audit_tree.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. #include "audit.h"
  2. #include <linux/inotify.h>
  3. #include <linux/namei.h>
  4. #include <linux/mount.h>
  5. struct audit_tree;
  6. struct audit_chunk;
  7. struct audit_tree {
  8. atomic_t count;
  9. int goner;
  10. struct audit_chunk *root;
  11. struct list_head chunks;
  12. struct list_head rules;
  13. struct list_head list;
  14. struct list_head same_root;
  15. struct rcu_head head;
  16. char pathname[];
  17. };
  18. struct audit_chunk {
  19. struct list_head hash;
  20. struct inotify_watch watch;
  21. struct list_head trees; /* with root here */
  22. int dead;
  23. int count;
  24. struct rcu_head head;
  25. struct node {
  26. struct list_head list;
  27. struct audit_tree *owner;
  28. unsigned index; /* index; upper bit indicates 'will prune' */
  29. } owners[];
  30. };
  31. static LIST_HEAD(tree_list);
  32. static LIST_HEAD(prune_list);
  33. /*
  34. * One struct chunk is attached to each inode of interest.
  35. * We replace struct chunk on tagging/untagging.
  36. * Rules have pointer to struct audit_tree.
  37. * Rules have struct list_head rlist forming a list of rules over
  38. * the same tree.
  39. * References to struct chunk are collected at audit_inode{,_child}()
  40. * time and used in AUDIT_TREE rule matching.
  41. * These references are dropped at the same time we are calling
  42. * audit_free_names(), etc.
  43. *
  44. * Cyclic lists galore:
  45. * tree.chunks anchors chunk.owners[].list hash_lock
  46. * tree.rules anchors rule.rlist audit_filter_mutex
  47. * chunk.trees anchors tree.same_root hash_lock
  48. * chunk.hash is a hash with middle bits of watch.inode as
  49. * a hash function. RCU, hash_lock
  50. *
  51. * tree is refcounted; one reference for "some rules on rules_list refer to
  52. * it", one for each chunk with pointer to it.
  53. *
  54. * chunk is refcounted by embedded inotify_watch.
  55. *
  56. * node.index allows to get from node.list to containing chunk.
  57. * MSB of that sucker is stolen to mark taggings that we might have to
  58. * revert - several operations have very unpleasant cleanup logics and
  59. * that makes a difference. Some.
  60. */
  61. static struct inotify_handle *rtree_ih;
  62. static struct audit_tree *alloc_tree(const char *s)
  63. {
  64. struct audit_tree *tree;
  65. tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
  66. if (tree) {
  67. atomic_set(&tree->count, 1);
  68. tree->goner = 0;
  69. INIT_LIST_HEAD(&tree->chunks);
  70. INIT_LIST_HEAD(&tree->rules);
  71. INIT_LIST_HEAD(&tree->list);
  72. INIT_LIST_HEAD(&tree->same_root);
  73. tree->root = NULL;
  74. strcpy(tree->pathname, s);
  75. }
  76. return tree;
  77. }
  78. static inline void get_tree(struct audit_tree *tree)
  79. {
  80. atomic_inc(&tree->count);
  81. }
  82. static void __put_tree(struct rcu_head *rcu)
  83. {
  84. struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
  85. kfree(tree);
  86. }
  87. static inline void put_tree(struct audit_tree *tree)
  88. {
  89. if (atomic_dec_and_test(&tree->count))
  90. call_rcu(&tree->head, __put_tree);
  91. }
  92. /* to avoid bringing the entire thing in audit.h */
  93. const char *audit_tree_path(struct audit_tree *tree)
  94. {
  95. return tree->pathname;
  96. }
  97. static struct audit_chunk *alloc_chunk(int count)
  98. {
  99. struct audit_chunk *chunk;
  100. size_t size;
  101. int i;
  102. size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
  103. chunk = kzalloc(size, GFP_KERNEL);
