  1109. }
  1110. EXPORT_SYMBOL_GPL(perf_event_disable);
  1111. static void perf_set_shadow_time(struct perf_event *event,
  1112. struct perf_event_context *ctx,
  1113. u64 tstamp)
  1114. {
  1115. /*
  1116. * use the correct time source for the time snapshot
  1117. *
  1118. * We could get by without this by leveraging the
  1119. * fact that to get to this function, the caller
  1120. * has most likely already called update_context_time()
  1121. * and update_cgrp_time_xx() and thus both timestamp
  1122. * are identical (or very close). Given that tstamp is,
  1123. * already adjusted for cgroup, we could say that:
  1124. * tstamp - ctx->timestamp
  1125. * is equivalent to
  1126. * tstamp - cgrp->timestamp.
  1127. *
  1128. * Then, in perf_output_read(), the calculation would
  1129. * work with no changes because:
  1130. * - event is guaranteed scheduled in
  1131. * - no scheduled out in between
  1132. * - thus the timestamp would be the same
  1133. *
  1134. * But this is a bit hairy.
  1135. *
  1136. * So instead, we have an explicit cgroup call to remain
  1137. * within the time time source all along. We believe it
  1138. * is cleaner and simpler to understand.
  1139. */
  1140. if (is_cgroup_event(event))
  1141. perf_cgroup_set_shadow_time(event, tstamp);
  1142. else
  1143. event->shadow_ctx_time = tstamp - ctx->timestamp;
  1144. }
  1145. #define MAX_INTERRUPTS (~0ULL)
  1146. static void perf_log_throttle(struct perf_event *event, int enable);
  1147. static int
  1148. event_sched_in(struct perf_event *event,
  1149. struct perf_cpu_context *cpuctx,
  1150. struct perf_event_context *ctx)
  1151. {
  1152. u64 tstamp = perf_event_time(event);
  1153. if (event->state <= PERF_EVENT_STATE_OFF)
  1154. return 0;
  1155. event->state = PERF_EVENT_STATE_ACTIVE;
  1156. event->oncpu = smp_processor_id();
  1157. /*
  1158. * Unthrottle events, since we scheduled we might have missed several
  1159. * ticks already, also for a heavily scheduling task there is little
  1160. * guarantee it'll get a tick in a timely manner.
  1161. */
  1162. if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
  1163. perf_log_throttle(event, 1);
  1164. event->hw.interrupts = 0;
  1165. }
  1166. /*
  1167. * The new state must be visible before we turn it on in the hardware:
  1168. */
  1169. smp_wmb();
  1170. if (event->pmu->add(event, PERF_EF_START)) {
  1171. event->state = PERF_EVENT_STATE_INACTIVE;
  1172. event->oncpu = -1;
  1173. return -EAGAIN;
  1174. }
  1175. event->tstamp_running += tstamp - event->tstamp_stopped;
  1176. perf_set_shadow_time(event, ctx, tstamp);
  1177. if (!is_software_event(event))
  1178. cpuctx->active_oncpu++;
  1179. ctx->nr_active++;
  1180. if (event->attr.freq && event->attr.sample_freq)
  1181. ctx->nr_freq++;
  1182. if (event->attr.exclusive)
  1183. cpuctx->exclusive = 1;
  1184. return 0;
  1185. }
  1186. static int
  1187. group_sched_in(struct perf_event *group_event,
  1188. struct perf_cpu_context *cpuctx,
  1189. struct perf_event_context *ctx)
  1190. {
  1191. struct perf_event *event, *partial_group = NULL;
  1192. struct pmu *pmu = group_event->pmu;
  1193. u64 now = ctx->time;
  1194. bool simulate = false;
  1195. if (group_event->state == PERF_EVENT_STATE_OFF)
  1196. return 0;
  1197. pmu->start_txn(pmu);
  1198. if (event_sched_in(group_event, cpuctx, ctx)) {
  1199. pmu->cancel_txn(pmu);
  1200. return -EAGAIN;
  1201. }
  1202. /*
  1203. * Schedule in siblings as one group (if any):
  1204. */
  1205. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1206. if (event_sched_in(event, cpuctx, ctx)) {
  1207. partial_group = event;
  1208. goto group_error;
  1209. }
  1210. }
  1211. if (!pmu->commit_txn(pmu))
  1212. return 0;
  1213. group_error:
  1214. /*
  1215. * Groups can be scheduled in as one unit only, so undo any
  1216. * partial group before returning:
  1217. * The events up to the failed event are scheduled out normally,
  1218. * tstamp_stopped will be updated.
  1219. *
  1220. * The failed events and the remaining siblings need to have
  1221. * their timings updated as if they had gone thru event_sched_in()
  1222. * and event_sched_out(). This is required to get consistent timings
  1223. * across the group. This also takes care of the case where the group
  1224. * could never be scheduled by ensuring tstamp_stopped is set to mark
  1225. * the time the event was actually stopped, such that time delta
  1226. * calculation in update_event_times() is correct.
  1227. */
  1228. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1229. if (event == partial_group)
  1230. simulate = true;
  1231. if (simulate) {
  1232. event->tstamp_running += now - event->tstamp_stopped;
  1233. event->tstamp_stopped = now;
  1234. } else {
  1235. event_sched_out(event, cpuctx, ctx);
  1236. }
  1237. }
  1238. event_sched_out(group_event, cpuctx, ctx);
  1239. pmu->cancel_txn(pmu);
  1240. return -EAGAIN;
  1241. }
  1242. /*
  1243. * Work out whether we can put this event group on the CPU now.
  1244. */
  1245. static int group_can_go_on(struct perf_event *event,
  1246. struct perf_cpu_context *cpuctx,
  1247. int can_add_hw)
  1248. {
  1249. /*
  1250. * Groups consisting entirely of software events can always go on.
  1251. */
  1252. if (event->group_flags & PERF_GROUP_SOFTWARE)
  1253. return 1;
  1254. /*
  1255. * If an exclusive group is already on, no other hardware
  1256. * events can go on.
  1257. */
  1258. if (cpuctx->exclusive)
  1259. return 0;
  1260. /*
  1261. * If this group is exclusive and there are already
  1262. * events on the CPU, it can't go on.
  1263. */
  1264. if (event->attr.exclusive && cpuctx->active_oncpu)
  1265. return 0;
  1266. /*
  1267. * Otherwise, try to add it if all previous groups were able
  1268. * to go on.
  1269. */
  1270. return can_add_hw;
  1271. }
  1272. static void add_event_to_ctx(struct perf_event *event,
  1273. struct perf_event_context *ctx)
  1274. {
  1275. u64 tstamp = perf_event_time(event);
  1276. list_add_event(event, ctx);
  1277. perf_group_attach(event);
  1278. event->tstamp_enabled = tstamp;
  1279. event->tstamp_running = tstamp;
  1280. event->tstamp_stopped = tstamp;
  1281. }
  1282. static void task_ctx_sched_out(struct perf_event_context *ctx);
  1283. static void
  1284. ctx_sched_in(struct perf_event_context *ctx,
  1285. struct perf_cpu_context *cpuctx,
  1286. enum event_type_t event_type,
  1287. struct task_struct *task);
  1288. static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
  1289. struct perf_event_context *ctx,
  1290. struct task_struct *task)
  1291. {
  1292. cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
  1293. if (ctx)
  1294. ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
  1295. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
  1296. if (ctx)
  1297. ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
  1298. }
  1299. /*
  1300. * Cross CPU call to install and enable a performance event
  1301. *
  1302. * Must be called with ctx->mutex held
  1303. */
  1304. static int __perf_install_in_context(void *info)
  1305. {
  1306. struct perf_event *event = info;
  1307. struct perf_event_context *ctx = event->ctx;
  1308. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1309. struct perf_event_context *task_ctx = cpuctx->task_ctx;
  1310. struct task_struct *task = current;
  1311. perf_ctx_lock(cpuctx, task_ctx);
  1312. perf_pmu_disable(cpuctx->ctx.pmu);
  1313. /*
  1314. * If there was an active task_ctx schedule it out.
  1315. */
  1316. if (task_ctx)
  1317. task_ctx_sched_out(task_ctx);
  1318. /*
  1319. * If the context we're installing events in is not the
  1320. * active task_ctx, flip them.
  1321. */
  1322. if (ctx->task && task_ctx != ctx) {
  1323. if (task_ctx)
  1324. raw_spin_unlock(&task_ctx->lock);
  1325. raw_spin_lock(&ctx->lock);
  1326. task_ctx = ctx;
  1327. }
  1328. if (task_ctx) {
  1329. cpuctx->task_ctx = task_ctx;
  1330. task = task_ctx->task;
  1331. }
  1332. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  1333. update_context_time(ctx);
  1334. /*
  1335. * update cgrp time only if current cgrp
  1336. * matches event->cgrp. Must be done before
  1337. * calling add_event_to_ctx()
  1338. */
  1339. update_cgrp_time_from_event(event);
  1340. add_event_to_ctx(event, ctx);
  1341. /*
  1342. * Schedule everything back in
  1343. */
  1344. perf_event_sched_in(cpuctx, task_ctx, task);
  1345. perf_pmu_enable(cpuctx->ctx.pmu);
  1346. perf_ctx_unlock(cpuctx, task_ctx);
  1347. return 0;
  1348. }
  1349. /*
  1350. * Attach a performance event to a context
  1351. *
  1352. * First we add the event to the list with the hardware enable bit
  1353. * in event->hw_config cleared.
  1354. *
  1355. * If the event is attached to a task which is on a CPU we use a smp
  1356. * call to enable it in the task context. The task might have been
  1357. * scheduled away, but we check this in the smp call again.
  1358. */
  1359. static void
  1360. perf_install_in_context(struct perf_event_context *ctx,
  1361. struct perf_event *event,
  1362. int cpu)
  1363. {
  1364. struct task_struct *task = ctx->task;
  1365. lockdep_assert_held(&ctx->mutex);
  1366. event->ctx = ctx;
  1367. if (!task) {
  1368. /*
  1369. * Per cpu events are installed via an smp call and
  1370. * the install is always successful.
  1371. */
  1372. cpu_function_call(cpu, __perf_install_in_context, event);
  1373. return;
  1374. }
  1375. retry:
  1376. if (!task_function_call(task, __perf_install_in_context, event))
  1377. return;
  1378. raw_spin_lock_irq(&ctx->lock);
  1379. /*
  1380. * If we failed to find a running task, but find the context active now
  1381. * that we've acquired the ctx->lock, retry.
  1382. */
  1383. if (ctx->is_active) {
  1384. raw_spin_unlock_irq(&ctx->lock);
  1385. goto retry;
  1386. }
  1387. /*
  1388. * Since the task isn't running, its safe to add the event, us holding
  1389. * the ctx->lock ensures the task won't get scheduled in.
  1390. */
  1391. add_event_to_ctx(event, ctx);
  1392. raw_spin_unlock_irq(&ctx->lock);
  1393. }
  1394. /*
  1395. * Put a event into inactive state and update time fields.
  1396. * Enabling the leader of a group effectively enables all
  1397. * the group members that aren't explicitly disabled, so we
  1398. * have to update their ->tstamp_enabled also.
  1399. * Note: this works for group members as well as group leaders
  1400. * since the non-leader members' sibling_lists will be empty.
  1401. */
  1402. static void __perf_event_mark_enabled(struct perf_event *event)
  1403. {
  1404. struct perf_event *sub;
  1405. u64 tstamp = perf_event_time(event);
  1406. event->state = PERF_EVENT_STATE_INACTIVE;
  1407. event->tstamp_enabled = tstamp - event->total_time_enabled;
  1408. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  1409. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  1410. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  1411. }
  1412. }
  1413. /*
  1414. * Cross CPU call to enable a performance event
  1415. */
  1416. static int __perf_event_enable(void *info)
  1417. {
  1418. struct perf_event *event = info;
  1419. struct perf_event_context *ctx = event->ctx;
  1420. struct perf_event *leader = event->group_leader;
  1421. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1422. int err;
  1423. if (WARN_ON_ONCE(!ctx->is_active))
  1424. return -EINVAL;
  1425. raw_spin_lock(&ctx->lock);
  1426. update_context_time(ctx);
  1427. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1428. goto unlock;
  1429. /*
  1430. * set current task's cgroup time reference point
  1431. */
  1432. perf_cgroup_set_timestamp(current, ctx);
  1433. __perf_event_mark_enabled(event);
  1434. if (!event_filter_match(event)) {
  1435. if (is_cgroup_event(event))
  1436. perf_cgroup_defer_enabled(event);
  1437. goto unlock;
  1438. }
  1439. /*
  1440. * If the event is in a group and isn't the group leader,
  1441. * then don't put it on unless the group is on.
  1442. */
  1443. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  1444. goto unlock;
  1445. if (!group_can_go_on(event, cpuctx, 1)) {
  1446. err = -EEXIST;
  1447. } else {
  1448. if (event == leader)
  1449. err = group_sched_in(event, cpuctx, ctx);
  1450. else
  1451. err = event_sched_in(event, cpuctx, ctx);
  1452. }
  1453. if (err) {
  1454. /*
  1455. * If this event can't go on and it's part of a
  1456. * group, then the whole group has to come off.
  1457. */
  1458. if (leader != event)
  1459. group_sched_out(leader, cpuctx, ctx);
  1460. if (leader->attr.pinned) {
  1461. update_group_times(leader);
  1462. leader->state = PERF_EVENT_STATE_ERROR;
  1463. }
  1464. }
  1465. unlock:
  1466. raw_spin_unlock(&ctx->lock);
  1467. return 0;
  1468. }
  1469. /*
  1470. * Enable a event.
  1471. *
  1472. * If event->ctx is a cloned context, callers must make sure that
  1473. * every task struct that event->ctx->task could possibly point to
  1474. * remains valid. This condition is satisfied when called through
  1475. * perf_event_for_each_child or perf_event_for_each as described
  1476. * for perf_event_disable.
  1477. */
  1478. void perf_event_enable(struct perf_event *event)
  1479. {
  1480. struct perf_event_context *ctx = event->ctx;
  1481. struct task_struct *task = ctx->task;
  1482. if (!task) {
  1483. /*
  1484. * Enable the event on the cpu that it's on
  1485. */
  1486. cpu_function_call(event->cpu, __perf_event_enable, event);
  1487. return;
  1488. }
  1489. raw_spin_lock_irq(&ctx->lock);
  1490. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1491. goto out;
  1492. /*
  1493. * If the event is in error state, clear that first.
  1494. * That way, if we see the event in error state below, we
  1495. * know that it has gone back into error state, as distinct
  1496. * from the task having been scheduled away before the
  1497. * cross-call arrived.
  1498. */
  1499. if (event->state == PERF_EVENT_STATE_ERROR)
  1500. event->state = PERF_EVENT_STATE_OFF;
  1501. retry:
  1502. if (!ctx->is_active) {
  1503. __perf_event_mark_enabled(event);
  1504. goto out;
  1505. }
  1506. raw_spin_unlock_irq(&ctx->lock);
  1507. if (!task_function_call(task, __perf_event_enable, event))
  1508. return;
  1509. raw_spin_lock_irq(&ctx->lock);
  1510. /*
  1511. * If the context is active and the event is still off,
  1512. * we need to retry the cross-call.
  1513. */
  1514. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
  1515. /*
  1516. * task could have been flipped by a concurrent
  1517. * perf_event_context_sched_out()
  1518. */
  1519. task = ctx->task;
  1520. goto retry;
  1521. }
  1522. out:
  1523. raw_spin_unlock_irq(&ctx->lock);
  1524. }
  1525. EXPORT_SYMBOL_GPL(perf_event_enable);
  1526. int perf_event_refresh(struct perf_event *event, int refresh)
  1527. {
  1528. /*
  1529. * not supported on inherited events
  1530. */
  1531. if (event->attr.inherit || !is_sampling_event(event))
  1532. return -EINVAL;
  1533. atomic_add(refresh, &event->event_limit);
  1534. perf_event_enable(event);
  1535. return 0;
  1536. }
  1537. EXPORT_SYMBOL_GPL(perf_event_refresh);
  1538. static void ctx_sched_out(struct perf_event_context *ctx,
  1539. struct perf_cpu_context *cpuctx,
  1540. enum event_type_t event_type)
  1541. {
  1542. struct perf_event *event;
  1543. int is_active = ctx->is_active;
  1544. ctx->is_active &= ~event_type;
  1545. if (likely(!ctx->nr_events))
  1546. return;
  1547. update_context_time(ctx);
  1548. update_cgrp_time_from_cpuctx(cpuctx);
  1549. if (!ctx->nr_active)
  1550. return;
  1551. perf_pmu_disable(ctx->pmu);
  1552. if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
  1553. list_for_each_entry(event, &ctx->pinned_groups, group_entry)
  1554. group_sched_out(event, cpuctx, ctx);
  1555. }
  1556. if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
  1557. list_for_each_entry(event, &ctx->flexible_groups, group_entry)
  1558. group_sched_out(event, cpuctx, ctx);
  1559. }
  1560. perf_pmu_enable(ctx->pmu);
  1561. }
  1562. /*
  1563. * Test whether two contexts are equivalent, i.e. whether they
  1564. * have both been cloned from the same version of the same context
  1565. * and they both have the same number of enabled events.
  1566. * If the number of enabled events is the same, then the set
  1567. * of enabled events should be the same, because these are both
  1568. * inherited contexts, therefore we can't access individual events
  1569. * in them directly with an fd; we can only enable/disable all
  1570. * events via prctl, or enable/disable all events in a family
  1571. * via ioctl, which will have the same effect on both contexts.
  1572. */
  1573. static int context_equiv(struct perf_event_context *ctx1,
  1574. struct perf_event_context *ctx2)
  1575. {
  1576. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  1577. && ctx1->parent_gen == ctx2->parent_gen
  1578. && !ctx1->pin_count && !ctx2->pin_count;
  1579. }
  1580. static void __perf_event_sync_stat(struct perf_event *event,
  1581. struct perf_event *next_event)
  1582. {
  1583. u64 value;
  1584. if (!event->attr.inherit_stat)
  1585. return;
  1586. /*
  1587. * Update the event value, we cannot use perf_event_read()
  1588. * because we're in the middle of a context switch and have IRQs
  1589. * disabled, which upsets smp_call_function_single(), however
  1590. * we know the event must be on the current CPU, therefore we
  1591. * don't need to use it.
  1592. */
  1593. switch (event->state) {
  1594. case PERF_EVENT_STATE_ACTIVE:
  1595. event->pmu->read(event);
  1596. /* fall-through */
  1597. case PERF_EVENT_STATE_INACTIVE:
  1598. update_event_times(event);
  1599. break;
  1600. default:
  1601. break;
  1602. }
  1603. /*
  1604. * In order to keep per-task stats reliable we need to flip the event
  1605. * values when we flip the contexts.
  1606. */
  1607. value = local64_read(&next_event->count);
  1608. value = local64_xchg(&event->count, value);
  1609. local64_set(&next_event->count, value);
  1610. swap(event->total_time_enabled, next_event->total_time_enabled);
  1611. swap(event->total_time_running, next_event->total_time_running);
  1612. /*
  1613. * Since we swizzled the values, update the user visible data too.
  1614. */
  1615. perf_event_update_userpage(event);
  1616. perf_event_update_userpage(next_event);
  1617. }
  1618. #define list_next_entry(pos, member) \
  1619. list_entry(pos->member.next, typeof(*pos), member)
  1620. static void perf_event_sync_stat(struct perf_event_context *ctx,
  1621. struct perf_event_context *next_ctx)
  1622. {
  1623. struct perf_event *event, *next_event;
  1624. if (!ctx->nr_stat)
  1625. return;
  1626. update_context_time(ctx);
  1627. event = list_first_entry(&ctx->event_list,
  1628. struct perf_event, event_entry);
  1629. next_event = list_first_entry(&next_ctx->event_list,
  1630. struct perf_event, event_entry);
  1631. while (&event->event_entry != &ctx->event_list &&
  1632. &next_event->event_entry != &next_ctx->event_list) {
  1633. __perf_event_sync_stat(event, next_event);
  1634. event = list_next_entry(event, event_entry);
  1635. next_event = list_next_entry(next_event, event_entry);
  1636. }
  1637. }
  1638. static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
  1639. struct task_struct *next)
  1640. {
  1641. struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
  1642. struct perf_event_context *next_ctx;
  1643. struct perf_event_context *parent;
  1644. struct perf_cpu_context *cpuctx;
  1645. int do_switch = 1;
  1646. if (likely(!ctx))
  1647. return;
  1648. cpuctx = __get_cpu_context(ctx);
  1649. if (!cpuctx->task_ctx)
  1650. return;
  1651. rcu_read_lock();
  1652. parent = rcu_dereference(ctx->parent_ctx);
  1653. next_ctx = next->perf_event_ctxp[ctxn];
  1654. if (parent && next_ctx &&
  1655. rcu_dereference(next_ctx->parent_ctx) == parent) {
  1656. /*
  1657. * Looks like the two contexts are clones, so we might be
  1658. * able to optimize the context switch. We lock both
  1659. * contexts and check that they are clones under the
  1660. * lock (including re-checking that neither has been
  1661. * uncloned in the meantime). It doesn't matter which
  1662. * order we take the locks because no other cpu could
  1663. * be trying to lock both of these tasks.
