intel_dp.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int dpms_mode;
  47. uint8_t link_bw;
  48. uint8_t lane_count;
  49. uint8_t dpcd[4];
  50. struct i2c_adapter adapter;
  51. struct i2c_algo_dp_aux_data algo;
  52. bool is_pch_edp;
  53. uint8_t train_set[4];
  54. uint8_t link_status[DP_LINK_STATUS_SIZE];
  55. };
  56. /**
  57. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  58. * @intel_dp: DP struct
  59. *
  60. * If a CPU or PCH DP output is attached to an eDP panel, this function
  61. * will return true, and false otherwise.
  62. */
  63. static bool is_edp(struct intel_dp *intel_dp)
  64. {
  65. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  66. }
  67. /**
  68. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  69. * @intel_dp: DP struct
  70. *
  71. * Returns true if the given DP struct corresponds to a PCH DP port attached
  72. * to an eDP panel, false otherwise. Helpful for determining whether we
  73. * may need FDI resources for a given DP output or not.
  74. */
  75. static bool is_pch_edp(struct intel_dp *intel_dp)
  76. {
  77. return intel_dp->is_pch_edp;
  78. }
  79. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  80. {
  81. return container_of(encoder, struct intel_dp, base.base);
  82. }
  83. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  84. {
  85. return container_of(intel_attached_encoder(connector),
  86. struct intel_dp, base);
  87. }
  88. /**
  89. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  90. * @encoder: DRM encoder
  91. *
  92. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  93. * by intel_display.c.
  94. */
  95. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  96. {
  97. struct intel_dp *intel_dp;
  98. if (!encoder)
  99. return false;
  100. intel_dp = enc_to_intel_dp(encoder);
  101. return is_pch_edp(intel_dp);
  102. }
  103. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  104. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  105. static void intel_dp_link_down(struct intel_dp *intel_dp);
  106. void
  107. intel_edp_link_config (struct intel_encoder *intel_encoder,
  108. int *lane_num, int *link_bw)
  109. {
  110. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  111. *lane_num = intel_dp->lane_count;
  112. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  113. *link_bw = 162000;
  114. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  115. *link_bw = 270000;
  116. }
  117. static int
  118. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  119. {
  120. int max_lane_count = 4;
  121. if (intel_dp->dpcd[0] >= 0x11) {
  122. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  123. switch (max_lane_count) {
  124. case 1: case 2: case 4:
  125. break;
  126. default:
  127. max_lane_count = 4;
  128. }
  129. }
  130. return max_lane_count;
  131. }
  132. static int
  133. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  134. {
  135. int max_link_bw = intel_dp->dpcd[1];
  136. switch (max_link_bw) {
  137. case DP_LINK_BW_1_62:
  138. case DP_LINK_BW_2_7:
  139. break;
  140. default:
  141. max_link_bw = DP_LINK_BW_1_62;
  142. break;
  143. }
  144. return max_link_bw;
  145. }
  146. static int
  147. intel_dp_link_clock(uint8_t link_bw)
  148. {
  149. if (link_bw == DP_LINK_BW_2_7)
  150. return 270000;
  151. else
  152. return 162000;
  153. }
  154. /* I think this is a fiction */
  155. static int
  156. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  157. {
  158. struct drm_i915_private *dev_priv = dev->dev_private;
  159. if (is_edp(intel_dp))
  160. return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
  161. else
  162. return pixel_clock * 3;
  163. }
  164. static int
  165. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  166. {
  167. return (max_link_clock * max_lanes * 8) / 10;
  168. }
  169. static int
  170. intel_dp_mode_valid(struct drm_connector *connector,
  171. struct drm_display_mode *mode)
  172. {
  173. struct intel_dp *intel_dp = intel_attached_dp(connector);
  174. struct drm_device *dev = connector->dev;
  175. struct drm_i915_private *dev_priv = dev->dev_private;
  176. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  177. int max_lanes = intel_dp_max_lane_count(intel_dp);
  178. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  179. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  180. return MODE_PANEL;
  181. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  182. return MODE_PANEL;
  183. }
  184. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  185. which are outside spec tolerances but somehow work by magic */
  186. if (!is_edp(intel_dp) &&
  187. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  188. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  189. return MODE_CLOCK_HIGH;
  190. if (mode->clock < 10000)
  191. return MODE_CLOCK_LOW;
  192. return MODE_OK;
  193. }
  194. static uint32_t
  195. pack_aux(uint8_t *src, int src_bytes)
  196. {
  197. int i;
  198. uint32_t v = 0;
  199. if (src_bytes > 4)
  200. src_bytes = 4;
  201. for (i = 0; i < src_bytes; i++)
  202. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  203. return v;
  204. }
  205. static void
  206. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  207. {
  208. int i;
  209. if (dst_bytes > 4)
  210. dst_bytes = 4;
  211. for (i = 0; i < dst_bytes; i++)
  212. dst[i] = src >> ((3-i) * 8);
  213. }
  214. /* hrawclock is 1/4 the FSB frequency */
  215. static int
  216. intel_hrawclk(struct drm_device *dev)
  217. {
  218. struct drm_i915_private *dev_priv = dev->dev_private;
  219. uint32_t clkcfg;
  220. clkcfg = I915_READ(CLKCFG);
  221. switch (clkcfg & CLKCFG_FSB_MASK) {
  222. case CLKCFG_FSB_400:
  223. return 100;
  224. case CLKCFG_FSB_533:
  225. return 133;
  226. case CLKCFG_FSB_667:
  227. return 166;
  228. case CLKCFG_FSB_800:
  229. return 200;
  230. case CLKCFG_FSB_1067:
  231. return 266;
  232. case CLKCFG_FSB_1333:
  233. return 333;
  234. /* these two are just a guess; one of them might be right */
  235. case CLKCFG_FSB_1600:
  236. case CLKCFG_FSB_1600_ALT:
  237. return 400;
  238. default:
  239. return 133;
  240. }
  241. }
  242. static int
  243. intel_dp_aux_ch(struct intel_dp *intel_dp,
  244. uint8_t *send, int send_bytes,
  245. uint8_t *recv, int recv_size)
  246. {
  247. uint32_t output_reg = intel_dp->output_reg;
  248. struct drm_device *dev = intel_dp->base.base.dev;
  249. struct drm_i915_private *dev_priv = dev->dev_private;
  250. uint32_t ch_ctl = output_reg + 0x10;
  251. uint32_t ch_data = ch_ctl + 4;
  252. int i;
  253. int recv_bytes;
  254. uint32_t status;
  255. uint32_t aux_clock_divider;
  256. int try, precharge;
  257. /* The clock divider is based off the hrawclk,
  258. * and would like to run at 2MHz. So, take the
  259. * hrawclk value and divide by 2 and use that
  260. *
  261. * Note that PCH attached eDP panels should use a 125MHz input
  262. * clock divider.