  104. if (!chunk)
  105. return NULL;
  106. INIT_LIST_HEAD(&chunk->hash);
  107. INIT_LIST_HEAD(&chunk->trees);
  108. chunk->count = count;
  109. for (i = 0; i < count; i++) {
  110. INIT_LIST_HEAD(&chunk->owners[i].list);
  111. chunk->owners[i].index = i;
  112. }
  113. inotify_init_watch(&chunk->watch);
  114. return chunk;
  115. }
  116. static void __free_chunk(struct rcu_head *rcu)
  117. {
  118. struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
  119. int i;
  120. for (i = 0; i < chunk->count; i++) {
  121. if (chunk->owners[i].owner)
  122. put_tree(chunk->owners[i].owner);
  123. }
  124. kfree(chunk);
  125. }
  126. static inline void free_chunk(struct audit_chunk *chunk)
  127. {
  128. call_rcu(&chunk->head, __free_chunk);
  129. }
  130. void audit_put_chunk(struct audit_chunk *chunk)
  131. {
  132. put_inotify_watch(&chunk->watch);
  133. }
  134. enum {HASH_SIZE = 128};
  135. static struct list_head chunk_hash_heads[HASH_SIZE];
  136. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
  137. static inline struct list_head *chunk_hash(const struct inode *inode)
  138. {
  139. unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
  140. return chunk_hash_heads + n % HASH_SIZE;
  141. }
  142. /* hash_lock is held by caller */
  143. static void insert_hash(struct audit_chunk *chunk)
  144. {
  145. struct list_head *list = chunk_hash(chunk->watch.inode);
  146. list_add_rcu(&chunk->hash, list);
  147. }
  148. /* called under rcu_read_lock */
  149. struct audit_chunk *audit_tree_lookup(const struct inode *inode)
  150. {
  151. struct list_head *list = chunk_hash(inode);
  152. struct list_head *pos;
  153. list_for_each_rcu(pos, list) {
  154. struct audit_chunk *p = container_of(pos, struct audit_chunk, hash);
  155. if (p->watch.inode == inode) {
  156. get_inotify_watch(&p->watch);
  157. return p;
  158. }
  159. }
  160. return NULL;
  161. }
  162. int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
  163. {
  164. int n;
  165. for (n = 0; n < chunk->count; n++)
  166. if (chunk->owners[n].owner == tree)
  167. return 1;
  168. return 0;
  169. }
  170. /* tagging and untagging inodes with trees */
  171. static void untag_chunk(struct audit_chunk *chunk, struct node *p)
  172. {
  173. struct audit_chunk *new;
  174. struct audit_tree *owner;
  175. int size = chunk->count - 1;
  176. int i, j;
  177. mutex_lock(&chunk->watch.inode->inotify_mutex);
  178. if (chunk->dead) {
  179. mutex_unlock(&chunk->watch.inode->inotify_mutex);
  180. return;
  181. }
  182. owner = p->owner;
  183. if (!size) {
  184. chunk->dead = 1;
  185. spin_lock(&hash_lock);
  186. list_del_init(&chunk->trees);
  187. if (owner->root == chunk)
  188. owner->root = NULL;
  189. list_del_init(&p->list);
  190. list_del_rcu(&chunk->hash);
  191. spin_unlock(&hash_lock);
  192. inotify_evict_watch(&chunk->watch);
  193. mutex_unlock(&chunk->watch.inode->inotify_mutex);
  194. put_inotify_watch(&chunk->watch);
  195. return;
  196. }
  197. new = alloc_chunk(size);
  198. if (!new)
  199. goto Fallback;
  200. if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) {
  201. free_chunk(new);
  202. goto Fallback;
  203. }
  204. chunk->dead = 1;
  205. spin_lock(&hash_lock);
  206. list_replace_init(&chunk->trees, &new->trees);
  207. if (owner->root == chunk) {
  208. list_del_init(&owner->same_root);
  209. owner->root = NULL;
  210. }
  211. for (i = j = 0; i < size; i++, j++) {
  212. struct audit_tree *s;
  213. if (&chunk->owners[j] == p) {
  214. list_del_init(&p->list);
  215. i--;
  216. continue;
