oxygen_mixer.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994
  1. /*
  2. * C-Media CMI8788 driver - mixer code
  3. *
  4. * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
  5. *
  6. *
  7. * This driver is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License, version 2.
  9. *
  10. * This driver is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this driver; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/mutex.h>
  20. #include <sound/ac97_codec.h>
  21. #include <sound/asoundef.h>
  22. #include <sound/control.h>
  23. #include <sound/tlv.h>
  24. #include "oxygen.h"
  25. #include "cm9780.h"
  26. static int dac_volume_info(struct snd_kcontrol *ctl,
  27. struct snd_ctl_elem_info *info)
  28. {
  29. struct oxygen *chip = ctl->private_data;
  30. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  31. info->count = chip->model->dac_channels;
  32. info->value.integer.min = 0;
  33. info->value.integer.max = 0xff;
  34. return 0;
  35. }
  36. static int dac_volume_get(struct snd_kcontrol *ctl,
  37. struct snd_ctl_elem_value *value)
  38. {
  39. struct oxygen *chip = ctl->private_data;
  40. unsigned int i;
  41. mutex_lock(&chip->mutex);
  42. for (i = 0; i < chip->model->dac_channels; ++i)
  43. value->value.integer.value[i] = chip->dac_volume[i];
  44. mutex_unlock(&chip->mutex);
  45. return 0;
  46. }
  47. static int dac_volume_put(struct snd_kcontrol *ctl,
  48. struct snd_ctl_elem_value *value)
  49. {
  50. struct oxygen *chip = ctl->private_data;
  51. unsigned int i;
  52. int changed;
  53. changed = 0;
  54. mutex_lock(&chip->mutex);
  55. for (i = 0; i < chip->model->dac_channels; ++i)
  56. if (value->value.integer.value[i] != chip->dac_volume[i]) {
  57. chip->dac_volume[i] = value->value.integer.value[i];
  58. changed = 1;
  59. }
  60. if (changed)
  61. chip->model->update_dac_volume(chip);
  62. mutex_unlock(&chip->mutex);
  63. return changed;
  64. }
  65. static int dac_mute_get(struct snd_kcontrol *ctl,
  66. struct snd_ctl_elem_value *value)
  67. {
  68. struct oxygen *chip = ctl->private_data;
  69. mutex_lock(&chip->mutex);
  70. value->value.integer.value[0] = !chip->dac_mute;
  71. mutex_unlock(&chip->mutex);
  72. return 0;
  73. }
  74. static int dac_mute_put(struct snd_kcontrol *ctl,
  75. struct snd_ctl_elem_value *value)
  76. {
  77. struct oxygen *chip = ctl->private_data;
  78. int changed;
  79. mutex_lock(&chip->mutex);
  80. changed = !value->value.integer.value[0] != chip->dac_mute;
  81. if (changed) {
  82. chip->dac_mute = !value->value.integer.value[0];
  83. chip->model->update_dac_mute(chip);
  84. }
  85. mutex_unlock(&chip->mutex);
  86. return changed;
  87. }
  88. static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  89. {
  90. static const char *const names[3] = {
  91. "Front", "Front+Surround", "Front+Surround+Back"
  92. };
  93. struct oxygen *chip = ctl->private_data;
  94. unsigned int count = 2 + (chip->model->dac_channels == 8);
  95. info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  96. info->count = 1;
  97. info->value.enumerated.items = count;
  98. if (info->value.enumerated.item >= count)
  99. info->value.enumerated.item = count - 1;
  100. strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
  101. return 0;
  102. }
  103. static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  104. {
  105. struct oxygen *chip = ctl->private_data;
  106. mutex_lock(&chip->mutex);
  107. value->value.enumerated.item[0] = chip->dac_routing;
  108. mutex_unlock(&chip->mutex);
  109. return 0;
  110. }
  111. void oxygen_update_dac_routing(struct oxygen *chip)
  112. {
  113. /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
  114. static const unsigned int reg_values[3] = {
  115. /* stereo -> front */
  116. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  117. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  118. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  119. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  120. /* stereo -> front+surround */
  121. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  122. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  123. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  124. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  125. /* stereo -> front+surround+back */
  126. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  127. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  128. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  129. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  130. };