  263. */
  264. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  265. if (IS_GEN6(dev))
  266. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  267. else
  268. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  269. } else if (HAS_PCH_SPLIT(dev))
  270. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  271. else
  272. aux_clock_divider = intel_hrawclk(dev) / 2;
  273. if (IS_GEN6(dev))
  274. precharge = 3;
  275. else
  276. precharge = 5;
  277. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  278. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  279. I915_READ(ch_ctl));
  280. return -EBUSY;
  281. }
  282. /* Must try at least 3 times according to DP spec */
  283. for (try = 0; try < 5; try++) {
  284. /* Load the send data into the aux channel data registers */
  285. for (i = 0; i < send_bytes; i += 4)
  286. I915_WRITE(ch_data + i,
  287. pack_aux(send + i, send_bytes - i));
  288. /* Send the command and wait for it to complete */
  289. I915_WRITE(ch_ctl,
  290. DP_AUX_CH_CTL_SEND_BUSY |
  291. DP_AUX_CH_CTL_TIME_OUT_400us |
  292. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  293. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  294. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  295. DP_AUX_CH_CTL_DONE |
  296. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  297. DP_AUX_CH_CTL_RECEIVE_ERROR);
  298. for (;;) {
  299. status = I915_READ(ch_ctl);
  300. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  301. break;
  302. udelay(100);
  303. }
  304. /* Clear done status and any errors */
  305. I915_WRITE(ch_ctl,
  306. status |
  307. DP_AUX_CH_CTL_DONE |
  308. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  309. DP_AUX_CH_CTL_RECEIVE_ERROR);
  310. if (status & DP_AUX_CH_CTL_DONE)
  311. break;
  312. }
  313. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  314. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  315. return -EBUSY;
  316. }
  317. /* Check for timeout or receive error.
  318. * Timeouts occur when the sink is not connected
  319. */
  320. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  321. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  322. return -EIO;
  323. }
  324. /* Timeouts occur when the device isn't connected, so they're
  325. * "normal" -- don't fill the kernel log with these */
  326. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  327. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  328. return -ETIMEDOUT;
  329. }
  330. /* Unload any bytes sent back from the other side */
  331. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  332. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  333. if (recv_bytes > recv_size)
  334. recv_bytes = recv_size;
  335. for (i = 0; i < recv_bytes; i += 4)
  336. unpack_aux(I915_READ(ch_data + i),
  337. recv + i, recv_bytes - i);
  338. return recv_bytes;
  339. }
  340. /* Write data to the aux channel in native mode */
  341. static int
  342. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  343. uint16_t address, uint8_t *send, int send_bytes)
  344. {
  345. int ret;
  346. uint8_t msg[20];
  347. int msg_bytes;
  348. uint8_t ack;
  349. if (send_bytes > 16)
  350. return -1;
  351. msg[0] = AUX_NATIVE_WRITE << 4;
  352. msg[1] = address >> 8;
  353. msg[2] = address & 0xff;
  354. msg[3] = send_bytes - 1;
  355. memcpy(&msg[4], send, send_bytes);
  356. msg_bytes = send_bytes + 4;
  357. for (;;) {
  358. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  359. if (ret < 0)
  360. return ret;
  361. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  362. break;
  363. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  364. udelay(100);
  365. else
  366. return -EIO;
  367. }
  368. return send_bytes;
  369. }
  370. /* Write a single byte to the aux channel in native mode */
  371. static int
  372. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  373. uint16_t address, uint8_t byte)
  374. {
  375. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  376. }
  377. /* read bytes from a native aux channel */
  378. static int
  379. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  380. uint16_t address, uint8_t *recv, int recv_bytes)
  381. {
  382. uint8_t msg[4];
  383. int msg_bytes;
  384. uint8_t reply[20];
  385. int reply_bytes;
  386. uint8_t ack;
  387. int ret;
  388. msg[0] = AUX_NATIVE_READ << 4;
  389. msg[1] = address >> 8;
  390. msg[2] = address & 0xff;
  391. msg[3] = recv_bytes - 1;
  392. msg_bytes = 4;
  393. reply_bytes = recv_bytes + 1;
  394. for (;;) {
  395. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  396. reply, reply_bytes);
  397. if (ret == 0)
  398. return -EPROTO;
  399. if (ret < 0)
  400. return ret;
  401. ack = reply[0];
  402. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  403. memcpy(recv, reply + 1, ret - 1);
  404. return ret - 1;
  405. }
  406. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  407. udelay(100);
  408. else
  409. return -EIO;
  410. }
  411. }
  412. static int
  413. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  414. uint8_t write_byte, uint8_t *read_byte)
  415. {
  416. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  417. struct intel_dp *intel_dp = container_of(adapter,
  418. struct intel_dp,
  419. adapter);
  420. uint16_t address = algo_data->address;
  421. uint8_t msg[5];
  422. uint8_t reply[2];
  423. int msg_bytes;
  424. int reply_bytes;
  425. int ret;
  426. /* Set up the command byte */
  427. if (mode & MODE_I2C_READ)
  428. msg[0] = AUX_I2C_READ << 4;
  429. else
  430. msg[0] = AUX_I2C_WRITE << 4;
  431. if (!(mode & MODE_I2C_STOP))
  432. msg[0] |= AUX_I2C_MOT << 4;
  433. msg[1] = address >> 8;
  434. msg[2] = address;
  435. switch (mode) {
  436. case MODE_I2C_WRITE:
  437. msg[3] = 0;
  438. msg[4] = write_byte;
  439. msg_bytes = 5;
  440. reply_bytes = 1;
  441. break;
  442. case MODE_I2C_READ:
  443. msg[3] = 0;
  444. msg_bytes = 4;
  445. reply_bytes = 2;
  446. break;
  447. default:
  448. msg_bytes = 3;
  449. reply_bytes = 1;
  450. break;
  451. }
  452. for (;;) {
  453. ret = intel_dp_aux_ch(intel_dp,
  454. msg, msg_bytes,
  455. reply, reply_bytes);
  456. if (ret < 0) {
  457. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  458. return ret;
  459. }
  460. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  461. case AUX_I2C_REPLY_ACK:
  462. if (mode == MODE_I2C_READ) {
  463. *read_byte = reply[1];
  464. }
  465. return reply_bytes - 1;
  466. case AUX_I2C_REPLY_NACK:
  467. DRM_DEBUG_KMS("aux_ch nack\n");
  468. return -EREMOTEIO;
  469. case AUX_I2C_REPLY_DEFER:
  470. DRM_DEBUG_KMS("aux_ch defer\n");
  471. udelay(100);
  472. break;
  473. default:
  474. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  475. return -EREMOTEIO;
  476. }
  477. }
  478. }
  479. static int
  480. intel_dp_i2c_init(struct intel_dp *intel_dp,
  481. struct intel_connector *intel_connector, const char *name)
  482. {
  483. DRM_DEBUG_KMS("i2c_init %s\n", name);
  484. intel_dp->algo.running = false;
  485. intel_dp->algo.address = 0;
  486. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  487. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  488. intel_dp->adapter.owner = THIS_MODULE;
  489. intel_dp->adapter.class = I2C_CLASS_DDC;
  490. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  491. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  492. intel_dp->adapter.algo_data = &intel_dp->algo;
  493. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  494. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  495. }
  496. static bool
  497. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  498. struct drm_display_mode *adjusted_mode)
  499. {
  500. struct drm_device *dev = encoder->dev;
  501. struct drm_i915_private *dev_priv = dev->dev_private;
  502. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  503. int lane_count, clock;
  504. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  505. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  506. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  507. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  508. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  509. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  510. mode, adjusted_mode);
  511. /*
  512. * the mode->clock is used to calculate the Data&Link M/N
  513. * of the pipe. For the eDP the fixed clock should be used.
  514. */
  515. mode->clock = dev_priv->panel_fixed_mode->clock;
  516. }
  517. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  518. for (clock = 0; clock <= max_clock; clock++) {
  519. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  520. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  521. <= link_avail) {
  522. intel_dp->link_bw = bws[clock];
  523. intel_dp->lane_count = lane_count;
  524. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  525. DRM_DEBUG_KMS("Display port link bw %02x lane "
  526. "count %d clock %d\n",
  527. intel_dp->link_bw, intel_dp->lane_count,
  528. adjusted_mode->clock);
  529. return true;
  530. }
  531. }
  532. }
  533. if (is_edp(intel_dp)) {
  534. /* okay we failed just pick the highest */
  535. intel_dp->lane_count = max_lane_count;
  536. intel_dp->link_bw = bws[max_clock];
  537. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  538. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  539. "count %d clock %d\n",
  540. intel_dp->link_bw, intel_dp->lane_count,
  541. adjusted_mode->clock);
  542. return true;
  543. }
  544. return false;
  545. }
  546. struct intel_dp_m_n {
  547. uint32_t tu;
  548. uint32_t gmch_m;
  549. uint32_t gmch_n;
  550. uint32_t link_m;
  551. uint32_t link_n;
  552. };
  553. static void
  554. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  555. {
  556. while (*num > 0xffffff || *den > 0xffffff) {
  557. *num >>= 1;
  558. *den >>= 1;
  559. }
  560. }
  561. static void
  562. intel_dp_compute_m_n(int bpp,
  563. int nlanes,
  564. int pixel_clock,
  565. int link_clock,
  566. struct intel_dp_m_n *m_n)
  567. {
  568. m_n->tu = 64;
  569. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  570. m_n->gmch_n = link_clock * nlanes;
  571. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  572. m_n->link_m = pixel_clock;
  573. m_n->link_n = link_clock;
  574. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  575. }
  576. void
  577. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  578. struct drm_display_mode *adjusted_mode)
  579. {
  580. struct drm_device *dev = crtc->dev;
  581. struct drm_mode_config *mode_config = &dev->mode_config;
  582. struct drm_encoder *encoder;
  583. struct drm_i915_private *dev_priv = dev->dev_private;
  584. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  585. int lane_count = 4, bpp = 24;
  586. struct intel_dp_m_n m_n;
  587. /*
  588. * Find the lane count in the intel_encoder private
  589. */
  590. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  591. struct intel_dp *intel_dp;
  592. if (encoder->crtc != crtc)
  593. continue;
  594. intel_dp = enc_to_intel_dp(encoder);
  595. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  596. lane_count = intel_dp->lane_count;
  597. break;
  598. } else if (is_edp(intel_dp)) {
  599. lane_count = dev_priv->edp.lanes;
  600. bpp = dev_priv->edp.bpp;
  601. break;
  602. }
  603. }
  604. /*
  605. * Compute the GMCH and Link ratios. The '3' here is
  606. * the number of bytes_per_pixel post-LUT, which we always
  607. * set up for 8-bits of R/G/B, or 3 bytes total.