  217. }
  218. s = chunk->owners[j].owner;
  219. new->owners[i].owner = s;
  220. new->owners[i].index = chunk->owners[j].index - j + i;
  221. if (!s) /* result of earlier fallback */
  222. continue;
  223. get_tree(s);
  224. list_replace_init(&chunk->owners[i].list, &new->owners[j].list);
  225. }
  226. list_replace_rcu(&chunk->hash, &new->hash);
  227. list_for_each_entry(owner, &new->trees, same_root)
  228. owner->root = new;
  229. spin_unlock(&hash_lock);
  230. inotify_evict_watch(&chunk->watch);
  231. mutex_unlock(&chunk->watch.inode->inotify_mutex);
  232. put_inotify_watch(&chunk->watch);
  233. return;
  234. Fallback:
  235. // do the best we can
  236. spin_lock(&hash_lock);
  237. if (owner->root == chunk) {
  238. list_del_init(&owner->same_root);
  239. owner->root = NULL;
  240. }
  241. list_del_init(&p->list);
  242. p->owner = NULL;
  243. put_tree(owner);
  244. spin_unlock(&hash_lock);
  245. mutex_unlock(&chunk->watch.inode->inotify_mutex);
  246. }
  247. static int create_chunk(struct inode *inode, struct audit_tree *tree)
  248. {
  249. struct audit_chunk *chunk = alloc_chunk(1);
  250. if (!chunk)
  251. return -ENOMEM;
  252. if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) {
  253. free_chunk(chunk);
  254. return -ENOSPC;
  255. }
  256. mutex_lock(&inode->inotify_mutex);
  257. spin_lock(&hash_lock);
  258. if (tree->goner) {
  259. spin_unlock(&hash_lock);
  260. chunk->dead = 1;
  261. inotify_evict_watch(&chunk->watch);
  262. mutex_unlock(&inode->inotify_mutex);
  263. put_inotify_watch(&chunk->watch);
  264. return 0;
  265. }
  266. chunk->owners[0].index = (1U << 31);
  267. chunk->owners[0].owner = tree;
  268. get_tree(tree);
  269. list_add(&chunk->owners[0].list, &tree->chunks);
  270. if (!tree->root) {
  271. tree->root = chunk;
  272. list_add(&tree->same_root, &chunk->trees);
  273. }
  274. insert_hash(chunk);
  275. spin_unlock(&hash_lock);
  276. mutex_unlock(&inode->inotify_mutex);
  277. return 0;
  278. }
  279. /* the first tagged inode becomes root of tree */
  280. static int tag_chunk(struct inode *inode, struct audit_tree *tree)
  281. {
  282. struct inotify_watch *watch;
  283. struct audit_tree *owner;
  284. struct audit_chunk *chunk, *old;
  285. struct node *p;
  286. int n;
  287. if (inotify_find_watch(rtree_ih, inode, &watch) < 0)
  288. return create_chunk(inode, tree);
  289. old = container_of(watch, struct audit_chunk, watch);
  290. /* are we already there? */
  291. spin_lock(&hash_lock);
  292. for (n = 0; n < old->count; n++) {
  293. if (old->owners[n].owner == tree) {
  294. spin_unlock(&hash_lock);
  295. put_inotify_watch(watch);
  296. return 0;
  297. }
  298. }
  299. spin_unlock(&hash_lock);
  300. chunk = alloc_chunk(old->count + 1);
  301. if (!chunk)
  302. return -ENOMEM;
  303. mutex_lock(&inode->inotify_mutex);
  304. if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) {
  305. mutex_unlock(&inode->inotify_mutex);
  306. free_chunk(chunk);
  307. return -ENOSPC;
  308. }
  309. spin_lock(&hash_lock);
  310. if (tree->goner) {
  311. spin_unlock(&hash_lock);
  312. chunk->dead = 1;
  313. inotify_evict_watch(&chunk->watch);
  314. mutex_unlock(&inode->inotify_mutex);
  315. put_inotify_watch(&chunk->watch);
  316. return 0;
  317. }
  318. list_replace_init(&old->trees, &chunk->trees);
  319. for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
  320. struct audit_tree *s = old->owners[n].owner;
  321. p->owner = s;
  322. p->index = old->owners[n].index;
  323. if (!s) /* result of fallback in untag */
  324. continue;