  131. u8 channels;
  132. unsigned int reg_value;
  133. channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
  134. OXYGEN_PLAY_CHANNELS_MASK;
  135. if (channels == OXYGEN_PLAY_CHANNELS_2)
  136. reg_value = reg_values[chip->dac_routing];
  137. else if (channels == OXYGEN_PLAY_CHANNELS_8)
  138. /* in 7.1 mode, "rear" channels go to the "back" jack */
  139. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  140. (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  141. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  142. (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  143. else
  144. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  145. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  146. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  147. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  148. oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
  149. OXYGEN_PLAY_DAC0_SOURCE_MASK |
  150. OXYGEN_PLAY_DAC1_SOURCE_MASK |
  151. OXYGEN_PLAY_DAC2_SOURCE_MASK |
  152. OXYGEN_PLAY_DAC3_SOURCE_MASK);
  153. }
  154. static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  155. {
  156. struct oxygen *chip = ctl->private_data;
  157. unsigned int count = 2 + (chip->model->dac_channels == 8);
  158. int changed;
  159. mutex_lock(&chip->mutex);
  160. changed = value->value.enumerated.item[0] != chip->dac_routing;
  161. if (changed) {
  162. chip->dac_routing = min(value->value.enumerated.item[0],
  163. count - 1);
  164. spin_lock_irq(&chip->reg_lock);
  165. oxygen_update_dac_routing(chip);
  166. spin_unlock_irq(&chip->reg_lock);
  167. }
  168. mutex_unlock(&chip->mutex);
  169. return changed;
  170. }
  171. static int spdif_switch_get(struct snd_kcontrol *ctl,
  172. struct snd_ctl_elem_value *value)
  173. {
  174. struct oxygen *chip = ctl->private_data;
  175. mutex_lock(&chip->mutex);
  176. value->value.integer.value[0] = chip->spdif_playback_enable;
  177. mutex_unlock(&chip->mutex);
  178. return 0;
  179. }
  180. static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
  181. {
  182. switch (oxygen_rate) {
  183. case OXYGEN_RATE_32000:
  184. return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  185. case OXYGEN_RATE_44100:
  186. return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  187. default: /* OXYGEN_RATE_48000 */
  188. return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  189. case OXYGEN_RATE_64000:
  190. return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
  191. case OXYGEN_RATE_88200:
  192. return 0x8 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  193. case OXYGEN_RATE_96000:
  194. return 0xa << OXYGEN_SPDIF_CS_RATE_SHIFT;
  195. case OXYGEN_RATE_176400:
  196. return 0xc << OXYGEN_SPDIF_CS_RATE_SHIFT;
  197. case OXYGEN_RATE_192000:
  198. return 0xe << OXYGEN_SPDIF_CS_RATE_SHIFT;
  199. }
  200. }
  201. void oxygen_update_spdif_source(struct oxygen *chip)
  202. {
  203. u32 old_control, new_control;
  204. u16 old_routing, new_routing;
  205. unsigned int oxygen_rate;
  206. old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  207. old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
  208. if (chip->pcm_active & (1 << PCM_SPDIF)) {
  209. new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
  210. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  211. | OXYGEN_PLAY_SPDIF_SPDIF;
  212. oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
  213. & OXYGEN_I2S_RATE_MASK;
  214. /* S/PDIF rate was already set by the caller */
  215. } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
  216. chip->spdif_playback_enable) {
  217. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  218. | OXYGEN_PLAY_SPDIF_MULTICH_01;
  219. oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
  220. & OXYGEN_I2S_RATE_MASK;
  221. new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
  222. (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
  223. OXYGEN_SPDIF_OUT_ENABLE;
  224. } else {
  225. new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
  226. new_routing = old_routing;
  227. oxygen_rate = OXYGEN_RATE_44100;
  228. }
  229. if (old_routing != new_routing) {
  230. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
  231. new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
  232. oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
  233. }
  234. if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
  235. oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
  236. oxygen_spdif_rate(oxygen_rate) |
  237. ((chip->pcm_active & (1 << PCM_SPDIF)) ?