  608. */
  609. intel_dp_compute_m_n(bpp, lane_count,
  610. mode->clock, adjusted_mode->clock, &m_n);
  611. if (HAS_PCH_SPLIT(dev)) {
  612. if (intel_crtc->pipe == 0) {
  613. I915_WRITE(TRANSA_DATA_M1,
  614. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  615. m_n.gmch_m);
  616. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  617. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  618. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  619. } else {
  620. I915_WRITE(TRANSB_DATA_M1,
  621. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  622. m_n.gmch_m);
  623. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  624. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  625. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  626. }
  627. } else {
  628. if (intel_crtc->pipe == 0) {
  629. I915_WRITE(PIPEA_GMCH_DATA_M,
  630. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  631. m_n.gmch_m);
  632. I915_WRITE(PIPEA_GMCH_DATA_N,
  633. m_n.gmch_n);
  634. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  635. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  636. } else {
  637. I915_WRITE(PIPEB_GMCH_DATA_M,
  638. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  639. m_n.gmch_m);
  640. I915_WRITE(PIPEB_GMCH_DATA_N,
  641. m_n.gmch_n);
  642. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  643. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  644. }
  645. }
  646. }
  647. static void
  648. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  649. struct drm_display_mode *adjusted_mode)
  650. {
  651. struct drm_device *dev = encoder->dev;
  652. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  653. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  654. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  655. intel_dp->DP = (DP_VOLTAGE_0_4 |
  656. DP_PRE_EMPHASIS_0);
  657. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  658. intel_dp->DP |= DP_SYNC_HS_HIGH;
  659. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  660. intel_dp->DP |= DP_SYNC_VS_HIGH;
  661. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  662. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  663. else
  664. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  665. switch (intel_dp->lane_count) {
  666. case 1:
  667. intel_dp->DP |= DP_PORT_WIDTH_1;
  668. break;
  669. case 2:
  670. intel_dp->DP |= DP_PORT_WIDTH_2;
  671. break;
  672. case 4:
  673. intel_dp->DP |= DP_PORT_WIDTH_4;
  674. break;
  675. }
  676. if (intel_dp->has_audio)
  677. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  678. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  679. intel_dp->link_configuration[0] = intel_dp->link_bw;
  680. intel_dp->link_configuration[1] = intel_dp->lane_count;
  681. /*
  682. * Check for DPCD version > 1.1 and enhanced framing support
  683. */
  684. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  685. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  686. intel_dp->DP |= DP_ENHANCED_FRAMING;
  687. }
  688. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  689. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  690. intel_dp->DP |= DP_PIPEB_SELECT;
  691. if (is_edp(intel_dp)) {
  692. /* don't miss out required setting for eDP */
  693. intel_dp->DP |= DP_PLL_ENABLE;
  694. if (adjusted_mode->clock < 200000)
  695. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  696. else
  697. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  698. }
  699. }
  700. /* Returns true if the panel was already on when called */
  701. static bool ironlake_edp_panel_on (struct drm_device *dev)
  702. {
  703. struct drm_i915_private *dev_priv = dev->dev_private;
  704. u32 pp;
  705. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  706. return true;
  707. pp = I915_READ(PCH_PP_CONTROL);
  708. /* ILK workaround: disable reset around power sequence */
  709. pp &= ~PANEL_POWER_RESET;
  710. I915_WRITE(PCH_PP_CONTROL, pp);
  711. POSTING_READ(PCH_PP_CONTROL);
  712. pp |= POWER_TARGET_ON;
  713. I915_WRITE(PCH_PP_CONTROL, pp);
  714. /* Ouch. We need to wait here for some panels, like Dell e6510
  715. * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
  716. */
  717. msleep(300);
  718. if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000))
  719. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  720. I915_READ(PCH_PP_STATUS));
  721. pp &= ~(PANEL_UNLOCK_REGS);
  722. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  723. I915_WRITE(PCH_PP_CONTROL, pp);
  724. POSTING_READ(PCH_PP_CONTROL);
  725. return false;
  726. }
  727. static void ironlake_edp_panel_off (struct drm_device *dev)
  728. {
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. u32 pp;
  731. pp = I915_READ(PCH_PP_CONTROL);
  732. /* ILK workaround: disable reset around power sequence */
  733. pp &= ~PANEL_POWER_RESET;
  734. I915_WRITE(PCH_PP_CONTROL, pp);
  735. POSTING_READ(PCH_PP_CONTROL);
  736. pp &= ~POWER_TARGET_ON;
  737. I915_WRITE(PCH_PP_CONTROL, pp);
  738. if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000))
  739. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  740. I915_READ(PCH_PP_STATUS));
  741. /* Make sure VDD is enabled so DP AUX will work */
  742. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  743. I915_WRITE(PCH_PP_CONTROL, pp);
  744. POSTING_READ(PCH_PP_CONTROL);
  745. /* Ouch. We need to wait here for some panels, like Dell e6510
  746. * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
  747. */
  748. msleep(300);
  749. }
  750. static void ironlake_edp_panel_vdd_on(struct drm_device *dev)
  751. {
  752. struct drm_i915_private *dev_priv = dev->dev_private;
  753. u32 pp;
  754. pp = I915_READ(PCH_PP_CONTROL);
  755. pp |= EDP_FORCE_VDD;
  756. I915_WRITE(PCH_PP_CONTROL, pp);
  757. POSTING_READ(PCH_PP_CONTROL);
  758. msleep(300);
  759. }
  760. static void ironlake_edp_panel_vdd_off(struct drm_device *dev)
  761. {
  762. struct drm_i915_private *dev_priv = dev->dev_private;
  763. u32 pp;
  764. pp = I915_READ(PCH_PP_CONTROL);
  765. pp &= ~EDP_FORCE_VDD;
  766. I915_WRITE(PCH_PP_CONTROL, pp);
  767. POSTING_READ(PCH_PP_CONTROL);
  768. msleep(300);
  769. }
  770. static void ironlake_edp_backlight_on (struct drm_device *dev)
  771. {
  772. struct drm_i915_private *dev_priv = dev->dev_private;
  773. u32 pp;
  774. DRM_DEBUG_KMS("\n");
  775. pp = I915_READ(PCH_PP_CONTROL);
  776. pp |= EDP_BLC_ENABLE;
  777. I915_WRITE(PCH_PP_CONTROL, pp);
  778. }
  779. static void ironlake_edp_backlight_off (struct drm_device *dev)
  780. {