  1664. */
  1665. raw_spin_lock(&ctx->lock);
  1666. raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  1667. if (context_equiv(ctx, next_ctx)) {
  1668. /*
  1669. * XXX do we need a memory barrier of sorts
  1670. * wrt to rcu_dereference() of perf_event_ctxp
  1671. */
  1672. task->perf_event_ctxp[ctxn] = next_ctx;
  1673. next->perf_event_ctxp[ctxn] = ctx;
  1674. ctx->task = next;
  1675. next_ctx->task = task;
  1676. do_switch = 0;
  1677. perf_event_sync_stat(ctx, next_ctx);
  1678. }
  1679. raw_spin_unlock(&next_ctx->lock);
  1680. raw_spin_unlock(&ctx->lock);
  1681. }
  1682. rcu_read_unlock();
  1683. if (do_switch) {
  1684. raw_spin_lock(&ctx->lock);
  1685. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1686. cpuctx->task_ctx = NULL;
  1687. raw_spin_unlock(&ctx->lock);
  1688. }
  1689. }
  1690. #define for_each_task_context_nr(ctxn) \
  1691. for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
  1692. /*
  1693. * Called from scheduler to remove the events of the current task,
  1694. * with interrupts disabled.
  1695. *
  1696. * We stop each event and update the event value in event->count.
  1697. *
  1698. * This does not protect us against NMI, but disable()
  1699. * sets the disabled bit in the control field of event _before_
  1700. * accessing the event control register. If a NMI hits, then it will
  1701. * not restart the event.
  1702. */
  1703. void __perf_event_task_sched_out(struct task_struct *task,
  1704. struct task_struct *next)
  1705. {
  1706. int ctxn;
  1707. for_each_task_context_nr(ctxn)
  1708. perf_event_context_sched_out(task, ctxn, next);
  1709. /*
  1710. * if cgroup events exist on this CPU, then we need
  1711. * to check if we have to switch out PMU state.
  1712. * cgroup event are system-wide mode only
  1713. */
  1714. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1715. perf_cgroup_sched_out(task, next);
  1716. }
  1717. static void task_ctx_sched_out(struct perf_event_context *ctx)
  1718. {
  1719. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1720. if (!cpuctx->task_ctx)
  1721. return;
  1722. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1723. return;
  1724. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1725. cpuctx->task_ctx = NULL;
  1726. }
  1727. /*
  1728. * Called with IRQs disabled
  1729. */
  1730. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  1731. enum event_type_t event_type)
  1732. {
  1733. ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
  1734. }
  1735. static void
  1736. ctx_pinned_sched_in(struct perf_event_context *ctx,
  1737. struct perf_cpu_context *cpuctx)
  1738. {
  1739. struct perf_event *event;
  1740. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  1741. if (event->state <= PERF_EVENT_STATE_OFF)
  1742. continue;
  1743. if (!event_filter_match(event))
  1744. continue;
  1745. /* may need to reset tstamp_enabled */
  1746. if (is_cgroup_event(event))
  1747. perf_cgroup_mark_enabled(event, ctx);
  1748. if (group_can_go_on(event, cpuctx, 1))
  1749. group_sched_in(event, cpuctx, ctx);
  1750. /*
  1751. * If this pinned group hasn't been scheduled,
  1752. * put it in error state.
  1753. */
  1754. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1755. update_group_times(event);
  1756. event->state = PERF_EVENT_STATE_ERROR;
  1757. }
  1758. }
  1759. }
  1760. static void
  1761. ctx_flexible_sched_in(struct perf_event_context *ctx,
  1762. struct perf_cpu_context *cpuctx)
  1763. {
  1764. struct perf_event *event;
  1765. int can_add_hw = 1;
  1766. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  1767. /* Ignore events in OFF or ERROR state */
  1768. if (event->state <= PERF_EVENT_STATE_OFF)
  1769. continue;
  1770. /*
  1771. * Listen to the 'cpu' scheduling filter constraint
  1772. * of events:
  1773. */
  1774. if (!event_filter_match(event))
  1775. continue;
  1776. /* may need to reset tstamp_enabled */
  1777. if (is_cgroup_event(event))
  1778. perf_cgroup_mark_enabled(event, ctx);
  1779. if (group_can_go_on(event, cpuctx, can_add_hw)) {
  1780. if (group_sched_in(event, cpuctx, ctx))
  1781. can_add_hw = 0;
  1782. }
  1783. }
  1784. }
  1785. static void
  1786. ctx_sched_in(struct perf_event_context *ctx,
  1787. struct perf_cpu_context *cpuctx,
  1788. enum event_type_t event_type,
  1789. struct task_struct *task)
  1790. {
  1791. u64 now;
  1792. int is_active = ctx->is_active;
  1793. ctx->is_active |= event_type;
  1794. if (likely(!ctx->nr_events))
  1795. return;
  1796. now = perf_clock();
  1797. ctx->timestamp = now;
  1798. perf_cgroup_set_timestamp(task, ctx);
  1799. /*
  1800. * First go through the list and put on any pinned groups
  1801. * in order to give them the best chance of going on.
  1802. */
  1803. if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
  1804. ctx_pinned_sched_in(ctx, cpuctx);
  1805. /* Then walk through the lower prio flexible groups */
  1806. if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
  1807. ctx_flexible_sched_in(ctx, cpuctx);
  1808. }
  1809. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  1810. enum event_type_t event_type,
  1811. struct task_struct *task)
  1812. {
  1813. struct perf_event_context *ctx = &cpuctx->ctx;
  1814. ctx_sched_in(ctx, cpuctx, event_type, task);
  1815. }
  1816. static void perf_event_context_sched_in(struct perf_event_context *ctx,
  1817. struct task_struct *task)
  1818. {
  1819. struct perf_cpu_context *cpuctx;
  1820. cpuctx = __get_cpu_context(ctx);
  1821. if (cpuctx->task_ctx == ctx)
  1822. return;
  1823. perf_ctx_lock(cpuctx, ctx);
  1824. perf_pmu_disable(ctx->pmu);
  1825. /*
  1826. * We want to keep the following priority order:
  1827. * cpu pinned (that don't need to move), task pinned,
  1828. * cpu flexible, task flexible.
  1829. */
  1830. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  1831. perf_event_sched_in(cpuctx, ctx, task);
  1832. if (ctx->nr_events)
  1833. cpuctx->task_ctx = ctx;
  1834. perf_pmu_enable(ctx->pmu);
  1835. perf_ctx_unlock(cpuctx, ctx);
  1836. /*
  1837. * Since these rotations are per-cpu, we need to ensure the
  1838. * cpu-context we got scheduled on is actually rotating.
  1839. */
  1840. perf_pmu_rotate_start(ctx->pmu);
  1841. }
  1842. /*
  1843. * Called from scheduler to add the events of the current task
  1844. * with interrupts disabled.
  1845. *
  1846. * We restore the event value and then enable it.
  1847. *
  1848. * This does not protect us against NMI, but enable()
  1849. * sets the enabled bit in the control field of event _before_
  1850. * accessing the event control register. If a NMI hits, then it will
  1851. * keep the event running.
  1852. */
  1853. void __perf_event_task_sched_in(struct task_struct *prev,
  1854. struct task_struct *task)
  1855. {
  1856. struct perf_event_context *ctx;
  1857. int ctxn;
  1858. for_each_task_context_nr(ctxn) {
  1859. ctx = task->perf_event_ctxp[ctxn];
  1860. if (likely(!ctx))
  1861. continue;
  1862. perf_event_context_sched_in(ctx, task);
  1863. }
  1864. /*
  1865. * if cgroup events exist on this CPU, then we need
  1866. * to check if we have to switch in PMU state.
  1867. * cgroup event are system-wide mode only
  1868. */
  1869. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1870. perf_cgroup_sched_in(prev, task);
  1871. }
  1872. static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
  1873. {
  1874. u64 frequency = event->attr.sample_freq;
  1875. u64 sec = NSEC_PER_SEC;
  1876. u64 divisor, dividend;
  1877. int count_fls, nsec_fls, frequency_fls, sec_fls;
  1878. count_fls = fls64(count);
  1879. nsec_fls = fls64(nsec);
  1880. frequency_fls = fls64(frequency);
  1881. sec_fls = 30;
  1882. /*
  1883. * We got @count in @nsec, with a target of sample_freq HZ
  1884. * the target period becomes:
  1885. *
  1886. * @count * 10^9
  1887. * period = -------------------
  1888. * @nsec * sample_freq
  1889. *
  1890. */
  1891. /*
  1892. * Reduce accuracy by one bit such that @a and @b converge
  1893. * to a similar magnitude.
  1894. */
  1895. #define REDUCE_FLS(a, b) \
  1896. do { \
  1897. if (a##_fls > b##_fls) { \
  1898. a >>= 1; \
  1899. a##_fls--; \
  1900. } else { \
  1901. b >>= 1; \
  1902. b##_fls--; \
  1903. } \
  1904. } while (0)
  1905. /*
  1906. * Reduce accuracy until either term fits in a u64, then proceed with
  1907. * the other, so that finally we can do a u64/u64 division.
  1908. */
  1909. while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
  1910. REDUCE_FLS(nsec, frequency);
  1911. REDUCE_FLS(sec, count);
  1912. }
  1913. if (count_fls + sec_fls > 64) {
  1914. divisor = nsec * frequency;
  1915. while (count_fls + sec_fls > 64) {
  1916. REDUCE_FLS(count, sec);
  1917. divisor >>= 1;
  1918. }
  1919. dividend = count * sec;
  1920. } else {
  1921. dividend = count * sec;
  1922. while (nsec_fls + frequency_fls > 64) {
  1923. REDUCE_FLS(nsec, frequency);
  1924. dividend >>= 1;
  1925. }
  1926. divisor = nsec * frequency;
  1927. }
  1928. if (!divisor)
  1929. return dividend;
  1930. return div64_u64(dividend, divisor);
  1931. }
  1932. static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
  1933. {
  1934. struct hw_perf_event *hwc = &event->hw;
  1935. s64 period, sample_period;
  1936. s64 delta;
  1937. period = perf_calculate_period(event, nsec, count);
  1938. delta = (s64)(period - hwc->sample_period);
  1939. delta = (delta + 7) / 8; /* low pass filter */
  1940. sample_period = hwc->sample_period + delta;
  1941. if (!sample_period)
  1942. sample_period = 1;
  1943. hwc->sample_period = sample_period;
  1944. if (local64_read(&hwc->period_left) > 8*sample_period) {
  1945. event->pmu->stop(event, PERF_EF_UPDATE);
  1946. local64_set(&hwc->period_left, 0);
  1947. event->pmu->start(event, PERF_EF_RELOAD);
  1948. }
  1949. }
  1950. static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
  1951. {
  1952. struct perf_event *event;
  1953. struct hw_perf_event *hwc;
  1954. u64 interrupts, now;
  1955. s64 delta;
  1956. if (!ctx->nr_freq)
  1957. return;
  1958. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  1959. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1960. continue;
  1961. if (!event_filter_match(event))
  1962. continue;
  1963. hwc = &event->hw;
  1964. interrupts = hwc->interrupts;
  1965. hwc->interrupts = 0;
  1966. /*
  1967. * unthrottle events on the tick
  1968. */
  1969. if (interrupts == MAX_INTERRUPTS) {
  1970. perf_log_throttle(event, 1);
  1971. event->pmu->start(event, 0);
  1972. }
  1973. if (!event->attr.freq || !event->attr.sample_freq)
  1974. continue;
  1975. event->pmu->read(event);
  1976. now = local64_read(&event->count);
  1977. delta = now - hwc->freq_count_stamp;
  1978. hwc->freq_count_stamp = now;
  1979. if (delta > 0)
  1980. perf_adjust_period(event, period, delta);
  1981. }
  1982. }
  1983. /*
  1984. * Round-robin a context's events:
  1985. */
  1986. static void rotate_ctx(struct perf_event_context *ctx)
  1987. {
  1988. /*
  1989. * Rotate the first entry last of non-pinned groups. Rotation might be
  1990. * disabled by the inheritance code.
  1991. */
  1992. if (!ctx->rotate_disable)
  1993. list_rotate_left(&ctx->flexible_groups);
  1994. }
  1995. /*
  1996. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  1997. * because they're strictly cpu affine and rotate_start is called with IRQs
  1998. * disabled, while rotate_context is called from IRQ context.
  1999. */
  2000. static void perf_rotate_context(struct perf_cpu_context *cpuctx)
  2001. {
  2002. u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
  2003. struct perf_event_context *ctx = NULL;
  2004. int rotate = 0, remove = 1, freq = 0;
  2005. if (cpuctx->ctx.nr_events) {
  2006. remove = 0;
  2007. if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
  2008. rotate = 1;
  2009. if (cpuctx->ctx.nr_freq)
  2010. freq = 1;
  2011. }
  2012. ctx = cpuctx->task_ctx;
  2013. if (ctx && ctx->nr_events) {
  2014. remove = 0;
  2015. if (ctx->nr_events != ctx->nr_active)
  2016. rotate = 1;
  2017. if (ctx->nr_freq)
  2018. freq = 1;
  2019. }
  2020. if (!rotate && !freq)
  2021. goto done;
  2022. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  2023. perf_pmu_disable(cpuctx->ctx.pmu);
  2024. if (freq) {
  2025. perf_ctx_adjust_freq(&cpuctx->ctx, interval);
  2026. if (ctx)
  2027. perf_ctx_adjust_freq(ctx, interval);
  2028. }
  2029. if (rotate) {
  2030. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  2031. if (ctx)
  2032. ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
  2033. rotate_ctx(&cpuctx->ctx);
  2034. if (ctx)
  2035. rotate_ctx(ctx);
  2036. perf_event_sched_in(cpuctx, ctx, current);
  2037. }
  2038. perf_pmu_enable(cpuctx->ctx.pmu);
  2039. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  2040. done:
  2041. if (remove)
  2042. list_del_init(&cpuctx->rotation_list);
  2043. }
  2044. void perf_event_task_tick(void)
  2045. {
  2046. struct list_head *head = &__get_cpu_var(rotation_list);
  2047. struct perf_cpu_context *cpuctx, *tmp;
  2048. WARN_ON(!irqs_disabled());
  2049. list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
  2050. if (cpuctx->jiffies_interval == 1 ||
  2051. !(jiffies % cpuctx->jiffies_interval))
  2052. perf_rotate_context(cpuctx);
  2053. }
  2054. }
  2055. static int event_enable_on_exec(struct perf_event *event,
  2056. struct perf_event_context *ctx)
  2057. {
  2058. if (!event->attr.enable_on_exec)
  2059. return 0;
  2060. event->attr.enable_on_exec = 0;
  2061. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  2062. return 0;
  2063. __perf_event_mark_enabled(event);
  2064. return 1;
  2065. }
  2066. /*
  2067. * Enable all of a task's events that have been marked enable-on-exec.
  2068. * This expects task == current.
  2069. */
  2070. static void perf_event_enable_on_exec(struct perf_event_context *ctx)
  2071. {
  2072. struct perf_event *event;
  2073. unsigned long flags;
  2074. int enabled = 0;
  2075. int ret;
  2076. local_irq_save(flags);
  2077. if (!ctx || !ctx->nr_events)
  2078. goto out;
  2079. /*
  2080. * We must ctxsw out cgroup events to avoid conflict
  2081. * when invoking perf_task_event_sched_in() later on
  2082. * in this function. Otherwise we end up trying to
  2083. * ctxswin cgroup events which are already scheduled
  2084. * in.
  2085. */
  2086. perf_cgroup_sched_out(current, NULL);
  2087. raw_spin_lock(&ctx->lock);
  2088. task_ctx_sched_out(ctx);
  2089. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  2090. ret = event_enable_on_exec(event, ctx);
  2091. if (ret)
  2092. enabled = 1;
  2093. }
  2094. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  2095. ret = event_enable_on_exec(event, ctx);
  2096. if (ret)
  2097. enabled = 1;
  2098. }
  2099. /*
  2100. * Unclone this context if we enabled any event.
  2101. */
  2102. if (enabled)
  2103. unclone_ctx(ctx);
  2104. raw_spin_unlock(&ctx->lock);
  2105. /*
  2106. * Also calls ctxswin for cgroup events, if any:
  2107. */
  2108. perf_event_context_sched_in(ctx, ctx->task);
  2109. out:
  2110. local_irq_restore(flags);
  2111. }
  2112. /*
  2113. * Cross CPU call to read the hardware event
  2114. */
  2115. static void __perf_event_read(void *info)
  2116. {
  2117. struct perf_event *event = info;
  2118. struct perf_event_context *ctx = event->ctx;
  2119. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  2120. /*
  2121. * If this is a task context, we need to check whether it is
  2122. * the current task context of this cpu. If not it has been
  2123. * scheduled out before the smp call arrived. In that case
  2124. * event->count would have been updated to a recent sample
  2125. * when the event was scheduled out.
  2126. */
  2127. if (ctx->task && cpuctx->task_ctx != ctx)
  2128. return;
  2129. raw_spin_lock(&ctx->lock);
  2130. if (ctx->is_active) {
  2131. update_context_time(ctx);
  2132. update_cgrp_time_from_event(event);
  2133. }
  2134. update_event_times(event);
  2135. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2136. event->pmu->read(event);
  2137. raw_spin_unlock(&ctx->lock);
  2138. }
  2139. static inline u64 perf_event_count(struct perf_event *event)
  2140. {
  2141. return local64_read(&event->count) + atomic64_read(&event->child_count);
  2142. }
  2143. static u64 perf_event_read(struct perf_event *event)
  2144. {
  2145. /*
  2146. * If event is enabled and currently active on a CPU, update the
  2147. * value in the event structure:
  2148. */
  2149. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  2150. smp_call_function_single(event->oncpu,
  2151. __perf_event_read, event, 1);
  2152. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  2153. struct perf_event_context *ctx = event->ctx;
  2154. unsigned long flags;
  2155. raw_spin_lock_irqsave(&ctx->lock, flags);
  2156. /*
  2157. * may read while context is not active
  2158. * (e.g., thread is blocked), in that case
  2159. * we cannot update context time
  2160. */
  2161. if (ctx->is_active) {
  2162. update_context_time(ctx);
  2163. update_cgrp_time_from_event(event);
  2164. }
  2165. update_event_times(event);
  2166. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2167. }
  2168. return perf_event_count(event);
  2169. }
  2170. /*
  2171. * Initialize the perf_event context in a task_struct:
  2172. */
  2173. static void __perf_event_init_context(struct perf_event_context *ctx)
  2174. {
  2175. raw_spin_lock_init(&ctx->lock);
  2176. mutex_init(&ctx->mutex);
  2177. INIT_LIST_HEAD(&ctx->pinned_groups);
  2178. INIT_LIST_HEAD(&ctx->flexible_groups);
  2179. INIT_LIST_HEAD(&ctx->event_list);
  2180. atomic_set(&ctx->refcount, 1);
  2181. }
  2182. static struct perf_event_context *
  2183. alloc_perf_context(struct pmu *pmu, struct task_struct *task)
  2184. {
  2185. struct perf_event_context *ctx;
  2186. ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  2187. if (!ctx)
  2188. return NULL;
  2189. __perf_event_init_context(ctx);
  2190. if (task) {
  2191. ctx->task = task;
  2192. get_task_struct(task);
  2193. }
  2194. ctx->pmu = pmu;
  2195. return ctx;
  2196. }
  2197. static struct task_struct *
  2198. find_lively_task_by_vpid(pid_t vpid)
  2199. {
  2200. struct task_struct *task;
  2201. int err;
  2202. rcu_read_lock();
  2203. if (!vpid)
  2204. task = current;
  2205. else
  2206. task = find_task_by_vpid(vpid);
  2207. if (task)
  2208. get_task_struct(task);
  2209. rcu_read_unlock();
  2210. if (!task)
  2211. return ERR_PTR(-ESRCH);
  2212. /* Reuse ptrace permission checks for now. */
  2213. err = -EACCES;
  2214. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  2215. goto errout;
  2216. return task;
  2217. errout:
  2218. put_task_struct(task);
  2219. return ERR_PTR(err);
  2220. }
  2221. /*
  2222. * Returns a matching context with refcount and pincount.
  2223. */
  2224. static struct perf_event_context *
  2225. find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
  2226. {
  2227. struct perf_event_context *ctx;
  2228. struct perf_cpu_context *cpuctx;
  2229. unsigned long flags;
  2230. int ctxn, err;
  2231. if (!task) {
  2232. /* Must be root to operate on a CPU event: */
  2233. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2234. return ERR_PTR(-EACCES);
  2235. /*
  2236. * We could be clever and allow to attach a event to an
  2237. * offline CPU and activate it when the CPU comes up, but
  2238. * that's for later.
  2239. */
  2240. if (!cpu_online(cpu))
  2241. return ERR_PTR(-ENODEV);
  2242. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  2243. ctx = &cpuctx->ctx;
  2244. get_ctx(ctx);
  2245. ++ctx->pin_count;
  2246. return ctx;
  2247. }
  2248. err = -EINVAL;
  2249. ctxn = pmu->task_ctx_nr;
  2250. if (ctxn < 0)
  2251. goto errout;
  2252. retry:
  2253. ctx = perf_lock_task_context(task, ctxn, &flags);
  2254. if (ctx) {
  2255. unclone_ctx(ctx);
  2256. ++ctx->pin_count;
  2257. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2258. } else {
  2259. ctx = alloc_perf_context(pmu, task);
  2260. err = -ENOMEM;
  2261. if (!ctx)
  2262. goto errout;
  2263. err = 0;
  2264. mutex_lock(&task->perf_event_mutex);
  2265. /*
  2266. * If it has already passed perf_event_exit_task().