  238. chip->spdif_pcm_bits : chip->spdif_bits));
  239. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
  240. }
  241. static int spdif_switch_put(struct snd_kcontrol *ctl,
  242. struct snd_ctl_elem_value *value)
  243. {
  244. struct oxygen *chip = ctl->private_data;
  245. int changed;
  246. mutex_lock(&chip->mutex);
  247. changed = value->value.integer.value[0] != chip->spdif_playback_enable;
  248. if (changed) {
  249. chip->spdif_playback_enable = !!value->value.integer.value[0];
  250. spin_lock_irq(&chip->reg_lock);
  251. oxygen_update_spdif_source(chip);
  252. spin_unlock_irq(&chip->reg_lock);
  253. }
  254. mutex_unlock(&chip->mutex);
  255. return changed;
  256. }
  257. static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  258. {
  259. info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  260. info->count = 1;
  261. return 0;
  262. }
  263. static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
  264. {
  265. value->value.iec958.status[0] =
  266. bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  267. OXYGEN_SPDIF_PREEMPHASIS);
  268. value->value.iec958.status[1] = /* category and original */
  269. bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
  270. }
  271. static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
  272. {
  273. u32 bits;
  274. bits = value->value.iec958.status[0] &
  275. (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  276. OXYGEN_SPDIF_PREEMPHASIS);
  277. bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
  278. if (bits & OXYGEN_SPDIF_NONAUDIO)
  279. bits |= OXYGEN_SPDIF_V;
  280. return bits;
  281. }
  282. static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
  283. {
  284. oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
  285. OXYGEN_SPDIF_NONAUDIO |
  286. OXYGEN_SPDIF_C |
  287. OXYGEN_SPDIF_PREEMPHASIS |
  288. OXYGEN_SPDIF_CATEGORY_MASK |
  289. OXYGEN_SPDIF_ORIGINAL |
  290. OXYGEN_SPDIF_V);
  291. }
  292. static int spdif_default_get(struct snd_kcontrol *ctl,
  293. struct snd_ctl_elem_value *value)
  294. {
  295. struct oxygen *chip = ctl->private_data;
  296. mutex_lock(&chip->mutex);
  297. oxygen_to_iec958(chip->spdif_bits, value);
  298. mutex_unlock(&chip->mutex);
  299. return 0;
  300. }
  301. static int spdif_default_put(struct snd_kcontrol *ctl,
  302. struct snd_ctl_elem_value *value)
  303. {
  304. struct oxygen *chip = ctl->private_data;
  305. u32 new_bits;
  306. int changed;
  307. new_bits = iec958_to_oxygen(value);
  308. mutex_lock(&chip->mutex);
  309. changed = new_bits != chip->spdif_bits;
  310. if (changed) {
  311. chip->spdif_bits = new_bits;
  312. if (!(chip->pcm_active & (1 << PCM_SPDIF)))
  313. write_spdif_bits(chip, new_bits);
  314. }
  315. mutex_unlock(&chip->mutex);
  316. return changed;
  317. }
  318. static int spdif_mask_get(struct snd_kcontrol *ctl,
  319. struct snd_ctl_elem_value *value)
  320. {
  321. value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
  322. IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
  323. value->value.iec958.status[1] =
  324. IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
  325. return 0;
  326. }
  327. static int spdif_pcm_get(struct snd_kcontrol *ctl,
  328. struct snd_ctl_elem_value *value)
  329. {
  330. struct oxygen *chip = ctl->private_data;
  331. mutex_lock(&chip->mutex);
  332. oxygen_to_iec958(chip->spdif_pcm_bits, value);
  333. mutex_unlock(&chip->mutex);
  334. return 0;
  335. }
  336. static int spdif_pcm_put(struct snd_kcontrol *ctl,
  337. struct snd_ctl_elem_value *value)
  338. {
  339. struct oxygen *chip = ctl->private_data;
  340. u32 new_bits;
  341. int changed;
  342. new_bits = iec958_to_oxygen(value);
  343. mutex_lock(&chip->mutex);
  344. changed = new_bits != chip->spdif_pcm_bits;
  345. if (changed) {
  346. chip->spdif_pcm_bits = new_bits;
  347. if (chip->pcm_active & (1 << PCM_SPDIF))
  348. write_spdif_bits(chip, new_bits);
  349. }
  350. mutex_unlock(&chip->mutex);
  351. return changed;
  352. }