  781. struct drm_i915_private *dev_priv = dev->dev_private;
  782. u32 pp;
  783. DRM_DEBUG_KMS("\n");
  784. pp = I915_READ(PCH_PP_CONTROL);
  785. pp &= ~EDP_BLC_ENABLE;
  786. I915_WRITE(PCH_PP_CONTROL, pp);
  787. }
  788. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  789. {
  790. struct drm_device *dev = encoder->dev;
  791. struct drm_i915_private *dev_priv = dev->dev_private;
  792. u32 dpa_ctl;
  793. DRM_DEBUG_KMS("\n");
  794. dpa_ctl = I915_READ(DP_A);
  795. dpa_ctl &= ~DP_PLL_ENABLE;
  796. I915_WRITE(DP_A, dpa_ctl);
  797. }
  798. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  799. {
  800. struct drm_device *dev = encoder->dev;
  801. struct drm_i915_private *dev_priv = dev->dev_private;
  802. u32 dpa_ctl;
  803. dpa_ctl = I915_READ(DP_A);
  804. dpa_ctl |= DP_PLL_ENABLE;
  805. I915_WRITE(DP_A, dpa_ctl);
  806. POSTING_READ(DP_A);
  807. udelay(200);
  808. }
  809. static void intel_dp_prepare(struct drm_encoder *encoder)
  810. {
  811. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  812. struct drm_device *dev = encoder->dev;
  813. struct drm_i915_private *dev_priv = dev->dev_private;
  814. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  815. if (is_edp(intel_dp)) {
  816. ironlake_edp_panel_off(dev);
  817. ironlake_edp_backlight_off(dev);
  818. ironlake_edp_panel_vdd_on(dev);
  819. ironlake_edp_pll_on(encoder);
  820. }
  821. if (dp_reg & DP_PORT_EN)
  822. intel_dp_link_down(intel_dp);
  823. }
  824. static void intel_dp_commit(struct drm_encoder *encoder)
  825. {
  826. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  827. struct drm_device *dev = encoder->dev;
  828. intel_dp_start_link_train(intel_dp);
  829. if (is_edp(intel_dp))
  830. ironlake_edp_panel_on(dev);
  831. intel_dp_complete_link_train(intel_dp);
  832. if (is_edp(intel_dp))
  833. ironlake_edp_backlight_on(dev);
  834. }
  835. static void
  836. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  837. {
  838. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  839. struct drm_device *dev = encoder->dev;
  840. struct drm_i915_private *dev_priv = dev->dev_private;
  841. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  842. if (mode != DRM_MODE_DPMS_ON) {
  843. if (is_edp(intel_dp)) {
  844. ironlake_edp_backlight_off(dev);
  845. ironlake_edp_panel_off(dev);
  846. }
  847. if (dp_reg & DP_PORT_EN)
  848. intel_dp_link_down(intel_dp);
  849. if (is_edp(intel_dp))
  850. ironlake_edp_pll_off(encoder);
  851. } else {
  852. if (!(dp_reg & DP_PORT_EN)) {
  853. intel_dp_start_link_train(intel_dp);
  854. if (is_edp(intel_dp))
  855. ironlake_edp_panel_on(dev);
  856. intel_dp_complete_link_train(intel_dp);
  857. if (is_edp(intel_dp))
  858. ironlake_edp_backlight_on(dev);
  859. }
  860. }
  861. intel_dp->dpms_mode = mode;
  862. }
  863. /*
  864. * Fetch AUX CH registers 0x202 - 0x207 which contain
  865. * link status information
  866. */
  867. static bool
  868. intel_dp_get_link_status(struct intel_dp *intel_dp)
  869. {
  870. int ret;
  871. ret = intel_dp_aux_native_read(intel_dp,
  872. DP_LANE0_1_STATUS,
  873. intel_dp->link_status, DP_LINK_STATUS_SIZE);
  874. if (ret != DP_LINK_STATUS_SIZE)
  875. return false;
  876. return true;
  877. }
  878. static uint8_t
  879. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  880. int r)
  881. {
  882. return link_status[r - DP_LANE0_1_STATUS];
  883. }
  884. static uint8_t
  885. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  886. int lane)
  887. {
  888. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  889. int s = ((lane & 1) ?
  890. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  891. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  892. uint8_t l = intel_dp_link_status(link_status, i);
  893. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  894. }
  895. static uint8_t
  896. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  897. int lane)
  898. {
  899. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  900. int s = ((lane & 1) ?
  901. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  902. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  903. uint8_t l = intel_dp_link_status(link_status, i);
  904. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  905. }
  906. #if 0
  907. static char *voltage_names[] = {
  908. "0.4V", "0.6V", "0.8V", "1.2V"
  909. };
  910. static char *pre_emph_names[] = {
  911. "0dB", "3.5dB", "6dB", "9.5dB"
  912. };
  913. static char *link_train_names[] = {
  914. "pattern 1", "pattern 2", "idle", "off"
  915. };
  916. #endif
  917. /*
  918. * These are source-specific values; current Intel hardware supports
  919. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  920. */
  921. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  922. static uint8_t
  923. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  924. {
  925. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  926. case DP_TRAIN_VOLTAGE_SWING_400:
  927. return DP_TRAIN_PRE_EMPHASIS_6;
  928. case DP_TRAIN_VOLTAGE_SWING_600:
  929. return DP_TRAIN_PRE_EMPHASIS_6;
  930. case DP_TRAIN_VOLTAGE_SWING_800:
  931. return DP_TRAIN_PRE_EMPHASIS_3_5;
  932. case DP_TRAIN_VOLTAGE_SWING_1200:
  933. default:
  934. return DP_TRAIN_PRE_EMPHASIS_0;
  935. }
  936. }
  937. static void
  938. intel_get_adjust_train(struct intel_dp *intel_dp)
  939. {
  940. uint8_t v = 0;
  941. uint8_t p = 0;
  942. int lane;
  943. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  944. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  945. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  946. if (this_v > v)
  947. v = this_v;
  948. if (this_p > p)
  949. p = this_p;
  950. }
  951. if (v >= I830_DP_VOLTAGE_MAX)
  952. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  953. if (p >= intel_dp_pre_emphasis_max(v))
  954. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  955. for (lane = 0; lane < 4; lane++)
  956. intel_dp->train_set[lane] = v | p;
  957. }
  958. static uint32_t
  959. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  960. {
  961. uint32_t signal_levels = 0;
  962. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  963. case DP_TRAIN_VOLTAGE_SWING_400:
  964. default:
  965. signal_levels |= DP_VOLTAGE_0_4;
  966. break;
  967. case DP_TRAIN_VOLTAGE_SWING_600:
  968. signal_levels |= DP_VOLTAGE_0_6;
  969. break;
  970. case DP_TRAIN_VOLTAGE_SWING_800:
  971. signal_levels |= DP_VOLTAGE_0_8;
  972. break;
  973. case DP_TRAIN_VOLTAGE_SWING_1200:
  974. signal_levels |= DP_VOLTAGE_1_2;
  975. break;
  976. }