  2267. * we must see PF_EXITING, it takes this mutex too.
  2268. */
  2269. if (task->flags & PF_EXITING)
  2270. err = -ESRCH;
  2271. else if (task->perf_event_ctxp[ctxn])
  2272. err = -EAGAIN;
  2273. else {
  2274. get_ctx(ctx);
  2275. ++ctx->pin_count;
  2276. rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
  2277. }
  2278. mutex_unlock(&task->perf_event_mutex);
  2279. if (unlikely(err)) {
  2280. put_ctx(ctx);
  2281. if (err == -EAGAIN)
  2282. goto retry;
  2283. goto errout;
  2284. }
  2285. }
  2286. return ctx;
  2287. errout:
  2288. return ERR_PTR(err);
  2289. }
  2290. static void perf_event_free_filter(struct perf_event *event);
  2291. static void free_event_rcu(struct rcu_head *head)
  2292. {
  2293. struct perf_event *event;
  2294. event = container_of(head, struct perf_event, rcu_head);
  2295. if (event->ns)
  2296. put_pid_ns(event->ns);
  2297. perf_event_free_filter(event);
  2298. kfree(event);
  2299. }
  2300. static void ring_buffer_put(struct ring_buffer *rb);
  2301. static void free_event(struct perf_event *event)
  2302. {
  2303. irq_work_sync(&event->pending);
  2304. if (!event->parent) {
  2305. if (event->attach_state & PERF_ATTACH_TASK)
  2306. jump_label_dec(&perf_sched_events);
  2307. if (event->attr.mmap || event->attr.mmap_data)
  2308. atomic_dec(&nr_mmap_events);
  2309. if (event->attr.comm)
  2310. atomic_dec(&nr_comm_events);
  2311. if (event->attr.task)
  2312. atomic_dec(&nr_task_events);
  2313. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
  2314. put_callchain_buffers();
  2315. if (is_cgroup_event(event)) {
  2316. atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
  2317. jump_label_dec(&perf_sched_events);
  2318. }
  2319. }
  2320. if (event->rb) {
  2321. ring_buffer_put(event->rb);
  2322. event->rb = NULL;
  2323. }
  2324. if (is_cgroup_event(event))
  2325. perf_detach_cgroup(event);
  2326. if (event->destroy)
  2327. event->destroy(event);
  2328. if (event->ctx)
  2329. put_ctx(event->ctx);
  2330. call_rcu(&event->rcu_head, free_event_rcu);
  2331. }
  2332. int perf_event_release_kernel(struct perf_event *event)
  2333. {
  2334. struct perf_event_context *ctx = event->ctx;
  2335. WARN_ON_ONCE(ctx->parent_ctx);
  2336. /*
  2337. * There are two ways this annotation is useful:
  2338. *
  2339. * 1) there is a lock recursion from perf_event_exit_task
  2340. * see the comment there.
  2341. *
  2342. * 2) there is a lock-inversion with mmap_sem through
  2343. * perf_event_read_group(), which takes faults while
  2344. * holding ctx->mutex, however this is called after
  2345. * the last filedesc died, so there is no possibility
  2346. * to trigger the AB-BA case.
  2347. */
  2348. mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
  2349. raw_spin_lock_irq(&ctx->lock);
  2350. perf_group_detach(event);
  2351. raw_spin_unlock_irq(&ctx->lock);
  2352. perf_remove_from_context(event);
  2353. mutex_unlock(&ctx->mutex);
  2354. free_event(event);
  2355. return 0;
  2356. }
  2357. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  2358. /*
  2359. * Called when the last reference to the file is gone.
  2360. */
  2361. static int perf_release(struct inode *inode, struct file *file)
  2362. {
  2363. struct perf_event *event = file->private_data;
  2364. struct task_struct *owner;
  2365. file->private_data = NULL;
  2366. rcu_read_lock();
  2367. owner = ACCESS_ONCE(event->owner);
  2368. /*
  2369. * Matches the smp_wmb() in perf_event_exit_task(). If we observe
  2370. * !owner it means the list deletion is complete and we can indeed
  2371. * free this event, otherwise we need to serialize on
  2372. * owner->perf_event_mutex.
  2373. */
  2374. smp_read_barrier_depends();
  2375. if (owner) {
  2376. /*
  2377. * Since delayed_put_task_struct() also drops the last
  2378. * task reference we can safely take a new reference
  2379. * while holding the rcu_read_lock().
  2380. */
  2381. get_task_struct(owner);
  2382. }
  2383. rcu_read_unlock();
  2384. if (owner) {
  2385. mutex_lock(&owner->perf_event_mutex);
  2386. /*
  2387. * We have to re-check the event->owner field, if it is cleared
  2388. * we raced with perf_event_exit_task(), acquiring the mutex
  2389. * ensured they're done, and we can proceed with freeing the
  2390. * event.
  2391. */
  2392. if (event->owner)
  2393. list_del_init(&event->owner_entry);
  2394. mutex_unlock(&owner->perf_event_mutex);
  2395. put_task_struct(owner);
  2396. }
  2397. return perf_event_release_kernel(event);
  2398. }
  2399. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  2400. {
  2401. struct perf_event *child;
  2402. u64 total = 0;
  2403. *enabled = 0;
  2404. *running = 0;
  2405. mutex_lock(&event->child_mutex);
  2406. total += perf_event_read(event);
  2407. *enabled += event->total_time_enabled +
  2408. atomic64_read(&event->child_total_time_enabled);
  2409. *running += event->total_time_running +
  2410. atomic64_read(&event->child_total_time_running);
  2411. list_for_each_entry(child, &event->child_list, child_list) {
  2412. total += perf_event_read(child);
  2413. *enabled += child->total_time_enabled;
  2414. *running += child->total_time_running;
  2415. }
  2416. mutex_unlock(&event->child_mutex);
  2417. return total;
  2418. }
  2419. EXPORT_SYMBOL_GPL(perf_event_read_value);
  2420. static int perf_event_read_group(struct perf_event *event,
  2421. u64 read_format, char __user *buf)
  2422. {
  2423. struct perf_event *leader = event->group_leader, *sub;
  2424. int n = 0, size = 0, ret = -EFAULT;
  2425. struct perf_event_context *ctx = leader->ctx;
  2426. u64 values[5];
  2427. u64 count, enabled, running;
  2428. mutex_lock(&ctx->mutex);
  2429. count = perf_event_read_value(leader, &enabled, &running);
  2430. values[n++] = 1 + leader->nr_siblings;
  2431. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2432. values[n++] = enabled;
  2433. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2434. values[n++] = running;
  2435. values[n++] = count;
  2436. if (read_format & PERF_FORMAT_ID)
  2437. values[n++] = primary_event_id(leader);
  2438. size = n * sizeof(u64);
  2439. if (copy_to_user(buf, values, size))
  2440. goto unlock;
  2441. ret = size;
  2442. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2443. n = 0;
  2444. values[n++] = perf_event_read_value(sub, &enabled, &running);
  2445. if (read_format & PERF_FORMAT_ID)
  2446. values[n++] = primary_event_id(sub);
  2447. size = n * sizeof(u64);
  2448. if (copy_to_user(buf + ret, values, size)) {
  2449. ret = -EFAULT;
  2450. goto unlock;
  2451. }
  2452. ret += size;
  2453. }
  2454. unlock:
  2455. mutex_unlock(&ctx->mutex);
  2456. return ret;
  2457. }
  2458. static int perf_event_read_one(struct perf_event *event,
  2459. u64 read_format, char __user *buf)
  2460. {
  2461. u64 enabled, running;
  2462. u64 values[4];
  2463. int n = 0;
  2464. values[n++] = perf_event_read_value(event, &enabled, &running);
  2465. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2466. values[n++] = enabled;
  2467. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2468. values[n++] = running;
  2469. if (read_format & PERF_FORMAT_ID)
  2470. values[n++] = primary_event_id(event);
  2471. if (copy_to_user(buf, values, n * sizeof(u64)))
  2472. return -EFAULT;
  2473. return n * sizeof(u64);
  2474. }
  2475. /*
  2476. * Read the performance event - simple non blocking version for now
  2477. */
  2478. static ssize_t
  2479. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  2480. {
  2481. u64 read_format = event->attr.read_format;
  2482. int ret;
  2483. /*
  2484. * Return end-of-file for a read on a event that is in
  2485. * error state (i.e. because it was pinned but it couldn't be
  2486. * scheduled on to the CPU at some point).
  2487. */
  2488. if (event->state == PERF_EVENT_STATE_ERROR)
  2489. return 0;
  2490. if (count < event->read_size)
  2491. return -ENOSPC;
  2492. WARN_ON_ONCE(event->ctx->parent_ctx);
  2493. if (read_format & PERF_FORMAT_GROUP)
  2494. ret = perf_event_read_group(event, read_format, buf);
  2495. else
  2496. ret = perf_event_read_one(event, read_format, buf);
  2497. return ret;
  2498. }
  2499. static ssize_t
  2500. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  2501. {
  2502. struct perf_event *event = file->private_data;
  2503. return perf_read_hw(event, buf, count);
  2504. }
  2505. static unsigned int perf_poll(struct file *file, poll_table *wait)
  2506. {
  2507. struct perf_event *event = file->private_data;
  2508. struct ring_buffer *rb;
  2509. unsigned int events = POLL_HUP;
  2510. /*
  2511. * Race between perf_event_set_output() and perf_poll(): perf_poll()
  2512. * grabs the rb reference but perf_event_set_output() overrides it.
  2513. * Here is the timeline for two threads T1, T2:
  2514. * t0: T1, rb = rcu_dereference(event->rb)
  2515. * t1: T2, old_rb = event->rb
  2516. * t2: T2, event->rb = new rb
  2517. * t3: T2, ring_buffer_detach(old_rb)
  2518. * t4: T1, ring_buffer_attach(rb1)
  2519. * t5: T1, poll_wait(event->waitq)
  2520. *
  2521. * To avoid this problem, we grab mmap_mutex in perf_poll()
  2522. * thereby ensuring that the assignment of the new ring buffer
  2523. * and the detachment of the old buffer appear atomic to perf_poll()
  2524. */
  2525. mutex_lock(&event->mmap_mutex);
  2526. rcu_read_lock();
  2527. rb = rcu_dereference(event->rb);
  2528. if (rb) {
  2529. ring_buffer_attach(event, rb);
  2530. events = atomic_xchg(&rb->poll, 0);
  2531. }
  2532. rcu_read_unlock();
  2533. mutex_unlock(&event->mmap_mutex);
  2534. poll_wait(file, &event->waitq, wait);
  2535. return events;
  2536. }
  2537. static void perf_event_reset(struct perf_event *event)
  2538. {
  2539. (void)perf_event_read(event);
  2540. local64_set(&event->count, 0);
  2541. perf_event_update_userpage(event);
  2542. }
  2543. /*
  2544. * Holding the top-level event's child_mutex means that any
  2545. * descendant process that has inherited this event will block
  2546. * in sync_child_event if it goes to exit, thus satisfying the
  2547. * task existence requirements of perf_event_enable/disable.
  2548. */
  2549. static void perf_event_for_each_child(struct perf_event *event,
  2550. void (*func)(struct perf_event *))
  2551. {
  2552. struct perf_event *child;
  2553. WARN_ON_ONCE(event->ctx->parent_ctx);
  2554. mutex_lock(&event->child_mutex);
  2555. func(event);
  2556. list_for_each_entry(child, &event->child_list, child_list)
  2557. func(child);
  2558. mutex_unlock(&event->child_mutex);
  2559. }
  2560. static void perf_event_for_each(struct perf_event *event,
  2561. void (*func)(struct perf_event *))
  2562. {
  2563. struct perf_event_context *ctx = event->ctx;
  2564. struct perf_event *sibling;
  2565. WARN_ON_ONCE(ctx->parent_ctx);
  2566. mutex_lock(&ctx->mutex);
  2567. event = event->group_leader;
  2568. perf_event_for_each_child(event, func);
  2569. func(event);
  2570. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  2571. perf_event_for_each_child(event, func);
  2572. mutex_unlock(&ctx->mutex);
  2573. }
  2574. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  2575. {
  2576. struct perf_event_context *ctx = event->ctx;
  2577. int ret = 0;
  2578. u64 value;
  2579. if (!is_sampling_event(event))
  2580. return -EINVAL;
  2581. if (copy_from_user(&value, arg, sizeof(value)))
  2582. return -EFAULT;
  2583. if (!value)
  2584. return -EINVAL;
  2585. raw_spin_lock_irq(&ctx->lock);
  2586. if (event->attr.freq) {
  2587. if (value > sysctl_perf_event_sample_rate) {
  2588. ret = -EINVAL;
  2589. goto unlock;
  2590. }
  2591. event->attr.sample_freq = value;
  2592. } else {
  2593. event->attr.sample_period = value;
  2594. event->hw.sample_period = value;
  2595. }
  2596. unlock:
  2597. raw_spin_unlock_irq(&ctx->lock);
  2598. return ret;
  2599. }
  2600. static const struct file_operations perf_fops;
  2601. static struct perf_event *perf_fget_light(int fd, int *fput_needed)
  2602. {
  2603. struct file *file;
  2604. file = fget_light(fd, fput_needed);
  2605. if (!file)
  2606. return ERR_PTR(-EBADF);
  2607. if (file->f_op != &perf_fops) {
  2608. fput_light(file, *fput_needed);
  2609. *fput_needed = 0;
  2610. return ERR_PTR(-EBADF);
  2611. }
  2612. return file->private_data;
  2613. }
  2614. static int perf_event_set_output(struct perf_event *event,
  2615. struct perf_event *output_event);
  2616. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  2617. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2618. {
  2619. struct perf_event *event = file->private_data;
  2620. void (*func)(struct perf_event *);
  2621. u32 flags = arg;
  2622. switch (cmd) {
  2623. case PERF_EVENT_IOC_ENABLE:
  2624. func = perf_event_enable;
  2625. break;
  2626. case PERF_EVENT_IOC_DISABLE:
  2627. func = perf_event_disable;
  2628. break;
  2629. case PERF_EVENT_IOC_RESET:
  2630. func = perf_event_reset;
  2631. break;
  2632. case PERF_EVENT_IOC_REFRESH:
  2633. return perf_event_refresh(event, arg);
  2634. case PERF_EVENT_IOC_PERIOD:
  2635. return perf_event_period(event, (u64 __user *)arg);
  2636. case PERF_EVENT_IOC_SET_OUTPUT:
  2637. {
  2638. struct perf_event *output_event = NULL;
  2639. int fput_needed = 0;
  2640. int ret;
  2641. if (arg != -1) {
  2642. output_event = perf_fget_light(arg, &fput_needed);
  2643. if (IS_ERR(output_event))
  2644. return PTR_ERR(output_event);
  2645. }
  2646. ret = perf_event_set_output(event, output_event);
  2647. if (output_event)
  2648. fput_light(output_event->filp, fput_needed);
  2649. return ret;
  2650. }
  2651. case PERF_EVENT_IOC_SET_FILTER:
  2652. return perf_event_set_filter(event, (void __user *)arg);
  2653. default:
  2654. return -ENOTTY;
  2655. }
  2656. if (flags & PERF_IOC_FLAG_GROUP)
  2657. perf_event_for_each(event, func);
  2658. else
  2659. perf_event_for_each_child(event, func);
  2660. return 0;
  2661. }
  2662. int perf_event_task_enable(void)
  2663. {
  2664. struct perf_event *event;
  2665. mutex_lock(&current->perf_event_mutex);
  2666. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2667. perf_event_for_each_child(event, perf_event_enable);
  2668. mutex_unlock(&current->perf_event_mutex);
  2669. return 0;
  2670. }
  2671. int perf_event_task_disable(void)
  2672. {
  2673. struct perf_event *event;
  2674. mutex_lock(&current->perf_event_mutex);
  2675. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2676. perf_event_for_each_child(event, perf_event_disable);
  2677. mutex_unlock(&current->perf_event_mutex);
  2678. return 0;
  2679. }
  2680. #ifndef PERF_EVENT_INDEX_OFFSET
  2681. # define PERF_EVENT_INDEX_OFFSET 0
  2682. #endif
  2683. static int perf_event_index(struct perf_event *event)
  2684. {
  2685. if (event->hw.state & PERF_HES_STOPPED)
  2686. return 0;
  2687. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2688. return 0;
  2689. return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
  2690. }
  2691. static void calc_timer_values(struct perf_event *event,
  2692. u64 *enabled,
  2693. u64 *running)
  2694. {
  2695. u64 now, ctx_time;
  2696. now = perf_clock();
  2697. ctx_time = event->shadow_ctx_time + now;
  2698. *enabled = ctx_time - event->tstamp_enabled;
  2699. *running = ctx_time - event->tstamp_running;
  2700. }
  2701. /*
  2702. * Callers need to ensure there can be no nesting of this function, otherwise
  2703. * the seqlock logic goes bad. We can not serialize this because the arch
  2704. * code calls this from NMI context.
  2705. */
  2706. void perf_event_update_userpage(struct perf_event *event)
  2707. {
  2708. struct perf_event_mmap_page *userpg;
  2709. struct ring_buffer *rb;
  2710. u64 enabled, running;
  2711. rcu_read_lock();
  2712. /*
  2713. * compute total_time_enabled, total_time_running
  2714. * based on snapshot values taken when the event
  2715. * was last scheduled in.
  2716. *
  2717. * we cannot simply called update_context_time()
  2718. * because of locking issue as we can be called in
  2719. * NMI context
  2720. */
  2721. calc_timer_values(event, &enabled, &running);
  2722. rb = rcu_dereference(event->rb);
  2723. if (!rb)
  2724. goto unlock;
  2725. userpg = rb->user_page;
  2726. /*
  2727. * Disable preemption so as to not let the corresponding user-space
  2728. * spin too long if we get preempted.
  2729. */
  2730. preempt_disable();
  2731. ++userpg->lock;
  2732. barrier();
  2733. userpg->index = perf_event_index(event);
  2734. userpg->offset = perf_event_count(event);
  2735. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2736. userpg->offset -= local64_read(&event->hw.prev_count);
  2737. userpg->time_enabled = enabled +
  2738. atomic64_read(&event->child_total_time_enabled);
  2739. userpg->time_running = running +
  2740. atomic64_read(&event->child_total_time_running);
  2741. barrier();
  2742. ++userpg->lock;
  2743. preempt_enable();
  2744. unlock:
  2745. rcu_read_unlock();
  2746. }
  2747. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  2748. {
  2749. struct perf_event *event = vma->vm_file->private_data;
  2750. struct ring_buffer *rb;
  2751. int ret = VM_FAULT_SIGBUS;
  2752. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  2753. if (vmf->pgoff == 0)
  2754. ret = 0;
  2755. return ret;
  2756. }
  2757. rcu_read_lock();
  2758. rb = rcu_dereference(event->rb);
  2759. if (!rb)
  2760. goto unlock;
  2761. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  2762. goto unlock;
  2763. vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
  2764. if (!vmf->page)
  2765. goto unlock;
  2766. get_page(vmf->page);
  2767. vmf->page->mapping = vma->vm_file->f_mapping;
  2768. vmf->page->index = vmf->pgoff;
  2769. ret = 0;
  2770. unlock:
  2771. rcu_read_unlock();
  2772. return ret;
  2773. }
  2774. static void ring_buffer_attach(struct perf_event *event,
  2775. struct ring_buffer *rb)
  2776. {
  2777. unsigned long flags;
  2778. if (!list_empty(&event->rb_entry))
  2779. return;
  2780. spin_lock_irqsave(&rb->event_lock, flags);
  2781. if (!list_empty(&event->rb_entry))
  2782. goto unlock;
  2783. list_add(&event->rb_entry, &rb->event_list);
  2784. unlock:
  2785. spin_unlock_irqrestore(&rb->event_lock, flags);
  2786. }
  2787. static void ring_buffer_detach(struct perf_event *event,
  2788. struct ring_buffer *rb)
  2789. {
  2790. unsigned long flags;
  2791. if (list_empty(&event->rb_entry))
  2792. return;
  2793. spin_lock_irqsave(&rb->event_lock, flags);
  2794. list_del_init(&event->rb_entry);
  2795. wake_up_all(&event->waitq);
  2796. spin_unlock_irqrestore(&rb->event_lock, flags);
  2797. }
  2798. static void ring_buffer_wakeup(struct perf_event *event)
  2799. {
  2800. struct ring_buffer *rb;
  2801. rcu_read_lock();
  2802. rb = rcu_dereference(event->rb);
  2803. list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
  2804. wake_up_all(&event->waitq);
  2805. }
  2806. rcu_read_unlock();
  2807. }
  2808. static void rb_free_rcu(struct rcu_head *rcu_head)
  2809. {
  2810. struct ring_buffer *rb;
  2811. rb = container_of(rcu_head, struct ring_buffer, rcu_head);
  2812. rb_free(rb);
  2813. }
  2814. static struct ring_buffer *ring_buffer_get(struct perf_event *event)
  2815. {
  2816. struct ring_buffer *rb;
  2817. rcu_read_lock();
  2818. rb = rcu_dereference(event->rb);
  2819. if (rb) {
  2820. if (!atomic_inc_not_zero(&rb->refcount))
  2821. rb = NULL;
  2822. }
  2823. rcu_read_unlock();
  2824. return rb;
  2825. }
  2826. static void ring_buffer_put(struct ring_buffer *rb)
  2827. {
  2828. struct perf_event *event, *n;
  2829. unsigned long flags;
  2830. if (!atomic_dec_and_test(&rb->refcount))
  2831. return;
  2832. spin_lock_irqsave(&rb->event_lock, flags);
  2833. list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
  2834. list_del_init(&event->rb_entry);
  2835. wake_up_all(&event->waitq);
  2836. }
  2837. spin_unlock_irqrestore(&rb->event_lock, flags);
  2838. call_rcu(&rb->rcu_head, rb_free_rcu);
  2839. }
  2840. static void perf_mmap_open(struct vm_area_struct *vma)
  2841. {
  2842. struct perf_event *event = vma->vm_file->private_data;
  2843. atomic_inc(&event->mmap_count);
  2844. }
  2845. static void perf_mmap_close(struct vm_area_struct *vma)
  2846. {
  2847. struct perf_event *event = vma->vm_file->private_data;
  2848. if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
  2849. unsigned long size = perf_data_size(event->rb);
  2850. struct user_struct *user = event->mmap_user;
  2851. struct ring_buffer *rb = event->rb;
  2852. atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
  2853. vma->vm_mm->pinned_vm -= event->mmap_locked;
  2854. rcu_assign_pointer(event->rb, NULL);
  2855. ring_buffer_detach(event, rb);
  2856. mutex_unlock(&event->mmap_mutex);
  2857. ring_buffer_put(rb);
  2858. free_uid(user);
  2859. }
  2860. }
  2861. static const struct vm_operations_struct perf_mmap_vmops = {
  2862. .open = perf_mmap_open,
  2863. .close = perf_mmap_close,
  2864. .fault = perf_mmap_fault,
  2865. .page_mkwrite = perf_mmap_fault,
  2866. };
  2867. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  2868. {
  2869. struct perf_event *event = file->private_data;
  2870. unsigned long user_locked, user_lock_limit;
  2871. struct user_struct *user = current_user();
  2872. unsigned long locked, lock_limit;
  2873. struct ring_buffer *rb;
  2874. unsigned long vma_size;
  2875. unsigned long nr_pages;
  2876. long user_extra, extra;
  2877. int ret = 0, flags = 0;
  2878. /*
  2879. * Don't allow mmap() of inherited per-task counters. This would
  2880. * create a performance issue due to all children writing to the
  2881. * same rb.