  325. get_tree(s);
  326. list_replace_init(&old->owners[n].list, &p->list);
  327. }
  328. p->index = (chunk->count - 1) | (1U<<31);
  329. p->owner = tree;
  330. get_tree(tree);
  331. list_add(&p->list, &tree->chunks);
  332. list_replace_rcu(&old->hash, &chunk->hash);
  333. list_for_each_entry(owner, &chunk->trees, same_root)
  334. owner->root = chunk;
  335. old->dead = 1;
  336. if (!tree->root) {
  337. tree->root = chunk;
  338. list_add(&tree->same_root, &chunk->trees);
  339. }
  340. spin_unlock(&hash_lock);
  341. inotify_evict_watch(&old->watch);
  342. mutex_unlock(&inode->inotify_mutex);
  343. put_inotify_watch(&old->watch);
  344. return 0;
  345. }
  346. static struct audit_chunk *find_chunk(struct node *p)
  347. {
  348. int index = p->index & ~(1U<<31);
  349. p -= index;
  350. return container_of(p, struct audit_chunk, owners[0]);
  351. }
  352. static void kill_rules(struct audit_tree *tree)
  353. {
  354. struct audit_krule *rule, *next;
  355. struct audit_entry *entry;
  356. struct audit_buffer *ab;
  357. list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
  358. entry = container_of(rule, struct audit_entry, rule);
  359. list_del_init(&rule->rlist);
  360. if (rule->tree) {
  361. /* not a half-baked one */
  362. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
  363. audit_log_format(ab, "op=remove rule dir=");
  364. audit_log_untrustedstring(ab, rule->tree->pathname);
  365. if (rule->filterkey) {
  366. audit_log_format(ab, " key=");
  367. audit_log_untrustedstring(ab, rule->filterkey);
  368. } else
  369. audit_log_format(ab, " key=(null)");
  370. audit_log_format(ab, " list=%d res=1", rule->listnr);
  371. audit_log_end(ab);
  372. rule->tree = NULL;
  373. list_del_rcu(&entry->list);
  374. call_rcu(&entry->rcu, audit_free_rule_rcu);
  375. }
  376. }
  377. }
  378. /*
  379. * finish killing struct audit_tree
  380. */
  381. static void prune_one(struct audit_tree *victim)
  382. {
  383. spin_lock(&hash_lock);
  384. while (!list_empty(&victim->chunks)) {
  385. struct node *p;
  386. struct audit_chunk *chunk;
  387. p = list_entry(victim->chunks.next, struct node, list);
  388. chunk = find_chunk(p);
  389. get_inotify_watch(&chunk->watch);
  390. spin_unlock(&hash_lock);
  391. untag_chunk(chunk, p);
  392. put_inotify_watch(&chunk->watch);
  393. spin_lock(&hash_lock);
  394. }
  395. spin_unlock(&hash_lock);
  396. put_tree(victim);
  397. }
  398. /* trim the uncommitted chunks from tree */
  399. static void trim_marked(struct audit_tree *tree)
  400. {
  401. struct list_head *p, *q;
  402. spin_lock(&hash_lock);
  403. if (tree->goner) {
  404. spin_unlock(&hash_lock);
  405. return;
  406. }
  407. /* reorder */
  408. for (p = tree->chunks.next; p != &tree->chunks; p = q) {
  409. struct node *node = list_entry(p, struct node, list);
  410. q = p->next;
  411. if (node->index & (1U<<31)) {
  412. list_del_init(p);
  413. list_add(p, &tree->chunks);
  414. }
  415. }
  416. while (!list_empty(&tree->chunks)) {
  417. struct node *node;
  418. struct audit_chunk *chunk;
  419. node = list_entry(tree->chunks.next, struct node, list);
  420. /* have we run out of marked? */
  421. if (!(node->index & (1U<<31)))
  422. break;
  423. chunk = find_chunk(node);
  424. get_inotify_watch(&chunk->watch);
  425. spin_unlock(&hash_lock);
  426. untag_chunk(chunk, node);
  427. put_inotify_watch(&chunk->watch);
  428. spin_lock(&hash_lock);
  429. }
  430. if (!tree->root && !tree->goner) {
  431. tree->goner = 1;
  432. spin_unlock(&hash_lock);