  353. static int spdif_input_mask_get(struct snd_kcontrol *ctl,
  354. struct snd_ctl_elem_value *value)
  355. {
  356. value->value.iec958.status[0] = 0xff;
  357. value->value.iec958.status[1] = 0xff;
  358. value->value.iec958.status[2] = 0xff;
  359. value->value.iec958.status[3] = 0xff;
  360. return 0;
  361. }
  362. static int spdif_input_default_get(struct snd_kcontrol *ctl,
  363. struct snd_ctl_elem_value *value)
  364. {
  365. struct oxygen *chip = ctl->private_data;
  366. u32 bits;
  367. bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
  368. value->value.iec958.status[0] = bits;
  369. value->value.iec958.status[1] = bits >> 8;
  370. value->value.iec958.status[2] = bits >> 16;
  371. value->value.iec958.status[3] = bits >> 24;
  372. return 0;
  373. }
  374. static int spdif_loopback_get(struct snd_kcontrol *ctl,
  375. struct snd_ctl_elem_value *value)
  376. {
  377. struct oxygen *chip = ctl->private_data;
  378. value->value.integer.value[0] =
  379. !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL)
  380. & OXYGEN_SPDIF_LOOPBACK);
  381. return 0;
  382. }
  383. static int spdif_loopback_put(struct snd_kcontrol *ctl,
  384. struct snd_ctl_elem_value *value)
  385. {
  386. struct oxygen *chip = ctl->private_data;
  387. u32 oldreg, newreg;
  388. int changed;
  389. spin_lock_irq(&chip->reg_lock);
  390. oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  391. if (value->value.integer.value[0])
  392. newreg = oldreg | OXYGEN_SPDIF_LOOPBACK;
  393. else
  394. newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK;
  395. changed = newreg != oldreg;
  396. if (changed)
  397. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
  398. spin_unlock_irq(&chip->reg_lock);
  399. return changed;
  400. }
  401. static int monitor_volume_info(struct snd_kcontrol *ctl,
  402. struct snd_ctl_elem_info *info)
  403. {
  404. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  405. info->count = 1;
  406. info->value.integer.min = 0;
  407. info->value.integer.max = 1;
  408. return 0;
  409. }
  410. static int monitor_get(struct snd_kcontrol *ctl,
  411. struct snd_ctl_elem_value *value)
  412. {
  413. struct oxygen *chip = ctl->private_data;
  414. u8 bit = ctl->private_value;
  415. int invert = ctl->private_value & (1 << 8);
  416. value->value.integer.value[0] =
  417. !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
  418. return 0;
  419. }
  420. static int monitor_put(struct snd_kcontrol *ctl,
  421. struct snd_ctl_elem_value *value)
  422. {
  423. struct oxygen *chip = ctl->private_data;
  424. u8 bit = ctl->private_value;
  425. int invert = ctl->private_value & (1 << 8);
  426. u8 oldreg, newreg;
  427. int changed;
  428. spin_lock_irq(&chip->reg_lock);
  429. oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
  430. if ((!!value->value.integer.value[0] ^ !!invert) != 0)
  431. newreg = oldreg | bit;
  432. else
  433. newreg = oldreg & ~bit;
  434. changed = newreg != oldreg;
  435. if (changed)
  436. oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
  437. spin_unlock_irq(&chip->reg_lock);
  438. return changed;
  439. }
  440. static int ac97_switch_get(struct snd_kcontrol *ctl,
  441. struct snd_ctl_elem_value *value)
  442. {
  443. struct oxygen *chip = ctl->private_data;
  444. unsigned int codec = (ctl->private_value >> 24) & 1;
  445. unsigned int index = ctl->private_value & 0xff;
  446. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  447. int invert = ctl->private_value & (1 << 16);
  448. u16 reg;
  449. mutex_lock(&chip->mutex);
  450. reg = oxygen_read_ac97(chip, codec, index);
  451. mutex_unlock(&chip->mutex);
  452. if (!(reg & (1 << bitnr)) ^ !invert)
  453. value->value.integer.value[0] = 1;
  454. else
  455. value->value.integer.value[0] = 0;
  456. return 0;
  457. }
  458. static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
  459. {
  460. unsigned int priv_idx = chip->controls[control]->private_value & 0xff;
  461. u16 value;
  462. value = oxygen_read_ac97(chip, 0, priv_idx);
  463. if (!(value & 0x8000)) {