  2882. */
  2883. if (event->cpu == -1 && event->attr.inherit)
  2884. return -EINVAL;
  2885. if (!(vma->vm_flags & VM_SHARED))
  2886. return -EINVAL;
  2887. vma_size = vma->vm_end - vma->vm_start;
  2888. nr_pages = (vma_size / PAGE_SIZE) - 1;
  2889. /*
  2890. * If we have rb pages ensure they're a power-of-two number, so we
  2891. * can do bitmasks instead of modulo.
  2892. */
  2893. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  2894. return -EINVAL;
  2895. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  2896. return -EINVAL;
  2897. if (vma->vm_pgoff != 0)
  2898. return -EINVAL;
  2899. WARN_ON_ONCE(event->ctx->parent_ctx);
  2900. mutex_lock(&event->mmap_mutex);
  2901. if (event->rb) {
  2902. if (event->rb->nr_pages == nr_pages)
  2903. atomic_inc(&event->rb->refcount);
  2904. else
  2905. ret = -EINVAL;
  2906. goto unlock;
  2907. }
  2908. user_extra = nr_pages + 1;
  2909. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  2910. /*
  2911. * Increase the limit linearly with more CPUs:
  2912. */
  2913. user_lock_limit *= num_online_cpus();
  2914. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  2915. extra = 0;
  2916. if (user_locked > user_lock_limit)
  2917. extra = user_locked - user_lock_limit;
  2918. lock_limit = rlimit(RLIMIT_MEMLOCK);
  2919. lock_limit >>= PAGE_SHIFT;
  2920. locked = vma->vm_mm->pinned_vm + extra;
  2921. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  2922. !capable(CAP_IPC_LOCK)) {
  2923. ret = -EPERM;
  2924. goto unlock;
  2925. }
  2926. WARN_ON(event->rb);
  2927. if (vma->vm_flags & VM_WRITE)
  2928. flags |= RING_BUFFER_WRITABLE;
  2929. rb = rb_alloc(nr_pages,
  2930. event->attr.watermark ? event->attr.wakeup_watermark : 0,
  2931. event->cpu, flags);
  2932. if (!rb) {
  2933. ret = -ENOMEM;
  2934. goto unlock;
  2935. }
  2936. rcu_assign_pointer(event->rb, rb);
  2937. atomic_long_add(user_extra, &user->locked_vm);
  2938. event->mmap_locked = extra;
  2939. event->mmap_user = get_current_user();
  2940. vma->vm_mm->pinned_vm += event->mmap_locked;
  2941. unlock:
  2942. if (!ret)
  2943. atomic_inc(&event->mmap_count);
  2944. mutex_unlock(&event->mmap_mutex);
  2945. vma->vm_flags |= VM_RESERVED;
  2946. vma->vm_ops = &perf_mmap_vmops;
  2947. return ret;
  2948. }
  2949. static int perf_fasync(int fd, struct file *filp, int on)
  2950. {
  2951. struct inode *inode = filp->f_path.dentry->d_inode;
  2952. struct perf_event *event = filp->private_data;
  2953. int retval;
  2954. mutex_lock(&inode->i_mutex);
  2955. retval = fasync_helper(fd, filp, on, &event->fasync);
  2956. mutex_unlock(&inode->i_mutex);
  2957. if (retval < 0)
  2958. return retval;
  2959. return 0;
  2960. }
  2961. static const struct file_operations perf_fops = {
  2962. .llseek = no_llseek,
  2963. .release = perf_release,
  2964. .read = perf_read,
  2965. .poll = perf_poll,
  2966. .unlocked_ioctl = perf_ioctl,
  2967. .compat_ioctl = perf_ioctl,
  2968. .mmap = perf_mmap,
  2969. .fasync = perf_fasync,
  2970. };
  2971. /*
  2972. * Perf event wakeup
  2973. *
  2974. * If there's data, ensure we set the poll() state and publish everything
  2975. * to user-space before waking everybody up.
  2976. */
  2977. void perf_event_wakeup(struct perf_event *event)
  2978. {
  2979. ring_buffer_wakeup(event);
  2980. if (event->pending_kill) {
  2981. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  2982. event->pending_kill = 0;
  2983. }
  2984. }
  2985. static void perf_pending_event(struct irq_work *entry)
  2986. {
  2987. struct perf_event *event = container_of(entry,
  2988. struct perf_event, pending);
  2989. if (event->pending_disable) {
  2990. event->pending_disable = 0;
  2991. __perf_event_disable(event);
  2992. }
  2993. if (event->pending_wakeup) {
  2994. event->pending_wakeup = 0;
  2995. perf_event_wakeup(event);
  2996. }
  2997. }
  2998. /*
  2999. * We assume there is only KVM supporting the callbacks.
  3000. * Later on, we might change it to a list if there is
  3001. * another virtualization implementation supporting the callbacks.
  3002. */
  3003. struct perf_guest_info_callbacks *perf_guest_cbs;
  3004. int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3005. {
  3006. perf_guest_cbs = cbs;
  3007. return 0;
  3008. }
  3009. EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
  3010. int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3011. {
  3012. perf_guest_cbs = NULL;
  3013. return 0;
  3014. }
  3015. EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
  3016. static void __perf_event_header__init_id(struct perf_event_header *header,
  3017. struct perf_sample_data *data,
  3018. struct perf_event *event)
  3019. {
  3020. u64 sample_type = event->attr.sample_type;
  3021. data->type = sample_type;
  3022. header->size += event->id_header_size;
  3023. if (sample_type & PERF_SAMPLE_TID) {
  3024. /* namespace issues */
  3025. data->tid_entry.pid = perf_event_pid(event, current);
  3026. data->tid_entry.tid = perf_event_tid(event, current);
  3027. }
  3028. if (sample_type & PERF_SAMPLE_TIME)
  3029. data->time = perf_clock();
  3030. if (sample_type & PERF_SAMPLE_ID)
  3031. data->id = primary_event_id(event);
  3032. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3033. data->stream_id = event->id;
  3034. if (sample_type & PERF_SAMPLE_CPU) {
  3035. data->cpu_entry.cpu = raw_smp_processor_id();
  3036. data->cpu_entry.reserved = 0;
  3037. }
  3038. }
  3039. void perf_event_header__init_id(struct perf_event_header *header,
  3040. struct perf_sample_data *data,
  3041. struct perf_event *event)
  3042. {
  3043. if (event->attr.sample_id_all)
  3044. __perf_event_header__init_id(header, data, event);
  3045. }
  3046. static void __perf_event__output_id_sample(struct perf_output_handle *handle,
  3047. struct perf_sample_data *data)
  3048. {
  3049. u64 sample_type = data->type;
  3050. if (sample_type & PERF_SAMPLE_TID)
  3051. perf_output_put(handle, data->tid_entry);
  3052. if (sample_type & PERF_SAMPLE_TIME)
  3053. perf_output_put(handle, data->time);
  3054. if (sample_type & PERF_SAMPLE_ID)
  3055. perf_output_put(handle, data->id);
  3056. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3057. perf_output_put(handle, data->stream_id);
  3058. if (sample_type & PERF_SAMPLE_CPU)
  3059. perf_output_put(handle, data->cpu_entry);
  3060. }
  3061. void perf_event__output_id_sample(struct perf_event *event,
  3062. struct perf_output_handle *handle,
  3063. struct perf_sample_data *sample)
  3064. {
  3065. if (event->attr.sample_id_all)
  3066. __perf_event__output_id_sample(handle, sample);
  3067. }
  3068. static void perf_output_read_one(struct perf_output_handle *handle,
  3069. struct perf_event *event,
  3070. u64 enabled, u64 running)
  3071. {
  3072. u64 read_format = event->attr.read_format;
  3073. u64 values[4];
  3074. int n = 0;
  3075. values[n++] = perf_event_count(event);
  3076. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  3077. values[n++] = enabled +
  3078. atomic64_read(&event->child_total_time_enabled);
  3079. }
  3080. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  3081. values[n++] = running +
  3082. atomic64_read(&event->child_total_time_running);
  3083. }
  3084. if (read_format & PERF_FORMAT_ID)
  3085. values[n++] = primary_event_id(event);
  3086. __output_copy(handle, values, n * sizeof(u64));
  3087. }
  3088. /*
  3089. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  3090. */
  3091. static void perf_output_read_group(struct perf_output_handle *handle,
  3092. struct perf_event *event,
  3093. u64 enabled, u64 running)
  3094. {
  3095. struct perf_event *leader = event->group_leader, *sub;
  3096. u64 read_format = event->attr.read_format;
  3097. u64 values[5];
  3098. int n = 0;
  3099. values[n++] = 1 + leader->nr_siblings;
  3100. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  3101. values[n++] = enabled;
  3102. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  3103. values[n++] = running;
  3104. if (leader != event)
  3105. leader->pmu->read(leader);
  3106. values[n++] = perf_event_count(leader);
  3107. if (read_format & PERF_FORMAT_ID)
  3108. values[n++] = primary_event_id(leader);
  3109. __output_copy(handle, values, n * sizeof(u64));
  3110. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  3111. n = 0;
  3112. if (sub != event)
  3113. sub->pmu->read(sub);
  3114. values[n++] = perf_event_count(sub);
  3115. if (read_format & PERF_FORMAT_ID)
  3116. values[n++] = primary_event_id(sub);
  3117. __output_copy(handle, values, n * sizeof(u64));
  3118. }
  3119. }
  3120. #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
  3121. PERF_FORMAT_TOTAL_TIME_RUNNING)
  3122. static void perf_output_read(struct perf_output_handle *handle,
  3123. struct perf_event *event)
  3124. {
  3125. u64 enabled = 0, running = 0;
  3126. u64 read_format = event->attr.read_format;
  3127. /*
  3128. * compute total_time_enabled, total_time_running
  3129. * based on snapshot values taken when the event
  3130. * was last scheduled in.
  3131. *
  3132. * we cannot simply called update_context_time()
  3133. * because of locking issue as we are called in
  3134. * NMI context
  3135. */
  3136. if (read_format & PERF_FORMAT_TOTAL_TIMES)
  3137. calc_timer_values(event, &enabled, &running);
  3138. if (event->attr.read_format & PERF_FORMAT_GROUP)
  3139. perf_output_read_group(handle, event, enabled, running);
  3140. else
  3141. perf_output_read_one(handle, event, enabled, running);
  3142. }
  3143. void perf_output_sample(struct perf_output_handle *handle,
  3144. struct perf_event_header *header,
  3145. struct perf_sample_data *data,
  3146. struct perf_event *event)
  3147. {
  3148. u64 sample_type = data->type;
  3149. perf_output_put(handle, *header);
  3150. if (sample_type & PERF_SAMPLE_IP)
  3151. perf_output_put(handle, data->ip);
  3152. if (sample_type & PERF_SAMPLE_TID)
  3153. perf_output_put(handle, data->tid_entry);
  3154. if (sample_type & PERF_SAMPLE_TIME)
  3155. perf_output_put(handle, data->time);
  3156. if (sample_type & PERF_SAMPLE_ADDR)
  3157. perf_output_put(handle, data->addr);
  3158. if (sample_type & PERF_SAMPLE_ID)
  3159. perf_output_put(handle, data->id);
  3160. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3161. perf_output_put(handle, data->stream_id);
  3162. if (sample_type & PERF_SAMPLE_CPU)
  3163. perf_output_put(handle, data->cpu_entry);
  3164. if (sample_type & PERF_SAMPLE_PERIOD)
  3165. perf_output_put(handle, data->period);
  3166. if (sample_type & PERF_SAMPLE_READ)
  3167. perf_output_read(handle, event);
  3168. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3169. if (data->callchain) {
  3170. int size = 1;
  3171. if (data->callchain)
  3172. size += data->callchain->nr;
  3173. size *= sizeof(u64);
  3174. __output_copy(handle, data->callchain, size);
  3175. } else {
  3176. u64 nr = 0;
  3177. perf_output_put(handle, nr);
  3178. }
  3179. }
  3180. if (sample_type & PERF_SAMPLE_RAW) {
  3181. if (data->raw) {
  3182. perf_output_put(handle, data->raw->size);
  3183. __output_copy(handle, data->raw->data,
  3184. data->raw->size);
  3185. } else {
  3186. struct {
  3187. u32 size;
  3188. u32 data;
  3189. } raw = {
  3190. .size = sizeof(u32),
  3191. .data = 0,
  3192. };
  3193. perf_output_put(handle, raw);
  3194. }
  3195. }
  3196. if (!event->attr.watermark) {
  3197. int wakeup_events = event->attr.wakeup_events;
  3198. if (wakeup_events) {
  3199. struct ring_buffer *rb = handle->rb;
  3200. int events = local_inc_return(&rb->events);
  3201. if (events >= wakeup_events) {
  3202. local_sub(wakeup_events, &rb->events);
  3203. local_inc(&rb->wakeup);
  3204. }
  3205. }
  3206. }
  3207. }
  3208. void perf_prepare_sample(struct perf_event_header *header,
  3209. struct perf_sample_data *data,
  3210. struct perf_event *event,
  3211. struct pt_regs *regs)
  3212. {
  3213. u64 sample_type = event->attr.sample_type;
  3214. header->type = PERF_RECORD_SAMPLE;
  3215. header->size = sizeof(*header) + event->header_size;
  3216. header->misc = 0;
  3217. header->misc |= perf_misc_flags(regs);
  3218. __perf_event_header__init_id(header, data, event);
  3219. if (sample_type & PERF_SAMPLE_IP)
  3220. data->ip = perf_instruction_pointer(regs);
  3221. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3222. int size = 1;
  3223. data->callchain = perf_callchain(regs);
  3224. if (data->callchain)
  3225. size += data->callchain->nr;
  3226. header->size += size * sizeof(u64);
  3227. }
  3228. if (sample_type & PERF_SAMPLE_RAW) {
  3229. int size = sizeof(u32);
  3230. if (data->raw)
  3231. size += data->raw->size;
  3232. else
  3233. size += sizeof(u32);
  3234. WARN_ON_ONCE(size & (sizeof(u64)-1));
  3235. header->size += size;
  3236. }
  3237. }
  3238. static void perf_event_output(struct perf_event *event,
  3239. struct perf_sample_data *data,
  3240. struct pt_regs *regs)
  3241. {
  3242. struct perf_output_handle handle;
  3243. struct perf_event_header header;
  3244. /* protect the callchain buffers */
  3245. rcu_read_lock();
  3246. perf_prepare_sample(&header, data, event, regs);
  3247. if (perf_output_begin(&handle, event, header.size))
  3248. goto exit;
  3249. perf_output_sample(&handle, &header, data, event);
  3250. perf_output_end(&handle);
  3251. exit:
  3252. rcu_read_unlock();
  3253. }
  3254. /*
  3255. * read event_id
  3256. */
  3257. struct perf_read_event {
  3258. struct perf_event_header header;
  3259. u32 pid;
  3260. u32 tid;
  3261. };
  3262. static void
  3263. perf_event_read_event(struct perf_event *event,
  3264. struct task_struct *task)
  3265. {
  3266. struct perf_output_handle handle;
  3267. struct perf_sample_data sample;
  3268. struct perf_read_event read_event = {
  3269. .header = {
  3270. .type = PERF_RECORD_READ,
  3271. .misc = 0,
  3272. .size = sizeof(read_event) + event->read_size,
  3273. },
  3274. .pid = perf_event_pid(event, task),
  3275. .tid = perf_event_tid(event, task),
  3276. };
  3277. int ret;
  3278. perf_event_header__init_id(&read_event.header, &sample, event);
  3279. ret = perf_output_begin(&handle, event, read_event.header.size);
  3280. if (ret)
  3281. return;
  3282. perf_output_put(&handle, read_event);
  3283. perf_output_read(&handle, event);
  3284. perf_event__output_id_sample(event, &handle, &sample);
  3285. perf_output_end(&handle);
  3286. }
  3287. /*
  3288. * task tracking -- fork/exit
  3289. *
  3290. * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
  3291. */
  3292. struct perf_task_event {
  3293. struct task_struct *task;
  3294. struct perf_event_context *task_ctx;
  3295. struct {
  3296. struct perf_event_header header;
  3297. u32 pid;
  3298. u32 ppid;
  3299. u32 tid;
  3300. u32 ptid;
  3301. u64 time;
  3302. } event_id;
  3303. };
  3304. static void perf_event_task_output(struct perf_event *event,
  3305. struct perf_task_event *task_event)
  3306. {
  3307. struct perf_output_handle handle;
  3308. struct perf_sample_data sample;
  3309. struct task_struct *task = task_event->task;
  3310. int ret, size = task_event->event_id.header.size;
  3311. perf_event_header__init_id(&task_event->event_id.header, &sample, event);
  3312. ret = perf_output_begin(&handle, event,
  3313. task_event->event_id.header.size);
  3314. if (ret)
  3315. goto out;
  3316. task_event->event_id.pid = perf_event_pid(event, task);
  3317. task_event->event_id.ppid = perf_event_pid(event, current);
  3318. task_event->event_id.tid = perf_event_tid(event, task);
  3319. task_event->event_id.ptid = perf_event_tid(event, current);
  3320. perf_output_put(&handle, task_event->event_id);
  3321. perf_event__output_id_sample(event, &handle, &sample);
  3322. perf_output_end(&handle);
  3323. out:
  3324. task_event->event_id.header.size = size;
  3325. }
  3326. static int perf_event_task_match(struct perf_event *event)
  3327. {
  3328. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3329. return 0;
  3330. if (!event_filter_match(event))
  3331. return 0;
  3332. if (event->attr.comm || event->attr.mmap ||
  3333. event->attr.mmap_data || event->attr.task)
  3334. return 1;
  3335. return 0;
  3336. }
  3337. static void perf_event_task_ctx(struct perf_event_context *ctx,
  3338. struct perf_task_event *task_event)
  3339. {
  3340. struct perf_event *event;
  3341. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3342. if (perf_event_task_match(event))
  3343. perf_event_task_output(event, task_event);
  3344. }
  3345. }
  3346. static void perf_event_task_event(struct perf_task_event *task_event)
  3347. {
  3348. struct perf_cpu_context *cpuctx;
  3349. struct perf_event_context *ctx;
  3350. struct pmu *pmu;
  3351. int ctxn;
  3352. rcu_read_lock();
  3353. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3354. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3355. if (cpuctx->active_pmu != pmu)
  3356. goto next;
  3357. perf_event_task_ctx(&cpuctx->ctx, task_event);
  3358. ctx = task_event->task_ctx;
  3359. if (!ctx) {
  3360. ctxn = pmu->task_ctx_nr;
  3361. if (ctxn < 0)
  3362. goto next;
  3363. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3364. }
  3365. if (ctx)
  3366. perf_event_task_ctx(ctx, task_event);
  3367. next:
  3368. put_cpu_ptr(pmu->pmu_cpu_context);
  3369. }
  3370. rcu_read_unlock();
  3371. }
  3372. static void perf_event_task(struct task_struct *task,