  433. mutex_lock(&audit_filter_mutex);
  434. kill_rules(tree);
  435. list_del_init(&tree->list);
  436. mutex_unlock(&audit_filter_mutex);
  437. prune_one(tree);
  438. } else {
  439. spin_unlock(&hash_lock);
  440. }
  441. }
  442. /* called with audit_filter_mutex */
  443. int audit_remove_tree_rule(struct audit_krule *rule)
  444. {
  445. struct audit_tree *tree;
  446. tree = rule->tree;
  447. if (tree) {
  448. spin_lock(&hash_lock);
  449. list_del_init(&rule->rlist);
  450. if (list_empty(&tree->rules) && !tree->goner) {
  451. tree->root = NULL;
  452. list_del_init(&tree->same_root);
  453. tree->goner = 1;
  454. list_move(&tree->list, &prune_list);
  455. rule->tree = NULL;
  456. spin_unlock(&hash_lock);
  457. audit_schedule_prune();
  458. return 1;
  459. }
  460. rule->tree = NULL;
  461. spin_unlock(&hash_lock);
  462. return 1;
  463. }
  464. return 0;
  465. }
  466. void audit_trim_trees(void)
  467. {
  468. struct list_head cursor;
  469. mutex_lock(&audit_filter_mutex);
  470. list_add(&cursor, &tree_list);
  471. while (cursor.next != &tree_list) {
  472. struct audit_tree *tree;
  473. struct nameidata nd;
  474. struct vfsmount *root_mnt;
  475. struct node *node;
  476. struct list_head list;
  477. int err;
  478. tree = container_of(cursor.next, struct audit_tree, list);
  479. get_tree(tree);
  480. list_del(&cursor);
  481. list_add(&cursor, &tree->list);
  482. mutex_unlock(&audit_filter_mutex);
  483. err = path_lookup(tree->pathname, 0, &nd);
  484. if (err)
  485. goto skip_it;
  486. root_mnt = collect_mounts(nd.path.mnt, nd.path.dentry);
  487. path_put(&nd.path);
  488. if (!root_mnt)
  489. goto skip_it;
  490. list_add_tail(&list, &root_mnt->mnt_list);
  491. spin_lock(&hash_lock);
  492. list_for_each_entry(node, &tree->chunks, list) {
  493. struct audit_chunk *chunk = find_chunk(node);
  494. struct inode *inode = chunk->watch.inode;
  495. struct vfsmount *mnt;
  496. node->index |= 1U<<31;
  497. list_for_each_entry(mnt, &list, mnt_list) {
  498. if (mnt->mnt_root->d_inode == inode) {
  499. node->index &= ~(1U<<31);
  500. break;
  501. }
  502. }
  503. }
  504. spin_unlock(&hash_lock);
  505. trim_marked(tree);
  506. put_tree(tree);
  507. list_del_init(&list);
  508. drop_collected_mounts(root_mnt);
  509. skip_it:
  510. mutex_lock(&audit_filter_mutex);
  511. }
  512. list_del(&cursor);
  513. mutex_unlock(&audit_filter_mutex);
  514. }
  515. static int is_under(struct vfsmount *mnt, struct dentry *dentry,
  516. struct nameidata *nd)
  517. {
  518. if (mnt != nd->path.mnt) {
  519. for (;;) {
  520. if (mnt->mnt_parent == mnt)
  521. return 0;
  522. if (mnt->mnt_parent == nd->path.mnt)
  523. break;
  524. mnt = mnt->mnt_parent;
  525. }
  526. dentry = mnt->mnt_mountpoint;
  527. }
  528. return is_subdir(dentry, nd->path.dentry);
  529. }
  530. int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
  531. {
  532. if (pathname[0] != '/' ||
  533. rule->listnr != AUDIT_FILTER_EXIT ||
  534. op & ~AUDIT_EQUAL ||
  535. rule->inode_f || rule->watch || rule->tree)
  536. return -EINVAL;
  537. rule->tree = alloc_tree(pathname);
  538. if (!rule->tree)
  539. return -ENOMEM;
  540. return 0;
  541. }
  542. void audit_put_tree(struct audit_tree *tree)
  543. {
  544. put_tree(tree);
  545. }
  546. /* called with audit_filter_mutex */
  547. int audit_add_tree_rule(struct audit_krule *rule)
  548. {
  549. struct audit_tree *seed = rule->tree, *tree;
  550. struct nameidata nd;
  551. struct vfsmount *mnt, *p;
  552. struct list_head list;
  553. int err;