  977. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  978. case DP_TRAIN_PRE_EMPHASIS_0:
  979. default:
  980. signal_levels |= DP_PRE_EMPHASIS_0;
  981. break;
  982. case DP_TRAIN_PRE_EMPHASIS_3_5:
  983. signal_levels |= DP_PRE_EMPHASIS_3_5;
  984. break;
  985. case DP_TRAIN_PRE_EMPHASIS_6:
  986. signal_levels |= DP_PRE_EMPHASIS_6;
  987. break;
  988. case DP_TRAIN_PRE_EMPHASIS_9_5:
  989. signal_levels |= DP_PRE_EMPHASIS_9_5;
  990. break;
  991. }
  992. return signal_levels;
  993. }
  994. /* Gen6's DP voltage swing and pre-emphasis control */
  995. static uint32_t
  996. intel_gen6_edp_signal_levels(uint8_t train_set)
  997. {
  998. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  999. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1000. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  1001. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1002. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  1003. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1004. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  1005. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1006. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  1007. default:
  1008. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  1009. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  1010. }
  1011. }
  1012. static uint8_t
  1013. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1014. int lane)
  1015. {
  1016. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1017. int s = (lane & 1) * 4;
  1018. uint8_t l = intel_dp_link_status(link_status, i);
  1019. return (l >> s) & 0xf;
  1020. }
  1021. /* Check for clock recovery is done on all channels */
  1022. static bool
  1023. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1024. {
  1025. int lane;
  1026. uint8_t lane_status;
  1027. for (lane = 0; lane < lane_count; lane++) {
  1028. lane_status = intel_get_lane_status(link_status, lane);
  1029. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1030. return false;
  1031. }
  1032. return true;
  1033. }
  1034. /* Check to see if channel eq is done on all channels */
  1035. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1036. DP_LANE_CHANNEL_EQ_DONE|\
  1037. DP_LANE_SYMBOL_LOCKED)
  1038. static bool
  1039. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1040. {
  1041. uint8_t lane_align;
  1042. uint8_t lane_status;
  1043. int lane;
  1044. lane_align = intel_dp_link_status(intel_dp->link_status,
  1045. DP_LANE_ALIGN_STATUS_UPDATED);
  1046. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1047. return false;
  1048. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1049. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1050. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1051. return false;
  1052. }
  1053. return true;
  1054. }
  1055. static bool
  1056. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1057. uint32_t dp_reg_value,
  1058. uint8_t dp_train_pat)
  1059. {
  1060. struct drm_device *dev = intel_dp->base.base.dev;
  1061. struct drm_i915_private *dev_priv = dev->dev_private;
  1062. int ret;
  1063. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1064. POSTING_READ(intel_dp->output_reg);
  1065. intel_dp_aux_native_write_1(intel_dp,
  1066. DP_TRAINING_PATTERN_SET,
  1067. dp_train_pat);
  1068. ret = intel_dp_aux_native_write(intel_dp,
  1069. DP_TRAINING_LANE0_SET,
  1070. intel_dp->train_set, 4);
  1071. if (ret != 4)
  1072. return false;
  1073. return true;
  1074. }
  1075. /* Enable corresponding port and start training pattern 1 */
  1076. static void
  1077. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1078. {
  1079. struct drm_device *dev = intel_dp->base.base.dev;
  1080. struct drm_i915_private *dev_priv = dev->dev_private;
  1081. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1082. int i;
  1083. uint8_t voltage;
  1084. bool clock_recovery = false;
  1085. int tries;
  1086. u32 reg;
  1087. uint32_t DP = intel_dp->DP;
  1088. /* Enable output, wait for it to become active */
  1089. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1090. POSTING_READ(intel_dp->output_reg);
  1091. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1092. /* Write the link configuration data */
  1093. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1094. intel_dp->link_configuration,
  1095. DP_LINK_CONFIGURATION_SIZE);
  1096. DP |= DP_PORT_EN;
  1097. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1098. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1099. else
  1100. DP &= ~DP_LINK_TRAIN_MASK;
  1101. memset(intel_dp->train_set, 0, 4);
  1102. voltage = 0xff;
  1103. tries = 0;
  1104. clock_recovery = false;
  1105. for (;;) {
  1106. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1107. uint32_t signal_levels;
  1108. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1109. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1110. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1111. } else {
  1112. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1113. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1114. }
  1115. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1116. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1117. else
  1118. reg = DP | DP_LINK_TRAIN_PAT_1;
  1119. if (!intel_dp_set_link_train(intel_dp, reg,
  1120. DP_TRAINING_PATTERN_1))
  1121. break;
  1122. /* Set training pattern 1 */
  1123. udelay(100);
  1124. if (!intel_dp_get_link_status(intel_dp))
  1125. break;
  1126. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1127. clock_recovery = true;
  1128. break;
  1129. }
  1130. /* Check to see if we've tried the max voltage */
  1131. for (i = 0; i < intel_dp->lane_count; i++)
  1132. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1133. break;
  1134. if (i == intel_dp->lane_count)
  1135. break;
  1136. /* Check to see if we've tried the same voltage 5 times */
  1137. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1138. ++tries;
  1139. if (tries == 5)
  1140. break;
  1141. } else
  1142. tries = 0;
  1143. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1144. /* Compute new intel_dp->train_set as requested by target */
  1145. intel_get_adjust_train(intel_dp);
  1146. }
  1147. intel_dp->DP = DP;
  1148. }
  1149. static void
  1150. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1151. {
  1152. struct drm_device *dev = intel_dp->base.base.dev;
  1153. struct drm_i915_private *dev_priv = dev->dev_private;
  1154. bool channel_eq = false;
  1155. int tries;
  1156. u32 reg;
  1157. uint32_t DP = intel_dp->DP;