  3373. struct perf_event_context *task_ctx,
  3374. int new)
  3375. {
  3376. struct perf_task_event task_event;
  3377. if (!atomic_read(&nr_comm_events) &&
  3378. !atomic_read(&nr_mmap_events) &&
  3379. !atomic_read(&nr_task_events))
  3380. return;
  3381. task_event = (struct perf_task_event){
  3382. .task = task,
  3383. .task_ctx = task_ctx,
  3384. .event_id = {
  3385. .header = {
  3386. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  3387. .misc = 0,
  3388. .size = sizeof(task_event.event_id),
  3389. },
  3390. /* .pid */
  3391. /* .ppid */
  3392. /* .tid */
  3393. /* .ptid */
  3394. .time = perf_clock(),
  3395. },
  3396. };
  3397. perf_event_task_event(&task_event);
  3398. }
  3399. void perf_event_fork(struct task_struct *task)
  3400. {
  3401. perf_event_task(task, NULL, 1);
  3402. }
  3403. /*
  3404. * comm tracking
  3405. */
  3406. struct perf_comm_event {
  3407. struct task_struct *task;
  3408. char *comm;
  3409. int comm_size;
  3410. struct {
  3411. struct perf_event_header header;
  3412. u32 pid;
  3413. u32 tid;
  3414. } event_id;
  3415. };
  3416. static void perf_event_comm_output(struct perf_event *event,
  3417. struct perf_comm_event *comm_event)
  3418. {
  3419. struct perf_output_handle handle;
  3420. struct perf_sample_data sample;
  3421. int size = comm_event->event_id.header.size;
  3422. int ret;
  3423. perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
  3424. ret = perf_output_begin(&handle, event,
  3425. comm_event->event_id.header.size);
  3426. if (ret)
  3427. goto out;
  3428. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  3429. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  3430. perf_output_put(&handle, comm_event->event_id);
  3431. __output_copy(&handle, comm_event->comm,
  3432. comm_event->comm_size);
  3433. perf_event__output_id_sample(event, &handle, &sample);
  3434. perf_output_end(&handle);
  3435. out:
  3436. comm_event->event_id.header.size = size;
  3437. }
  3438. static int perf_event_comm_match(struct perf_event *event)
  3439. {
  3440. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3441. return 0;
  3442. if (!event_filter_match(event))
  3443. return 0;
  3444. if (event->attr.comm)
  3445. return 1;
  3446. return 0;
  3447. }
  3448. static void perf_event_comm_ctx(struct perf_event_context *ctx,
  3449. struct perf_comm_event *comm_event)
  3450. {
  3451. struct perf_event *event;
  3452. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3453. if (perf_event_comm_match(event))
  3454. perf_event_comm_output(event, comm_event);
  3455. }
  3456. }
  3457. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  3458. {
  3459. struct perf_cpu_context *cpuctx;
  3460. struct perf_event_context *ctx;
  3461. char comm[TASK_COMM_LEN];
  3462. unsigned int size;
  3463. struct pmu *pmu;
  3464. int ctxn;
  3465. memset(comm, 0, sizeof(comm));
  3466. strlcpy(comm, comm_event->task->comm, sizeof(comm));
  3467. size = ALIGN(strlen(comm)+1, sizeof(u64));
  3468. comm_event->comm = comm;
  3469. comm_event->comm_size = size;
  3470. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  3471. rcu_read_lock();
  3472. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3473. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3474. if (cpuctx->active_pmu != pmu)
  3475. goto next;
  3476. perf_event_comm_ctx(&cpuctx->ctx, comm_event);
  3477. ctxn = pmu->task_ctx_nr;
  3478. if (ctxn < 0)
  3479. goto next;
  3480. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3481. if (ctx)
  3482. perf_event_comm_ctx(ctx, comm_event);
  3483. next:
  3484. put_cpu_ptr(pmu->pmu_cpu_context);
  3485. }
  3486. rcu_read_unlock();
  3487. }
  3488. void perf_event_comm(struct task_struct *task)
  3489. {
  3490. struct perf_comm_event comm_event;
  3491. struct perf_event_context *ctx;
  3492. int ctxn;
  3493. for_each_task_context_nr(ctxn) {
  3494. ctx = task->perf_event_ctxp[ctxn];
  3495. if (!ctx)
  3496. continue;
  3497. perf_event_enable_on_exec(ctx);
  3498. }
  3499. if (!atomic_read(&nr_comm_events))
  3500. return;
  3501. comm_event = (struct perf_comm_event){
  3502. .task = task,
  3503. /* .comm */
  3504. /* .comm_size */
  3505. .event_id = {
  3506. .header = {
  3507. .type = PERF_RECORD_COMM,
  3508. .misc = 0,
  3509. /* .size */
  3510. },
  3511. /* .pid */
  3512. /* .tid */
  3513. },
  3514. };
  3515. perf_event_comm_event(&comm_event);
  3516. }
  3517. /*
  3518. * mmap tracking
  3519. */
  3520. struct perf_mmap_event {
  3521. struct vm_area_struct *vma;
  3522. const char *file_name;
  3523. int file_size;
  3524. struct {
  3525. struct perf_event_header header;
  3526. u32 pid;
  3527. u32 tid;
  3528. u64 start;
  3529. u64 len;
  3530. u64 pgoff;
  3531. } event_id;
  3532. };
  3533. static void perf_event_mmap_output(struct perf_event *event,
  3534. struct perf_mmap_event *mmap_event)
  3535. {
  3536. struct perf_output_handle handle;
  3537. struct perf_sample_data sample;
  3538. int size = mmap_event->event_id.header.size;
  3539. int ret;
  3540. perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
  3541. ret = perf_output_begin(&handle, event,
  3542. mmap_event->event_id.header.size);
  3543. if (ret)
  3544. goto out;
  3545. mmap_event->event_id.pid = perf_event_pid(event, current);
  3546. mmap_event->event_id.tid = perf_event_tid(event, current);
  3547. perf_output_put(&handle, mmap_event->event_id);
  3548. __output_copy(&handle, mmap_event->file_name,
  3549. mmap_event->file_size);
  3550. perf_event__output_id_sample(event, &handle, &sample);
  3551. perf_output_end(&handle);
  3552. out:
  3553. mmap_event->event_id.header.size = size;
  3554. }
  3555. static int perf_event_mmap_match(struct perf_event *event,
  3556. struct perf_mmap_event *mmap_event,
  3557. int executable)
  3558. {
  3559. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3560. return 0;
  3561. if (!event_filter_match(event))
  3562. return 0;
  3563. if ((!executable && event->attr.mmap_data) ||
  3564. (executable && event->attr.mmap))
  3565. return 1;
  3566. return 0;
  3567. }
  3568. static void perf_event_mmap_ctx(struct perf_event_context *ctx,
  3569. struct perf_mmap_event *mmap_event,
  3570. int executable)
  3571. {
  3572. struct perf_event *event;
  3573. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3574. if (perf_event_mmap_match(event, mmap_event, executable))
  3575. perf_event_mmap_output(event, mmap_event);
  3576. }
  3577. }
  3578. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  3579. {
  3580. struct perf_cpu_context *cpuctx;
  3581. struct perf_event_context *ctx;
  3582. struct vm_area_struct *vma = mmap_event->vma;
  3583. struct file *file = vma->vm_file;
  3584. unsigned int size;
  3585. char tmp[16];
  3586. char *buf = NULL;
  3587. const char *name;
  3588. struct pmu *pmu;
  3589. int ctxn;
  3590. memset(tmp, 0, sizeof(tmp));
  3591. if (file) {
  3592. /*
  3593. * d_path works from the end of the rb backwards, so we
  3594. * need to add enough zero bytes after the string to handle
  3595. * the 64bit alignment we do later.
  3596. */
  3597. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  3598. if (!buf) {
  3599. name = strncpy(tmp, "//enomem", sizeof(tmp));
  3600. goto got_name;
  3601. }
  3602. name = d_path(&file->f_path, buf, PATH_MAX);
  3603. if (IS_ERR(name)) {
  3604. name = strncpy(tmp, "//toolong", sizeof(tmp));
  3605. goto got_name;
  3606. }
  3607. } else {
  3608. if (arch_vma_name(mmap_event->vma)) {
  3609. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  3610. sizeof(tmp));
  3611. goto got_name;
  3612. }
  3613. if (!vma->vm_mm) {
  3614. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  3615. goto got_name;
  3616. } else if (vma->vm_start <= vma->vm_mm->start_brk &&
  3617. vma->vm_end >= vma->vm_mm->brk) {
  3618. name = strncpy(tmp, "[heap]", sizeof(tmp));
  3619. goto got_name;
  3620. } else if (vma->vm_start <= vma->vm_mm->start_stack &&
  3621. vma->vm_end >= vma->vm_mm->start_stack) {
  3622. name = strncpy(tmp, "[stack]", sizeof(tmp));
  3623. goto got_name;
  3624. }
  3625. name = strncpy(tmp, "//anon", sizeof(tmp));
  3626. goto got_name;
  3627. }
  3628. got_name:
  3629. size = ALIGN(strlen(name)+1, sizeof(u64));
  3630. mmap_event->file_name = name;
  3631. mmap_event->file_size = size;
  3632. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  3633. rcu_read_lock();
  3634. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3635. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3636. if (cpuctx->active_pmu != pmu)
  3637. goto next;
  3638. perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
  3639. vma->vm_flags & VM_EXEC);
  3640. ctxn = pmu->task_ctx_nr;
  3641. if (ctxn < 0)
  3642. goto next;
  3643. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3644. if (ctx) {
  3645. perf_event_mmap_ctx(ctx, mmap_event,
  3646. vma->vm_flags & VM_EXEC);
  3647. }
  3648. next:
  3649. put_cpu_ptr(pmu->pmu_cpu_context);
  3650. }
  3651. rcu_read_unlock();
  3652. kfree(buf);
  3653. }
  3654. void perf_event_mmap(struct vm_area_struct *vma)
  3655. {
  3656. struct perf_mmap_event mmap_event;
  3657. if (!atomic_read(&nr_mmap_events))
  3658. return;
  3659. mmap_event = (struct perf_mmap_event){
  3660. .vma = vma,
  3661. /* .file_name */
  3662. /* .file_size */
  3663. .event_id = {
  3664. .header = {
  3665. .type = PERF_RECORD_MMAP,
  3666. .misc = PERF_RECORD_MISC_USER,
  3667. /* .size */
  3668. },
  3669. /* .pid */
  3670. /* .tid */
  3671. .start = vma->vm_start,
  3672. .len = vma->vm_end - vma->vm_start,
  3673. .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
  3674. },
  3675. };
  3676. perf_event_mmap_event(&mmap_event);
  3677. }
  3678. /*
  3679. * IRQ throttle logging
  3680. */
  3681. static void perf_log_throttle(struct perf_event *event, int enable)
  3682. {
  3683. struct perf_output_handle handle;
  3684. struct perf_sample_data sample;
  3685. int ret;
  3686. struct {
  3687. struct perf_event_header header;
  3688. u64 time;
  3689. u64 id;
  3690. u64 stream_id;
  3691. } throttle_event = {
  3692. .header = {
  3693. .type = PERF_RECORD_THROTTLE,
  3694. .misc = 0,
  3695. .size = sizeof(throttle_event),
  3696. },
  3697. .time = perf_clock(),
  3698. .id = primary_event_id(event),
  3699. .stream_id = event->id,
  3700. };
  3701. if (enable)
  3702. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  3703. perf_event_header__init_id(&throttle_event.header, &sample, event);
  3704. ret = perf_output_begin(&handle, event,
  3705. throttle_event.header.size);
  3706. if (ret)
  3707. return;
  3708. perf_output_put(&handle, throttle_event);
  3709. perf_event__output_id_sample(event, &handle, &sample);
  3710. perf_output_end(&handle);
  3711. }
  3712. /*
  3713. * Generic event overflow handling, sampling.
  3714. */
  3715. static int __perf_event_overflow(struct perf_event *event,
  3716. int throttle, struct perf_sample_data *data,
  3717. struct pt_regs *regs)
  3718. {
  3719. int events = atomic_read(&event->event_limit);
  3720. struct hw_perf_event *hwc = &event->hw;
  3721. int ret = 0;
  3722. /*
  3723. * Non-sampling counters might still use the PMI to fold short
  3724. * hardware counters, ignore those.
  3725. */
  3726. if (unlikely(!is_sampling_event(event)))
  3727. return 0;
  3728. if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
  3729. if (throttle) {
  3730. hwc->interrupts = MAX_INTERRUPTS;
  3731. perf_log_throttle(event, 0);
  3732. ret = 1;
  3733. }
  3734. } else
  3735. hwc->interrupts++;
  3736. if (event->attr.freq) {
  3737. u64 now = perf_clock();
  3738. s64 delta = now - hwc->freq_time_stamp;
  3739. hwc->freq_time_stamp = now;
  3740. if (delta > 0 && delta < 2*TICK_NSEC)
  3741. perf_adjust_period(event, delta, hwc->last_period);
  3742. }
  3743. /*
  3744. * XXX event_limit might not quite work as expected on inherited
  3745. * events
  3746. */
  3747. event->pending_kill = POLL_IN;
  3748. if (events && atomic_dec_and_test(&event->event_limit)) {
  3749. ret = 1;
  3750. event->pending_kill = POLL_HUP;
  3751. event->pending_disable = 1;
  3752. irq_work_queue(&event->pending);
  3753. }
  3754. if (event->overflow_handler)
  3755. event->overflow_handler(event, data, regs);
  3756. else
  3757. perf_event_output(event, data, regs);
  3758. if (event->fasync && event->pending_kill) {
  3759. event->pending_wakeup = 1;
  3760. irq_work_queue(&event->pending);
  3761. }
  3762. return ret;
  3763. }
  3764. int perf_event_overflow(struct perf_event *event,
  3765. struct perf_sample_data *data,
  3766. struct pt_regs *regs)
  3767. {
  3768. return __perf_event_overflow(event, 1, data, regs);
  3769. }
  3770. /*
  3771. * Generic software event infrastructure
  3772. */
  3773. struct swevent_htable {
  3774. struct swevent_hlist *swevent_hlist;
  3775. struct mutex hlist_mutex;
  3776. int hlist_refcount;
  3777. /* Recursion avoidance in each contexts */
  3778. int recursion[PERF_NR_CONTEXTS];
  3779. };
  3780. static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
  3781. /*
  3782. * We directly increment event->count and keep a second value in
  3783. * event->hw.period_left to count intervals. This period event
  3784. * is kept in the range [-sample_period, 0] so that we can use the
  3785. * sign as trigger.
  3786. */
  3787. static u64 perf_swevent_set_period(struct perf_event *event)
  3788. {
  3789. struct hw_perf_event *hwc = &event->hw;
  3790. u64 period = hwc->last_period;
  3791. u64 nr, offset;
  3792. s64 old, val;
  3793. hwc->last_period = hwc->sample_period;
  3794. again:
  3795. old = val = local64_read(&hwc->period_left);
  3796. if (val < 0)
  3797. return 0;
  3798. nr = div64_u64(period + val, period);
  3799. offset = nr * period;
  3800. val -= offset;
  3801. if (local64_cmpxchg(&hwc->period_left, old, val) != old)
  3802. goto again;
  3803. return nr;
  3804. }
  3805. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  3806. struct perf_sample_data *data,
  3807. struct pt_regs *regs)
  3808. {
  3809. struct hw_perf_event *hwc = &event->hw;
  3810. int throttle = 0;
  3811. if (!overflow)
  3812. overflow = perf_swevent_set_period(event);
  3813. if (hwc->interrupts == MAX_INTERRUPTS)
  3814. return;
  3815. for (; overflow; overflow--) {
  3816. if (__perf_event_overflow(event, throttle,
  3817. data, regs)) {
  3818. /*
  3819. * We inhibit the overflow from happening when
  3820. * hwc->interrupts == MAX_INTERRUPTS.
  3821. */
  3822. break;
  3823. }
  3824. throttle = 1;
  3825. }
  3826. }
  3827. static void perf_swevent_event(struct perf_event *event, u64 nr,
  3828. struct perf_sample_data *data,
  3829. struct pt_regs *regs)
  3830. {
  3831. struct hw_perf_event *hwc = &event->hw;
  3832. local64_add(nr, &event->count);
  3833. if (!regs)
  3834. return;
  3835. if (!is_sampling_event(event))
  3836. return;
  3837. if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
  3838. data->period = nr;
  3839. return perf_swevent_overflow(event, 1, data, regs);
  3840. } else
  3841. data->period = event->hw.last_period;
  3842. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  3843. return perf_swevent_overflow(event, 1, data, regs);
  3844. if (local64_add_negative(nr, &hwc->period_left))
  3845. return;
  3846. perf_swevent_overflow(event, 0, data, regs);
  3847. }
  3848. static int perf_exclude_event(struct perf_event *event,
  3849. struct pt_regs *regs)
  3850. {
  3851. if (event->hw.state & PERF_HES_STOPPED)
  3852. return 1;
  3853. if (regs) {
  3854. if (event->attr.exclude_user && user_mode(regs))
  3855. return 1;
  3856. if (event->attr.exclude_kernel && !user_mode(regs))
  3857. return 1;
  3858. }
  3859. return 0;
  3860. }
  3861. static int perf_swevent_match(struct perf_event *event,
  3862. enum perf_type_id type,
  3863. u32 event_id,
  3864. struct perf_sample_data *data,
  3865. struct pt_regs *regs)
  3866. {
  3867. if (event->attr.type != type)
  3868. return 0;
  3869. if (event->attr.config != event_id)
  3870. return 0;
  3871. if (perf_exclude_event(event, regs))
  3872. return 0;
  3873. return 1;
  3874. }
  3875. static inline u64 swevent_hash(u64 type, u32 event_id)
  3876. {
  3877. u64 val = event_id | (type << 32);
  3878. return hash_64(val, SWEVENT_HLIST_BITS);
  3879. }
  3880. static inline struct hlist_head *
  3881. __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
  3882. {
  3883. u64 hash = swevent_hash(type, event_id);
  3884. return &hlist->heads[hash];
  3885. }
  3886. /* For the read side: events when they trigger */
  3887. static inline struct hlist_head *
  3888. find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
  3889. {
  3890. struct swevent_hlist *hlist;
  3891. hlist = rcu_dereference(swhash->swevent_hlist);
  3892. if (!hlist)
  3893. return NULL;
  3894. return __find_swevent_head(hlist, type, event_id);
  3895. }
  3896. /* For the event head insertion and removal in the hlist */
  3897. static inline struct hlist_head *
  3898. find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
  3899. {
  3900. struct swevent_hlist *hlist;
  3901. u32 event_id = event->attr.config;
  3902. u64 type = event->attr.type;
  3903. /*
  3904. * Event scheduling is always serialized against hlist allocation
  3905. * and release. Which makes the protected version suitable here.
  3906. * The context lock guarantees that.