  554. list_for_each_entry(tree, &tree_list, list) {
  555. if (!strcmp(seed->pathname, tree->pathname)) {
  556. put_tree(seed);
  557. rule->tree = tree;
  558. list_add(&rule->rlist, &tree->rules);
  559. return 0;
  560. }
  561. }
  562. tree = seed;
  563. list_add(&tree->list, &tree_list);
  564. list_add(&rule->rlist, &tree->rules);
  565. /* do not set rule->tree yet */
  566. mutex_unlock(&audit_filter_mutex);
  567. err = path_lookup(tree->pathname, 0, &nd);
  568. if (err)
  569. goto Err;
  570. mnt = collect_mounts(nd.path.mnt, nd.path.dentry);
  571. path_put(&nd.path);
  572. if (!mnt) {
  573. err = -ENOMEM;
  574. goto Err;
  575. }
  576. list_add_tail(&list, &mnt->mnt_list);
  577. get_tree(tree);
  578. list_for_each_entry(p, &list, mnt_list) {
  579. err = tag_chunk(p->mnt_root->d_inode, tree);
  580. if (err)
  581. break;
  582. }
  583. list_del(&list);
  584. drop_collected_mounts(mnt);
  585. if (!err) {
  586. struct node *node;
  587. spin_lock(&hash_lock);
  588. list_for_each_entry(node, &tree->chunks, list)
  589. node->index &= ~(1U<<31);
  590. spin_unlock(&hash_lock);
  591. } else {
  592. trim_marked(tree);
  593. goto Err;
  594. }
  595. mutex_lock(&audit_filter_mutex);
  596. if (list_empty(&rule->rlist)) {
  597. put_tree(tree);
  598. return -ENOENT;
  599. }
  600. rule->tree = tree;
  601. put_tree(tree);
  602. return 0;
  603. Err:
  604. mutex_lock(&audit_filter_mutex);
  605. list_del_init(&tree->list);
  606. list_del_init(&tree->rules);
  607. put_tree(tree);
  608. return err;
  609. }
  610. int audit_tag_tree(char *old, char *new)
  611. {
  612. struct list_head cursor, barrier;
  613. int failed = 0;
  614. struct nameidata nd;
  615. struct vfsmount *tagged;
  616. struct list_head list;
  617. struct vfsmount *mnt;
  618. struct dentry *dentry;
  619. int err;
  620. err = path_lookup(new, 0, &nd);
  621. if (err)
  622. return err;
  623. tagged = collect_mounts(nd.path.mnt, nd.path.dentry);
  624. path_put(&nd.path);
  625. if (!tagged)
  626. return -ENOMEM;
  627. err = path_lookup(old, 0, &nd);
  628. if (err) {
  629. drop_collected_mounts(tagged);
  630. return err;
  631. }
  632. mnt = mntget(nd.path.mnt);
  633. dentry = dget(nd.path.dentry);
  634. path_put(&nd.path);
  635. if (dentry == tagged->mnt_root && dentry == mnt->mnt_root)
  636. follow_up(&mnt, &dentry);
  637. list_add_tail(&list, &tagged->mnt_list);
  638. mutex_lock(&audit_filter_mutex);
  639. list_add(&barrier, &tree_list);
  640. list_add(&cursor, &barrier);
  641. while (cursor.next != &tree_list) {
  642. struct audit_tree *tree;
  643. struct vfsmount *p;
  644. tree = container_of(cursor.next, struct audit_tree, list);
  645. get_tree(tree);
  646. list_del(&cursor);
  647. list_add(&cursor, &tree->list);
  648. mutex_unlock(&audit_filter_mutex);
  649. err = path_lookup(tree->pathname, 0, &nd);
  650. if (err) {
  651. put_tree(tree);
  652. mutex_lock(&audit_filter_mutex);
  653. continue;
  654. }
  655. spin_lock(&vfsmount_lock);
  656. if (!is_under(mnt, dentry, &nd)) {
  657. spin_unlock(&vfsmount_lock);
  658. path_put(&nd.path);
  659. put_tree(tree);
  660. mutex_lock(&audit_filter_mutex);
  661. continue;
  662. }
  663. spin_unlock(&vfsmount_lock);
  664. path_put(&nd.path);
  665. list_for_each_entry(p, &list, mnt_list) {
  666. failed = tag_chunk(p->mnt_root->d_inode, tree);
  667. if (failed)
  668. break;
  669. }
  670. if (failed) {
  671. put_tree(tree);
  672. mutex_lock(&audit_filter_mutex);
  673. break;
  674. }
  675. mutex_lock(&audit_filter_mutex);
  676. spin_lock(&hash_lock);