  1158. /* channel equalization */
  1159. tries = 0;
  1160. channel_eq = false;
  1161. for (;;) {
  1162. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1163. uint32_t signal_levels;
  1164. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1165. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1166. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1167. } else {
  1168. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1169. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1170. }
  1171. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1172. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1173. else
  1174. reg = DP | DP_LINK_TRAIN_PAT_2;
  1175. /* channel eq pattern */
  1176. if (!intel_dp_set_link_train(intel_dp, reg,
  1177. DP_TRAINING_PATTERN_2))
  1178. break;
  1179. udelay(400);
  1180. if (!intel_dp_get_link_status(intel_dp))
  1181. break;
  1182. if (intel_channel_eq_ok(intel_dp)) {
  1183. channel_eq = true;
  1184. break;
  1185. }
  1186. /* Try 5 times */
  1187. if (tries > 5)
  1188. break;
  1189. /* Compute new intel_dp->train_set as requested by target */
  1190. intel_get_adjust_train(intel_dp);
  1191. ++tries;
  1192. }
  1193. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1194. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1195. else
  1196. reg = DP | DP_LINK_TRAIN_OFF;
  1197. I915_WRITE(intel_dp->output_reg, reg);
  1198. POSTING_READ(intel_dp->output_reg);
  1199. intel_dp_aux_native_write_1(intel_dp,
  1200. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1201. }
  1202. static void
  1203. intel_dp_link_down(struct intel_dp *intel_dp)
  1204. {
  1205. struct drm_device *dev = intel_dp->base.base.dev;
  1206. struct drm_i915_private *dev_priv = dev->dev_private;
  1207. uint32_t DP = intel_dp->DP;
  1208. DRM_DEBUG_KMS("\n");
  1209. if (is_edp(intel_dp)) {
  1210. DP &= ~DP_PLL_ENABLE;
  1211. I915_WRITE(intel_dp->output_reg, DP);
  1212. POSTING_READ(intel_dp->output_reg);
  1213. udelay(100);
  1214. }
  1215. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1216. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1217. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1218. } else {
  1219. DP &= ~DP_LINK_TRAIN_MASK;
  1220. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1221. }
  1222. POSTING_READ(intel_dp->output_reg);
  1223. msleep(17);
  1224. if (is_edp(intel_dp))
  1225. DP |= DP_LINK_TRAIN_OFF;
  1226. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1227. POSTING_READ(intel_dp->output_reg);
  1228. }
  1229. /*
  1230. * According to DP spec
  1231. * 5.1.2:
  1232. * 1. Read DPCD
  1233. * 2. Configure link according to Receiver Capabilities
  1234. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1235. * 4. Check link status on receipt of hot-plug interrupt
  1236. */
  1237. static void
  1238. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1239. {
  1240. if (!intel_dp->base.base.crtc)
  1241. return;
  1242. if (!intel_dp_get_link_status(intel_dp)) {
  1243. intel_dp_link_down(intel_dp);
  1244. return;
  1245. }
  1246. if (!intel_channel_eq_ok(intel_dp)) {
  1247. intel_dp_start_link_train(intel_dp);
  1248. intel_dp_complete_link_train(intel_dp);
  1249. }
  1250. }
  1251. static enum drm_connector_status
  1252. ironlake_dp_detect(struct drm_connector *connector)
  1253. {
  1254. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1255. enum drm_connector_status status;
  1256. /* Panel needs power for AUX to work */
  1257. if (is_edp(intel_dp))
  1258. ironlake_edp_panel_vdd_on(connector->dev);
  1259. status = connector_status_disconnected;
  1260. if (intel_dp_aux_native_read(intel_dp,
  1261. 0x000, intel_dp->dpcd,
  1262. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1263. {
  1264. if (intel_dp->dpcd[0] != 0)
  1265. status = connector_status_connected;
  1266. }
  1267. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1268. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1269. if (is_edp(intel_dp))
  1270. ironlake_edp_panel_vdd_off(connector->dev);
  1271. return status;
  1272. }
  1273. /**
  1274. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1275. *
  1276. * \return true if DP port is connected.
  1277. * \return false if DP port is disconnected.
  1278. */
  1279. static enum drm_connector_status
  1280. intel_dp_detect(struct drm_connector *connector, bool force)
  1281. {
  1282. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1283. struct drm_device *dev = intel_dp->base.base.dev;
  1284. struct drm_i915_private *dev_priv = dev->dev_private;
  1285. uint32_t temp, bit;
  1286. enum drm_connector_status status;
  1287. intel_dp->has_audio = false;
  1288. if (HAS_PCH_SPLIT(dev))
  1289. return ironlake_dp_detect(connector);
  1290. switch (intel_dp->output_reg) {
  1291. case DP_B:
  1292. bit = DPB_HOTPLUG_INT_STATUS;
  1293. break;
  1294. case DP_C:
  1295. bit = DPC_HOTPLUG_INT_STATUS;
  1296. break;
  1297. case DP_D:
  1298. bit = DPD_HOTPLUG_INT_STATUS;
  1299. break;
  1300. default:
  1301. return connector_status_unknown;
  1302. }
  1303. temp = I915_READ(PORT_HOTPLUG_STAT);
  1304. if ((temp & bit) == 0)
  1305. return connector_status_disconnected;
  1306. status = connector_status_disconnected;
  1307. if (intel_dp_aux_native_read(intel_dp,
  1308. 0x000, intel_dp->dpcd,
  1309. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1310. {
  1311. if (intel_dp->dpcd[0] != 0)
  1312. status = connector_status_connected;
  1313. }
  1314. return status;
  1315. }
  1316. static int intel_dp_get_modes(struct drm_connector *connector)
  1317. {
  1318. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1319. struct drm_device *dev = intel_dp->base.base.dev;
  1320. struct drm_i915_private *dev_priv = dev->dev_private;
  1321. int ret;
  1322. /* We should parse the EDID data and find out if it has an audio sink
  1323. */
  1324. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1325. if (ret) {
  1326. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1327. struct drm_display_mode *newmode;
  1328. list_for_each_entry(newmode, &connector->probed_modes,
  1329. head) {
  1330. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1331. dev_priv->panel_fixed_mode =
  1332. drm_mode_duplicate(dev, newmode);
  1333. break;
  1334. }
  1335. }
  1336. }
  1337. return ret;
  1338. }
  1339. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1340. if (is_edp(intel_dp)) {
  1341. if (dev_priv->panel_fixed_mode != NULL) {
  1342. struct drm_display_mode *mode;