  464. oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
  465. if (chip->model->ac97_switch)
  466. chip->model->ac97_switch(chip, priv_idx, 0x8000);
  467. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  468. &chip->controls[control]->id);
  469. }
  470. }
  471. static int ac97_switch_put(struct snd_kcontrol *ctl,
  472. struct snd_ctl_elem_value *value)
  473. {
  474. struct oxygen *chip = ctl->private_data;
  475. unsigned int codec = (ctl->private_value >> 24) & 1;
  476. unsigned int index = ctl->private_value & 0xff;
  477. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  478. int invert = ctl->private_value & (1 << 16);
  479. u16 oldreg, newreg;
  480. int change;
  481. mutex_lock(&chip->mutex);
  482. oldreg = oxygen_read_ac97(chip, codec, index);
  483. newreg = oldreg;
  484. if (!value->value.integer.value[0] ^ !invert)
  485. newreg |= 1 << bitnr;
  486. else
  487. newreg &= ~(1 << bitnr);
  488. change = newreg != oldreg;
  489. if (change) {
  490. oxygen_write_ac97(chip, codec, index, newreg);
  491. if (codec == 0 && chip->model->ac97_switch)
  492. chip->model->ac97_switch(chip, index, newreg & 0x8000);
  493. if (index == AC97_LINE) {
  494. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  495. newreg & 0x8000 ?
  496. CM9780_GPO0 : 0, CM9780_GPO0);
  497. if (!(newreg & 0x8000)) {
  498. mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
  499. mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
  500. mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
  501. }
  502. } else if ((index == AC97_MIC || index == AC97_CD ||
  503. index == AC97_VIDEO || index == AC97_AUX) &&
  504. bitnr == 15 && !(newreg & 0x8000)) {
  505. mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
  506. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  507. CM9780_GPO0, CM9780_GPO0);
  508. }
  509. }
  510. mutex_unlock(&chip->mutex);
  511. return change;
  512. }
  513. static int ac97_volume_info(struct snd_kcontrol *ctl,
  514. struct snd_ctl_elem_info *info)
  515. {
  516. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  517. info->count = 2;
  518. info->value.integer.min = 0;
  519. info->value.integer.max = 0x1f;
  520. return 0;
  521. }
  522. static int ac97_volume_get(struct snd_kcontrol *ctl,
  523. struct snd_ctl_elem_value *value)
  524. {
  525. struct oxygen *chip = ctl->private_data;
  526. unsigned int codec = (ctl->private_value >> 24) & 1;
  527. unsigned int index = ctl->private_value & 0xff;
  528. u16 reg;
  529. mutex_lock(&chip->mutex);
  530. reg = oxygen_read_ac97(chip, codec, index);
  531. mutex_unlock(&chip->mutex);
  532. value->value.integer.value[0] = 31 - (reg & 0x1f);
  533. value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
  534. return 0;
  535. }
  536. static int ac97_volume_put(struct snd_kcontrol *ctl,
  537. struct snd_ctl_elem_value *value)
  538. {
  539. struct oxygen *chip = ctl->private_data;
  540. unsigned int codec = (ctl->private_value >> 24) & 1;
  541. unsigned int index = ctl->private_value & 0xff;
  542. u16 oldreg, newreg;
  543. int change;
  544. mutex_lock(&chip->mutex);
  545. oldreg = oxygen_read_ac97(chip, codec, index);
  546. newreg = oldreg;
  547. newreg = (newreg & ~0x1f) |
  548. (31 - (value->value.integer.value[0] & 0x1f));
  549. newreg = (newreg & ~0x1f00) |
  550. ((31 - (value->value.integer.value[0] & 0x1f)) << 8);
  551. change = newreg != oldreg;
  552. if (change)
  553. oxygen_write_ac97(chip, codec, index, newreg);
  554. mutex_unlock(&chip->mutex);
  555. return change;
  556. }
  557. static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
  558. struct snd_ctl_elem_info *info)
  559. {
  560. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  561. info->count = 2;
  562. info->value.integer.min = 0;
  563. info->value.integer.max = 7;
  564. return 0;
  565. }
  566. static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
  567. struct snd_ctl_elem_value *value)
  568. {
  569. struct oxygen *chip = ctl->private_data;