  3907. */
  3908. hlist = rcu_dereference_protected(swhash->swevent_hlist,
  3909. lockdep_is_held(&event->ctx->lock));
  3910. if (!hlist)
  3911. return NULL;
  3912. return __find_swevent_head(hlist, type, event_id);
  3913. }
  3914. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  3915. u64 nr,
  3916. struct perf_sample_data *data,
  3917. struct pt_regs *regs)
  3918. {
  3919. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  3920. struct perf_event *event;
  3921. struct hlist_node *node;
  3922. struct hlist_head *head;
  3923. rcu_read_lock();
  3924. head = find_swevent_head_rcu(swhash, type, event_id);
  3925. if (!head)
  3926. goto end;
  3927. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  3928. if (perf_swevent_match(event, type, event_id, data, regs))
  3929. perf_swevent_event(event, nr, data, regs);
  3930. }
  3931. end:
  3932. rcu_read_unlock();
  3933. }
  3934. int perf_swevent_get_recursion_context(void)
  3935. {
  3936. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  3937. return get_recursion_context(swhash->recursion);
  3938. }
  3939. EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
  3940. inline void perf_swevent_put_recursion_context(int rctx)
  3941. {
  3942. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  3943. put_recursion_context(swhash->recursion, rctx);
  3944. }
  3945. void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
  3946. {
  3947. struct perf_sample_data data;
  3948. int rctx;
  3949. preempt_disable_notrace();
  3950. rctx = perf_swevent_get_recursion_context();
  3951. if (rctx < 0)
  3952. return;
  3953. perf_sample_data_init(&data, addr);
  3954. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
  3955. perf_swevent_put_recursion_context(rctx);
  3956. preempt_enable_notrace();
  3957. }
  3958. static void perf_swevent_read(struct perf_event *event)
  3959. {
  3960. }
  3961. static int perf_swevent_add(struct perf_event *event, int flags)
  3962. {
  3963. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  3964. struct hw_perf_event *hwc = &event->hw;
  3965. struct hlist_head *head;
  3966. if (is_sampling_event(event)) {
  3967. hwc->last_period = hwc->sample_period;
  3968. perf_swevent_set_period(event);
  3969. }
  3970. hwc->state = !(flags & PERF_EF_START);
  3971. head = find_swevent_head(swhash, event);
  3972. if (WARN_ON_ONCE(!head))
  3973. return -EINVAL;
  3974. hlist_add_head_rcu(&event->hlist_entry, head);
  3975. return 0;
  3976. }
  3977. static void perf_swevent_del(struct perf_event *event, int flags)
  3978. {
  3979. hlist_del_rcu(&event->hlist_entry);
  3980. }
  3981. static void perf_swevent_start(struct perf_event *event, int flags)
  3982. {
  3983. event->hw.state = 0;
  3984. }
  3985. static void perf_swevent_stop(struct perf_event *event, int flags)
  3986. {
  3987. event->hw.state = PERF_HES_STOPPED;
  3988. }
  3989. /* Deref the hlist from the update side */
  3990. static inline struct swevent_hlist *
  3991. swevent_hlist_deref(struct swevent_htable *swhash)
  3992. {
  3993. return rcu_dereference_protected(swhash->swevent_hlist,
  3994. lockdep_is_held(&swhash->hlist_mutex));
  3995. }
  3996. static void swevent_hlist_release(struct swevent_htable *swhash)
  3997. {
  3998. struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
  3999. if (!hlist)
  4000. return;
  4001. rcu_assign_pointer(swhash->swevent_hlist, NULL);
  4002. kfree_rcu(hlist, rcu_head);
  4003. }
  4004. static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
  4005. {
  4006. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4007. mutex_lock(&swhash->hlist_mutex);
  4008. if (!--swhash->hlist_refcount)
  4009. swevent_hlist_release(swhash);
  4010. mutex_unlock(&swhash->hlist_mutex);
  4011. }
  4012. static void swevent_hlist_put(struct perf_event *event)
  4013. {
  4014. int cpu;
  4015. if (event->cpu != -1) {
  4016. swevent_hlist_put_cpu(event, event->cpu);
  4017. return;
  4018. }
  4019. for_each_possible_cpu(cpu)
  4020. swevent_hlist_put_cpu(event, cpu);
  4021. }
  4022. static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
  4023. {
  4024. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4025. int err = 0;
  4026. mutex_lock(&swhash->hlist_mutex);
  4027. if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
  4028. struct swevent_hlist *hlist;
  4029. hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
  4030. if (!hlist) {
  4031. err = -ENOMEM;
  4032. goto exit;
  4033. }
  4034. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  4035. }
  4036. swhash->hlist_refcount++;
  4037. exit:
  4038. mutex_unlock(&swhash->hlist_mutex);
  4039. return err;
  4040. }
  4041. static int swevent_hlist_get(struct perf_event *event)
  4042. {
  4043. int err;
  4044. int cpu, failed_cpu;
  4045. if (event->cpu != -1)
  4046. return swevent_hlist_get_cpu(event, event->cpu);
  4047. get_online_cpus();
  4048. for_each_possible_cpu(cpu) {
  4049. err = swevent_hlist_get_cpu(event, cpu);
  4050. if (err) {
  4051. failed_cpu = cpu;
  4052. goto fail;
  4053. }
  4054. }
  4055. put_online_cpus();
  4056. return 0;
  4057. fail:
  4058. for_each_possible_cpu(cpu) {
  4059. if (cpu == failed_cpu)
  4060. break;
  4061. swevent_hlist_put_cpu(event, cpu);
  4062. }
  4063. put_online_cpus();
  4064. return err;
  4065. }
  4066. struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
  4067. static void sw_perf_event_destroy(struct perf_event *event)
  4068. {
  4069. u64 event_id = event->attr.config;
  4070. WARN_ON(event->parent);
  4071. jump_label_dec(&perf_swevent_enabled[event_id]);
  4072. swevent_hlist_put(event);
  4073. }
  4074. static int perf_swevent_init(struct perf_event *event)
  4075. {
  4076. int event_id = event->attr.config;
  4077. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4078. return -ENOENT;
  4079. switch (event_id) {
  4080. case PERF_COUNT_SW_CPU_CLOCK:
  4081. case PERF_COUNT_SW_TASK_CLOCK:
  4082. return -ENOENT;
  4083. default:
  4084. break;
  4085. }
  4086. if (event_id >= PERF_COUNT_SW_MAX)
  4087. return -ENOENT;
  4088. if (!event->parent) {
  4089. int err;
  4090. err = swevent_hlist_get(event);
  4091. if (err)
  4092. return err;
  4093. jump_label_inc(&perf_swevent_enabled[event_id]);
  4094. event->destroy = sw_perf_event_destroy;
  4095. }
  4096. return 0;
  4097. }
  4098. static struct pmu perf_swevent = {
  4099. .task_ctx_nr = perf_sw_context,
  4100. .event_init = perf_swevent_init,
  4101. .add = perf_swevent_add,
  4102. .del = perf_swevent_del,
  4103. .start = perf_swevent_start,
  4104. .stop = perf_swevent_stop,
  4105. .read = perf_swevent_read,
  4106. };
  4107. #ifdef CONFIG_EVENT_TRACING
  4108. static int perf_tp_filter_match(struct perf_event *event,
  4109. struct perf_sample_data *data)
  4110. {
  4111. void *record = data->raw->data;
  4112. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  4113. return 1;
  4114. return 0;
  4115. }
  4116. static int perf_tp_event_match(struct perf_event *event,
  4117. struct perf_sample_data *data,
  4118. struct pt_regs *regs)
  4119. {
  4120. if (event->hw.state & PERF_HES_STOPPED)
  4121. return 0;
  4122. /*
  4123. * All tracepoints are from kernel-space.
  4124. */
  4125. if (event->attr.exclude_kernel)
  4126. return 0;
  4127. if (!perf_tp_filter_match(event, data))
  4128. return 0;
  4129. return 1;
  4130. }
  4131. void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
  4132. struct pt_regs *regs, struct hlist_head *head, int rctx)
  4133. {
  4134. struct perf_sample_data data;
  4135. struct perf_event *event;
  4136. struct hlist_node *node;
  4137. struct perf_raw_record raw = {
  4138. .size = entry_size,
  4139. .data = record,
  4140. };
  4141. perf_sample_data_init(&data, addr);
  4142. data.raw = &raw;
  4143. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  4144. if (perf_tp_event_match(event, &data, regs))
  4145. perf_swevent_event(event, count, &data, regs);
  4146. }
  4147. perf_swevent_put_recursion_context(rctx);
  4148. }
  4149. EXPORT_SYMBOL_GPL(perf_tp_event);
  4150. static void tp_perf_event_destroy(struct perf_event *event)
  4151. {
  4152. perf_trace_destroy(event);
  4153. }
  4154. static int perf_tp_event_init(struct perf_event *event)
  4155. {
  4156. int err;
  4157. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4158. return -ENOENT;
  4159. err = perf_trace_init(event);
  4160. if (err)
  4161. return err;
  4162. event->destroy = tp_perf_event_destroy;
  4163. return 0;
  4164. }
  4165. static struct pmu perf_tracepoint = {
  4166. .task_ctx_nr = perf_sw_context,
  4167. .event_init = perf_tp_event_init,
  4168. .add = perf_trace_add,
  4169. .del = perf_trace_del,
  4170. .start = perf_swevent_start,
  4171. .stop = perf_swevent_stop,
  4172. .read = perf_swevent_read,
  4173. };
  4174. static inline void perf_tp_register(void)
  4175. {
  4176. perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
  4177. }
  4178. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4179. {
  4180. char *filter_str;
  4181. int ret;
  4182. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4183. return -EINVAL;
  4184. filter_str = strndup_user(arg, PAGE_SIZE);
  4185. if (IS_ERR(filter_str))
  4186. return PTR_ERR(filter_str);
  4187. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  4188. kfree(filter_str);
  4189. return ret;
  4190. }
  4191. static void perf_event_free_filter(struct perf_event *event)
  4192. {
  4193. ftrace_profile_free_filter(event);
  4194. }
  4195. #else
  4196. static inline void perf_tp_register(void)
  4197. {
  4198. }
  4199. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4200. {
  4201. return -ENOENT;
  4202. }
  4203. static void perf_event_free_filter(struct perf_event *event)
  4204. {
  4205. }
  4206. #endif /* CONFIG_EVENT_TRACING */
  4207. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  4208. void perf_bp_event(struct perf_event *bp, void *data)
  4209. {
  4210. struct perf_sample_data sample;
  4211. struct pt_regs *regs = data;
  4212. perf_sample_data_init(&sample, bp->attr.bp_addr);
  4213. if (!bp->hw.state && !perf_exclude_event(bp, regs))
  4214. perf_swevent_event(bp, 1, &sample, regs);
  4215. }
  4216. #endif
  4217. /*
  4218. * hrtimer based swevent callback
  4219. */
  4220. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  4221. {
  4222. enum hrtimer_restart ret = HRTIMER_RESTART;
  4223. struct perf_sample_data data;
  4224. struct pt_regs *regs;
  4225. struct perf_event *event;
  4226. u64 period;
  4227. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  4228. if (event->state != PERF_EVENT_STATE_ACTIVE)
  4229. return HRTIMER_NORESTART;
  4230. event->pmu->read(event);
  4231. perf_sample_data_init(&data, 0);
  4232. data.period = event->hw.last_period;
  4233. regs = get_irq_regs();
  4234. if (regs && !perf_exclude_event(event, regs)) {
  4235. if (!(event->attr.exclude_idle && current->pid == 0))
  4236. if (perf_event_overflow(event, &data, regs))
  4237. ret = HRTIMER_NORESTART;
  4238. }
  4239. period = max_t(u64, 10000, event->hw.sample_period);
  4240. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  4241. return ret;
  4242. }
  4243. static void perf_swevent_start_hrtimer(struct perf_event *event)
  4244. {
  4245. struct hw_perf_event *hwc = &event->hw;
  4246. s64 period;
  4247. if (!is_sampling_event(event))
  4248. return;
  4249. period = local64_read(&hwc->period_left);
  4250. if (period) {
  4251. if (period < 0)
  4252. period = 10000;
  4253. local64_set(&hwc->period_left, 0);
  4254. } else {
  4255. period = max_t(u64, 10000, hwc->sample_period);
  4256. }
  4257. __hrtimer_start_range_ns(&hwc->hrtimer,
  4258. ns_to_ktime(period), 0,
  4259. HRTIMER_MODE_REL_PINNED, 0);
  4260. }
  4261. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  4262. {
  4263. struct hw_perf_event *hwc = &event->hw;
  4264. if (is_sampling_event(event)) {
  4265. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  4266. local64_set(&hwc->period_left, ktime_to_ns(remaining));
  4267. hrtimer_cancel(&hwc->hrtimer);
  4268. }
  4269. }
  4270. static void perf_swevent_init_hrtimer(struct perf_event *event)
  4271. {
  4272. struct hw_perf_event *hwc = &event->hw;
  4273. if (!is_sampling_event(event))
  4274. return;
  4275. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  4276. hwc->hrtimer.function = perf_swevent_hrtimer;
  4277. /*
  4278. * Since hrtimers have a fixed rate, we can do a static freq->period
  4279. * mapping and avoid the whole period adjust feedback stuff.
  4280. */
  4281. if (event->attr.freq) {
  4282. long freq = event->attr.sample_freq;
  4283. event->attr.sample_period = NSEC_PER_SEC / freq;
  4284. hwc->sample_period = event->attr.sample_period;
  4285. local64_set(&hwc->period_left, hwc->sample_period);
  4286. event->attr.freq = 0;
  4287. }
  4288. }
  4289. /*
  4290. * Software event: cpu wall time clock
  4291. */
  4292. static void cpu_clock_event_update(struct perf_event *event)
  4293. {
  4294. s64 prev;
  4295. u64 now;
  4296. now = local_clock();
  4297. prev = local64_xchg(&event->hw.prev_count, now);
  4298. local64_add(now - prev, &event->count);
  4299. }
  4300. static void cpu_clock_event_start(struct perf_event *event, int flags)
  4301. {
  4302. local64_set(&event->hw.prev_count, local_clock());
  4303. perf_swevent_start_hrtimer(event);
  4304. }
  4305. static void cpu_clock_event_stop(struct perf_event *event, int flags)
  4306. {
  4307. perf_swevent_cancel_hrtimer(event);
  4308. cpu_clock_event_update(event);
  4309. }
  4310. static int cpu_clock_event_add(struct perf_event *event, int flags)
  4311. {
  4312. if (flags & PERF_EF_START)
  4313. cpu_clock_event_start(event, flags);
  4314. return 0;
  4315. }
  4316. static void cpu_clock_event_del(struct perf_event *event, int flags)
  4317. {
  4318. cpu_clock_event_stop(event, flags);
  4319. }
  4320. static void cpu_clock_event_read(struct perf_event *event)
  4321. {
  4322. cpu_clock_event_update(event);
  4323. }
  4324. static int cpu_clock_event_init(struct perf_event *event)
  4325. {
  4326. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4327. return -ENOENT;
  4328. if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
  4329. return -ENOENT;
  4330. perf_swevent_init_hrtimer(event);
  4331. return 0;
  4332. }
  4333. static struct pmu perf_cpu_clock = {
  4334. .task_ctx_nr = perf_sw_context,
  4335. .event_init = cpu_clock_event_init,
  4336. .add = cpu_clock_event_add,
  4337. .del = cpu_clock_event_del,
  4338. .start = cpu_clock_event_start,
  4339. .stop = cpu_clock_event_stop,
  4340. .read = cpu_clock_event_read,
  4341. };
  4342. /*
  4343. * Software event: task time clock
  4344. */
  4345. static void task_clock_event_update(struct perf_event *event, u64 now)
  4346. {
  4347. u64 prev;
  4348. s64 delta;
  4349. prev = local64_xchg(&event->hw.prev_count, now);
  4350. delta = now - prev;
  4351. local64_add(delta, &event->count);
  4352. }
  4353. static void task_clock_event_start(struct perf_event *event, int flags)
  4354. {
  4355. local64_set(&event->hw.prev_count, event->ctx->time);
  4356. perf_swevent_start_hrtimer(event);
  4357. }
  4358. static void task_clock_event_stop(struct perf_event *event, int flags)
  4359. {
  4360. perf_swevent_cancel_hrtimer(event);
  4361. task_clock_event_update(event, event->ctx->time);
  4362. }
  4363. static int task_clock_event_add(struct perf_event *event, int flags)
  4364. {
  4365. if (flags & PERF_EF_START)
  4366. task_clock_event_start(event, flags);
  4367. return 0;
  4368. }
  4369. static void task_clock_event_del(struct perf_event *event, int flags)
  4370. {
  4371. task_clock_event_stop(event, PERF_EF_UPDATE);
  4372. }
  4373. static void task_clock_event_read(struct perf_event *event)
  4374. {
  4375. u64 now = perf_clock();
  4376. u64 delta = now - event->ctx->timestamp;
  4377. u64 time = event->ctx->time + delta;
  4378. task_clock_event_update(event, time);
  4379. }
  4380. static int task_clock_event_init(struct perf_event *event)
  4381. {
  4382. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4383. return -ENOENT;
  4384. if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
  4385. return -ENOENT;
  4386. perf_swevent_init_hrtimer(event);
  4387. return 0;
  4388. }
  4389. static struct pmu perf_task_clock = {
  4390. .task_ctx_nr = perf_sw_context,
  4391. .event_init = task_clock_event_init,
  4392. .add = task_clock_event_add,
  4393. .del = task_clock_event_del,
  4394. .start = task_clock_event_start,
  4395. .stop = task_clock_event_stop,
  4396. .read = task_clock_event_read,
  4397. };
  4398. static void perf_pmu_nop_void(struct pmu *pmu)
  4399. {
  4400. }
  4401. static int perf_pmu_nop_int(struct pmu *pmu)
  4402. {
  4403. return 0;
  4404. }
  4405. static void perf_pmu_start_txn(struct pmu *pmu)
  4406. {
  4407. perf_pmu_disable(pmu);
  4408. }
  4409. static int perf_pmu_commit_txn(struct pmu *pmu)
  4410. {
  4411. perf_pmu_enable(pmu);
  4412. return 0;
  4413. }
  4414. static void perf_pmu_cancel_txn(struct pmu *pmu)
  4415. {
  4416. perf_pmu_enable(pmu);
  4417. }
  4418. /*
  4419. * Ensures all contexts with the same task_ctx_nr have the same
  4420. * pmu_cpu_context too.
  4421. */
  4422. static void *find_pmu_context(int ctxn)
  4423. {
  4424. struct pmu *pmu;
  4425. if (ctxn < 0)
  4426. return NULL;
  4427. list_for_each_entry(pmu, &pmus, entry) {
  4428. if (pmu->task_ctx_nr == ctxn)
  4429. return pmu->pmu_cpu_context;
  4430. }
  4431. return NULL;
  4432. }
  4433. static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
  4434. {
  4435. int cpu;
  4436. for_each_possible_cpu(cpu) {
  4437. struct perf_cpu_context *cpuctx;
  4438. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4439. if (cpuctx->active_pmu == old_pmu)
  4440. cpuctx->active_pmu = pmu;
  4441. }
  4442. }
  4443. static void free_pmu_context(struct pmu *pmu)
  4444. {
  4445. struct pmu *i;
  4446. mutex_lock(&pmus_lock);
  4447. /*
  4448. * Like a real lame refcount.
  4449. */
  4450. list_for_each_entry(i, &pmus, entry) {
  4451. if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
  4452. update_pmu_context(i, pmu);
  4453. goto out;
  4454. }
  4455. }
  4456. free_percpu(pmu->pmu_cpu_context);
  4457. out:
  4458. mutex_unlock(&pmus_lock);
  4459. }
  4460. static struct idr pmu_idr;
  4461. static ssize_t
  4462. type_show(struct device *dev, struct device_attribute *attr, char *page)
  4463. {
  4464. struct pmu *pmu = dev_get_drvdata(dev);
  4465. return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
  4466. }
  4467. static struct device_attribute pmu_dev_attrs[] = {
  4468. __ATTR_RO(type),
  4469. __ATTR_NULL,
  4470. };
  4471. static int pmu_bus_running;
  4472. static struct bus_type pmu_bus = {
  4473. .name = "event_source",
  4474. .dev_attrs = pmu_dev_attrs,
  4475. };
  4476. static void pmu_dev_release(struct device *dev)
  4477. {
  4478. kfree(dev);
  4479. }
  4480. static int pmu_dev_alloc(struct pmu *pmu)
  4481. {
  4482. int ret = -ENOMEM;
  4483. pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  4484. if (!pmu->dev)
  4485. goto out;
  4486. device_initialize(pmu->dev);
  4487. ret = dev_set_name(pmu->dev, "%s", pmu->name);
  4488. if (ret)
  4489. goto free_dev;
  4490. dev_set_drvdata(pmu->dev, pmu);
  4491. pmu->dev->bus = &pmu_bus;
  4492. pmu->dev->release = pmu_dev_release;
  4493. ret = device_add(pmu->dev);
  4494. if (ret)
  4495. goto free_dev;
  4496. out:
  4497. return ret;
  4498. free_dev:
  4499. put_device(pmu->dev);
  4500. goto out;
  4501. }
  4502. static struct lock_class_key cpuctx_mutex;
  4503. static struct lock_class_key cpuctx_lock;
  4504. int perf_pmu_register(struct pmu *pmu, char *name, int type)
  4505. {
  4506. int cpu, ret;
  4507. mutex_lock(&pmus_lock);
  4508. ret = -ENOMEM;
  4509. pmu->pmu_disable_count = alloc_percpu(int);
  4510. if (!pmu->pmu_disable_count)
  4511. goto unlock;
  4512. pmu->type = -1;
  4513. if (!name)
  4514. goto skip_type;
  4515. pmu->name = name;
  4516. if (type < 0) {
  4517. int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
  4518. if (!err)
  4519. goto free_pdc;
  4520. err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
  4521. if (err) {
  4522. ret = err;
  4523. goto free_pdc;
  4524. }
  4525. }
  4526. pmu->type = type;
  4527. if (pmu_bus_running) {
  4528. ret = pmu_dev_alloc(pmu);
  4529. if (ret)
  4530. goto free_idr;
  4531. }
  4532. skip_type:
  4533. pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
  4534. if (pmu->pmu_cpu_context)
  4535. goto got_cpu_context;
  4536. pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
  4537. if (!pmu->pmu_cpu_context)
  4538. goto free_dev;
  4539. for_each_possible_cpu(cpu) {
  4540. struct perf_cpu_context *cpuctx;
  4541. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4542. __perf_event_init_context(&cpuctx->ctx);
  4543. lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
  4544. lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
  4545. cpuctx->ctx.type = cpu_context;
  4546. cpuctx->ctx.pmu = pmu;
  4547. cpuctx->jiffies_interval = 1;
  4548. INIT_LIST_HEAD(&cpuctx->rotation_list);
  4549. cpuctx->active_pmu = pmu;
  4550. }
  4551. got_cpu_context:
  4552. if (!pmu->start_txn) {
  4553. if (pmu->pmu_enable) {
  4554. /*
  4555. * If we have pmu_enable/pmu_disable calls, install
  4556. * transaction stubs that use that to try and batch
  4557. * hardware accesses.