  677. if (!tree->goner) {
  678. list_del(&tree->list);
  679. list_add(&tree->list, &tree_list);
  680. }
  681. spin_unlock(&hash_lock);
  682. put_tree(tree);
  683. }
  684. while (barrier.prev != &tree_list) {
  685. struct audit_tree *tree;
  686. tree = container_of(barrier.prev, struct audit_tree, list);
  687. get_tree(tree);
  688. list_del(&tree->list);
  689. list_add(&tree->list, &barrier);
  690. mutex_unlock(&audit_filter_mutex);
  691. if (!failed) {
  692. struct node *node;
  693. spin_lock(&hash_lock);
  694. list_for_each_entry(node, &tree->chunks, list)
  695. node->index &= ~(1U<<31);
  696. spin_unlock(&hash_lock);
  697. } else {
  698. trim_marked(tree);
  699. }
  700. put_tree(tree);
  701. mutex_lock(&audit_filter_mutex);
  702. }
  703. list_del(&barrier);
  704. list_del(&cursor);
  705. list_del(&list);
  706. mutex_unlock(&audit_filter_mutex);
  707. dput(dentry);
  708. mntput(mnt);
  709. drop_collected_mounts(tagged);
  710. return failed;
  711. }
  712. /*
  713. * That gets run when evict_chunk() ends up needing to kill audit_tree.
  714. * Runs from a separate thread, with audit_cmd_mutex held.
  715. */
  716. void audit_prune_trees(void)
  717. {
  718. mutex_lock(&audit_filter_mutex);
  719. while (!list_empty(&prune_list)) {
  720. struct audit_tree *victim;
  721. victim = list_entry(prune_list.next, struct audit_tree, list);
  722. list_del_init(&victim->list);
  723. mutex_unlock(&audit_filter_mutex);
  724. prune_one(victim);
  725. mutex_lock(&audit_filter_mutex);
  726. }
  727. mutex_unlock(&audit_filter_mutex);
  728. }
  729. /*
  730. * Here comes the stuff asynchronous to auditctl operations
  731. */
  732. /* inode->inotify_mutex is locked */
  733. static void evict_chunk(struct audit_chunk *chunk)
  734. {
  735. struct audit_tree *owner;
  736. int n;
  737. if (chunk->dead)
  738. return;
  739. chunk->dead = 1;
  740. mutex_lock(&audit_filter_mutex);
  741. spin_lock(&hash_lock);
  742. while (!list_empty(&chunk->trees)) {
  743. owner = list_entry(chunk->trees.next,
  744. struct audit_tree, same_root);
  745. owner->goner = 1;
  746. owner->root = NULL;
  747. list_del_init(&owner->same_root);
  748. spin_unlock(&hash_lock);
  749. kill_rules(owner);
  750. list_move(&owner->list, &prune_list);
  751. audit_schedule_prune();
  752. spin_lock(&hash_lock);
  753. }
  754. list_del_rcu(&chunk->hash);
  755. for (n = 0; n < chunk->count; n++)
  756. list_del_init(&chunk->owners[n].list);
  757. spin_unlock(&hash_lock);
  758. mutex_unlock(&audit_filter_mutex);
  759. }
  760. static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
  761. u32 cookie, const char *dname, struct inode *inode)
  762. {
  763. struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
  764. if (mask & IN_IGNORED) {
  765. evict_chunk(chunk);
  766. put_inotify_watch(watch);
  767. }
  768. }
  769. static void destroy_watch(struct inotify_watch *watch)
  770. {
  771. struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
  772. free_chunk(chunk);
  773. }
  774. static const struct inotify_operations rtree_inotify_ops = {
  775. .handle_event = handle_event,
  776. .destroy_watch = destroy_watch,
  777. };
  778. static int __init audit_tree_init(void)
  779. {
  780. int i;
  781. rtree_ih = inotify_init(&rtree_inotify_ops);
  782. if (IS_ERR(rtree_ih))
  783. audit_panic("cannot initialize inotify handle for rectree watches");
  784. for (i = 0; i < HASH_SIZE; i++)
  785. INIT_LIST_HEAD(&chunk_hash_heads[i]);
  786. return 0;
  787. }
  788. __initcall(audit_tree_init);