  570. u16 reg;
  571. mutex_lock(&chip->mutex);
  572. reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  573. mutex_unlock(&chip->mutex);
  574. value->value.integer.value[0] = reg & 7;
  575. value->value.integer.value[1] = (reg >> 8) & 7;
  576. return 0;
  577. }
  578. static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
  579. struct snd_ctl_elem_value *value)
  580. {
  581. struct oxygen *chip = ctl->private_data;
  582. u16 oldreg, newreg;
  583. int change;
  584. mutex_lock(&chip->mutex);
  585. oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  586. newreg = oldreg & ~0x0707;
  587. newreg = newreg | (value->value.integer.value[0] & 7);
  588. newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
  589. change = newreg != oldreg;
  590. if (change)
  591. oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
  592. mutex_unlock(&chip->mutex);
  593. return change;
  594. }
  595. #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
  596. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  597. .name = xname, \
  598. .info = snd_ctl_boolean_mono_info, \
  599. .get = ac97_switch_get, \
  600. .put = ac97_switch_put, \
  601. .private_value = ((codec) << 24) | ((invert) << 16) | \
  602. ((bitnr) << 8) | (index), \
  603. }
  604. #define AC97_VOLUME(xname, codec, index) { \
  605. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  606. .name = xname, \
  607. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
  608. SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  609. .info = ac97_volume_info, \
  610. .get = ac97_volume_get, \
  611. .put = ac97_volume_put, \
  612. .tlv = { .p = ac97_db_scale, }, \
  613. .private_value = ((codec) << 24) | (index), \
  614. }
  615. static DECLARE_TLV_DB_SCALE(monitor_db_scale, -1000, 1000, 0);
  616. static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
  617. static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
  618. static const struct snd_kcontrol_new controls[] = {
  619. {
  620. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  621. .name = "Master Playback Volume",
  622. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  623. .info = dac_volume_info,
  624. .get = dac_volume_get,
  625. .put = dac_volume_put,
  626. },
  627. {
  628. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  629. .name = "Master Playback Switch",
  630. .info = snd_ctl_boolean_mono_info,
  631. .get = dac_mute_get,
  632. .put = dac_mute_put,
  633. },
  634. {
  635. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  636. .name = "Stereo Upmixing",
  637. .info = upmix_info,
  638. .get = upmix_get,
  639. .put = upmix_put,
  640. },
  641. {
  642. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  643. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
  644. .info = snd_ctl_boolean_mono_info,
  645. .get = spdif_switch_get,
  646. .put = spdif_switch_put,
  647. },
  648. {
  649. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  650. .device = 1,
  651. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  652. .info = spdif_info,
  653. .get = spdif_default_get,
  654. .put = spdif_default_put,
  655. },
  656. {
  657. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  658. .device = 1,
  659. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  660. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  661. .info = spdif_info,
  662. .get = spdif_mask_get,
  663. },
  664. {
  665. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  666. .device = 1,
  667. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  668. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  669. SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  670. .info = spdif_info,
  671. .get = spdif_pcm_get,
  672. .put = spdif_pcm_put,
  673. },
  674. };
  675. static const struct snd_kcontrol_new spdif_input_controls[] = {
  676. {
  677. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  678. .device = 1,
  679. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