  4558. */
  4559. pmu->start_txn = perf_pmu_start_txn;
  4560. pmu->commit_txn = perf_pmu_commit_txn;
  4561. pmu->cancel_txn = perf_pmu_cancel_txn;
  4562. } else {
  4563. pmu->start_txn = perf_pmu_nop_void;
  4564. pmu->commit_txn = perf_pmu_nop_int;
  4565. pmu->cancel_txn = perf_pmu_nop_void;
  4566. }
  4567. }
  4568. if (!pmu->pmu_enable) {
  4569. pmu->pmu_enable = perf_pmu_nop_void;
  4570. pmu->pmu_disable = perf_pmu_nop_void;
  4571. }
  4572. list_add_rcu(&pmu->entry, &pmus);
  4573. ret = 0;
  4574. unlock:
  4575. mutex_unlock(&pmus_lock);
  4576. return ret;
  4577. free_dev:
  4578. device_del(pmu->dev);
  4579. put_device(pmu->dev);
  4580. free_idr:
  4581. if (pmu->type >= PERF_TYPE_MAX)
  4582. idr_remove(&pmu_idr, pmu->type);
  4583. free_pdc:
  4584. free_percpu(pmu->pmu_disable_count);
  4585. goto unlock;
  4586. }
  4587. void perf_pmu_unregister(struct pmu *pmu)
  4588. {
  4589. mutex_lock(&pmus_lock);
  4590. list_del_rcu(&pmu->entry);
  4591. mutex_unlock(&pmus_lock);
  4592. /*
  4593. * We dereference the pmu list under both SRCU and regular RCU, so
  4594. * synchronize against both of those.
  4595. */
  4596. synchronize_srcu(&pmus_srcu);
  4597. synchronize_rcu();
  4598. free_percpu(pmu->pmu_disable_count);
  4599. if (pmu->type >= PERF_TYPE_MAX)
  4600. idr_remove(&pmu_idr, pmu->type);
  4601. device_del(pmu->dev);
  4602. put_device(pmu->dev);
  4603. free_pmu_context(pmu);
  4604. }
  4605. struct pmu *perf_init_event(struct perf_event *event)
  4606. {
  4607. struct pmu *pmu = NULL;
  4608. int idx;
  4609. int ret;
  4610. idx = srcu_read_lock(&pmus_srcu);
  4611. rcu_read_lock();
  4612. pmu = idr_find(&pmu_idr, event->attr.type);
  4613. rcu_read_unlock();
  4614. if (pmu) {
  4615. event->pmu = pmu;
  4616. ret = pmu->event_init(event);
  4617. if (ret)
  4618. pmu = ERR_PTR(ret);
  4619. goto unlock;
  4620. }
  4621. list_for_each_entry_rcu(pmu, &pmus, entry) {
  4622. event->pmu = pmu;
  4623. ret = pmu->event_init(event);
  4624. if (!ret)
  4625. goto unlock;
  4626. if (ret != -ENOENT) {
  4627. pmu = ERR_PTR(ret);
  4628. goto unlock;
  4629. }
  4630. }
  4631. pmu = ERR_PTR(-ENOENT);
  4632. unlock:
  4633. srcu_read_unlock(&pmus_srcu, idx);
  4634. return pmu;
  4635. }
  4636. /*
  4637. * Allocate and initialize a event structure
  4638. */
  4639. static struct perf_event *
  4640. perf_event_alloc(struct perf_event_attr *attr, int cpu,
  4641. struct task_struct *task,
  4642. struct perf_event *group_leader,
  4643. struct perf_event *parent_event,
  4644. perf_overflow_handler_t overflow_handler,
  4645. void *context)
  4646. {
  4647. struct pmu *pmu;
  4648. struct perf_event *event;
  4649. struct hw_perf_event *hwc;
  4650. long err;
  4651. if ((unsigned)cpu >= nr_cpu_ids) {
  4652. if (!task || cpu != -1)
  4653. return ERR_PTR(-EINVAL);
  4654. }
  4655. event = kzalloc(sizeof(*event), GFP_KERNEL);
  4656. if (!event)
  4657. return ERR_PTR(-ENOMEM);
  4658. /*
  4659. * Single events are their own group leaders, with an
  4660. * empty sibling list:
  4661. */
  4662. if (!group_leader)
  4663. group_leader = event;
  4664. mutex_init(&event->child_mutex);
  4665. INIT_LIST_HEAD(&event->child_list);
  4666. INIT_LIST_HEAD(&event->group_entry);
  4667. INIT_LIST_HEAD(&event->event_entry);
  4668. INIT_LIST_HEAD(&event->sibling_list);
  4669. INIT_LIST_HEAD(&event->rb_entry);
  4670. init_waitqueue_head(&event->waitq);
  4671. init_irq_work(&event->pending, perf_pending_event);
  4672. mutex_init(&event->mmap_mutex);
  4673. event->cpu = cpu;
  4674. event->attr = *attr;
  4675. event->group_leader = group_leader;
  4676. event->pmu = NULL;
  4677. event->oncpu = -1;
  4678. event->parent = parent_event;
  4679. event->ns = get_pid_ns(current->nsproxy->pid_ns);
  4680. event->id = atomic64_inc_return(&perf_event_id);
  4681. event->state = PERF_EVENT_STATE_INACTIVE;
  4682. if (task) {
  4683. event->attach_state = PERF_ATTACH_TASK;
  4684. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  4685. /*
  4686. * hw_breakpoint is a bit difficult here..
  4687. */
  4688. if (attr->type == PERF_TYPE_BREAKPOINT)
  4689. event->hw.bp_target = task;
  4690. #endif
  4691. }
  4692. if (!overflow_handler && parent_event) {
  4693. overflow_handler = parent_event->overflow_handler;
  4694. context = parent_event->overflow_handler_context;
  4695. }
  4696. event->overflow_handler = overflow_handler;
  4697. event->overflow_handler_context = context;
  4698. if (attr->disabled)
  4699. event->state = PERF_EVENT_STATE_OFF;
  4700. pmu = NULL;
  4701. hwc = &event->hw;
  4702. hwc->sample_period = attr->sample_period;
  4703. if (attr->freq && attr->sample_freq)
  4704. hwc->sample_period = 1;
  4705. hwc->last_period = hwc->sample_period;
  4706. local64_set(&hwc->period_left, hwc->sample_period);
  4707. /*
  4708. * we currently do not support PERF_FORMAT_GROUP on inherited events
  4709. */
  4710. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  4711. goto done;
  4712. pmu = perf_init_event(event);
  4713. done:
  4714. err = 0;
  4715. if (!pmu)
  4716. err = -EINVAL;
  4717. else if (IS_ERR(pmu))
  4718. err = PTR_ERR(pmu);
  4719. if (err) {
  4720. if (event->ns)
  4721. put_pid_ns(event->ns);
  4722. kfree(event);
  4723. return ERR_PTR(err);
  4724. }
  4725. if (!event->parent) {
  4726. if (event->attach_state & PERF_ATTACH_TASK)
  4727. jump_label_inc(&perf_sched_events);
  4728. if (event->attr.mmap || event->attr.mmap_data)
  4729. atomic_inc(&nr_mmap_events);
  4730. if (event->attr.comm)
  4731. atomic_inc(&nr_comm_events);
  4732. if (event->attr.task)
  4733. atomic_inc(&nr_task_events);
  4734. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
  4735. err = get_callchain_buffers();
  4736. if (err) {
  4737. free_event(event);
  4738. return ERR_PTR(err);
  4739. }
  4740. }
  4741. }
  4742. return event;
  4743. }
  4744. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  4745. struct perf_event_attr *attr)
  4746. {
  4747. u32 size;
  4748. int ret;
  4749. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  4750. return -EFAULT;
  4751. /*
  4752. * zero the full structure, so that a short copy will be nice.
  4753. */
  4754. memset(attr, 0, sizeof(*attr));
  4755. ret = get_user(size, &uattr->size);
  4756. if (ret)
  4757. return ret;
  4758. if (size > PAGE_SIZE) /* silly large */
  4759. goto err_size;
  4760. if (!size) /* abi compat */
  4761. size = PERF_ATTR_SIZE_VER0;
  4762. if (size < PERF_ATTR_SIZE_VER0)
  4763. goto err_size;
  4764. /*
  4765. * If we're handed a bigger struct than we know of,
  4766. * ensure all the unknown bits are 0 - i.e. new
  4767. * user-space does not rely on any kernel feature
  4768. * extensions we dont know about yet.
  4769. */
  4770. if (size > sizeof(*attr)) {
  4771. unsigned char __user *addr;
  4772. unsigned char __user *end;
  4773. unsigned char val;
  4774. addr = (void __user *)uattr + sizeof(*attr);
  4775. end = (void __user *)uattr + size;
  4776. for (; addr < end; addr++) {
  4777. ret = get_user(val, addr);
  4778. if (ret)
  4779. return ret;
  4780. if (val)
  4781. goto err_size;
  4782. }
  4783. size = sizeof(*attr);
  4784. }
  4785. ret = copy_from_user(attr, uattr, size);
  4786. if (ret)
  4787. return -EFAULT;
  4788. if (attr->__reserved_1)
  4789. return -EINVAL;
  4790. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  4791. return -EINVAL;
  4792. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  4793. return -EINVAL;
  4794. out:
  4795. return ret;
  4796. err_size:
  4797. put_user(sizeof(*attr), &uattr->size);
  4798. ret = -E2BIG;
  4799. goto out;
  4800. }
  4801. static int
  4802. perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
  4803. {
  4804. struct ring_buffer *rb = NULL, *old_rb = NULL;
  4805. int ret = -EINVAL;
  4806. if (!output_event)
  4807. goto set;
  4808. /* don't allow circular references */
  4809. if (event == output_event)
  4810. goto out;
  4811. /*
  4812. * Don't allow cross-cpu buffers
  4813. */
  4814. if (output_event->cpu != event->cpu)
  4815. goto out;
  4816. /*
  4817. * If its not a per-cpu rb, it must be the same task.
  4818. */
  4819. if (output_event->cpu == -1 && output_event->ctx != event->ctx)
  4820. goto out;
  4821. set:
  4822. mutex_lock(&event->mmap_mutex);
  4823. /* Can't redirect output if we've got an active mmap() */
  4824. if (atomic_read(&event->mmap_count))
  4825. goto unlock;
  4826. if (output_event) {
  4827. /* get the rb we want to redirect to */
  4828. rb = ring_buffer_get(output_event);
  4829. if (!rb)
  4830. goto unlock;
  4831. }
  4832. old_rb = event->rb;
  4833. rcu_assign_pointer(event->rb, rb);
  4834. if (old_rb)
  4835. ring_buffer_detach(event, old_rb);
  4836. ret = 0;
  4837. unlock:
  4838. mutex_unlock(&event->mmap_mutex);
  4839. if (old_rb)
  4840. ring_buffer_put(old_rb);
  4841. out:
  4842. return ret;
  4843. }
  4844. /**
  4845. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  4846. *
  4847. * @attr_uptr: event_id type attributes for monitoring/sampling
  4848. * @pid: target pid
  4849. * @cpu: target cpu
  4850. * @group_fd: group leader event fd
  4851. */
  4852. SYSCALL_DEFINE5(perf_event_open,
  4853. struct perf_event_attr __user *, attr_uptr,
  4854. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  4855. {
  4856. struct perf_event *group_leader = NULL, *output_event = NULL;
  4857. struct perf_event *event, *sibling;
  4858. struct perf_event_attr attr;
  4859. struct perf_event_context *ctx;
  4860. struct file *event_file = NULL;
  4861. struct file *group_file = NULL;
  4862. struct task_struct *task = NULL;
  4863. struct pmu *pmu;
  4864. int event_fd;
  4865. int move_group = 0;
  4866. int fput_needed = 0;
  4867. int err;
  4868. /* for future expandability... */
  4869. if (flags & ~PERF_FLAG_ALL)
  4870. return -EINVAL;
  4871. err = perf_copy_attr(attr_uptr, &attr);
  4872. if (err)
  4873. return err;
  4874. if (!attr.exclude_kernel) {
  4875. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  4876. return -EACCES;
  4877. }
  4878. if (attr.freq) {
  4879. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  4880. return -EINVAL;
  4881. }
  4882. /*
  4883. * In cgroup mode, the pid argument is used to pass the fd
  4884. * opened to the cgroup directory in cgroupfs. The cpu argument
  4885. * designates the cpu on which to monitor threads from that
  4886. * cgroup.
  4887. */
  4888. if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
  4889. return -EINVAL;
  4890. event_fd = get_unused_fd_flags(O_RDWR);
  4891. if (event_fd < 0)
  4892. return event_fd;
  4893. if (group_fd != -1) {
  4894. group_leader = perf_fget_light(group_fd, &fput_needed);
  4895. if (IS_ERR(group_leader)) {
  4896. err = PTR_ERR(group_leader);
  4897. goto err_fd;
  4898. }
  4899. group_file = group_leader->filp;
  4900. if (flags & PERF_FLAG_FD_OUTPUT)
  4901. output_event = group_leader;
  4902. if (flags & PERF_FLAG_FD_NO_GROUP)
  4903. group_leader = NULL;
  4904. }
  4905. if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
  4906. task = find_lively_task_by_vpid(pid);
  4907. if (IS_ERR(task)) {
  4908. err = PTR_ERR(task);
  4909. goto err_group_fd;
  4910. }
  4911. }
  4912. event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
  4913. NULL, NULL);
  4914. if (IS_ERR(event)) {
  4915. err = PTR_ERR(event);
  4916. goto err_task;
  4917. }
  4918. if (flags & PERF_FLAG_PID_CGROUP) {
  4919. err = perf_cgroup_connect(pid, event, &attr, group_leader);
  4920. if (err)
  4921. goto err_alloc;
  4922. /*
  4923. * one more event:
  4924. * - that has cgroup constraint on event->cpu
  4925. * - that may need work on context switch
  4926. */
  4927. atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
  4928. jump_label_inc(&perf_sched_events);
  4929. }
  4930. /*
  4931. * Special case software events and allow them to be part of
  4932. * any hardware group.
  4933. */
  4934. pmu = event->pmu;
  4935. if (group_leader &&
  4936. (is_software_event(event) != is_software_event(group_leader))) {
  4937. if (is_software_event(event)) {
  4938. /*
  4939. * If event and group_leader are not both a software
  4940. * event, and event is, then group leader is not.
  4941. *
  4942. * Allow the addition of software events to !software
  4943. * groups, this is safe because software events never
  4944. * fail to schedule.
  4945. */
  4946. pmu = group_leader->pmu;
  4947. } else if (is_software_event(group_leader) &&
  4948. (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
  4949. /*
  4950. * In case the group is a pure software group, and we
  4951. * try to add a hardware event, move the whole group to
  4952. * the hardware context.
  4953. */
  4954. move_group = 1;
  4955. }
  4956. }
  4957. /*
  4958. * Get the target context (task or percpu):
  4959. */
  4960. ctx = find_get_context(pmu, task, cpu);
  4961. if (IS_ERR(ctx)) {
  4962. err = PTR_ERR(ctx);
  4963. goto err_alloc;
  4964. }
  4965. if (task) {
  4966. put_task_struct(task);
  4967. task = NULL;
  4968. }
  4969. /*
  4970. * Look up the group leader (we will attach this event to it):
  4971. */
  4972. if (group_leader) {
  4973. err = -EINVAL;
  4974. /*
  4975. * Do not allow a recursive hierarchy (this new sibling
  4976. * becoming part of another group-sibling):
  4977. */
  4978. if (group_leader->group_leader != group_leader)
  4979. goto err_context;
  4980. /*
  4981. * Do not allow to attach to a group in a different
  4982. * task or CPU context:
  4983. */
  4984. if (move_group) {
  4985. if (group_leader->ctx->type != ctx->type)
  4986. goto err_context;
  4987. } else {
  4988. if (group_leader->ctx != ctx)
  4989. goto err_context;
  4990. }
  4991. /*
  4992. * Only a group leader can be exclusive or pinned
  4993. */
  4994. if (attr.exclusive || attr.pinned)
  4995. goto err_context;
  4996. }
  4997. if (output_event) {
  4998. err = perf_event_set_output(event, output_event);
  4999. if (err)
  5000. goto err_context;
  5001. }
  5002. event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
  5003. if (IS_ERR(event_file)) {
  5004. err = PTR_ERR(event_file);
  5005. goto err_context;
  5006. }
  5007. if (move_group) {
  5008. struct perf_event_context *gctx = group_leader->ctx;
  5009. mutex_lock(&gctx->mutex);
  5010. perf_remove_from_context(group_leader);
  5011. list_for_each_entry(sibling, &group_leader->sibling_list,
  5012. group_entry) {
  5013. perf_remove_from_context(sibling);
  5014. put_ctx(gctx);
  5015. }
  5016. mutex_unlock(&gctx->mutex);
  5017. put_ctx(gctx);
  5018. }
  5019. event->filp = event_file;
  5020. WARN_ON_ONCE(ctx->parent_ctx);
  5021. mutex_lock(&ctx->mutex);
  5022. if (move_group) {
  5023. perf_install_in_context(ctx, group_leader, cpu);
  5024. get_ctx(ctx);
  5025. list_for_each_entry(sibling, &group_leader->sibling_list,
  5026. group_entry) {
  5027. perf_install_in_context(ctx, sibling, cpu);
  5028. get_ctx(ctx);
  5029. }
  5030. }
  5031. perf_install_in_context(ctx, event, cpu);
  5032. ++ctx->generation;
  5033. perf_unpin_context(ctx);
  5034. mutex_unlock(&ctx->mutex);
  5035. event->owner = current;
  5036. mutex_lock(&current->perf_event_mutex);
  5037. list_add_tail(&event->owner_entry, &current->perf_event_list);
  5038. mutex_unlock(&current->perf_event_mutex);
  5039. /*
  5040. * Precalculate sample_data sizes
  5041. */
  5042. perf_event__header_size(event);
  5043. perf_event__id_header_size(event);
  5044. /*
  5045. * Drop the reference on the group_event after placing the
  5046. * new event on the sibling_list. This ensures destruction
  5047. * of the group leader will find the pointer to itself in
  5048. * perf_group_detach().
  5049. */
  5050. fput_light(group_file, fput_needed);
  5051. fd_install(event_fd, event_file);
  5052. return event_fd;
  5053. err_context:
  5054. perf_unpin_context(ctx);
  5055. put_ctx(ctx);
  5056. err_alloc:
  5057. free_event(event);
  5058. err_task:
  5059. if (task)
  5060. put_task_struct(task);
  5061. err_group_fd:
  5062. fput_light(group_file, fput_needed);
  5063. err_fd:
  5064. put_unused_fd(event_fd);
  5065. return err;
  5066. }
  5067. /**
  5068. * perf_event_create_kernel_counter
  5069. *
  5070. * @attr: attributes of the counter to create
  5071. * @cpu: cpu in which the counter is bound
  5072. * @task: task to profile (NULL for percpu)
  5073. */
  5074. struct perf_event *
  5075. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  5076. struct task_struct *task,
  5077. perf_overflow_handler_t overflow_handler,
  5078. void *context)
  5079. {
  5080. struct perf_event_context *ctx;
  5081. struct perf_event *event;
  5082. int err;
  5083. /*
  5084. * Get the target context (task or percpu):
  5085. */
  5086. event = perf_event_alloc(attr, cpu, task, NULL, NULL,
  5087. overflow_handler, context);
  5088. if (IS_ERR(event)) {
  5089. err = PTR_ERR(event);
  5090. goto err;
  5091. }
  5092. ctx = find_get_context(event->pmu, task, cpu);
  5093. if (IS_ERR(ctx)) {
  5094. err = PTR_ERR(ctx);
  5095. goto err_free;
  5096. }
  5097. event->filp = NULL;
  5098. WARN_ON_ONCE(ctx->parent_ctx);
  5099. mutex_lock(&ctx->mutex);
  5100. perf_install_in_context(ctx, event, cpu);
  5101. ++ctx->generation;
  5102. perf_unpin_context(ctx);
  5103. mutex_unlock(&ctx->mutex);
  5104. return event;
  5105. err_free:
  5106. free_event(event);
  5107. err:
  5108. return ERR_PTR(err);
  5109. }
  5110. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  5111. static void sync_child_event(struct perf_event *child_event,
  5112. struct task_struct *child)
  5113. {
  5114. struct perf_event *parent_event = child_event->parent;
  5115. u64 child_val;
  5116. if (child_event->attr.inherit_stat)
  5117. perf_event_read_event(child_event, child);
  5118. child_val = perf_event_count(child_event);
  5119. /*
  5120. * Add back the child's count to the parent's count:
  5121. */
  5122. atomic64_add(child_val, &parent_event->child_count);
  5123. atomic64_add(child_event->total_time_enabled,
  5124. &parent_event->child_total_time_enabled);
  5125. atomic64_add(child_event->total_time_running,
  5126. &parent_event->child_total_time_running);
  5127. /*
  5128. * Remove this event from the parent's list
  5129. */
  5130. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5131. mutex_lock(&parent_event->child_mutex);
  5132. list_del_init(&child_event->child_list);
  5133. mutex_unlock(&parent_event->child_mutex);
  5134. /*
  5135. * Release the parent event, if this was the last
  5136. * reference to it.
  5137. */
  5138. fput(parent_event->filp);
  5139. }
  5140. static void
  5141. __perf_event_exit_task(struct perf_event *child_event,
  5142. struct perf_event_context *child_ctx,
  5143. struct task_struct *child)
  5144. {
  5145. if (child_event->parent) {
  5146. raw_spin_lock_irq(&child_ctx->lock);
  5147. perf_group_detach(child_event);
  5148. raw_spin_unlock_irq(&child_ctx->lock);
  5149. }
  5150. perf_remove_from_context(child_event);
  5151. /*
  5152. * It can happen that the parent exits first, and has events
  5153. * that are still around due to the child reference. These
  5154. * events need to be zapped.