  1343. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1344. drm_mode_probed_add(connector, mode);
  1345. return 1;
  1346. }
  1347. }
  1348. return 0;
  1349. }
  1350. static void
  1351. intel_dp_destroy (struct drm_connector *connector)
  1352. {
  1353. drm_sysfs_connector_remove(connector);
  1354. drm_connector_cleanup(connector);
  1355. kfree(connector);
  1356. }
  1357. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1358. {
  1359. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1360. i2c_del_adapter(&intel_dp->adapter);
  1361. drm_encoder_cleanup(encoder);
  1362. kfree(intel_dp);
  1363. }
  1364. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1365. .dpms = intel_dp_dpms,
  1366. .mode_fixup = intel_dp_mode_fixup,
  1367. .prepare = intel_dp_prepare,
  1368. .mode_set = intel_dp_mode_set,
  1369. .commit = intel_dp_commit,
  1370. };
  1371. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1372. .dpms = drm_helper_connector_dpms,
  1373. .detect = intel_dp_detect,
  1374. .fill_modes = drm_helper_probe_single_connector_modes,
  1375. .destroy = intel_dp_destroy,
  1376. };
  1377. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1378. .get_modes = intel_dp_get_modes,
  1379. .mode_valid = intel_dp_mode_valid,
  1380. .best_encoder = intel_best_encoder,
  1381. };
  1382. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1383. .destroy = intel_dp_encoder_destroy,
  1384. };
  1385. static void
  1386. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1387. {
  1388. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1389. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1390. intel_dp_check_link_status(intel_dp);
  1391. }
  1392. /* Return which DP Port should be selected for Transcoder DP control */
  1393. int
  1394. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1395. {
  1396. struct drm_device *dev = crtc->dev;
  1397. struct drm_mode_config *mode_config = &dev->mode_config;
  1398. struct drm_encoder *encoder;
  1399. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1400. struct intel_dp *intel_dp;
  1401. if (encoder->crtc != crtc)
  1402. continue;
  1403. intel_dp = enc_to_intel_dp(encoder);
  1404. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1405. return intel_dp->output_reg;
  1406. }
  1407. return -1;
  1408. }
  1409. /* check the VBT to see whether the eDP is on DP-D port */
  1410. bool intel_dpd_is_edp(struct drm_device *dev)
  1411. {
  1412. struct drm_i915_private *dev_priv = dev->dev_private;
  1413. struct child_device_config *p_child;
  1414. int i;
  1415. if (!dev_priv->child_dev_num)
  1416. return false;
  1417. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1418. p_child = dev_priv->child_dev + i;
  1419. if (p_child->dvo_port == PORT_IDPD &&
  1420. p_child->device_type == DEVICE_TYPE_eDP)
  1421. return true;
  1422. }
  1423. return false;
  1424. }
  1425. void
  1426. intel_dp_init(struct drm_device *dev, int output_reg)
  1427. {
  1428. struct drm_i915_private *dev_priv = dev->dev_private;
  1429. struct drm_connector *connector;
  1430. struct intel_dp *intel_dp;
  1431. struct intel_encoder *intel_encoder;
  1432. struct intel_connector *intel_connector;
  1433. const char *name = NULL;
  1434. int type;
  1435. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1436. if (!intel_dp)
  1437. return;
  1438. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1439. if (!intel_connector) {
  1440. kfree(intel_dp);
  1441. return;
  1442. }
  1443. intel_encoder = &intel_dp->base;
  1444. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1445. if (intel_dpd_is_edp(dev))
  1446. intel_dp->is_pch_edp = true;
  1447. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1448. type = DRM_MODE_CONNECTOR_eDP;
  1449. intel_encoder->type = INTEL_OUTPUT_EDP;
  1450. } else {
  1451. type = DRM_MODE_CONNECTOR_DisplayPort;
  1452. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1453. }
  1454. connector = &intel_connector->base;
  1455. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1456. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1457. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1458. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1459. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1460. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1461. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1462. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1463. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1464. if (is_edp(intel_dp))
  1465. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1466. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1467. connector->interlace_allowed = true;
  1468. connector->doublescan_allowed = 0;
  1469. intel_dp->output_reg = output_reg;
  1470. intel_dp->has_audio = false;
  1471. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1472. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1473. DRM_MODE_ENCODER_TMDS);
  1474. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1475. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1476. drm_sysfs_connector_add(connector);
  1477. /* Set up the DDC bus. */
  1478. switch (output_reg) {
  1479. case DP_A:
  1480. name = "DPDDC-A";
  1481. break;
  1482. case DP_B:
  1483. case PCH_DP_B:
  1484. dev_priv->hotplug_supported_mask |=
  1485. HDMIB_HOTPLUG_INT_STATUS;
  1486. name = "DPDDC-B";
  1487. break;
  1488. case DP_C:
  1489. case PCH_DP_C:
  1490. dev_priv->hotplug_supported_mask |=
  1491. HDMIC_HOTPLUG_INT_STATUS;
  1492. name = "DPDDC-C";
  1493. break;
  1494. case DP_D:
  1495. case PCH_DP_D:
  1496. dev_priv->hotplug_supported_mask |=
  1497. HDMID_HOTPLUG_INT_STATUS;
  1498. name = "DPDDC-D";
  1499. break;
  1500. }
  1501. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1502. intel_encoder->hot_plug = intel_dp_hot_plug;
  1503. if (is_edp(intel_dp)) {
  1504. /* initialize panel mode from VBT if available for eDP */
  1505. if (dev_priv->lfp_lvds_vbt_mode) {
  1506. dev_priv->panel_fixed_mode =
  1507. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1508. if (dev_priv->panel_fixed_mode) {
  1509. dev_priv->panel_fixed_mode->type |=
  1510. DRM_MODE_TYPE_PREFERRED;
  1511. }
  1512. }
  1513. }
  1514. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1515. * 0xd. Failure to do so will result in spurious interrupts being
  1516. * generated on the port when a cable is not attached.
  1517. */
  1518. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1519. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1520. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1521. }
  1522. }