  680. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  681. .info = spdif_info,
  682. .get = spdif_input_mask_get,
  683. },
  684. {
  685. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  686. .device = 1,
  687. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  688. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  689. .info = spdif_info,
  690. .get = spdif_input_default_get,
  691. },
  692. {
  693. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  694. .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
  695. .info = snd_ctl_boolean_mono_info,
  696. .get = spdif_loopback_get,
  697. .put = spdif_loopback_put,
  698. },
  699. };
  700. static const struct {
  701. unsigned int pcm_dev;
  702. struct snd_kcontrol_new controls[2];
  703. } monitor_controls[] = {
  704. {
  705. .pcm_dev = CAPTURE_0_FROM_I2S_1,
  706. .controls = {
  707. {
  708. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  709. .name = "Analog Input Monitor Switch",
  710. .info = snd_ctl_boolean_mono_info,
  711. .get = monitor_get,
  712. .put = monitor_put,
  713. .private_value = OXYGEN_ADC_MONITOR_A,
  714. },
  715. {
  716. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  717. .name = "Analog Input Monitor Volume",
  718. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  719. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  720. .info = monitor_volume_info,
  721. .get = monitor_get,
  722. .put = monitor_put,
  723. .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
  724. | (1 << 8),
  725. .tlv = { .p = monitor_db_scale, },
  726. },
  727. },
  728. },
  729. {
  730. .pcm_dev = CAPTURE_0_FROM_I2S_2,
  731. .controls = {
  732. {
  733. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  734. .name = "Analog Input Monitor Switch",
  735. .info = snd_ctl_boolean_mono_info,
  736. .get = monitor_get,
  737. .put = monitor_put,
  738. .private_value = OXYGEN_ADC_MONITOR_B,
  739. },
  740. {
  741. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  742. .name = "Analog Input Monitor Volume",
  743. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  744. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  745. .info = monitor_volume_info,
  746. .get = monitor_get,
  747. .put = monitor_put,
  748. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  749. | (1 << 8),
  750. .tlv = { .p = monitor_db_scale, },
  751. },
  752. },
  753. },
  754. {
  755. .pcm_dev = CAPTURE_2_FROM_I2S_2,
  756. .controls = {
  757. {
  758. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  759. .name = "Analog Input Monitor Switch",
  760. .index = 1,
  761. .info = snd_ctl_boolean_mono_info,
  762. .get = monitor_get,
  763. .put = monitor_put,
  764. .private_value = OXYGEN_ADC_MONITOR_B,
  765. },
  766. {
  767. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  768. .name = "Analog Input Monitor Volume",
  769. .index = 1,
  770. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  771. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  772. .info = monitor_volume_info,
  773. .get = monitor_get,
  774. .put = monitor_put,
  775. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  776. | (1 << 8),
  777. .tlv = { .p = monitor_db_scale, },
  778. },
  779. },
  780. },
  781. {
  782. .pcm_dev = CAPTURE_1_FROM_SPDIF,
  783. .controls = {
  784. {
  785. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  786. .name = "Digital Input Monitor Switch",
  787. .info = snd_ctl_boolean_mono_info,
  788. .get = monitor_get,
  789. .put = monitor_put,
  790. .private_value = OXYGEN_ADC_MONITOR_C,
  791. },
  792. {
  793. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  794. .name = "Digital Input Monitor Volume",
  795. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  796. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  797. .info = monitor_volume_info,
  798. .get = monitor_get,
  799. .put = monitor_put,
  800. .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
  801. | (1 << 8),
  802. .tlv = { .p = monitor_db_scale, },
  803. },
  804. },