  5155. */
  5156. if (child_event->parent) {
  5157. sync_child_event(child_event, child);
  5158. free_event(child_event);
  5159. }
  5160. }
  5161. static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
  5162. {
  5163. struct perf_event *child_event, *tmp;
  5164. struct perf_event_context *child_ctx;
  5165. unsigned long flags;
  5166. if (likely(!child->perf_event_ctxp[ctxn])) {
  5167. perf_event_task(child, NULL, 0);
  5168. return;
  5169. }
  5170. local_irq_save(flags);
  5171. /*
  5172. * We can't reschedule here because interrupts are disabled,
  5173. * and either child is current or it is a task that can't be
  5174. * scheduled, so we are now safe from rescheduling changing
  5175. * our context.
  5176. */
  5177. child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
  5178. /*
  5179. * Take the context lock here so that if find_get_context is
  5180. * reading child->perf_event_ctxp, we wait until it has
  5181. * incremented the context's refcount before we do put_ctx below.
  5182. */
  5183. raw_spin_lock(&child_ctx->lock);
  5184. task_ctx_sched_out(child_ctx);
  5185. child->perf_event_ctxp[ctxn] = NULL;
  5186. /*
  5187. * If this context is a clone; unclone it so it can't get
  5188. * swapped to another process while we're removing all
  5189. * the events from it.
  5190. */
  5191. unclone_ctx(child_ctx);
  5192. update_context_time(child_ctx);
  5193. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5194. /*
  5195. * Report the task dead after unscheduling the events so that we
  5196. * won't get any samples after PERF_RECORD_EXIT. We can however still
  5197. * get a few PERF_RECORD_READ events.
  5198. */
  5199. perf_event_task(child, child_ctx, 0);
  5200. /*
  5201. * We can recurse on the same lock type through:
  5202. *
  5203. * __perf_event_exit_task()
  5204. * sync_child_event()
  5205. * fput(parent_event->filp)
  5206. * perf_release()
  5207. * mutex_lock(&ctx->mutex)
  5208. *
  5209. * But since its the parent context it won't be the same instance.
  5210. */
  5211. mutex_lock(&child_ctx->mutex);
  5212. again:
  5213. list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
  5214. group_entry)
  5215. __perf_event_exit_task(child_event, child_ctx, child);
  5216. list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
  5217. group_entry)
  5218. __perf_event_exit_task(child_event, child_ctx, child);
  5219. /*
  5220. * If the last event was a group event, it will have appended all
  5221. * its siblings to the list, but we obtained 'tmp' before that which
  5222. * will still point to the list head terminating the iteration.
  5223. */
  5224. if (!list_empty(&child_ctx->pinned_groups) ||
  5225. !list_empty(&child_ctx->flexible_groups))
  5226. goto again;
  5227. mutex_unlock(&child_ctx->mutex);
  5228. put_ctx(child_ctx);
  5229. }
  5230. /*
  5231. * When a child task exits, feed back event values to parent events.
  5232. */
  5233. void perf_event_exit_task(struct task_struct *child)
  5234. {
  5235. struct perf_event *event, *tmp;
  5236. int ctxn;
  5237. mutex_lock(&child->perf_event_mutex);
  5238. list_for_each_entry_safe(event, tmp, &child->perf_event_list,
  5239. owner_entry) {
  5240. list_del_init(&event->owner_entry);
  5241. /*
  5242. * Ensure the list deletion is visible before we clear
  5243. * the owner, closes a race against perf_release() where
  5244. * we need to serialize on the owner->perf_event_mutex.
  5245. */
  5246. smp_wmb();
  5247. event->owner = NULL;
  5248. }
  5249. mutex_unlock(&child->perf_event_mutex);
  5250. for_each_task_context_nr(ctxn)
  5251. perf_event_exit_task_context(child, ctxn);
  5252. }
  5253. static void perf_free_event(struct perf_event *event,
  5254. struct perf_event_context *ctx)
  5255. {
  5256. struct perf_event *parent = event->parent;
  5257. if (WARN_ON_ONCE(!parent))
  5258. return;
  5259. mutex_lock(&parent->child_mutex);
  5260. list_del_init(&event->child_list);
  5261. mutex_unlock(&parent->child_mutex);
  5262. fput(parent->filp);
  5263. perf_group_detach(event);
  5264. list_del_event(event, ctx);
  5265. free_event(event);
  5266. }
  5267. /*
  5268. * free an unexposed, unused context as created by inheritance by
  5269. * perf_event_init_task below, used by fork() in case of fail.
  5270. */
  5271. void perf_event_free_task(struct task_struct *task)
  5272. {
  5273. struct perf_event_context *ctx;
  5274. struct perf_event *event, *tmp;
  5275. int ctxn;
  5276. for_each_task_context_nr(ctxn) {
  5277. ctx = task->perf_event_ctxp[ctxn];
  5278. if (!ctx)
  5279. continue;
  5280. mutex_lock(&ctx->mutex);
  5281. again:
  5282. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
  5283. group_entry)
  5284. perf_free_event(event, ctx);
  5285. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
  5286. group_entry)
  5287. perf_free_event(event, ctx);
  5288. if (!list_empty(&ctx->pinned_groups) ||
  5289. !list_empty(&ctx->flexible_groups))
  5290. goto again;
  5291. mutex_unlock(&ctx->mutex);
  5292. put_ctx(ctx);
  5293. }
  5294. }
  5295. void perf_event_delayed_put(struct task_struct *task)
  5296. {
  5297. int ctxn;
  5298. for_each_task_context_nr(ctxn)
  5299. WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
  5300. }
  5301. /*
  5302. * inherit a event from parent task to child task:
  5303. */
  5304. static struct perf_event *
  5305. inherit_event(struct perf_event *parent_event,
  5306. struct task_struct *parent,
  5307. struct perf_event_context *parent_ctx,
  5308. struct task_struct *child,
  5309. struct perf_event *group_leader,
  5310. struct perf_event_context *child_ctx)
  5311. {
  5312. struct perf_event *child_event;
  5313. unsigned long flags;
  5314. /*
  5315. * Instead of creating recursive hierarchies of events,
  5316. * we link inherited events back to the original parent,
  5317. * which has a filp for sure, which we use as the reference
  5318. * count:
  5319. */
  5320. if (parent_event->parent)
  5321. parent_event = parent_event->parent;
  5322. child_event = perf_event_alloc(&parent_event->attr,
  5323. parent_event->cpu,
  5324. child,
  5325. group_leader, parent_event,
  5326. NULL, NULL);
  5327. if (IS_ERR(child_event))
  5328. return child_event;
  5329. get_ctx(child_ctx);
  5330. /*
  5331. * Make the child state follow the state of the parent event,
  5332. * not its attr.disabled bit. We hold the parent's mutex,
  5333. * so we won't race with perf_event_{en, dis}able_family.
  5334. */
  5335. if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
  5336. child_event->state = PERF_EVENT_STATE_INACTIVE;
  5337. else
  5338. child_event->state = PERF_EVENT_STATE_OFF;
  5339. if (parent_event->attr.freq) {
  5340. u64 sample_period = parent_event->hw.sample_period;
  5341. struct hw_perf_event *hwc = &child_event->hw;
  5342. hwc->sample_period = sample_period;
  5343. hwc->last_period = sample_period;
  5344. local64_set(&hwc->period_left, sample_period);
  5345. }
  5346. child_event->ctx = child_ctx;
  5347. child_event->overflow_handler = parent_event->overflow_handler;
  5348. child_event->overflow_handler_context
  5349. = parent_event->overflow_handler_context;
  5350. /*
  5351. * Precalculate sample_data sizes
  5352. */
  5353. perf_event__header_size(child_event);
  5354. perf_event__id_header_size(child_event);
  5355. /*
  5356. * Link it up in the child's context:
  5357. */
  5358. raw_spin_lock_irqsave(&child_ctx->lock, flags);
  5359. add_event_to_ctx(child_event, child_ctx);
  5360. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5361. /*
  5362. * Get a reference to the parent filp - we will fput it
  5363. * when the child event exits. This is safe to do because
  5364. * we are in the parent and we know that the filp still
  5365. * exists and has a nonzero count:
  5366. */
  5367. atomic_long_inc(&parent_event->filp->f_count);
  5368. /*
  5369. * Link this into the parent event's child list
  5370. */
  5371. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5372. mutex_lock(&parent_event->child_mutex);
  5373. list_add_tail(&child_event->child_list, &parent_event->child_list);
  5374. mutex_unlock(&parent_event->child_mutex);
  5375. return child_event;
  5376. }
  5377. static int inherit_group(struct perf_event *parent_event,
  5378. struct task_struct *parent,
  5379. struct perf_event_context *parent_ctx,
  5380. struct task_struct *child,
  5381. struct perf_event_context *child_ctx)
  5382. {
  5383. struct perf_event *leader;
  5384. struct perf_event *sub;
  5385. struct perf_event *child_ctr;
  5386. leader = inherit_event(parent_event, parent, parent_ctx,
  5387. child, NULL, child_ctx);
  5388. if (IS_ERR(leader))
  5389. return PTR_ERR(leader);
  5390. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  5391. child_ctr = inherit_event(sub, parent, parent_ctx,
  5392. child, leader, child_ctx);
  5393. if (IS_ERR(child_ctr))
  5394. return PTR_ERR(child_ctr);
  5395. }
  5396. return 0;
  5397. }
  5398. static int
  5399. inherit_task_group(struct perf_event *event, struct task_struct *parent,
  5400. struct perf_event_context *parent_ctx,
  5401. struct task_struct *child, int ctxn,
  5402. int *inherited_all)
  5403. {
  5404. int ret;
  5405. struct perf_event_context *child_ctx;
  5406. if (!event->attr.inherit) {
  5407. *inherited_all = 0;
  5408. return 0;
  5409. }
  5410. child_ctx = child->perf_event_ctxp[ctxn];
  5411. if (!child_ctx) {
  5412. /*
  5413. * This is executed from the parent task context, so
  5414. * inherit events that have been marked for cloning.
  5415. * First allocate and initialize a context for the
  5416. * child.
  5417. */
  5418. child_ctx = alloc_perf_context(event->pmu, child);
  5419. if (!child_ctx)
  5420. return -ENOMEM;
  5421. child->perf_event_ctxp[ctxn] = child_ctx;
  5422. }
  5423. ret = inherit_group(event, parent, parent_ctx,
  5424. child, child_ctx);
  5425. if (ret)
  5426. *inherited_all = 0;
  5427. return ret;
  5428. }
  5429. /*
  5430. * Initialize the perf_event context in task_struct
  5431. */
  5432. int perf_event_init_context(struct task_struct *child, int ctxn)
  5433. {
  5434. struct perf_event_context *child_ctx, *parent_ctx;
  5435. struct perf_event_context *cloned_ctx;
  5436. struct perf_event *event;
  5437. struct task_struct *parent = current;
  5438. int inherited_all = 1;
  5439. unsigned long flags;
  5440. int ret = 0;
  5441. if (likely(!parent->perf_event_ctxp[ctxn]))
  5442. return 0;
  5443. /*
  5444. * If the parent's context is a clone, pin it so it won't get
  5445. * swapped under us.
  5446. */
  5447. parent_ctx = perf_pin_task_context(parent, ctxn);
  5448. /*
  5449. * No need to check if parent_ctx != NULL here; since we saw
  5450. * it non-NULL earlier, the only reason for it to become NULL
  5451. * is if we exit, and since we're currently in the middle of
  5452. * a fork we can't be exiting at the same time.
  5453. */
  5454. /*
  5455. * Lock the parent list. No need to lock the child - not PID
  5456. * hashed yet and not running, so nobody can access it.
  5457. */
  5458. mutex_lock(&parent_ctx->mutex);
  5459. /*
  5460. * We dont have to disable NMIs - we are only looking at
  5461. * the list, not manipulating it:
  5462. */
  5463. list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
  5464. ret = inherit_task_group(event, parent, parent_ctx,
  5465. child, ctxn, &inherited_all);
  5466. if (ret)
  5467. break;
  5468. }
  5469. /*
  5470. * We can't hold ctx->lock when iterating the ->flexible_group list due
  5471. * to allocations, but we need to prevent rotation because
  5472. * rotate_ctx() will change the list from interrupt context.
  5473. */
  5474. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5475. parent_ctx->rotate_disable = 1;
  5476. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5477. list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
  5478. ret = inherit_task_group(event, parent, parent_ctx,
  5479. child, ctxn, &inherited_all);
  5480. if (ret)
  5481. break;
  5482. }
  5483. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5484. parent_ctx->rotate_disable = 0;
  5485. child_ctx = child->perf_event_ctxp[ctxn];
  5486. if (child_ctx && inherited_all) {
  5487. /*
  5488. * Mark the child context as a clone of the parent
  5489. * context, or of whatever the parent is a clone of.
  5490. *
  5491. * Note that if the parent is a clone, the holding of
  5492. * parent_ctx->lock avoids it from being uncloned.
  5493. */
  5494. cloned_ctx = parent_ctx->parent_ctx;
  5495. if (cloned_ctx) {
  5496. child_ctx->parent_ctx = cloned_ctx;
  5497. child_ctx->parent_gen = parent_ctx->parent_gen;
  5498. } else {
  5499. child_ctx->parent_ctx = parent_ctx;
  5500. child_ctx->parent_gen = parent_ctx->generation;
  5501. }
  5502. get_ctx(child_ctx->parent_ctx);
  5503. }
  5504. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5505. mutex_unlock(&parent_ctx->mutex);
  5506. perf_unpin_context(parent_ctx);
  5507. put_ctx(parent_ctx);
  5508. return ret;
  5509. }
  5510. /*
  5511. * Initialize the perf_event context in task_struct
  5512. */
  5513. int perf_event_init_task(struct task_struct *child)
  5514. {
  5515. int ctxn, ret;
  5516. memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
  5517. mutex_init(&child->perf_event_mutex);
  5518. INIT_LIST_HEAD(&child->perf_event_list);
  5519. for_each_task_context_nr(ctxn) {
  5520. ret = perf_event_init_context(child, ctxn);
  5521. if (ret)
  5522. return ret;
  5523. }
  5524. return 0;
  5525. }
  5526. static void __init perf_event_init_all_cpus(void)
  5527. {
  5528. struct swevent_htable *swhash;
  5529. int cpu;
  5530. for_each_possible_cpu(cpu) {
  5531. swhash = &per_cpu(swevent_htable, cpu);
  5532. mutex_init(&swhash->hlist_mutex);
  5533. INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
  5534. }
  5535. }
  5536. static void __cpuinit perf_event_init_cpu(int cpu)
  5537. {
  5538. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5539. mutex_lock(&swhash->hlist_mutex);
  5540. if (swhash->hlist_refcount > 0) {
  5541. struct swevent_hlist *hlist;
  5542. hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
  5543. WARN_ON(!hlist);
  5544. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  5545. }
  5546. mutex_unlock(&swhash->hlist_mutex);
  5547. }
  5548. #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
  5549. static void perf_pmu_rotate_stop(struct pmu *pmu)
  5550. {
  5551. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  5552. WARN_ON(!irqs_disabled());
  5553. list_del_init(&cpuctx->rotation_list);
  5554. }
  5555. static void __perf_event_exit_context(void *__info)
  5556. {
  5557. struct perf_event_context *ctx = __info;
  5558. struct perf_event *event, *tmp;
  5559. perf_pmu_rotate_stop(ctx->pmu);
  5560. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
  5561. __perf_remove_from_context(event);
  5562. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
  5563. __perf_remove_from_context(event);
  5564. }
  5565. static void perf_event_exit_cpu_context(int cpu)
  5566. {
  5567. struct perf_event_context *ctx;
  5568. struct pmu *pmu;
  5569. int idx;
  5570. idx = srcu_read_lock(&pmus_srcu);
  5571. list_for_each_entry_rcu(pmu, &pmus, entry) {
  5572. ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
  5573. mutex_lock(&ctx->mutex);
  5574. smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
  5575. mutex_unlock(&ctx->mutex);
  5576. }
  5577. srcu_read_unlock(&pmus_srcu, idx);
  5578. }
  5579. static void perf_event_exit_cpu(int cpu)
  5580. {
  5581. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5582. mutex_lock(&swhash->hlist_mutex);
  5583. swevent_hlist_release(swhash);
  5584. mutex_unlock(&swhash->hlist_mutex);
  5585. perf_event_exit_cpu_context(cpu);
  5586. }
  5587. #else
  5588. static inline void perf_event_exit_cpu(int cpu) { }
  5589. #endif
  5590. static int
  5591. perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
  5592. {
  5593. int cpu;
  5594. for_each_online_cpu(cpu)
  5595. perf_event_exit_cpu(cpu);
  5596. return NOTIFY_OK;
  5597. }
  5598. /*
  5599. * Run the perf reboot notifier at the very last possible moment so that
  5600. * the generic watchdog code runs as long as possible.
  5601. */
  5602. static struct notifier_block perf_reboot_notifier = {
  5603. .notifier_call = perf_reboot,
  5604. .priority = INT_MIN,
  5605. };
  5606. static int __cpuinit
  5607. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  5608. {
  5609. unsigned int cpu = (long)hcpu;
  5610. switch (action & ~CPU_TASKS_FROZEN) {
  5611. case CPU_UP_PREPARE:
  5612. case CPU_DOWN_FAILED:
  5613. perf_event_init_cpu(cpu);
  5614. break;
  5615. case CPU_UP_CANCELED:
  5616. case CPU_DOWN_PREPARE:
  5617. perf_event_exit_cpu(cpu);
  5618. break;
  5619. default:
  5620. break;
  5621. }
  5622. return NOTIFY_OK;
  5623. }
  5624. void __init perf_event_init(void)
  5625. {
  5626. int ret;
  5627. idr_init(&pmu_idr);
  5628. perf_event_init_all_cpus();
  5629. init_srcu_struct(&pmus_srcu);
  5630. perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
  5631. perf_pmu_register(&perf_cpu_clock, NULL, -1);
  5632. perf_pmu_register(&perf_task_clock, NULL, -1);
  5633. perf_tp_register();
  5634. perf_cpu_notifier(perf_cpu_notify);
  5635. register_reboot_notifier(&perf_reboot_notifier);
  5636. ret = init_hw_breakpoint();
  5637. WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
  5638. }
  5639. static int __init perf_event_sysfs_init(void)
  5640. {
  5641. struct pmu *pmu;
  5642. int ret;
  5643. mutex_lock(&pmus_lock);
  5644. ret = bus_register(&pmu_bus);
  5645. if (ret)
  5646. goto unlock;
  5647. list_for_each_entry(pmu, &pmus, entry) {
  5648. if (!pmu->name || pmu->type < 0)
  5649. continue;
  5650. ret = pmu_dev_alloc(pmu);
  5651. WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
  5652. }
  5653. pmu_bus_running = 1;
  5654. ret = 0;
  5655. unlock:
  5656. mutex_unlock(&pmus_lock);
  5657. return ret;
  5658. }
  5659. device_initcall(perf_event_sysfs_init);
  5660. #ifdef CONFIG_CGROUP_PERF
  5661. static struct cgroup_subsys_state *perf_cgroup_create(
  5662. struct cgroup_subsys *ss, struct cgroup *cont)
  5663. {
  5664. struct perf_cgroup *jc;
  5665. jc = kzalloc(sizeof(*jc), GFP_KERNEL);
  5666. if (!jc)
  5667. return ERR_PTR(-ENOMEM);
  5668. jc->info = alloc_percpu(struct perf_cgroup_info);
  5669. if (!jc->info) {
  5670. kfree(jc);
  5671. return ERR_PTR(-ENOMEM);
  5672. }
  5673. return &jc->css;
  5674. }
  5675. static void perf_cgroup_destroy(struct cgroup_subsys *ss,
  5676. struct cgroup *cont)
  5677. {
  5678. struct perf_cgroup *jc;
  5679. jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
  5680. struct perf_cgroup, css);
  5681. free_percpu(jc->info);
  5682. kfree(jc);
  5683. }
  5684. static int __perf_cgroup_move(void *info)
  5685. {
  5686. struct task_struct *task = info;
  5687. perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
  5688. return 0;
  5689. }
  5690. static void
  5691. perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
  5692. {
  5693. task_function_call(task, __perf_cgroup_move, task);
  5694. }
  5695. static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  5696. struct cgroup *old_cgrp, struct task_struct *task)
  5697. {
  5698. /*
  5699. * cgroup_exit() is called in the copy_process() failure path.
  5700. * Ignore this case since the task hasn't ran yet, this avoids
  5701. * trying to poke a half freed task state from generic code.
  5702. */
  5703. if (!(task->flags & PF_EXITING))
  5704. return;
  5705. perf_cgroup_attach_task(cgrp, task);
  5706. }
  5707. struct cgroup_subsys perf_subsys = {
  5708. .name = "perf_event",
  5709. .subsys_id = perf_subsys_id,
  5710. .create = perf_cgroup_create,
  5711. .destroy = perf_cgroup_destroy,
  5712. .exit = perf_cgroup_exit,
  5713. .attach_task = perf_cgroup_attach_task,
  5714. };
  5715. #endif /* CONFIG_CGROUP_PERF */