  805. },
  806. };
  807. static const struct snd_kcontrol_new ac97_controls[] = {
  808. AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC),
  809. AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
  810. AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
  811. AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
  812. AC97_VOLUME("CD Capture Volume", 0, AC97_CD),
  813. AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
  814. AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX),
  815. AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
  816. };
  817. static const struct snd_kcontrol_new ac97_fp_controls[] = {
  818. AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE),
  819. AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
  820. {
  821. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  822. .name = "Front Panel Capture Volume",
  823. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  824. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  825. .info = ac97_fp_rec_volume_info,
  826. .get = ac97_fp_rec_volume_get,
  827. .put = ac97_fp_rec_volume_put,
  828. .tlv = { .p = ac97_rec_db_scale, },
  829. },
  830. AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
  831. };
  832. static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
  833. {
  834. struct oxygen *chip = ctl->private_data;
  835. unsigned int i;
  836. /* I'm too lazy to write a function for each control :-) */
  837. for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
  838. chip->controls[i] = NULL;
  839. }
  840. static int add_controls(struct oxygen *chip,
  841. const struct snd_kcontrol_new controls[],
  842. unsigned int count)
  843. {
  844. static const char *const known_ctl_names[CONTROL_COUNT] = {
  845. [CONTROL_SPDIF_PCM] =
  846. SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  847. [CONTROL_SPDIF_INPUT_BITS] =
  848. SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  849. [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
  850. [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
  851. [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
  852. [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
  853. };
  854. unsigned int i, j;
  855. struct snd_kcontrol_new template;
  856. struct snd_kcontrol *ctl;
  857. int err;
  858. for (i = 0; i < count; ++i) {
  859. template = controls[i];
  860. err = chip->model->control_filter(&template);
  861. if (err < 0)
  862. return err;
  863. if (err == 1)
  864. continue;
  865. ctl = snd_ctl_new1(&template, chip);
  866. if (!ctl)
  867. return -ENOMEM;
  868. err = snd_ctl_add(chip->card, ctl);
  869. if (err < 0)
  870. return err;
  871. for (j = 0; j < CONTROL_COUNT; ++j)
  872. if (!strcmp(ctl->id.name, known_ctl_names[j])) {
  873. chip->controls[j] = ctl;
  874. ctl->private_free = oxygen_any_ctl_free;
  875. }
  876. }
  877. return 0;
  878. }
  879. int oxygen_mixer_init(struct oxygen *chip)
  880. {
  881. unsigned int i;
  882. int err;
  883. err = add_controls(chip, controls, ARRAY_SIZE(controls));
  884. if (err < 0)
  885. return err;
  886. if (chip->model->pcm_dev_cfg & CAPTURE_1_FROM_SPDIF) {
  887. err = add_controls(chip, spdif_input_controls,
  888. ARRAY_SIZE(spdif_input_controls));
  889. if (err < 0)
  890. return err;
  891. }
  892. for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
  893. if (!(chip->model->pcm_dev_cfg & monitor_controls[i].pcm_dev))
  894. continue;
  895. err = add_controls(chip, monitor_controls[i].controls,
  896. ARRAY_SIZE(monitor_controls[i].controls));
  897. if (err < 0)
  898. return err;
  899. }
  900. if (chip->has_ac97_0) {
  901. err = add_controls(chip, ac97_controls,
  902. ARRAY_SIZE(ac97_controls));
  903. if (err < 0)
  904. return err;
  905. }
  906. if (chip->has_ac97_1) {
  907. err = add_controls(chip, ac97_fp_controls,
  908. ARRAY_SIZE(ac97_fp_controls));
  909. if (err < 0)
  910. return err;
  911. }
  912. return chip->model->mixer_init ? chip->model->mixer_init(chip) : 0;
  913. }